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Abstract: Magneto-Acousto-Electrical Tomography (MAET) is a novel multi-physics imaging 

method, which promises to offer a unique biophysical property of tissue electrical impedance with the 

additional benefit of excellent spatial resolution of the ultrasonic imaging. It opens the potential for 

early diagnosis of cancer by revealing changes of dielectric characteristics. However, direct MAET is 

unable to image the irregularly-shaped lesions fully due to the dependence on the angle between 

conductivity boundary and ultrasound beam direction. In this paper, a numerical simulation of 

multi-angle MAET is presented for an improved image reconstruction for MAET in order to discern 

irregularly-shaped tumors in different positions. The results show that the conductivity boundary 

interfaces are invisible in single angle B-mode reconstructed image, wherever the ultrasound beam 

and conductivity boundary are nearly parallel. When the multi-angle scanning was adopted, the image 

reconstructed with image rotation method reproduced the original object pattern. Furthermore, the 

relationship between reconstruction error and the number of angles was also discussed. It is found 

that 12 angles would be necessary to achieve nearly the optimal reconstruction. Finally, reconstructed 

images in L
2
 norm of the error with the measurement noise are presented.  

Keywords: focus ultrasound; Magneto-Acousto-Electrical Tomography; electrical parameter 

imaging; multi-angle scanning; error analysis 
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1. Introduction  

Dielectric characteristics of a tissue may reflect its physiological and pathological conditions. For 

instance, some cancerous tissues have been shown to present changes in electrical conductivity from 

the surrounding normal tissues [1–3], which potentially provides clinically relevant information for 

early diagnosis. Electrical Impedance Tomography (EIT) is a novel technique that measures 

conductivity with the advantages of high-speed, safety and low cost. However, its clinical application 

is as yet limited by poor spatial resolution due to the mathematically ill-posed problems [4,5]. 

Consequently, several novel methods have been proposed, such as Magnetic Resonance Electrical 

Impedance Tomography (MREIT) [6,7], Magneto-Acoustic Tomography with Magnetic Induction 

(MAT-MI) [8,9] and Magneto-Acousto-Electrical Tomography (MAET). MREIT is based, as its 

names suggests, on Magnetic Resonance Imaging (MRI). First, MRI images are acquired. Then, a 

weak electrical current is injected into a sample using electrodes. By using the J-substitution algorithm 

or the harmonic Bz algorithm, the image of local electrical conductivity can be mapped. MAT-MI was 

proposed by Bin He et al. in 2005 [10]. The electrical current in the test subject is created by magnetic 

field induction. Therefore, this method eliminates problems of discomfort and risks associated with 

current injection.  

MAET is also known as Hall Effect Imaging (HEI) or the Lorentz Force Electrical Impedance 

Tomography (LFEIT) [11–16]. The method employs an ultrasound transducer to transmit a 

mechanical wave into the sample placed in a static magnetic field. As both positive and negative ions 

in the sample are displaced forward or backward along the wave propagation direction in the presence 

of the magnetic field, a distribution of Lorentz force is generated, and then an electrical field is 

created. By using one or more pairs of electrodes [12,17], placed around the sample, one or more 

voltage signals can be detected and analyzed. MAET was first demonstrated experimentally by Wen et 

al. [11]. In their study, 2D Hall effect images in an experimental setup were obtained. Then 

Montalibet [12,18] derived the measurement formula for MAET and used Wiener inverse filter to 

extract the conductivity parameter. Haider et al. [13] introduced the reciprocity theorem in the 

reconstruction algorithm. A high-spatial-resolution image of current density was obtained.  

Grasland-Mongrain [14] further developed the model presented by Montalibet et al., and 

demonstrated that the detected voltage was proportional to the convolution of the electrical 

conductivity gradient with the acoustic pressure. Finally, reconstructed images of a gelatin phantom 

and a beef sample were presented. The relative amplitude of the front interface signal was different 

from the back interface due to the magnetic field inhomogeneity. Later, the concept of 

Acousto-Electrical speckle pattern was proposed by Mongrain et al. [15]. The theoretical similarity 

between the measured signal in LFEIT and ultrasound imaging modalities was assessed. Similar 

speckle patterns were observed, which was allowed to consider the use of ultrasound speckle-based 

image on LFEIT and to study electrical inhomogeneity structures.  

Originated in radar applications [19], linear frequency-modulated pulse was applied to MAET by 

Sun et al. [16] in order to reduce peak stimulation power to the ultrasound transducer. B-scan images 

of various shaped agar phantoms were reconstructed finally. Dai et al. [20,21] studied multi-focus 

MAET method and obtained the conductivity parameter imaging of a rectangle phantom with a 

rectangle hole. Based on reciprocity theorem, Zengin [22] investigated the use of linear phase array 

(LPA) for MAET with magnetic measurements. The characteristics of the imaging system were 

analyzed by singular value decomposition (SVD) of the sensitivity matrix. The truncated SVD 

algorithm was implemented to reconstruct images with different signal noise ratio (SNR). Later on, the 
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conductivity distribution in biological bodies was imaged by Gözü et al. [23] using LPA with 

electrodes measurements. 

Most of the previous studies carried out experiments with linear scanning in which the 

conductivity boundaries in the sample were perpendicular to the ultrasound beam. This experimental 

setup may simplify the following image reconstruction because peak MAET signal occurs at the 

interface of two media with different conductivities when the interface is perpendicular to the 

ultrasound propagation path. However, for practical conditions with irregular interface, the MAET 

signal captured by the electrodes may decay and image reconstruction becomes challenging. 

Recently, some researchers had tried to address this problem by obtaining more information 

from different scanning directions. Kunyansky et al. [17] proposed a rotational MAET method, with 

a rotating object of interest and two fixed pairs of electrodes. This method could reconstruct the 

boundaries of the regions of constant conductivity uniformly well, regardless of their orientations. 

However, the method was time-consuming by using the combination of 40 linear scan steps and 200 

rotation angles. 

Therefore, there is a need to improve the current method on both the accuracy of reconstructed 

image as well as reducing the total data acquisition time. In this study, a finite element model based on 

partial differential equation (PDE) of a multi-angle MAET experimental setup was constructed. In 

order to improve image resolution, as well as to lower computation cost, a higher ultrasound frequency 

was used. Consequently, the finite element method of Zengin [22] was substituted with a pressure 

acoustics time explicit interface method based on Range-Kutta discontinuous Galerkin (DG) 

method [24] in this study. To show the relation between the MAE signal and the conductivity, the 

corresponding measurement formula was demonstrated based on the study of Wen et al. Then, a model 

including two elliptically-shaped tumors was used. Next, a multi-angle MAET scanning method was 

proposed. Later on, multiphysics simulations using COMSOL Multiphysics software were 

implemented. The conductivity parameter images of complicated tissues were reconstructed by using 

multi-angle B-scan by image rotation. Finally, we investigated the relation between the number of 

angles and image quality and analyzed the signal-to-noise level based on the optimal number of angles. 

Compared with the method proposed by Kunyansky using similar scanning scheme and radon 

transform, our method had several advantages. First, the restriction on the angle of rotation was more 

flexible. Second, a simpler reconstruction was used, because the reconstructed method in this study 

was mainly based on image rotation. Then, the effect of the number of angles which was critical for 

the scanning time and the quality of reconstruction image was investigated in our study 

quantitatively with a large amount of numerical data. Finally, different signal-to-noise levels were 

investigated.  

2. Theory of Magneto-Acousto-Electrical Tomography  

The model equations for the finite element simulation are described here. The geometry of MAET 

is shown in Figure 1. A medium with the electrical and acoustic properties of breast fat tissue with 

electrical conductivity spatial distribution  is placed in a static magnetic field B0 that is in the 

+x direction. A focus ultrasound transducer produces an ultrasound beam with particle velocity  

inside the breast fat. In order to simplify derivation, the acoustic attenuation due to viscosity is ignored 

for the propagation in the media. The Lorentz current density due to ultrasonically induced Lorentz 

fields is given by: 

  (1.1) 

http://www.baidu.com/link?url=4qH0_rvcvzZqszpQprodewRcp_IKfJ5ypXpi6FHJ4SKMn1YYiixkkSHcGoRJhB-UZgEstQCD48PN4AUWgCtCwfSUfUMz6D-Cogd7xa-2jZm3rT5QekQDdiIM_qtwxkY8
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The Ohmic currents  are related to the electrical potential  in the media by the 

Ohm’s law: 

  (1.2) 

As the movement of charges is divergence-free, , we can obtain: 

  (1.3) 

For the time explicit method used, the governing wave equations are formulated as the first order 

system, terms of the linearized continuity equation and the linearized momentum equation, as 

  (1.4) 

  (1.5) 

where ,  and  represent the acoustic pressure, the mass density of medium and the speed of sound, 

respectively. The acoustic pressure is obtained by the boundary condition of normal velocity on the 

transducer surface. The boundary condition is defined as: 

  (1.6) 

where  is the vibration velocity produced by the transducer. The vibration velocity  can be 

obtained by integrating against time, 

  (1.7) 

Substituting (1.7) into (1.3) yields  

  (1.8) 

The boundary conditions of the breast fat tissue are given differently on the electrodes and the 

other surfaces [25]. On the surface ( ) without electrode: 

  (1.9)  

and on each of the electrodes, the total current flowing out of the electrode is zero, since the 

electrodes are connected to a high impedance receiver: 

  (1.10) 

where n is the outward normal on the boundary. The equations above are used in COMSOL to solve 

the forward problem of MAET. 

Following Wen [11], the measurement formula of the MAET is given by: 

  (1.11) 

where ,  and  are constants.  is the impedance of detection circuit. We can see that the 

MAE voltage is proportional to the gradient of conductivity. If the velocity of ultrasound and the 

conductivity gradient are in the same direction, the MAE voltage is the largest. On the contrary, if 
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the velocity of ultrasound and the conductivity gradient are nearly perpendicular to each other, the 

MAE voltage will be approximately equal to zero. Hence, for irregularly-shaped tumors, rotating the 

sample is required to obtain an image of the complete pattern. 

 

Figure 1. General geometry for MAET. The conductive body with two tumors is placed in 

a static magnetic field B0. Focal transducer is used to generate ultrasound beam. The 

particle velocity v of pulse acoustic waves can result in electric field in the body. The 

electrodes are used to measure the potential difference. The acoustic waves are absorbed 

by the absorber. 

3. Numerical studies 

The COMSOL Multiphysics software (5.4, COMSOL Inc., Sweden) was used for the numerical 

studies. In this study, the pressure acoustics time explicit interface based on Range-Kutta 

discontinuous Galerkin (DG) method was used. Different from the pressure acoustics interface based 

on FEM, the pressure shape function used in DG was quartic (shape function in pressure acoustics 

interface was quadratic), so the mesh size in DG was set half of the wavelength to achieve appropriate 

spatial resolution. Consequently, the higher ultrasound frequency could be simulated with less solving 

time. The AC/DC (for electromagnetic) module of COMSOL Multiphysics was used to solve the 

forward problem of electromagnetic numerically. A numerical 2D geometry was built by COMSOL 

software. The distributions of focus ultrasound, current density and electric potential were obtained, 

respectively. 

3.1. Model geometry 

The model geometry including normal tissue (breast fat) and malignant tumor (breas t tumor) 

is shown in Figure 2. The flux density of the static magnetic field B0 is 0.77 T along x axis. The 

breast fat is modeled as a 30 mm × 20 mm rectangle and breast tumors are modeled as two identical, 

8 mm × 4 mm ellipses tilted at 15 and 75° off the z-axis. The tissue properties for sound speed, 

density and conductivity are listed in Table 1. 

A focus ultrasound transducer with the radius of curvature of 50 mm is simulated. After the 

Helmholtz equation is solved, the frequency domain ultrasound pressure field is shown in Figure 3. 
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The pressure distributions of z direction and y direction of are plotted in Figure 4a,b, respectively. The 

focus center is about 50 mm. Because the axis resolution of MAET is related to the duration time of 

pulse (code ultrasound is excluded), the sine pulse comprised of two cycle is adopted here. The input 

signal applied to the transducer is given as V(t) = 200sin(2πf0t)H(t). The window function H(t) models 

the frequency response of an ultrasound transducer. Besides, the convergence of the result can be 

ensured by the window function. The voltage profile is depicted in Figure 5. According to the 

governing Eq (1.8) and boundary conditions (1.9) and (1.10), the forward problem of MAET can be 

solved by using COMSOL Multiphysics software. Note that the order of MAE signal is in  level, 

so it is very necessary to set the relative tolerance less than 10e-5.  

 

Figure 2. 2D geometry model for MAET. The geometry is comprised by a focal 

transducer, a breast fat with two tumors and an acoustic absorber. The single element focus 

transducer is used to generate the acoustic field. The distance between transducer and the 

front interface of breast fat is 40 mm. The fat tissue is a rectangle with a length of 30 mm 

and a width of 20 mm with the inclusion of two elliptical tumors. 

 

Figure 3. The pressure field of the excitation ultrasound beam with the transducer placed 

at z = 0 mm. The focal point of the transducer is 50 mm nominally. 



2870 

Mathematical Biosciences and Engineering  Volume 17, Issue 4, 2864–2880. 

 

Figure 4. (a) z direction and (b) y direction pressure distributions of harmonics. 

 

Figure 5. The input signal applied to the transducer. 

Table 1. The speed of sound, density and conductivity (at 2 MHz) [3,26,27] of breast fat 

and breast tumor. 

Medium Speed of sound c (m/s) Density (kg/m
3
) Conductivity (S/m) 

Breast fat 

Breast tumor 

1454 

1710 

917 

1215 

0.0267 

0.0771 

3.2. Scanning process 

In order to obtain B-mode image, the transducer is scanned along the y-direction with a step 

of 1 mm. The length of the tissue is 29 mm. After each B-mode scanning, the sample is rotated 

clockwise from 0 to 180° with the step angle of 180°/N. The N is the number of angles and it 

increases uniformly from 2 to 18 to evaluate the optimal N.  

When the angle of rotation is 0°, the electrodes need to be placed to detect the induced electric 

field which is normal to the ultrasound, i.e. on the left and right sides of the sample. When the angles 

of rotation of sample are 0 to 40° and 140 to 175°, the electrodes do not need to change the position, 
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and only need to rotate with the sample. However, when the angles of rotation of sample are 45 to 135°, 

the electrode needs to be replaced and placed on the other two sides of the sample at this time. There 

are two reasons for doing this, firstly to avoid the electrodes obstructing the ultrasound beam, and 

secondly to maximize the MAET signal. 

 

Figure 6. The velocity current density when transducer is placed at y = 0 mm at different 

time. 

 

Figure 7. The velocity current density when transducer is placed at y = −6 mm at different 

time. 
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3.3. Current density  

In the presence of a static magnetic field, an acoustic wave propagating in the sample induces a 

current density. Some researchers call it the velocity current density, since the distribution of the 

current density is consistent with the distribution of particle velocity of the longitudinal wave. When 

the focus transducer is placed in the y = 0 mm, the velocity current density at different times is shown 

in Figure 6. At this position, the ultrasound beams do not pass directly through the tumor regions with 

high conductivity. The region through which ultrasonic waves propagate is mainly homogeneous 

conductivity, so MAET signal will be induced at the front interface (z = 40 mm) and the back interface 

(z = 60 mm). And the voltage signal generated in the uniform conductivity region is minimal, which is 

consistent with all experimental results in other literatures. 

When the transducer is placed in the position (at y = −6 mm), the beam propagates through the 

tumor, producing a large current density at the tumor position shown in Figure 7. The potential 

collected at both ends of the electrodes will contain the signal of the tumor area. 

3.4. Electric potential  

The MAE signal is presented in Figure 8a,b when the transducer moves to 0 and −6 mm, 

respectively. By B-mode scanning along y axis, a MAE signal will be obtained on the electrodes after 

the transducer is excited using narrow pulse. Only the voltage signal of the front and the back 

interfaces (A and B in Figure 8a) of the sample can be detected on the electrodes when the transducer 

focuses on the non-tumor area. When the transducer focuses on the tumor area, not only the signal of 

the front and the back interfaces of the sample can be collected on the electrodes, but also the voltage 

signal of the tumor perpendicular to the ultrasonic direction can be obtained (A, B, C and D in Figure 8b). 

Note that in this model, the waveform of the MAE signal is similar to the ultrasound waveform 

transducer. 

In this study, the distance between transducer and sample is 40 mm, and the sound velocity of 

water is 1490 m/s, so the data acquisition time of the first MAE voltage is 26.8 μs (A peak in Figure 8a). 

The width of the sample is 20 mm, and the sound velocity of breast fat tissue is 1454 m/s, so the time 

between the first interface and the last interface is 13.7 μs (B peak in Figure 8a). 

3.5.  Data processing 

In order to improve the quality of the signal, a Wiener filter is applied to the MAE signal. Then, 

the envelope of the MAE signal is obtained using the Hilbert transform, shown in Figure 9a,b. The 

subsequent B-mode images are reconstructed by using MAE signal from different excitation 

locations. Finally, after the linear interpolation algorithm is executed, the B-scan image using the 

relative amplitude of conductivity is obtained.  

The total data acquisition time is 55 μs, and the data are sampled with time interval of 0.1μs. 

Thus, there are 551 samples in total. Considering the balance between image quality and processing 

time, we choose to perform eight times linear interpolation that results in 4401 numbers of sample. In 

the y axis, after linear interpolation, there are 1261 data totally. The reconstructed B-mode image of 

single angle is shown in Figure 10. The conductivity gradient along the ultrasound direction shows 

the greater intensity which is consistent with the theory.  
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In order to combine B-mode images with different rotation angles, we use the image rotation 

method in image processing. The B-mode image obtained at certain angle needs to rotate 

anticlockwise with the corresponding angle, and the rotated image is superimposed on previous 

image in a particular order. The reconstructed images with different number of angles are shown in 

Figure 11. The error analysis corresponding to the number of angles is demonstrated in section 3.6. 

 

Figure 8. The MAE signal collected on the electrodes when the transducer moves to 

different position. (a) MAE signal of the transducer located in 0 mm. (b) MAE signal of the 

transducer located in −6 mm. 

 

Figure 9. The envelope of the MAE signal. (a) the envelope distribution of the MAE 

signal calculated by Hilbert transform in 0 mm. (b) the envelope distribution of the MAE 

signal calculated by Hilbert transform in −6 mm. 

3.6. Error analysis on the number of angles 

It is expectable that more angles can improve the quality and accuracy of the reconstructed 

image. However, a tradeoff must be considered among the reconstructed accuracy, imaging time and 

complexity. We hope to obtain high quality images in reasonable time. In this section, error in the 

mean square sense is analyzed between reconstructed errors and the number of angles.  
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In this paper, we only evaluate the accuracy of reconstructed image profile, so we need to take a 

threshold on the reconstructed image to acquire corresponding profile. The ideal binary image based 

on the original conductivity distribution and practical reconstructed image are set as  and . 

Thus, we define 

  (2.1) 

and quantify the difference between  and  in terms of mean-square-error (MSE) defined as 

follows: 

  (2.2) 

The ideal conductivity parameter image should be given according to the length of the transducer 

emission waveform. The duration of the waveform is about 1.0 μs. The speed of sound in the tumor 

is 1700 m/s, so the length of the waveform is 1.7 mm. The resolution in theory is 0.85 mm. The ideal 

binary image is shown in Figure 12. The threshold of the reconstructed images is 0.25. 

4. Results  

4.1. Image reconstruction  

Figure 11 presents the reconstructed conductivity parameter images using different the number of 

angles. It can be seen that when the number of angles increase from 2 to 10, the image quality is 

improved continuously, and the boundaries of the two tumors become more visible. By comparison, 

when the number of angles further increases from 12 to 18, the improvement of the image quality 

becomes negligible from the point of the reconstructed images. 

 

Figure 10. 0° B-mode image. The interface that is not perpendicular to ultrasound is 

invisible. 
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Figure 11. Superimposed images with different rotation angles. (a) 2 angles. (b) 4 angles. 

(c) 6 angles. (d) 8 angles. (e) 10 angles. (f) 12 angles. (g) 14 angles. (h) 16 angles. (i) 18 

angles. 

 

Figure 12. The ideal binary image of the sample. 
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Figure 13. (a) MSE data with respect to the number of angles. (b) The MSE curve of the 

reconstructed image for 12 angles with respect to threshold. 

4.2. Optimal number of angles 

Figure 13a shows the error data of the reconstructed image profile with respect to the number of 

angles. The values of MSE corresponding to the number of angles are listed in Table 2. When the 

number of angles increases, MSE decreases simultaneously. After the number of angles increases to 12, 

MSE is close to 0. It means under the corresponding threshold of 0.25, almost all profiles of irregular 

tumors are reconstructed with 12 angles, so 12 angles are more optimal considering the imaging time. 

The MSE curve was fitted by an exponential function , with R
2
 of 0.968. The threshold 

with respect to the MSE of 12 angles is depicted in Figure 13b. When the threshold is under 0.3, the 

accuracy of reconstructed image with 12 angles is acceptable. 

Table 2. MSE with respect to the number of angles. 

The number of angles MSE The number of angles MSE 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.6738 

0.6072 

0.3902 

0.2195 

0.1286 

0.0712 

0.0311 

0.0117 

0.0033 

11 

12 

13 

14 

15 

16 

17 

18 

0.0025 

0.0018 

0.0017 

0.0017 

0.0017 

0.0016 

0.0016 

0.0016 

4.3. L
2
 norm of the error with respect to measurement noise 

In order to quantify the stability of the reconstructed method, we test L
2
 norm of the error in the 

presence of the measurement noise. The signal-to-noise ratio (SNR) of measurement is defined as:

. According to SNR, different noise levels (6dB, 14dB, 20dB, 40dB, 60dB and 
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80dB) are added to the MAE voltage to reconstructed images. In the experiment, there is usually a 

bandpass filter at the measurement front end, the MAE signal is processed by a bandpass filter (1–3 MHz) 

after adding noise. The reconstructed images with the measurement noise of (6dB, 14dB, 20dB, 

40dB, 60dB and 80dB) are presented in Figure 14. When the noise level is 6 dB, the boundary of the 

reconstructed profile is contaminated by background noise, so the resolution of the image 

deteriorates. When the noise level is below 14 dB, the quality of reconstruction image is acceptable.  

 

Figure 14. Reconstructed image with the measurement noise. (a) 6dB; (b) 14dB; (c) 20dB; 

(d) 40dB; (e) 60dB; (f) 80dB. 

 

Figure 15. L
2 

norm of the error with respect to the signal-to-noise level. 

Because the noise is added to the reconstructed images, the MSE method with threshold is not 

fit to analyze the error here. Here, L
2
 norm is introduced. The relative error is defined as: 
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  (2.3) 

where  and  are the reconstructed image and object image, respectively. Figure 15 shows 

the L
2
 norm of the error with respect to the measurement noise.  

5. Discussion and conclusion 

The present study employed numerical method to investigate some key aspects of a modified 

MAET imaging process. Most of the previous studies on MAET used linear scan with single element 

ultrasound transducer. To overcome the shortcoming of the conventional scanning method, this study 

proposed a novel multi-angle scanning method and implemented it in numerical simulation. The 

reconstructed image using the conventional scanning was shown in Figure 10. The boundary 

perpendicular to the transducer can be obviously observed while other boundaries are less visible or 

even invisible. In order to find optimal number of angles (related to step angle), 1044 scanning data 

were used with step angle 5°. The MSE shows that 12 angles were optimal considering the scanning 

time. The reconstructed images in the presence of the measurement noise were also illustrated. It 

means when the MAE signal was not seriously contaminated by noise, the reconstructed images were 

acceptable with our reconstructed method. Noise effect is found to be reasonably small as 

reconstruction error is low at SNR down to 25dB. 

In order to improve the lateral resolution, the focus ultrasound is used in this study. The 

ultrasound beam width is not uniform in the longitudinal direction, and it may reduce the image area to 

keep the performance. Moreover, we have proposed a multifocus method in our previous study [20]. 

This method acquires multiple images with different focus depth and combines images to obtain the 

final image. Therefore, when the imaging area is larger, it is feasible to keep both the longitudinal and 

the lateral resolutions by using the multifocus image method.  

The method proposed offers some advantages over the conventional methods. As shown in 

Figure 11, when more scanning angles are used, the detectable boundary becomes more completed 

clearly. Compared with the method proposed by Kunyansky [17] using similar scanning scheme, our 

method has several advantages. First, the angular range of our method is 0–180°, which is less than 

0–360° of that method. Furthermore, this reconstruction method is more flexible. Thus, it may be used 

in MAET excited by linear phase array, because the deflection angle of linear phase array is difficult to 

cover the whole range of 360° in equal step. Second, the image reconstruction mainly based on the 

image transformation is very simple. Finally, our study quantitatively investigated the effect of 

rotation step which was critical for the scanning time and the quality of reconstruction image. 

The data obtained from the present study have provided a proof of feasibility of a modified 

imaging procedure and reconstruction algorithm as well as an optimized configuration, which greatly 

reduces duration of data acquisition as well as ultrasound exposure. At present, an experimental 

study of a practical implementation of this method is ongoing. 
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