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Abstract: In this paper, we present a new method based on dynamical system theory to study certain
type of slow-fast motions in dynamical systems, for which geometric singular perturbation theory may
not be applicable. The method is then applied to consider recurrence behavior in an oscillating network
model which is biologically related to organic reactions. We analyze the stability and bifurcation of
the equilibrium of the system, and find the conditions for the existence of recurrence, i.e., there exists
a “window” in bifurcation diagram between a saddle-node bifurcation point and a Hopf bifurcation
point, where the equilibrium is unstable. Simulations are given to show a very good agreement with
analytical predictions.
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1. Introduction

Recently, the recurrence phenomenon has received great attention, in particular, in the areas of bio-
logical and medical science. For example, Zhang et al. [1] studied a 4-dimensional (4-d) autoimmune
disease model, which exhibits recurrent dynamics and is preserved in reduced 3-d and 2-d models,
and further proved that the recurrence behavior is induced from Hopf bifurcation. This recurrence
behavior has also been found in other diseases such as multifocal osteomyelitis [2, 3], eczema [4] and
subacute discoid lupus erythematosus [5], etc. Actually, the subtypes of some diseases are clinically
classified based on the patterns of this recurrence behavior [6]. Thus, an improved understanding of
recurrence phenomenon in autoimmune diseases is important to promoting correct diagnosis, patient
management, and treatment decisions.

The recurrence phenomenon belongs to a more general class of so-called “slow-fast” motions in
many physical and engineering systems. A slow-fast system usually involves at least two kinds of
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dynamical variables, evolved on very different time scales. The ratio between the slow and fast time
scales is measured by a small parameter. When attention is focused on periodic oscillations, a slow-fast
motion implies that the motion is slow on a part of a solution trajectory while fast on the remaining part
of the trajectory. In general, for a given dynamical system such as an HIV model, identifying the spe-
cial periodic solution – recurrence oscillation is not an easy task. The well-know Geometric Singular
Perturbation Theory (GSPT) [7] can be applied to consider slow-fast motions in singularly perturbed
systems, which are characterized by slow and fast motions along particular system coordinates. Con-
sider the following 2-d singular perturbation system (here choosing a 2-d system for convenience of
illustration):

dx
dt

= f (x, y, ε),
dy
dt

= ε g(x, y, ε), (1.1)

where (x, y)∈R2, 0<ε�1, and f , g∈Ck, k≥3, x and y are called fast and slow variables. Introducing
τ = εt into (1.1), we have

ε
dx
dτ

= f (x, y, ε),
dy
dτ

= g(x, y, ε), (1.2)

where t and τ are called fast and slow times, respectively, and the systems (1.1) and (1.2) are called
fast and slow systems, respectively.

The basic idea to study slow-fast motions in systems (1.1) and (1.2) is to first consider the limiting
systems as ε→ 0, which results in the fast subsystem:

dx
dt

= f (x, y, 0),
dy
dt

= 0, (1.3)

and the slow subsystem:

0 = f (x, y, 0),
dy
dτ

= g(x, y, 0), (1.4)

respectively. The equation f (x, y, 0) = 0, which generates the singular points for the fast subsystem,
defines a critical manifold, also called slow manifold. It is obvious that the fast subsystem defines fast
manifolds in the horizontal direction. Thus, if the fast and slow manifolds can form a closed loop, then
the system (1.1) may exhibit slow-fast motions (e.g., canard cycle) under a small perturbation. For
example, consider the well-known van der Pol’s equation,

ẍ + ν (x2 − 1)ẋ + x − a = 0, (ν � 1),

where a is a constant. This model can be rewritten in the form of singular perturbation equations [8]:

ε ẋ = y −
(1
3

x3 − x
)
, ẏ = −x + a,

(
ε =

1
ν

)
. (1.5)

The system has a Hopf bifurcation at the critical point a = 1. The critical (slow) manifold is defined
by the cubic polynomial equation y = 1

3 x3 − x, and it indeed can form closed loops with fast manifolds
(in the horizontal direction). For a fixed a = 0.998, the simulated phase portaits and time histories for
different values of ε are shown in Figures 1 and 2, respectively. The slow-fast motions are observed
from these two figures, which are usually called canard cycles with a head for ε < 0.0158 and without
a head for ε > 0.0158.
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Figure 1. Simulated phase portraits of the canard cycles of the var der Pol’s equation (1.5)
for a = 0.998: (a) with a head when ε = 0.0158; and (b) without a head when ε = 0.0159.
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Figure 2. (a) Amplitude of the canard cycles generated from the var der Pol’s equation (1.5)
with respect to ε for a = 0.998; and (b) simulated time histories of the canard cycles for
ε = 0.0158 and 0.0159, showing slow-fast motions (sustained oscillations).

Therefore, in order to apply the GSPT to study slow-fast motions, one needs to put one’s system in
the “shoe” of the GSPT frame. However, in reality it has been found that many physical or biological
systems cannot be transformed to ones in the form of singularly perturbed system, but they still exhibit
slow-fast motions, like recurrence phenomenon. For example, consider the following 2-d HIV in-house
disease model [9, 10]:

Ẋ = 1 − DX −
(
B +

AY
Y + C

)
XY,

Ẏ =
(
B +

AY
Y + C

)
XY − Y,

(1.6)

where X and Y are the dimensionless healthy and infected cells, respectively, and A, B, C and D
are normalized parameters, all of them take positive real values. It has been shown in [9, 10] that
this model exhibits recurrence behaviour, namely a slow-fast motion, see the simulated oscillation
depicted in Figure 3(a). Such sustained oscillation cannot be analyzed by the GSPT since one cannot
obtain an ε for one of the equations in (1.6). But it is easy to use dynamical system theory to explain
how such a special oscillation occurs. The model (1.6) has two equilibrium solutions: infection-free
equilibrium E0 and endemic equilibrium E1; and there exists a transcritical bifurcation between them,
see the bifurcation diagram in Figure 3(b). It is seen from Figure 3(b) that the transcritical bifurcation
happens at B = 0.057, and B = 0.060 is chosen for simulating recurrence (or viral blips). It can be seen
from the bifurcation diagram that both equilibria E0 and E1 are unstable between the transcritical point
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Figure 3. (a) Simulated time history of Y for the 2-d HIV model (1.6) with A = 0.364, B =

0.060, C = 0.823, D = 0.057, showing the recurrence behavior (viral blips); and (b) bifurca-
tion diagram of this model projected on the B-Y plane, with the red and blue curves to denote
equilibria E0 and E1, respectively, and dotted and solid curves to indicate unstable and stable,
respectively.

and Hopf bifurcation point (marked by two black circles), but the solutions of the system are bounded
and so the motion induced by the Hopf bifurcation must be persistent. Moreover, we can see that the
point defined by B = 0.060 at which the system exhibits recurrence behaviour, is a saddle point and
close to the transcrtical bifurcation point, and thus one of the eigenvalues is positive and very small (in
order ε), while the other one is negative in the order O(1). Thus, one can image that when a trajectory
moves around this saddle point, it moves very slow in the direction of the eigenvector associated with
the small positive eigenvalue and fast in the direction of the eigenvector associated with the negative
eigenvalue, yielding the slow-fast motion. This is shown in Figure 4, where v1 and v2 denote the two
eigenvectors associated with the two eigenvalues 0 < ξ1 � 1 and ξ2 < 0, respectively.
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Figure 4. Geometric illustration of the recurrence phenomenon in the 2-d HIV model (1.6),
where v1 and v2 are eigenvectors associated with the eigenvalues ξ1 and ξ2 of of the linearized
system of (1.6) at a saddle point near the transcritical point.

So how do we apply the dynamical system approach to identify such slow-fast motions? Recently,
four conditions were proposed and a new method was developed in [9, 10, 11] to study such slow-fast
motions. These conditions have been further improved. Roughly speaking, for a given dynamical
system, if the following conditions are satisfied:
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C1: there exists at least one equilibrium solution;
C2: there exists a transcritical or saddle-node bifurcation;
C3: there is a Hopf bifurcation; and
C4: there is a “window” between the Hopf bifurcation point and the transcritical/saddle-node bifurca-

tion point in which oscillation continuously exists,

then the system exhibits slow-fast motions. To verify these conditions for higher dimensional dynami-
cal systems, identifying Hopf bifurcation (condition C3) becomes crucial.

In this paper, we will apply our new method to study the recurrence phenomenon which occurs in an
oscillating network model related to organic reactions [12]. The recurrence behaviour for this network
model has been shown by numerical simulations. We will use our approach to prove the existence of
such phenomenon and determine the parameter values under which such slow-fast motions can occur.
To achieve this, we first study stability and bifurcation of the equilibrium of the system, in particular,
find the condition under which Hopf bifurcation occurs, and then verify the four conditions C1-C4.

The rest of the paper is organized as follows. In the next section, the oscillating network model is
described. Then, in section 3, we present a theorem which can be used to identify Hopf bifurcation
for general n-dimensional dynamical systems. In section 4, we derive explicit conditions for saddle-
node and Hopf bifurcations arising from the equilibrium of the oscillating network model and find
the conditions which generate the recurrence phenomenon. Also, we use simulations to verify the
analytical predictions, showing that they agree very well with the experiment results reported in [12].
In section 5, a further analysis is given on the Hopf bifurcation to explore the post-critical oscillating
behavior. Conclusion and discussion are given in Section 6.

2. An oscillating network model related to organic reactions

Organic chemical reaction networks have recently become more and more important in life and
played a central role in their origins [13, 14, 15]. Network dynamics regulates cell division [16, 17, 18],
circadian rhythms [19], nerve impulses [20] and chemotaxis [21], and provides guidelines for the de-
velopment of organisms [22]. In chemical reactions, out-of-equilibrium networks have the potential
to display emergent network dynamics such as spontaneous pattern formation, bistability and periodic
oscillations. However, it has been noted that the principle of organic reaction networks developing
complex behaviors is still not completely understood. In [12], a biologically related network organic
reaction was developed, exhibiting bistability and oscillations in the concentrations of organic thiols
and amides. Oscillations are generated from the interaction between three sub networks: an autocat-
alytic cycle that produces thiols and amides from thioesters and dialkyl disulfides; a trigger that controls
autocatalytic growth; and inhibitory processes that remove activating thiol species that are generated
during the autocatalytic cycle. Previous studies proved oscillations and bistability using highly evolved
biomolecules or in organic molecules of questionable biochemical relevance (for example, those used
in Belousov-Zhabotinskii-type reactions)[23, 24], while the organic molecules used in [12] are related
to metabolism, which is similar to those found in early Earth. The network considered in [12] can
be modified to study the influence of molecular structure on the dynamics of reaction networks, and
may possibly lead to the design of biomimetic networks and of synthetic self-regulating and evolving
chemical systems.

Simulations given in [12] have shown that space velocities (defined as the ratio of the flow rate
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and the reactor volume and given in units of per second) in the range 0.0001-0.01/s would produce
hysteresis. In order to test the result of simulations, the authors of [12] studied the total concentration
of thiols during stepwise changes. In particular, they started from a low flow rate, then raised to a high
flow rate, and finally returned to the low flow rate. To activate the autocatalytic pathway, one needs to
use high thiol concentrations which are generated through self-amplification [of Cysteamine (CSH)],
requiring the space velocities to be lowered to 0.0005/s. It has been observed that when the space ve-
locity reaches 0.006/s, the system transitions will be out of the self-amplifying state. Such limits may
explain the self-amplification which requires maleimide to be removed from the Continuously Stirred
Tank Reactor (CSTR) more rapidly than it is added through the inlet port; while when the termination
of self-amplification starts, free thiols should be removed from the CSTR by transporting out from
the outlet port more rapidly than they are produced. Noticed from the model prediction, an increase
of maleimide concentration reduced the bistable limit flow velocity. This chemical reaction network
shows a general process to convert any quadratic autocatalytic system into a bistable switch. In [25],
Epstein and Pojman found that bistable systems could generate oscillations in the presence of an in-
hibition reaction. In the system studied in [12], they chose acrylamide as an inhibitor, and tested this
system with acrylamide in batch, which exhibited an oscillation (that is, one peak) in the concentration
of free thiols. Moreover, Nuclear Magnetic Resonance (NMR) analysis has shown that the oscillation
is triggered when the maleimide is removed. With a combination of numerical simulations and exper-
iments in the CSTR under different flow rates, they found the conditions under which the addition of
acrylamide can produce sustained oscillations in Organic Thiols (RSH). Sustained oscillations are of-
ten called recurrent oscillations in disease models, which may generate complex dynamical behaviors.
To determine how the changes in flow rate affect such oscillations, the authors of [12] further examined
the influence of flow rate on the stability, period and amplitude of oscillations. It showed that period
increases nonlinearly with space velocity, while the amplitude increases linearly.

In [12], the authors examined how changes in flow rate affect oscillations and found that sustained
oscillations (recurrence) occurred for certain space velocities. In order to explain the trends in period
and amplitude of oscillating networks, and the nature of bifurcations at low and high limiting space
velocities, a simple kinetic model has been established [12] to enable qualitative analysis on dynamic
behaviors. The model simplifies the autocatalytic thiol network to bimolecular autocatalytic production
of thiols from thioester, and considers the concentrations of Cystamine (CSSC) and acrylamide as
constants. The simple model is described by three ordinary differential equations:

dA
dt

= k1S A − k2IA − k3A − k0A + k4S ,

dI
dt

= k0I0 − k0I − k2IA,

dS
dt

= k0S 0 − k0S − k4S − k1S A,

(2.1)

where A, I and S represent the concentrations of organic thoils (RSH), maleimide and L-alanine ethyl
thioester (AlaSEt), respectively, I0 and S 0 are the concentrations of maleimide and AlaSEt fed into
the reactor, respectively, ki, i = 1, 2, 3, 4, are rate constants and k0 is the space velocity. From a
linear analysis of this model [25], it has been found in [12] that increasing k0 from low to high values
causes two transitions. Firstly, the system takes the transition from having a stable focus (damped
oscillations) to a stable orbit (sustained oscillations) via a Hopf bifurcation [26]. Secondly, the system
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transits from having a stable orbit to a single stable equilibrium via a saddle-node or fold bifurcation
[26]. The sustained oscillations between the two transitions, found numerically and experimentally
in [12] indeed show the interesting recurrence phenomenon. In this paper, we will use our method
to prove the existence of the recurrence behavior and determine the parameter values underlying this
phenomenon.

3. Criterion for Hopf bifurcation in general n-dimensional dynamical systems

In this section, we present a theorem for identifying Hopf bifurcation in general n-dimensional
dynamical systems, which are assumed to be described by the following nonlinear differential equation:

ẋ = f (x, µ), x ∈ Rn, µ ∈ Rm, f : Rn+m 7−→ Rn, (3.1)

where the dot denotes differentiation with respect to time t, x and µ are the n-dimensional state variable
and m-dimensional parameter variable, respectively. Assume that the nonlinear function f (x, µ) is
analytic with respect to x and µ, and suppose that an equilibrium solution of Eq(3.1) is given in the
form of xe = xe(µ), which is determined from f (x, µ) = 0. In order to analyze the stability of xe,
evaluating the Jacobian of system (3.1) at x = xe(µ) yields J(µ) = Dx f |x=xe(µ). If all eigenvalues of J(µ)
have nonzero real parts, then the system is said to be hyperbolic, that means no complex dynamics
exists in the vicinity of the equilibrium. Otherwise, at least one of the eigenvalues of J(µ) has zero real
part at a critical point, defined by µ = µc, and bifurcations may occur from xe(µ). To determine the
stability of the equilibrium, we compute the eigenvalues of the Jacobian J(µ), which are the roots of
the characteristic polynomial equation:

Pn(λ, µ) = det[λI − J(µ)] = λn + a1(µ)λn−1 + a2(µ)λn−2 + · · · + an−1(µ)λ + an(µ) = 0. (3.2)

For a fixed value of µ, if all roots of the polynomial Pn(λ, µ) have negative real part, then the equilibrium
is asymptotically stable for this value of µ. If at least one of the eigenvalues has zero real part as µ
is varied to cross a critical point µc, then the equilibrium becomes unstable and bifurcation occurs
from this critical point. When all roots of Pn(λ, µ) have negative real part, we call Pn(λ, µ) a stable
polynomial.

In general, for n > 3, it is hard to find the roots of Pn(λ, µ). Thus we use the Routh-Hurwitz
Criterion [27] to analyze the local stability of the equilibrium solution x = xe(µ). The criterion gives
sufficient conditions under which the equilibrium is locally asymptotically stable, i.e., all roots of the
characteristic polynomial Pn(λ, µ) have negative real part. These conditions are given by

∆i(µ) > 0, i = 1, 2, . . . , n, (3.3)

where ∆i(µ) is called the ith-principal minor of the Hurwitz arrangements of order n, defined as follows
(here, order n means that there are n coefficients ai (i = 1, 2, . . . , n) in Eq (3.2), which construct the
Hurwitz principal minors):

∆1(µ) = a1, ∆2(µ) = det
[
a1 1
a3 a2

]
, ∆3(µ) = det


a1 1 0
a3 a2 a1

a5 a4 a3

 , · · · , ∆n(µ) = an∆n−1. (3.4)

Assume that as µ is varied to reach a critical point µ = µc, at least one of ∆i’s becomes zero.
Then the fixed point xe(µc) loses stability, and µc is called a critical point. It can be seen from Eq
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(3.3) that if an(µc) = 0, but other Hurwitz arrangements are still positive (i.e., ∆n(µc) = 0, ∆i(µc) > 0,
i = 1, 2, . . . , (n−1)), then Pn(λ, µc) = 0 has one simple zero root. In this case, system (3.1) has a simple
zero singularity and a static bifurcation occurs from xe, usually causes a “jump” from one equilibrium
to another one. In other cases, for example, Hopf bifurcation may occur at a critical point when
Pn(λ, µ) = 0 has a pair of purely imaginary eigenvalues ±iω (ω > 0) at this point. However, the pair
of purely imaginary eigenvalues are often difficult to be determined explicitly for high dimensional
systems. Here, we present a theorem which can be used to determine the necessary and sufficient
conditions under which Hopf bifurcation occurs in general n-dimensional dynamical systems. Its proof
can be found in [28].

Theorem 1. [28] The necessary and sufficient conditions for system (3.1) to have a Hopf bifurcation
from an equilibrium solution x = xe are ∆n−1(µc) = 0 and d∆n−1(µ)

dµ

∣∣∣∣
µ=µc
, 0, with other Hurwitz

conditions being still held, i.e., an(µc) > 0 and ∆i(µc) > 0, for i = 1, . . . , n − 2.

Note that suppose P(λ, µ) = 0 has a complex conjugate eigenvalue, α(µ) ± ω(µ) near µ = µc.
Then, ∆n−1(µc) = 0 is equivalent to α(µc) = 0, and d∆n−1(µ)

dµ

∣∣∣∣
µ=µc
, 0 is equivalent to the transversality

condition [29]: dα(µ)
dµ

∣∣∣∣
µ=µc
, 0.

4. Bifurcation analysis and recurrence phenomenon

In this section, we present a bifurcation analysis for model (2.1) based on the results established
for general nonlinear dynamical systems in the previous section and show that the model exhibits
recurrence phenomenon.

We start from finding the equilibrium solution of model (2.1), which can be simply obtained by
setting Ȧ = İ = Ṡ = 0 and solving the resulting algebraic equations, and obtain the equilibrium solution
E1, given by

E1 =

(
A1,

I0k0

A1k2 + k0
,

S 0k0

A1k1 + k0 + k4

)
, (4.1)

where A1 is determined from the equation:
k1k0S 0A1

k0 + k4 + k1A1
−

k2k0I0A1

k0 + k2A1
− (k0 + k3)A1 +

k4k0S 0

k0 + k4 + k1A1
= 0, (4.2)

which is equivalent to the following cubic polynomial equation:

F(A1, ki) = k1k2(k0+k3) A3
1+

[
k2

0(k1+k2) + k0(k1k2I0+k2k3+k2k4+k1k3−k1k2S 0) + k2k3k4
]

A2
1

+
[
k3

0 + k2
0(k2I0 + k3 + k4 − k1S 0) + k0(k2k4I0 + k3k4 − k2k4S 0)

]
A1 − k4k2

0S 0 = 0.
(4.3)

The typical parameter values obtained from experiments for the model are given below [12]:

S 0 = 0.05M, I0 = 0.01M, k1 = 0.25s−1M−1,

k2 = 300s−1M−1, k3 = 0.0035s−1, k4 = 7 × 10−5s−1,
(4.4)

which are substituted into (4.3) to yield

F1(A1, k0) =

(
21
80

+ 75k0

)
A3

1 +

(
1201

4
k2

0 −
617
320

k0 +
147

2000000

)
A2

1

+

(
k3

0 +
299107
100000

k2
0 −

167951
200000000

k0

)
A1 −

7
2000000

k2
0 = 0.

(4.5)
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Note that the rational numbers given in (4.5) are obtained from transforming the numbers in digital
format for convenience of symbolic computation. The graph depicted in Figure 5 shows the component
A1 of the equilibrium solution E1, satisfying F1(A1, k0) = 0.

Figure 5. The component A1 of the equilibrium solution E1 for the oscillating network model
(2.1), satisfying the polynomial function F1(A1, k0) = 0 in (4.5).

Next, we consider the stability of the equilibrium solution E1, and give a complete bifurcation
classification. Evaluating the Jacobian of (2.1) at E1 yields a cubic characteristic polynomial, given by

P3(λ, A1, k0) = λ3 + a1(A1, k0)λ2 + a2(A1, k0)λ + a3(A1, k0) = 0, (4.6)

where the coefficients a1(A1, k0), a2(A1, k0) and a3(A1, k0) are expressed in terms of A1 and k0 as

a1(A1, k0) =
1

(30000000 A1 + 100000 k0)(25000 A1 + 100000 k0 + 7)
[
30000000000 k0

3

+(12010000000000 A1 + 29912800000)k0
2 + (903750625000000 A1

2

−18440900000 A1 + 2102499)k0 + 225187500000000 A1
3 + 65730000000 A1

2

+749700 A1
]
,

a2(A1, k0) =
1

200000000(300A1 + k0)(25000A1 + 100000k0 + 7)
[
60000000000000k4

0

+(30025000000000000A1 + 119647000000000)k3
0 + (3612002500000000000A2

1
−113586100000000A1 + 12614896000)k2

0 + (1351125000000000000A3
1

−15796615625000000A2
1 + 8070650000A1 + 294343)k0 + 112500000000000000A4

1
+1639312500000000A3

1 + 450555000000A2
1 + 102900A1

]
,

a3(A1, k0) =
1

200000000(300A1 + k0)(25000A1 + 100000k0 + 7)
[
112500000000000000A4

1k0

+900750000000000000A3
1k2

0 + 1806001250000000000A2
1k3

0 + 12010000000000000A1k4
0

+20000000000000k5
0 + 393750000000000A4

1 + 3215625000000000A3
1k0

−15922825625000000A2
1k2

0 − 76284300000000A1k3
0 + 59822800000000k4

0
+220500000000A3

1 + 892290000000A2
1k0 + 8041250000A1k2

0 + 8409898000k3
0

+30870000A2
1 + 205800A1k0 + 294343k2

0
]
.
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Based on the characteristic polynomial (4.6), we consider possible bifurcations from E1, including
both static (saddle-node) and dynamical (Hopf) bifurcations. First, we consider static bifurcation,
which occurs when P3(λ, A1, k0) = 0 has zero roots (zero eigenvalues). The simplest case is single
zero, i.e., when a3(A1, k0) = 0, and A1 should simultaneously satisfy F1(A1, k0) = 0 (see Eq (4.5)).
Thus, we obtain

A1s(k0s) = −
[
k0s(143903980000000000000000000000k6

0s + 428288040277200000000000000000k5
0s

− 6213276890147198000000000000k4
0s + 2680386939177203000000000k3

0s

+ 3631431743948809500000k2
0s + 1210694204622124250k0s

+ 15045612346947)
]/[

43164005995000000000000000000000k6
0s

− 130217314646275350000000000000000k5
0s + 2997175144063924475000000000000k4

0s

− 2087883562700064162500000000k3
0s − 511166217034919556250000k2

0s

+ 233617980290310525000k0s + 2178822504600000
]
, (4.7)

where k0s is determined from the 8th-degree polynomial equation,

F2(k0s) = 14376010000000000000000000000000000k8
0s

+85670310851400000000000000000000000k7
0s

+126683283344956849000000000000000000k6
0s

−3016017614668520296000000000000000k5
0s

+2922708873924575222500000000000k4
0s

−79581534791494732500000000k3
0s

−377631037207690850937500k2
0s

+63258405194198581500k0s + 610426123747209 = 0.

(4.8)

Figure 6. Graphs of a3(A1, k0) = 0 (in blue color) and F1(A1, k0) = 0 (in red color), showing
two candidates for saddle-node bifurcation points marked by black circles, which are the
intersection points of the blue and red curves.

Solving F2(k0s) = 0 for k0s yields four positive real solutions. Then, substituting the four solutions
into A1s(k0s) using (4.7), we get four values of A1s(k0s), and two of them are positive, which yield two
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critical values (see the two black circles in Figure 6): (k0sn, A1sn)≈ (3.0827×10−4, 2.6398×10−5) and
(8.1553 × 10−4, 2.0062 × 10−3). By verifying the changes of the stability on both sides of the critical
points on the curve F1(A1, k0) = 0, we find that the first one defines a saddle-node bifurcation. For
example, we select A1 = 2.7×10−5 (above the critical point), the corresponding value of k0 is equal
to 3.0827×10−4, under which the eigenvalues defined by equation (4.6) are 1.99×10−5, −2.49×10−4

and −0.1124, implying that the corresponding equilibrium solution is unstable. When we select A1 =

2.5× 10−5 (below the critical point), the corresponding k0 is equal to 3.0831× 10−4, for which the
eigenvalues are −4.61×10−5, −2.45×10−4 and −0.12014, indicating that the corresponding equilibrium
solution is locally asymptotically stable.

Figure 7. Graphs of ∆2(A1, k0)=0 (in green color) and F1(A1, k0)=0 (in red color), showing
a Hopf bifurcation point marked by a black circle, which is the intersection point of the green
and red curves.

Next, we turn to consider Hopf bifurcation which may occur from the equilibrium E1. To
achieve this, we apply Theorem 1 to the equilibrium E1, where A1 satisfies the polynomial equa-
tion F1(A1, k0) = 0 in (4.5). Based on the cubic characteristic polynomial P3(λ, A1, k0) = 0, we
apply the formula, ∆2(A1, k0) = a1a2 − a3, to solve the two polynomial equations, ∆2(A1, k0) = 0
and F1(A1, k0) = 0, together with the parameter values given in (4.4), yielding three candidates for
Hopf critical points: (k0H1, AH1) ≈ (1.7681× 10−4, 1.1148× 10−3), (2.5483× 10−4, −2.9768× 10−5)
and (3.0912 × 10−4, 3.3790 × 10−5). We only consider the biologically meaningful points with
two positive entries to get two candidates for Hopf critical points: (k0H1, AH1) and (k0H3, AH3). For
these two solutions, we need to check if the eigenvalues defined by equation (4.6) contain a pair of
purely imaginary eigenvalues. By a simple calculation, we find that the unique Hopf critical point is
(k0H, AH) ≈ (1.7681 × 10−4, 1.1148 × 10−3), which is shown in Figure 7. Note that at the critical point
(k0H, AH), other stability conditions given in Theorem 1 are still satisfied. Moreover, it can be shown
that

d∆2(A1(k0), k0)
dk0

∣∣∣∣∣
k0=k0H

=
∂∆2

∂k0
+
∂∆2

∂A1
·

dA1

dk0

∣∣∣∣∣
k0=k0H

=
∂∆2

∂k0
−
∂∆2

∂A1
·

∂F(A1,k0)
∂k0

∂F(A1,k0)
∂A1

∣∣∣∣∣∣∣
k0=k0H

> 0. (4.9)

As a matter of fact, by using the Hopf critical value, we may numerically compute the Jacobian of
system (2.1) at the equilibrium E1 to get a purely imaginary pair and one negative real eigenvalues:
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±1.0879×10−3 i and −0.3362. Therefore, on the equilibrium solution curve defined by F1(k0, A1) = 0
(see Figure 8), the equilibrium E1 is stable from the origin to the Hopf critical point (k0H, AH), and
unstable from (k0H, AH) to the saddle-node bifurcation point (k0sn, A1sn), and then returns to stable from
the saddle-node bifurcation point, as shown in Figure 8. This agrees with that observed in experiments
and numerical simulations [12].

Figure 8. Bifurcation diagram for the oscillation network model (2.1), with graphs of
F1(A1, k0) = 0 (in red color), a3(A1, k0) = 0 (in blue color) and ∆2(A1, k0) = 0 (in green color),
showing the saddle-node and Hopf bifurcation critical points, with solid and dotted curves
to denote stable and unstable equilibrium solutions, respectively. The two vertical lines, one
passing the Hopf critical point and the other passing the saddle-node critical point show the
existence of a window between the two critical points, yielding the recurrence phenomenon.

Figure 9. Numerical bifurcation diagram for the oscillating network model (2.1), obtained
by using the MATCONT in Matlab, confirming the result shown in Figure 8.

We have also used the MATCONT software package in Matlab to obtain the numerical bifurcation
diagram, as depicted in Figure 9, which confirms our bifurcation diagram as given in Figure 8.

It is seen that all the four conditions C1-C4 (given in the section of introduction) are satisfied for the
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Figure 10. Simulated component A of the oscillating network model (4.10), in which k0 is
treated as a bifurcation parameter, taking values k0 = k0H + 0.0000069 j, j = 1, 2, . . . 20 in
the window shown in the bifurcation diagram (see Figure 8), and other parameter values are
taken from [12].

network oscillating model (2.1). In particular, it is observed that there exists a “window”, as shown in
Figure 8 bounded by two vertical lines, between the Hopf and saddle-node bifurcation points. There-
fore, the recurrence phenomenon occurs in this model when the values of the bifurcation parameter k0

are chosen from the interval k0∈ (k0H, k0sn)= (1.7681×10−4, 3.0827×10−4).

Next, we present simulations to demonstrate the behavior changes of the solutions, showing a good
agreement, in particular for the recurrence behavior as reported in [12]. With the parameter values
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given in (4.4), system (2.1) becomes

dA
dt

= 0.25S A − 300IA − 0.0035A − k0A + 0.00007S ,

dI
dt

= 0.01k0 − Ik0 − 300IA,

dS
dt

= −0.25S A − k0S − 0.00007S + 0.05k0.

(4.10)

We have used the ode45 solver in Matlab for differential equations to simulate system (4.10) by varying
the values of k0 in the interval k0 ∈ (1.7681×10−4, 3.0827×10−4) to obtain the results, as shown in
Figure 10.

It is seen from Figure 10 that the solutions of A are oscillating when the values of k0 are chosen be-
tween k0H and k0sn to exhibit the relaxation behavior, showing that the method developed in [9, 10, 11]
with the four conditions C1-C4 to study recurrence phenomenon is an efficient approach. The period of
oscillation increases with the increase of k0, as shown in Figure 11, indicating that the period goes to
infinity as k0 is varied towards the saddle-node bifurcation point, as expected. From a biological point
of view, certain subtypes of some diseases are classified based on the patterns of this recurrent behavior
[6]. Therefore, an improved understanding of recurrence phenomenon in autoimmune diseases is cru-
cial in promoting correct diagnosis, patient management and treatment decisions. For the recurrence
phenomenon studied in this paper, our method can be used to realistically explain complex dynamics in
organic reactions and improve correct classification, management and utilization of energy resources.

Figure 11. The period of oscillations generated from the oscillating networks model (4.10)
with respect to the bifurcation parameter k0, which takes the values from the window be-
tween the Hopf and saddle-node bifurcation points (see the bifurcation diagram in Figure 8),
showing that the period is increasing to infinity as k0 approaches the saddle-node bifurcation
point.

5. Further study on the Hopf bifurcation and limit cycles

Although in the previous section, we have identified the Hopf bifurcation and the transversality con-
dition (see equation (4.9)) for model (2.1), we do not know whether the Hopf bifurcation is supercritical
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or subcritical, as well as post-critical behavior of the model. To answer this question, in this section we
give a further study on the Hopf bifurcation from the equilibrium E1 of the model, and use normal form
theory to study stability of the bifurcating limit cycles. Assume that k0 = k0H +µ = 0.000176806 · · ·+µ,
where µ is a small perturbation (bifurcation) parameter. Using the values given in (4.4), we introduce
the following transformation,


A
I
S

 =



A1

k0H + µ

100 (300A1 + k0H + µ)
k0H + µ

20
(

A1
4 + k0H + µ + 7

10000

)


+ T


x1

x2

x3

 , (5.1)

where

T =


1 0 1

−4.7373 · · · × 10−3 1.5401 · · · × 10−5 1.0021 · · ·
−1.5142 · · · 3.1346 · · · 1.2529 · · · × 10−2

 , (5.2)

into system (2.1) to obtain

dxi

dt
= Gi(x1, x2, x3; µ, A1), i = 1, 2, 3, (5.3)

where G1, G2 and G3 are rational functions in x1, x2, x3, µ and A1, as listed in Appendix.
Note in the above equations that we have used decimal points for convenience. Now, the relation

between A1 and µ can be still determined by (4.5) with k0 = k0H + µ. The Jacobian of system (5.3)
evaluated at the origin, xi = 0, i = 1, 2, 3, and critical point, defined by µ = 0, with A1 = 1.1147 · · · ×
10−3 (corresponding to the positive equilibrium E1 for model (2.1)) is then in the Jordan canonical
form: 

0 ωc 0
−ωc 0 0

0 0 α

 , (5.4)

where ωc = 1.0878 · · · × 10−3 and α = −0.3361 · · · . Next, by applying center manifold theory and
normal form theory, one can obtain the normal form of the Hopf bifurcation for system (5.3), given in
polar coordinates:

ṙ = r (v0 µ + v1 r2 + · · · ), θ̇ = ωc + τ0 µ + τ1 r2 + · · · , (5.5)

where r and θ represent the amplitude and phase of oscillating motions (limit cycles), respectively. The
coefficients v0 and τ0 can be found from a linear analysis, while computing vk and τk (k ≥ 1) needs a
nonlinear analysis. The vk is called the kth-order focus value. The following theorem provides explicit
formulas for computing v0 and τ0.

Theorem 2. [31] For the two-dimensional linear system,(
ẋ1

ẋ2

)
=

[
a11 µ ω + a12 µ

−ω + a21 µ a22 µ

] (
x1

x2

)
, (5.6)

Mathematical Biosciences and Engineering Volume 16, Issue 5, 5263–5286.



5278

the following formulas hold:

v0 =
1
2

(a11 + a22), τ0 =
1
2

(a12 − a21). (5.7)

Based on the center manifold theory, in the vicinity of the Hopf critical point, the system is described
on the center manifold of system (5.3) by a two-dimensional dynamical system. Then, applying the
formula (5.7), we obtain

v0 =
1
2

(
∂2G1

∂x1∂µ
+
∂2G2

∂x2∂µ

)∣∣∣∣∣∣
xi=0, µ=0

=
1
2


∂(∂G1

∂x1
)

∂µ
+
∂(∂G1

∂x1
)

∂A1

∂A1

∂µ

 +

∂(∂G2
∂x2

)

∂µ
+
∂(∂G2

∂x2
)

∂A1

∂A1

∂µ




xi=0, µ=0

=
1
2


∂(∂G1

∂x1
)

∂µ
−
∂(∂G1

∂x1
)

∂A1

∂F(µ,A1)
∂µ

∂F(µ,A1)
A1

 +

∂(∂G2
∂x2

)

∂µ
−
∂(∂G2

∂x2
)

∂A1

∂F(µ,A1)
∂µ

∂F(µ,A1)
A1




xi=0, µ=0

= 1.4557 · · · ,

τ0 =
1
2

(
∂2G1

∂x2∂µ
−
∂2G2

∂x1∂µ

)∣∣∣∣∣∣
xi=0, µ=0

=
1
2


∂(∂G1

∂x2
)

∂µ
+
∂(∂G1

∂x2
)

∂A1

∂A1

∂µ

 −
∂(∂G2

∂x1
)

∂µ
+
∂(∂G2

∂x1
)

∂A1

∂A1

∂µ




xi=0, µ=0

=
1
2


∂(∂G1

∂x2
)

∂µ
−
∂(∂G1

∂x2
)

∂A1

∂F(µ,A1)
∂µ

∂F(µ,A1)
A1

 −
∂(∂G2

∂x1
)

∂µ
−
∂(∂G2

∂x1
)

∂A1

∂F(µ,A1)
∂µ

∂F(µ,A1)
A1



∣∣∣∣∣∣∣
xi=0, µ=0

= 1.5389 · · · .

Next, letting µ = 0, and A1 = AH = 0.001114785 in system (5.3), and then applying the Maple
program [30] to the resulting system yields

v1 = 36.6458 · · · , τ1 = −54130.3501 · · · . (5.8)

Therefore, the normal form associated with this Hopf bifurcation, up to third-order terms, is given by

ṙ = r (1.4557µ + 36.6458r2),

θ̇ = 0.0011 + 1.5389µ − 54130.350r2.
(5.9)

Note in (5.9) that v0 = 1.4557 > 0, which is indeed equivalent to the condition given in (4.9).
The steady-state solutions of Eq (5.9) are determined from ṙ = θ̇ = 0, yielding

r̄ = 0, r̄2 ≈ − 0.0397µ. (5.10)

The solution r̄ = 0 represents the equilibrium E1 of model (2.1). A linear analysis on the first differ-
ential equation of (5.9) shows that d

dr ( dr
dt )|r̄=0 = v0µ, and thus r̄ = 0 (i.e., the equilibrium E1) is stable
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(unstable) for µ < 0 (> 0), as expected. When µ is decreased from positive to cross zero, a Hopf
bifurcation occurs and the amplitude of the bifurcating limit cycles is approximated by the nonzero
steady state solution,

r̄ ≈ 0.1993
√
−µ, (µ < 0). (5.11)

Since d
dr (dr

dt )|(5.11) = 2v1r̄2 = −2v0µ > 0 (µ < 0, v0 > 0, v1 > 0), the Hopf bifurcation is subcritical and
so the bifurcating limit cycles are unstable. Equation (5.11) gives the approximate amplitude of the
bifurcating limit cycles, while the phase of the motion is determined by θ = ωt, where ω is given by

ω = θ̇
∣∣∣
(5.11)

≈ 0.0011 + 2151.7875µ. (5.12)
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Figure 12. Simulated time history of the component A of the oscillating network model
(4.10) for t ∈ (0, 6×105), showing the convergence of the solution trajectory to a stable
limit cycle starting from the initial point (1, 1, 1) with k0 = 0.00014466350: (a) the part for
t ∈ (0, 2 × 105); and (b) the part for t ∈ (4 × 105, 6 × 105).
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Figure 13. Simulated time history of the component A of the oscillating network model
(4.10), showing the convergence of the solution trajectory to the equilibrium E1 starting from
the initial point (0.001, 0.000005, 0.016) with k0 = 0.00014466350.

Further, by simulation we find that the stable region before the Hopf critical point as shown in Figure
8 (i.e., for k0∈ (0, k0H)) can be divided into two parts for the equilibrium: globally asymptotically stable
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Figure 14. Simulated time history of the component A of the oscillating network model
(4.10) for t ∈ (0, 6×106), showing the convergence of the solution trajectory to the equilibrium
E1 starting from the initial point (1, 1, 1) with k0 = 0.00014466348: (a) the part for t ∈
(0, 5 × 105); and (b) the part for t ∈ (4.8 × 106, 5.5 × 106).

and locally asymptotically stable. The approximate value of the dividing point can be obtained as
follows: Recalling k0H =0.000176806, we choose k0 =0.00014466350 and two initial points (A, I, S )=

(1, 1, 1) and (0.001, 0.000005, 0.016) for simulation and obtain the results as shown in Figures 12
and 13, respectively. It is seen that the trajectory starting from the first initial point converges to a
stable limit cycle, while that starting from the second critical point converges to the equilibrium E1.
Moreover, we choose k0 = 0.00014466348 and the initial point (A, I, S ) = (1, 1, 1) to obtain the result,
as depicted in Figure 14, showing that the trajectory eventually converges to the equilibrium E1 even
from a far away initial point, which implies that the equilibrium E1 is globally asymptotically stable
for this value of k0. Thus, the approximate value of the point dividing global stability and local stability
is k0 ≈ 0.00014466348.

The subcritical Hopf bifurcation found above implies that there exists an unstable limit cycle, re-
stricted on a local invariant manifold, between the stable equilibrium E1 and a stable (outer) limit cycle.
This yields a different bistable phenomenon due to bifurcation of multiple limit cycles, which involves
a stable equilibrium and a stable periodic motion, different from the classical bistable phenomenon
which only contains two stable equilibria.

6. Discussion and conclusion

In this paper, we have introduced a new method to study certain type of slow-fast motions in dy-
namical systems. This approach is based on dynamical system theory and can be easily applied to
identify sustained oscillations. In particular, when the geometric singular perturbation theory (GSPT)
fails to investigate such slow-fast motions, our method may work quite well. The basic idea of this
new method is to identify a “window” in bifurcation diagrams between Hopf bifurcation and saddle-
node/transcritical bifurcation. This approach has been applied to many biological systems to study
such slow-fast motions (e.g., see [1, 9, 10, 11, 31]). It has been shown that this approach is quite
convenient in application and works well for higher-dimensional dynamical systems which involve
multiple parameters. The key step is to determine Hopf critical points.

In this work, the new method has been applied to analyze an oscillating network model of bio-
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logically relevant organic reactions and confirmed the recurrence behaviour found in [12] based on
numerical simulations and experiments. Bifurcation analysis is given to identify saddle-node and Hopf
bifurcations and particularly to determine the bifurcation window, which yields the recurrence phe-
nomenon. Simulations are also present to verify the analytical predictions, showing a very good agree-
ment between the simulations and predictions. Moreover, normal form theory is applied to determine
that the Hopf bifurcation is subcritical and the equilibrium is locally asymptotically stable near the
Hopf critical point, yielding an unstable limit cycle, restricted on an invariant manifold, between the
stable equilibrium and the outer stable limit cycle. This bistable phenomenon may explain some special
complex dynamics occurring in this model. Further, a critical point is numerically identified, which
divides the equilibrium solution into two parts: one is globally asymptotically stable and the other is
locally asymptotically stable. The recurrence phenomenon studied in this paper for this kinetic model
may be one of the sources of generating complex dynamics in biological systems or even more gener-
ally in real physical systems. It is anticipated that the method used in this paper can be applied to study
other nonlinear dynamical systems.

However, even the new method can be applied to consider higher-dimensional dynamical systems, it
may not applicable for some simple systems such as the van der Pol’s equation (1.6). This implies that
a slow-fast motion in dynamical systems can be in general very complex, which may involve several
“modes” in different time scales. The GSPT can be used to analyze a part of such systems if such a
system can be put in the form of singularly perturbed differential systems, while our method can solve
a part of such systems if the four conditions C1-C4 are satisfied for such a system, which does not
need the singular perturbation frame. We have shown that the two approaches can work for different
systems: the slow-fast motion in the van der Pol’s equation (1.5) can be analyzed by the GSPT, but
not by our method; while the slow-fast motion in the 2-d HIV model (1.6) can be investigated by our
method, but not by the GSPT. We also found that for some systems, both methods are applicable. For
example, consider the following SIS epidemic model [32]:

dS
dt

= b1N
(
1 −

N
K1

)
− d1S − βS (I + σI2) + γ1I,

dI
dt

= βS (I + σI2) − (d1 + α1 + γ1)I,
(6.1)

which, by taking N = S + I, can be put in the following form,

dI
dt

=
[
β(N − I)(1 + σI) − (d1 + α1 + γ1)

]
I,

dN
dt

= b1N
(
1 −

N
K1

)
− d1N − σI.

(6.2)

Here, S and I denote the numbers of susceptible and infected individuals, respectively, and N is the total
population size. b1 is the per-capita maximum birth rate, and K1 reflects the effect of total population
size on the birth. d1 and α1 are the per-capita natural and disease-related death rates respectively, and
γ1 is the per-capita recovery rate. All the parameters take real positive values. In [32], it is assumed
that b1, d1 and α1 are small, compared with other parameters, and so letting

b1 = ε1 b2, d1 = ε1 d2, α1 = ε1 α2, (0 < ε1 � 1),
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and introducing

c2 = b2 − d2, K2 =
K1(b2 − d2)

b2
, γ1 = γ2 + ε1(λ1 − d2 − α2),

into (6.2) yields
dI
dt

=
[
β(N − I)(1 + σI) − (ε1λ1 + γ2)

]
I,

dN
dt

= ε1

[
c2N

(
1 −

N
K2

)
− α2I

]
,

(6.3)

which now becomes a singularly perturbed system, where λ1 may be negative, ε1 and |λ1| are chosen
small enough so that γ2 > 0. Further, applying the scaling:

I =
u
σ
, N =

v
σ
, t =

σ

β
t′, ε =

c1σ

β
ε1, γ =

√
σγ2

β
, k =

1
K2σ

, µ =
α2

c2
, λ =

λ1

c2
,

to (6.3) yields the following dimensionless system:

dI
dt′

=
[
(v − u)(1 + u) − (ελ + γ2)

]
u,

dv
dt′

= ε
[
v(1 − kv) − µu

]
,

(6.4)

where u and v are the fast and slow variables, respectively. Then, the critical manifold (slow manifold)
is given (setting ε = 0) by

v = u +
γ2

1 + u
,

which indeed, together with fast manifolds, can form closed loops, as shown in Figure 15.

u ,v (      )0 0

1/k

γ 2

v=u+
γ 2

+u1
:S

(1−    )v     kv
: u=

µ
Sp

u ,v (  *  *)

u

v

0

Figure 15. The critical manifold (slow manifold, in red color) of the SIS epidemic model
(6.4), defined by v = u +

γ2

1+u , which, with the fast manifold (in the horizontal direction with
the double arrows), forms a closed loop (in green color). There are two singular points:
(u0, v0) is a fold point and (u∗, v∗) is a saddle point.
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Figure 16. Simulated canard cycles for the epidemic model (6.4) with ε = 0.001, γ = µ =

λ = 3, k = 0.101074: (a) phase portrait; and (b) time history of u.

Numerical simulations for ε = 0.001, γ = µ = λ = 3, k = 0.101074 are depicted in Figure 16,
which clearly shows a slow-fast motion – canard cycle. This result can also be obtained by applying
our method to the non-scaled system (6.2).

Finally, we should point out that unlike the GSPT theory which has been developed for more than
40 years and established a fundamental mathematical theory, our new method needs further research
to develop a rigorous mathematical theory, in particular, for the existence of the “window”. In other
words, how to define/obtain the exact conditions under which the window exists and oscillations con-
tinuously exist for the whole window, from the Hopf critical point (which induces oscillations) to the
saddle-node/transcritical bifurcation point (which ends the oscillation)? Further study is needed to
improve our simple and efficient method with a well established mathematical theory.
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Appendix

The rational functions G1, G2 and G3 in (5.3) are given below. In Maple calculation, the accuracy
is taken up to 100 digits, but here only up to 6 digits are present for brevity.

G1(x1, x2, x3; µ, A1) =
1

(A1 + 0.00099 + 4µ)(A1 + 5.89355 × 10−7 + 0.00333µ)
×
{[

1.64244 × 10−11 − 0.28933 × 10−5A1 + 0.02418A2
1 − 0.99530A3

1 + (1.24609 × 10−9

+0.03368A1 − 2.49638A2
1)x1 + (1.23349 × 10−9 + 0.87868 × 10−3A1 + 3.12237A2

1)x2

+(3.42734 × 10−9 + 0.03579A1 − 2.51329A2
1)x3 − (0.21112 × 10−5 + 1.49638A1)x2

1

−(0.35459 × 10−5 + 2.51329A1)x2
3 + (0.44053 × 10−5 + 3.12237A1)x1x2

−(0.56571 × 10−5 + 4.00968A1)x1x3 + (0.44053 × 10−5 + 3.12237A1)x2x3
]
µ + o(µ2)

+1.45197 × 10−15 + 7.29439 × 10−10A1 + 0.34241 × 10−5A2
1 − 0.00366A3

1

+(−0.00414A2
1 − 0.37378A3

1 + 0.50749 × 10−5A1 − 6.68597 × 10−13)x1

+(0.98883 × 10−3A2
1 + 0.77994A3

1 + 2.16179 × 10−7A1 + 1.27063 × 10−13)x2

+(0.53544 × 10−5A1 − 0.00410A2
1 − 0.62780A3

1 − 5.03838 × 10−13)x3

+(−0.36923 × 10−3A1 − 0.37378A2
1 − 2.17478 × 10−10)x2

1 + (−3.65271 × 10−10

−0.62780A2
1 − 0.62015 × 10−3A1)x2

3 + (−5.82749 × 10−10 − 1.00158A2
1

−0.98938 × 10−3A1)x1x3 + (4.53792 × 10−10 + 0.77994A2
1 + 0.77044 × 10−3A1)x1x2

+(4.53792 × 10−10 + 0.77994A2
1 + 0.77044 × 10−3A1)x2x3

}
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G2(x1, x2, x3; µ, A1) =
1

(A1 + 0.00099 + 4µ)(A1 + 5.89355 × 10−7 + 0.00333µ)
×
{[

+ 7.93372 × 10−12 − 0.13976 × 10−5A1 + 0.01168A2
1 − 0.48077A3

1 + (5.03409 × 10−8

+0.00131A1 − 0.26205A2
1)x1 − (1.38001 × 10−9 + 0.00155A1 + 0.49252A2

1)x2

+(5.04385 × 10−8 + 0.00139A1 + 3.58251A2
1)x3 − (3.69712 × 10−7 + 0.26205A1)x2

1

+(0.50544 × 10−5 + 3.58251A1)x2
3 + (7.15993 × 10−7 + 0.50748A1)x1x2

+(0.46847 × 10−5 + 3.32046A1)x1x3 + (7.15993 × 10−7 + 0.50748A1)x2x3
]
µ + o(µ2)

+7.01367 × 10−16 + 0.16539 × 10−5A2
1 + 3.52351 × 10−10A1 − 0.00177A3

1

+(5.04644 × 10−12 − 2.44020 × 10−7A1 − 0.00176A2
1 − 0.06546A3

1)x1

−(8.22215 × 10−14 + 1.39521 × 10−7A1 + 0.16095 × 10−4A2
1 − 0.12677A3

1)x2

+(5.05649 × 10−12 − 2.26386 × 10−7A1 − 0.00079A2
1 + 0.89488A3

1)x3 − (3.80846 × 10−11

+0.64659 × 10−4A1 + 0.06546A2
1)x2

1 + (5.20666 × 10−10 + 0.00088A1 + 0.89488A2
1)x2

3

+(7.37555 × 10−11 + 0.00013A1 + 0.12677A2
1)x1x2 + (4.82581 × 10−10 + 0.00082A1

+0.82942A2
1)x1x3 + (7.37555 × 10−11 + 0.00013A1 + 0.12677A2

1)x2x3
}

G3(x1, x2, x3; µ, A1) =
1

(A1 + 0.00099 + 4µ)(A1 + 5.89355 × 10−7 + 0.00333µ)
×
{[

7.75215 × 10−14 − 1.36559 × 10−8A1 + 0.00011A2
1 − 0.00469A3

1 − (0.16909 × 10−4

+0.00980A1 − 5.67043A2
1)x1 + (5.82800 × 10−12 + 0.41256 × 10−5A1 − 0.03705A2

1)x2

−(0.16910 × 10−4 + 0.01319A1 + 1202.01A2
1)x3 + (0.80002 × 10−5 + 5.67043A1)x2

1

−(0.00169 + 1201.01A1)x2
3 − (5.22791 × 10−9 + 0.00371A1)x1x2

−(0.00169 + 1195.34A1)x1x3 − (5.22791 × 10−9 + 0.00371A1)x2x3
]
µ + o(µ2)

+6.85315 × 10−18 + 3.44287 × 10−12A1 + 1.61613 × 10−8A2
1 − 0.17273 × 10−4A3

1

−(1.74180 × 10−9 + 0.17387 × 10−5A1 − 0.00138A2
1 − 1.41643A3

1)x1 + (6.00351 × 10−16

+1.01873 × 10−9A1 + 1.17522 × 10−7A2
1 − 0.00093A3

1)x2 − (1.74191 × 10−9

+0.20882 × 10−5A1 + 0.29654A2
1 + 300.003A3

1)x3 + (8.24116 × 10−10 + 0.00139A1

+1.41643A2
1)x2

1 − (1.74549 × 10−7 + 0.29635A1 + 300.003A2
1)x2

3 − (5.38535 × 10−13

+9.14315 × 10−7A1 + 0.00093A2
1)x1x2 − (1.73726 × 10−7 + 0.29495A1 + 298.587A2

1)x1x3

−(5.38535 × 10−13 + 9.14315 × 10−7A1 + 0.00093A2
1)x3x2

}
.
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