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Abstract: In this paper, an SIR multi-group epidemic model with group mixing and human movement
is investigated. The control reproduction number Rv is derived and the global dynamics of the model
are completely determined by the value of Rv. By using the graph-theoretical approach, the results
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presented to testify the validity of the theoretical results.
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1. Introduction

Since Kermack and Mckendrick [1] formulated the compartmental ODE model to study
epidemiology, extensively mathematical models have been used to explore the transmission dynamics
of infectious diseases. Most of these mathematical models are assumed that the host population is
homogeneously mixed. In reality, the host population is often heterogenous and it can be divided into
several groups with different transmission patterns [2]. For example, it seems more reasonable to
make a division into two groups for measles and mumps due to the different contact patterns between
children and adults. The sexually transmitted diseases (such as, HIV/AIDS and gonorrhea) can be
divided into serval groups according to the number of sexual partners. Therefore, multi-group
epidemic models are emerged to investigate how the population heterogeneity affect the spread of
disease.

Note that the study of the mathematical properties of multi-group epidemic model can obtain
suitable measures for the control of infectious diseases. Recently, numerous literatures (see for
example, [2–13] and the references therein) are dedicated to study such models on the theoretical and
analytical properties including the existence, uniqueness of solutions and global stability of each
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equilibrium of the model. Particularly, Guo et al. [3, 4] proposed a graph theory to Lyapunov
functional technique, which simplified the proof on the global stability for the positive equilibrium of
multi-group model. Hereafter, the graph-theoretical approach was widely used in studying the global
dynamics of various multi-group models (see for example, [6, 10, 12] and references therein).

Nowadays, with the recent development of worldwide transportation, infected individuals can easily
travel from one place to another which is thought to be one of the main reasons of the global pandemic
of diseases. For instance, SARS first appeared in Guangdong Province of China in November, 2002.
This destructive disease soon spread to other areas of China and, in the days that followed, to other
parts of the world [13]. Ebola appeared in Guinea in March, 2014. It then spread to other countries
including the United States, Spain and the United Kingdom [15]. Thus, it is necessary to incorporate
human movement into epidemic model to clarifying how it affects the pattern of disease prevalence.

Recently, several researchers focus on the dynamics of multi-group models that incorporate the
movement of human movement. In [16], Arino et al. explored the dynamics of a multi-group epidemic
model with individuals movement. Liu and Takeuchi obtained the local stability of a two-species
epidemic model with transport-related infection [17]. Wang and Yang studied the global dynamics of
a two-patch SIS model with infection during transport [14]. In [18], Sun and Wu gained the stability
of multi-group models with cross-dispersal. However, fewer studies obtained the global dynamics of
general multi-group model with human movement.

Motivated by these facts, in this paper we aim to study the global dynamics of a general multi-
group SIR model that incorporate explicit human movement between groups. The whole population
is divided into n distinct groups (n ≥ 1). The i-th (1 ≤ i ≤ n) group is further partitioned into three
compartments: the susceptible, infectious and removed, the number of individuals at time t are denoted
by S i(t), Ii(t) and Ri(t), respectively. Like in [16], the diseases is assumed to be horizontally transmitted
between humans according to standard incidence (see, for example, [19]) with βi j the rate of disease
transfer from infective individual in group j to susceptible individual in group i. The rate of human
movement, from group i to group j, is given by mi j with mi j ≥ 0 and is assumed to be the same for
each type of individual. Therefore, the multi-group SIR epidemic model with human movement can
be described by the following system of 3n ordinary differential equations

S ′i = (1 − pi)µiNi −

n∑
j=1

βi j
I j

N j
S i − µiS i +

n∑
j=1

(m jiS j − mi jS i),

I′i =

n∑
j=1

βi j
I j

N j
S i − µiIi − γiIi +

n∑
j=1

(m jiI j − mi jIi),

R′i = piµiNi + γiIi − µiRi +

n∑
j=1

(m jiR j − mi jRi),

(1.1)

where the prime (′) denotes the differentiation with respect to time t and the sub-population number
Ni = S i + Ii + Ri. In patch i, µi is both the birth and death rate; pi is the proportion of immune at birth;
γi is the recovery rate. Here, parameters µi, γi are positive constants and pi, βi j,mi j are non-negative
constants.

In this model, we consider disease transmission can occur not only in the same groups (βi j > 0 for
i = j) but also in different groups (βi j > 0 for some i , j). This kind of system is called epidemic model
with hybrid of multi-group [3] or epidemic model with group mixing [12]. To our knowledge, Kuniya
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and his cooperators studied several multi-group epidemic models with group mixing and population
movement (see, for example [5,20,21]). In this paper, we will use the graph-theoretical approach [3,4]
to present the global dynamics of multi-group SIR model (1.1) with both group mixing and human
movement.

The organization of this paper is as follows. In the next section, we quote some results from graph
theory which are very useful in the proof of our main results. In Section 3, we study the existence
of equilibria and derive the expression of control reproduction number. We investigate the global
stability of each equilibrium in Sections 4 and 5. Two numerical examples are performed to verify our
theoretical results in Section 6. A brief conclusion is given in the final section.

2. Preliminaries

Let A = (ai j)n×n and C = (ci j)n×n be nonnegative matrices, namely, all of their elements are
nonnegative. We write A ≥ C if ai j ≥ ci j for all i and j, A > C if A ≥ C and A , C, and A � C if
ai j > ci j for all i and j. The matrix A which satisfies A � 0 is called positive matrix.

Definition 1. ( [22], p.27) An n×n matrix A is cogredient to a matrix P if for some permutation matrix
Q, QAQT = P (superscript T represents transpose). A is reducible if it is cogredient to

P =

(
A1 0
A2 A3

)
,

where A1 and A3 are square matrices, or if n = 1 and A = 0. Otherwise, A is irreducible.

Denote G(A) as the associated directed graph of n×n matrix A, which is a set of n vertices and a set
of directed arcs joining two vertices. Irreducibility of matrices can be easily tested using the associated
directed graphs.

Definition 2. ( [22], p.30) A directed graph G(A) is strongly connected if for any ordered pair (Qi,Q j)
of vertices of G(A), there exists a sequence of edges (a path) which leads from Qi to Q j.

Theorem 1. ( [22], p.30) Matrix A is irreducible if and only if G(A) is strongly connected.

The matrix A has nonpositive off-diagonal and nonnegative diagonal entries, we have the following
results on A.

Definition 3. ( [22], p.133) Any matrix A of the form

A = sI − B, s > 0, B ≥ 0,

for which s ≥ ρ(B) (the spectral radius of B), is called an M-matrix. Here, I is identity matrix.

Lemma 1. ( [22], p.134) If all off-diagonal entries of matrix A are nonpositive, then the followings are
equivalent.

(i) A is a nonsingular M-matrix;
(ii) A is semipositive; that is, there exists x � 0 with Ax � 0;

(iii) A is inverse-positive; that is, A−1 exists and A−1 ≥ 0;
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(iv) A does not reverse the sign of any vector; that is, if x , 0 and y = Ax, then xiyi > 0 for some
subscript i.

Consider a linear system
Ax = 0, (2.1)

where A = (ai j)n×n with aii = −
∑n

j,i a ji and ai j ≤ 0 for all i , j. Then the following lemma holds.

Lemma 2. ( [3], Lemma 2.1) Assume that the matrix A in linear system (2.1) is irreducible and n ≥ 2.
Then the solution space of system (2.1) has dimension 1, and a basis of the solution space can be given
by

(ν1, ν2, · · · , νn) = (A11, A22, · · · , Ann),

where Aii > 0 denotes the cofactor of the i-th diagonal entry of A, 1 ≤ i ≤ n.

3. Equilibria and control reproduction number

Denote contact matrix B = (βi j)n×n and the movement matrix M = (mi j)n×n. Unless otherwise
indicated, in this paper, matrices B and M are always assumed to be irreducible. In fact, contact matrix
B is irreducible which means that an infected individual in the first group can cause infection to a
susceptible individual in the second group through an infection path. While, movement matrix M is
irreducible which means that each patch are strongly connected with respect to human movement.

For ease of notations, let diag(ai) denote a diagonal matrix whose diagonal entries starting in the
upper left corner are a1, a2, · · · , an and off-diagonal elements are all zero, and define n × n matrices

G0 = diag
( n∑

j=1

mi j

)
− MT and Gµ = diag

(
µi +

n∑
j=1

mi j

)
− MT .

Obviously, matrix G0 is also irreducible due to the assumption that movement matrix M is irreducible.
Since all off-diagonal entries of matrix Gµ are negative and the sum of the entries in each column
is positive, it follows from the equivalent conditions of Lemma 1 that matrix Gµ is a nonsingular
irreducible M-matrix and is inverse-positive, i.e., G−1

µ exists and G−1
µ ≥ 0.

Notice that the total population number N(t) =
∑n

i=1 Ni(t) =
∑n

i=1(S i(t) + Ii(t) + Ri(t)) satisfies the
equation N′(t) =

∑n
i=1 N′i (t) = 0, which implies that N(t) is always constant, denoted by Nc. Therefore,

the feasible region

Γ1 = {(S 1, I1,R1, · · · , S n, In,Rn) ∈ R3n
+ |

n∑
i=1

(S i + Ii + Ri) = Nc }

is positively invariant with respect to system (1.1).
In absence of infectious disease, we have the following results on the existence and uniqueness of

the disease-free equilibrium for system (1.1).

Theorem 2. (i) There exits a unique disease-free equilibrium E0 = (S 0
1, 0,R

0
1, · · · , S

0
n, 0,R

0
n) ∈ R3n

+ for
system (1.1).

(ii) There exists only one equilibrium whose coordinates include zero, i.e., the disease-free
equilibrium E0.
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Proof. First we prove (i). In absence of infectious diseases, the disease-free equilibrium of system
(1.1) must satisfy the following linear system

(1 − pi)µiNi − µiS i +

n∑
j=1

(m jiS j − mi jS i) = 0,

piµiNi − µiRi +

n∑
j=1

(m jiR j − mi jRi) = 0,

n∑
j=1

(m jiN j − mi jNi) = 0, i = 1, 2, · · · , n.

(3.1)

The algebraic equations (3.1) can be easily expressed by the following form of matrix system
diag((1 − pi)µi)N −GµS = 0,

diag(piµi)N −GµR = 0,

G0N = 0,

(3.2)

where # = (#1, #2, · · · , #n)T and # represents S , I,R and N. It follows from
∑n

i=1 Ni = Nc and Lemma 2
that linear system G0N = 0 has a unique positive solution N = N0 with

N0 , (N0
1 ,N

0
2 , · · · ,N

0
n )T =

Nc∑n
i=1 νi

(ν1, ν2, · · · , νn)T , (3.3)

where νi > 0 is the cofactor of the i-th diagonal entry of G0. Substituting N0 into the first two equation
of (3.2), it is easy to derive that the first equation of (3.2) has a unique solution S = S0 and the second
equation has a unique solution R = R0, where

S0 = (S 0
1, S

0
2, · · · , S

0
n)T = G−1

µ diag((1 − pi)µi)N0 > 0,

and
R0 = (R0

1,R
0
2, · · · ,R

0
n)T = G−1

µ diag(piµi)N0 > 0.

Next we prove (ii). Using Lemma 2 and G0 is irreducible, it follows from the third equation of (3.2)
that Ni > 0 at any equilibrium. Furthermore, it is impossible to have S i = 0 at any equilibrium, since at
S i = 0 the first equation of (3.1) becomes (1 − pi)µiNi +

∑n
j=1 m jiS j > 0. This is a contradiction. In the

following, we only need to show that Ii = 0 for some i implies that I j = 0 for all j. If Ii = 0, it follows
from the second equation of (1.1) that

n∑
j,i

βi jS iI j +

n∑
j=1

m jiI j = 0. (3.4)

Since S i > 0, Ii ≥ 0 for all i, then equation (3.4) implies that

n∑
j=1

m jiI j = 0 and
n∑

j,i

βi jS iI j = 0. (3.5)
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For the first equation of (3.5), if m ji > 0, then Ii = 0 means I j = 0 for any 1 ≤ i, j ≤ n, i.e.,

Ii = 0 and m ji > 0 implies I j = 0, ∀ i, j = 1, 2, · · · , n. (3.6)

Following the Definition 2 and Theorem 1, the movement matrix M is irreducible which ensures that
there exists a sequence of ordered pairs {(i, τ1), (τ1, τ2), · · · , (τq, j)} such that
miτ1 > 0,mτ1τ2 > 0, · · · ,mτq j > 0, τk = 1, 2, · · · , n, k = 1, 2, · · · , q and q ≥ 0. Applying (3.6) to each
pair in such a sequence and using Ii = 0, we derive Iτ1 = 0, Iτ2 = 0, · · · , I j = 0. Hence I j = 0 for all j
provided that M is irreducible. Similarly, if B is irreducible, it follows from the second equation of
(3.5) that I j = 0 for all j. Therefore, the disease-free equilibrium E0 is the only one equilibrium
whose coordinates include zero. �

We should remark that the system may be decoupled into several small systems and may have
multiple boundary equilibria when the movement matrix M is reducible (see, for example, [26] and
references therein).

Using the techniques of van den Driessche and Watmough [25], the control reproduction number
can be expressed as

Rv = ρ(FV−1), (3.7)

where matrices F = (βi jS 0
i /N

0
j )n×n and V = diag(µi + γi) + G0 respectively represent the new infection

terms and the remaining transfer terms for entire population, and ρ denotes the spectral radius.

4. Global dynamics when Rv < 1

Notice that
dNi

dt
=

n∑
j=1

(m jiN j − mi jNi), i = 1, 2, · · · , n. (4.1)

The proof of Theorem 2 implies that system (4.1) has a unique positive equilibrium N0 and one can
easily testify N0 is globally asymptotically stable in Γ1 i,e., limt→∞ Ni(t) = N0

i . Using the results from
Castillo-Chavez and Tieme [24] and Mischaikow et al. [28], we can obtain the analytical results by
considering the following limit system of system (1.1) in which the sub-population is assumed to be
constant N0

i 

S ′i = (1 − pi)µiN0
i −

n∑
j=1

βi j
I j

N0
j

S i − µiS i +

n∑
j=1

(m jiS j − mi jS i),

I′i =

n∑
j=1

βi j
I j

N0
j

S i − µiIi − γiIi +

n∑
j=1

(m jiI j − mi jIi),

R′i = piµiN0
i + γiIi − µiRi +

n∑
j=1

(m jiR j − mi jRi).

(4.2)

System (1.1) and (4.2) have the same set of equilibria and the same existence conditions as given in
the previous section.

For the eventual boundedness of solutions S i, Ii,Ri, i = 1, 2, · · · , n of system (4.2), we have the
following lemma.
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Lemma 3. For any solutions in Γ1 of system (4.2), it holds that

lim sup
t→+∞

S i(t) ≤ N0
i , lim sup

t→+∞

Ii(t) ≤ N0
i , lim sup

t→+∞

Ri(t) ≤ N0
i , i = 1, 2, · · · , n,

in particular,
lim sup

t→+∞

S i(t) ≤ S 0
i , i = 1, 2, · · · , n.

Proof. The first equation of (4.2) implies that

dS i

dt
≤ (1 − pi)µiN0

i − µiS i +

n∑
j=1

(m jiS j − mi jS i), i = 1, 2, · · · , n. (4.3)

Using the right hand side of (4.3), let us define an auxiliary linear system

dS̄ i

dt
= (1 − pi)µiN0

i − µiS̄ i +

n∑
j=1

(m jiS̄ j − mi jS̄ i), i = 1, 2, · · · , n. (4.4)

A simple calculation shows that the positive equilibrium (S̄ 0
1, S̄

0
2, · · · , S̄

0
n) = (S 0

1, S
0
2, · · · , S

0
n) is the

unique equilibrium of (4.4).
Let g(x) = x− 1− ln x, x > 0. One can easily verify that g(x) ≥ 0 with g(x) = 0 if and only if x = 1

and (x − 1)(1 − y) = g(x) + g(y) − g(xy) for any x, y ∈ R+. Define

V S̄
i = S 0

i g
( S̄ i

S 0
i

)
.

Differentiating V S̄
i along system (4.4) and using S 0

i is the positive equilibrium of system (4.4), simple
calculation implies that

dV S̄
i

dt

∣∣∣∣
(4.4)

=
(
1 −

S 0
i

S̄ i

)
S̄ ′i

=
(
1 −

S 0
i

S̄ i

)[
(1 − pi)µiN0

i − µiS̄ i +

n∑
j=1

(m jiS̄ j − mi jS̄ i)
]

=
(
1 −

S 0
i

S̄ i

)[
− µiS 0

i

( S̄ i

S 0
i

− 1
)

+

n∑
j=1

m jiS 0
j

( S̄ j

S 0
j

− 1
)
−

n∑
j=1

m jiS 0
i

( S̄ i

S 0
i

− 1
)]

= −µiS 0
i g

(S 0
i

S̄ i

)
− µiS 0

i g
( S̄ i

S 0
i

)
+

n∑
j=1

m jiS 0
jg

(S 0
j

S̄ j

)
−

n∑
j=1

m jiS 0
jg

(S 0
i S̄ j

S̄ iS 0
j

)
+

n∑
j=1

m jiS 0
jg

(S 0
i

S̄ i

)
−

n∑
j=1

mi jS 0
i g

( S̄ i

S 0
i

)
−

n∑
j=1

mi jS 0
i g

(S 0
i

S̄ i

)
= −(1 − pi)µiN0

i g
(S 0

i

S̄ i

)
−

n∑
j=1

m jiS 0
jg

(S 0
i S̄ j

S̄ iS 0
j

)
− µiS 0

i g
( S̄ i

S 0
i

)
+

n∑
j=1

m jiS 0
jg

( S̄ j

S 0
j

)
−

n∑
j=1

mi jS 0
i g

( S̄ i

S 0
i

)
.
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Let VS̄ =
∑n

i=1 V S̄
i . By using

∑n
i=1

∑n
j=1 m jiS 0

jg
( S̄ j

S 0
j

)
=

∑n
i=1

∑n
j=1 mi jS 0

i g
(

S̄ i

S 0
i

)
, we have

dVS̄

dt

∣∣∣
(4.4)

= −

n∑
i=1

(1 − pi)µiN0
i g

(S 0
i

S̄ i

)
−

n∑
i=1

n∑
j=1

m jiS 0
jg

(S 0
i S̄ j

S̄ iS 0
j

)
−

n∑
i=1

µiS 0
i g

( S̄ i

S 0
i

)
,

which suggests that V ′S̄
∣∣∣
(4.4)
≤ 0 with V ′S̄

∣∣∣
(4.4)

= 0 if and only if S̄ i = S 0
i . Using the LaSalle’s Invariance

Principle [29], the unique positive equilibrium (S̄ 1, S̄ 2, · · · , S̄ n) = (S 0
1, S

0
2, · · · , S

0
n) is globally

asymptotically stable for system (4.4), i.e., limt→∞ S̄ i(t) = S 0
i for all i. Following the standard

comparison theorem [11], we have lim supt→+∞ S i(t) ≤ S 0
i , i = 1, 2, · · · , n. �

If S i = S 0
i for some i and S j ≤ S 0

j for all j , i, it follows from Lemma 3 and the first equation of
system (4.2) that

S ′i ≤ (1 − pi)µiN0
i − µiS 0

i +

n∑
j=1

(m jiS j − mi jS 0
i ) =

n∑
j=1

(m jiS j − m jiS 0
j) ≤ 0.

This indicates that the subset of Γ1

Γ = {(S 1, I1,R1, · · · , S n, In,Rn) ∈ Γ1 | S i ≤ S 0
i , i = 1, 2, · · · , n}

is the positively invariant with respect to system (4.2). Therefore, we can study system (4.2) in the
feasible region Γ.

Theorem 3. (i) If Rv < 1, then the unique disease-free equilibrium E0 of system (4.2) is globally
asymptotically stable in Γ.

(ii) If Rv > 1, then the disease-free equilibrium E0 is unstable and system (4.2) is uniformly
persistent in Γ̊ (the interior of Γ).

Proof. From Theorem 2 in van den Driessche and Watmough [25], the disease-free equilibrium E0 of
system (4.2) is locally asymptotically stable if Rv < 1, and unstable if Rv > 1.

Let I = (I1, I2, · · · , In)T . Using the second equation of (4.2), it follows that
dI
dt
≤ (F − V)I.

Let u > 0 be the left eigenvector of the nonnegative matrix FV−1 with respect to the eigenvalue
ρ(FV−1) = Rv, that is, uT FV−1 = RvuT . Construct a Lyapunov function

V = uT I. (4.5)

Differentiating (4.5) along the system (4.2) yields
dV
dt

= uT dI
dt
≤ uT (F − V)I = (uT FV−1 − uT )VI = (Rv − 1)uT VI. (4.6)

If Rv < 1, then dV/dt ≤ 0 with dV/dt = 0 if and only if Ii = 0 for some i. Similar to the proof of
Theorem 2, it follows that the only invariant set where V ′ = 0 is the singleton {E0}. Therefore, by
LaSalle’s Invariance Principle [29], E0 is globally asymptotically stable in Γ.

If Rv > 1, by continuity and (Rv − 1)uT VI > 0 for I > 0, we have V ′ > 0 in a neighborhood of E0

in Γ̊. In this case, the solutions in Γ̊ sufficiently close to E0 move away from E0, that is, E0 is unstable
if Rv > 1. Using the uniform persistence result from [27] and the similar argument as in the proof
of Proposition 3.3 of [30], we can show that the instability of E0 implies the uniform persistence of
(4.2). �
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5. Global dynamics when Rv > 1

If Rv > 1, by Theorem 2.8.6 in [23] or Theorem D.3 in [11], the uniform persistence of (4.2) and
the positive invariance of the compact set Γ imply that system (4.2) admits at lest one equilibrium in Γ̊.
Let E∗ = (S ∗1, I

∗
1,R

∗
1, · · · , S

∗
n, I
∗
n,R

∗
n) be an endemic equilibrium for system (4.2), then we have

(1 − pi)µiN0
i −

n∑
j=1

βi j

I∗j
N0

j

S ∗i − µiS ∗i +

n∑
j=1

(m jiS ∗j − mi jS ∗i ) = 0,

n∑
j=1

βi j

I∗j
N0

j

S ∗i − µiI∗i − γiI∗i +

n∑
j=1

(m jiI∗j − mi jI∗i ) = 0,

piµiN0
i + γiI∗i − µiR∗i +

n∑
j=1

(m jiR∗j − mi jR∗i ) = 0.

(5.1)

Define

β̄i j = βi j

I∗j
N0

j

S ∗i + m jiI∗j , (5.2)

and

B̄ = (β̄i j)n×n, B∗ = diag
( n∑

j=1

β̄i j

)
− B̄T . (5.3)

Let
ω = (ω1, ω2, · · · , ωn) = (B∗11, B

∗
22, · · · , B

∗
nn),

where B∗ii is the cofactor of the i-th diagonal entry of B∗ and B∗ii > 0, 1 ≤ i ≤ n. Then, we have the
following Lemma.

Lemma 4. The positive vectorω is a basis of the solution space of linear system B∗x = 0. Furthermore,
positive vector ω satisfies

n∑
j=1

ω j(β ji

S ∗j
N0

i

+ mi j) = ωi(µi + γi +

n∑
j=1

mi j). (5.4)

Proof. Matrices B and M are irreducible which imply that matrix B∗ is also irreducible. Then it follows
from Lemma 2 that positive vectorω = (ω1, ω2, · · · , ωn) is a basis of the solution space of linear system
B∗ω = 0. This indicates that

n∑
j=1

β̄i jωi =

n∑
j=1

β̄ jiω j.

Thus, one can derive from the expressions of β̄i j given in (5.2) and the second equation of (5.1) that
n∑

j=1

ω jβ̄ ji = ωi

n∑
j=1

β̄i j = ωi

n∑
j=1

(βi j

I∗j
N0

j

S ∗i + m jiI∗j ) = ωi(µi + γi +

n∑
j=1

mi j)I∗i .

Therefore, we have
n∑

j=1

ω j(β ji

S ∗j
N0

i

+ mi j) = ωi(µi + γi +

n∑
j=1

mi j).

� �
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Theorem 4. If Rv > 1, then the endemic equilibrium E∗ of system (4.2) is unique and it is globally
asymptotically stable in Γ̊ under the condition

∑n
j=1 ω jβ ji

S ∗j
N0

i
> ωiγi.

Proof. We prove that E∗ is globally asymptotically stable in Γ̊, which implies that the endemic
equilibrium is unique. Since S i + Ii + Ri = N0

i and the variable Ri does not appear in the first two
equations in (4.2), then we can work on the following equivalent system


S ′i = (1 − pi)µiN0

i −

n∑
j=1

βi j
I j

N0
j

S i − µiS i +

n∑
j=1

(m jiS j − mi jS i),

I′i =

n∑
j=1

βi j
I j

N0
j

S i − µiIi − γiIi +

n∑
j=1

(m jiI j − mi jIi).
(5.5)

Let g(x) = x − 1 − ln x and

VS
i = S ∗i g

( S i

S ∗i

)
, V I

i = I∗i g
( Ii

I∗i

)
.

Note that (x− 1)(1− y) = g(x) + g(y)− g(xy) for any x, y ∈ R+, then using the equilibrium equations
(5.1) and differentiating VS

i and V I
i along system (5.5), we have

dVS
i

dt
=

(
1 −

S ∗i
S i

)
S ′i

=
(
1 −

S ∗i
S i

)(
(1 − pi)µiN0

i −

n∑
j=1

βi j
I j

N0
j

S i − µiS i +

n∑
j=1

m jiS j −

n∑
j=1

mi jS i

)
= −

n∑
j=1

βi j

S ∗i I∗j
N0

j

( S iI j

S ∗i I∗j
− 1

)(
1 −

S ∗i
S i

)
− µiS ∗i

( S i

S ∗i
− 1

)(
1 −

S ∗i
S i

)
+

n∑
j=1

m jiS ∗j
(S j

S ∗j
− 1

)(
1 −

S ∗i
S i

)
−

n∑
j=1

mi jS ∗i
( S i

S ∗i
− 1

)(
1 −

S ∗i
S i

)
= −(1 − pi)µiN0

i g
(S ∗i

S i

)
−

n∑
j=1

βi j

S ∗i I∗j
N0

j

g
( S iI j

S ∗i I∗j

)
+

n∑
j=1

βi j

S ∗i I∗j
N0

j

g
( I j

I∗j

)
+

n∑
j=1

m jiS ∗jg
(S j

S ∗j

)
−

n∑
j=1

m jiS ∗jg
(S ∗i S j

S iS ∗j

)
−

(
µi +

n∑
j=1

mi j

)
S ∗i g

( S i

S ∗i

)
,

(5.6)
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and
dV I

i

dt
=

(
1 −

I∗i
Ii

)
I′i

=
(
1 −

I∗i
Ii

)( n∑
j=1

βi j
I j

N0
j

S i − µiIi − γiIi +

n∑
j=1

m jiI j −

n∑
j=1

mi jIi

)
=

n∑
j=1

βi j

S ∗i I∗j
N0

j

( S iI j

S ∗i I∗j
− 1

)(
1 −

I∗i
Ii

)
− (µi + γi)I∗i

( Ii

I∗i
− 1

)(
1 −

I∗i
Ii

)
+

n∑
j=1

m jiI∗j
( I j

I∗j
− 1

)(
1 −

I∗i
Ii

)
−

n∑
j=1

mi jI∗i
( Ii

I∗i
− 1

)(
1 −

I∗i
Ii

)
=

n∑
j=1

βi j

S ∗i I∗j
N0

j

g
( S iI j

S ∗i I∗j

)
−

n∑
j=1

βi j

S ∗i I∗j
N0

j

g
(S iI∗i I j

S ∗i IiI∗j

)
+

n∑
j=1

m jiI∗j g
( I j

I∗j

)
−

n∑
j=1

m jiI∗j g
( I∗i I j

IiI∗j

)
−

(
µi + γi +

n∑
j=1

mi j

)
I∗i g

( Ii

I∗i

)
.

(5.7)

Define a Lyapunov function as follows

V =

n∑
i=1

ωi(VS
i + V I

i ). (5.8)

Then combining equations (5.6) and (5.7) together, we have

dV
dt

= −

n∑
i=1

ωi(1 − pi)µiN0
i g

(S ∗i
S i

)
−

n∑
i=1

n∑
j=1

ωim jiS ∗jg
(S ∗i S j

S iS ∗j

)
−

n∑
i=1

n∑
j=1

ωiβi j

S ∗i I∗j
N0

j

g
(S iI∗i I j

S ∗i IiI∗j

)
−

n∑
i=1

n∑
j=1

ωim jiI∗j g
( I∗i I j

IiI∗j

)
+

n∑
i=1

n∑
j=1

ωim jiS ∗jg
(S j

S ∗j

)
−

n∑
i=1

ωi

(
µi +

n∑
j=1

mi j

)
S ∗i g

( S i

S ∗i

)
+

n∑
i=1

n∑
j=1

ωi

(
βi j

S ∗i
N0

j

+ m ji

)
I∗j g

( I j

I∗j

)
−

n∑
i=1

ωi

(
µi + γi +

n∑
j=1

mi j

)
I∗i g

( Ii

I∗i

)
In fact

n∑
i=1

n∑
j=1

ωim jiS ∗jg(
S j

S ∗j
) = ω(MT c1) = (ωMT )c1 =

n∑
i=1

n∑
j=1

ω jmi jS ∗i g(
S i

S ∗i
),

n∑
i=1

n∑
j=1

ωi(βi j
S ∗i
N0

j

+ m ji)I∗j g(
I j

I∗j
) = ω(Qc2) = (ωQ)c2 =

n∑
i=1

n∑
j=1

ω j(β ji

S ∗j
N0

i

+ mi j)I∗i g(
Ii

I∗i
),

where ω = (ω1. · · · , ωn), c1 = (S ∗1g( S 1
S ∗1

), · · · , S ∗ng(S n
S ∗n

))T , c2 = (I∗1g( I1
I∗1

), · · · , I∗ng( In
I∗n

))T , M = (mi j)n×n and

Q = (βi j
S ∗i
N0

j
+ m ji)n×n. Therefore, from

∑n
j=1 ω j(β ji

S ∗j
N0

i
+ mi j) = ωi(µi + γi +

∑n
j=1 mi j) and the condition
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j=1 ω jβ ji

S ∗j
N0

i
> ωiγi, we have

dV
dt

= −

n∑
i=1

ωi(1 − pi)µiN0
i g

(S ∗i
S i

)
−

n∑
i=1

n∑
j=1

ωim jiS ∗jg
(S ∗i S j

S iS ∗j

)
−

n∑
i=1

n∑
j=1

ωim jiI∗j g
( I∗i I j

IiI∗j

)
−

n∑
i=1

n∑
j=1

ωiβi j

S ∗i I∗j
N0

j

g
(S iI∗i I j

S ∗i IiI∗j

)
−

n∑
i=1

n∑
j=1

ω jβ ji

S ∗j
N0

i

S ∗i g
( S i

S ∗i

)
+

n∑
i=1

ωiγiS ∗i g
( S i

S ∗i

)
≤ 0.

It is easily to verify that V ′ = 0 if and only if S i = S ∗i and

I∗i I j

IiI∗j
= 1, that is,

Ii

I∗i
=

I j

I∗j
, for all i, j = 1, 2, · · · , n. (5.9)

This equation is equivalent to Ii = αI∗i , where α is an arbitrary constant. Substituting S i = S ∗i , Ii = αI∗i
into the first equation of (5.5), we have

(1 − pi)µiN0
i − S ∗i

n∑
j=1

βi j

αI∗j
N0

j

− µiS ∗i +

n∑
j=1

(m jiS ∗j − mi jS ∗i ) = 0. (5.10)

Since the left-hand side of (5.10) is monotonically decreasing with respect to α, it follows from the
equation (5.1) that (5.10) holds if and only if α = 1. That is, the only compact invariant subset of
V ′ = 0 is the only singleton point {Ẽ∗}, here Ẽ∗ = (S ∗1, I

∗
1, S

∗
2, I
∗
2, · · · , S

∗
n, I
∗
n). Using the LaSalle’s

Invariance Principle [29] and the similar argument to the proof of Theorem 3, we can show that Ẽ∗

is unique and globally asymptotically stable for system (5.5). That is, the endemic equilibrium E∗ is
unique and globally asymptotically stable for system (4.2) in Γ̊ if Rv > 1 and

∑n
j=1 ω jβ ji

S ∗j
N0

i
> ωiγi. �

6. Numerical simulations

In this section, we mainly perform some numerical simulations to verify the validity of the
theoretical results carried out in the previous sections. In this paper, the simulations are performed by
using Mathematica 10 software.

6.1. Two-group system

We first consider the two-group case (n = 2), which is thought to be suitable for infectious diseases
transmitted between two cities or communities. In this paper, we consider the unit of time as a year to
model the long-term spread of disease. For the two-group system, we fix

µ1 =
1

80
, µ2 =

1
70
, γ1 = 0.03, γ2 = 0.03, p1 = 0.8, p2 = 0.6.

If we denote li j as the annual migration proportion from group i to j, then migration rate mi j determined
by mi j = − ln(1 − li j). Here we take migration proportion l12 = 0.1 and l21 = 0.11, which means that
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(a) Rv = 0.9938 < 1 (b) Rv = 1.0425 > 1

Figure 1. Time plots of infected populations for the case n = 2. Initial conditions are:
S 1(0) = 0.999, S 2(0) = 1, I1(0) = 0.001, I2(0) = R1(0) = R2(0) = 0.

10% population migrate from group 1 to group 2 during one year and 11% population migrate from
group 2 to group 1 during one year. We do not give the value of lii (which determined the values of
mii) due to the fact that the theoretical results are independent of migration rate mii for all i. Under
these settings, we only need to change the transmission rate βi j to explore the global stability of each
equilibrium.

If β =

(
0.1144 0.0286
0.0429 0.1001

)
, we have Rv = 0.9938 < 1. Following Theorem 3, we know that the

disease-free equilibrium E0 = (0.2108, 0, 0.7396, 0.2918, 0, 0.6578) is the unique equilibrium of the
system (1.1) and it is globally asymptotically stable in Γ. In fact, Figure 1(a) provides the simulations
of this case and it reveals that each infected population converges to zero.

If β =

(
0.12 0.03

0.045 0.105

)
, we have Rv = 1.0425 > 1. For this case, we have

min{βiiS ∗i /N
∗
i − γi} = 0.0009 > 0. Then, it follows from Theorem 4 that the positive equilibrium

E∗ = (0.2978, 0.0039, 0.7485, 0.2801, 0.0036, 0.6659) is the unique endemic equilibrium and it is
globally asymptotically stable in Γ̊. In fact, Figure 1(b) gives the simulation results for this case and it
shows that each infected population converges to some positive steady states.

6.2. A geographical spread of disease

We next consider the 50-group case (n = 50), which can be considered as the system of geographical
spread of disease. Referring to the pervious example, we fix

µi =
1

80
, γi =

1
2
, pi = 0.2, i = 1, 2, · · · , 50.
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(a) Time evolution of infected population Ii(t). (b) Distribution of Ii(t) for each t and i

Figure 2. Time plots of infected population Ii(t), i = 1, 2, · · · , 50 when Rv = 0.9985 < 1.
Initial conditions are: S i(0) = 1, Ii(0) = 0, i , 25, 26, S 25(0) = S 26(0) = 0.999, I25(0) =

I26(0) = 0.001 and Ri(0) = 0 for all i.

We employ the following form of the movement matrix M = (mi j)50×50

M = (mi j)50×50 =



0 m̄1 m̄2 0 0 · · · 0
m̄1 0 m̄1 m̄2 0 · · · 0
m̄2 m̄1 0 m̄1 m̄2 · · · 0

0 . . .
. . .

. . .
. . .

. . .
...

... 0 m̄2 m̄1 0 m̄1

0 0 0 0 m̄2 m̄1 0


, (6.1)

where m̄i = − ln(1 − li), i = 1, 2 with l1 = 0.15, l2 = 0.1. It is easy to see that the movement matrix
M is irreducible. Using the diffusive-like form of contact matrix B = (βi j)50×50 considered in [6], the
contact matrix B in this paper can be expressed as:

B = (βi j)50×50 =



βx α 0 · · · 0
α βx α · · · 0
...

. . .
. . .

. . .
...

0 α βx α

0 · · · 0 α βx


, (6.2)

where α, βx are positive constants. Obviously, contact matrix B is irreducible. For simplicity, we fix
α = 0.01 and only change βx to observe the dynamical behavior of each equilibrium.

The simulations of system (1.1) with n = 50 can be seen in Figure 2 and Figure 3. In both figures, the
discrete groups are connected smoothly by the Mathematica commands “Plot3D” and “DensityPlot”.

If βx = 0.62, in this case, we have Rv = 0.9985 < 1. Figure 2 gives the simulations of this case.
It shows that each infected population converges to zero, i.e., the disease-free equilibrium is globally
asymptotically stable if Rv < 1. This verifies the conclusion of Theorem 3.
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(a) Time evolution of infected population Ii(t). (b) Distribution of Ii(t) for each t and i

Figure 3. Time plots of infected population Ii(t), i = 1, 2, · · · , 50 when Rv = 1.0609 > 1.
Initial conditions are: S i(0) = 1, Ii(0) = 0, i , 25, 26, S 25(0) = S 26(0) = 0.999, I25(0) =

I26(0) = 0.001 and Ri(0) = 0 for all i.

If βx = 0.66, in this case, we have Rv = 1.0609 > 1. Simulation results for this case are presented
in Figure 3. It suggests that each infected population trends to some positive steady states, i.e., the
endemic equilibrium is globally asymptotically stable when Rv > 1. This simulation confirms the
theoretical results of Theorem 4.

In particular, by virtue of the form of contact matrix B and movement matrix M, we can observe
that two infection groups can cause infection to all groups. Meanwhile, the wave-like spreading pattern
which connect the disease-free equilibrium E0 and the endemic equilibrium E∗.

7. Conclusion

In this paper, we investigate the complete global dynamics of a multi-group SIR model that
incorporate group mixing and human movement. The results shows that model (1.1) exists a unique
disease-free equilibrium, which is the only one equilibrium whose coordinates include zero.
Meanwhile, model (1.1) has a unique endemic equilibrium if the control reproduction number Rv > 1.
Due to the complexity of model (1.1), we simplify this model to the equivalent system (4.2). By using
the graph-theoretical approach [3], we obtain that the disease-free equilibrium is global
asymptotically stable if Rv < 1, and the endemic equilibrium is global asymptotically stable if Rv > 1
and

∑n
j=1 ω jβ ji

S ∗j
N0

i
> ωiγi.
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