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Abstract: In this paper, an SIR multi-group epidemic model with group mixing and human movement
is investigated. The control reproduction number R, is derived and the global dynamics of the model
are completely determined by the value of R,. By using the graph-theoretical approach, the results
show that the disease-free equilibrium is globally asymptotically stable if R, < 1, and the unique
endemic equilibrium is globally asymptotically stable if R, > 1. Two numerical examples are further
presented to testify the validity of the theoretical results.
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1. Introduction

Since Kermack and Mckendrick [1] formulated the compartmental ODE model to study
epidemiology, extensively mathematical models have been used to explore the transmission dynamics
of infectious diseases. Most of these mathematical models are assumed that the host population is
homogeneously mixed. In reality, the host population is often heterogenous and it can be divided into
several groups with different transmission patterns [2]. For example, it seems more reasonable to
make a division into two groups for measles and mumps due to the different contact patterns between
children and adults. The sexually transmitted diseases (such as, HIV/AIDS and gonorrhea) can be
divided into serval groups according to the number of sexual partners. Therefore, multi-group
epidemic models are emerged to investigate how the population heterogeneity affect the spread of
disease.

Note that the study of the mathematical properties of multi-group epidemic model can obtain
suitable measures for the control of infectious diseases. Recently, numerous literatures (see for
example, [2—13] and the references therein) are dedicated to study such models on the theoretical and
analytical properties including the existence, uniqueness of solutions and global stability of each
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equilibrium of the model. Particularly, Guo et al. [3, 4] proposed a graph theory to Lyapunov
functional technique, which simplified the proof on the global stability for the positive equilibrium of
multi-group model. Hereafter, the graph-theoretical approach was widely used in studying the global
dynamics of various multi-group models (see for example, [6, 10, 12] and references therein).

Nowadays, with the recent development of worldwide transportation, infected individuals can easily
travel from one place to another which is thought to be one of the main reasons of the global pandemic
of diseases. For instance, SARS first appeared in Guangdong Province of China in November, 2002.
This destructive disease soon spread to other areas of China and, in the days that followed, to other
parts of the world [13]. Ebola appeared in Guinea in March, 2014. It then spread to other countries
including the United States, Spain and the United Kingdom [15]. Thus, it is necessary to incorporate
human movement into epidemic model to clarifying how it affects the pattern of disease prevalence.

Recently, several researchers focus on the dynamics of multi-group models that incorporate the
movement of human movement. In [16], Arino et al. explored the dynamics of a multi-group epidemic
model with individuals movement. Liu and Takeuchi obtained the local stability of a two-species
epidemic model with transport-related infection [17]. Wang and Yang studied the global dynamics of
a two-patch SIS model with infection during transport [14]. In [18], Sun and Wu gained the stability
of multi-group models with cross-dispersal. However, fewer studies obtained the global dynamics of
general multi-group model with human movement.

Motivated by these facts, in this paper we aim to study the global dynamics of a general multi-
group SIR model that incorporate explicit human movement between groups. The whole population
is divided into n distinct groups (n > 1). The i-th (1 < i < n) group is further partitioned into three
compartments: the susceptible, infectious and removed, the number of individuals at time ¢ are denoted
by S (1), I;(t) and R;(¢), respectively. Like in [16], the diseases is assumed to be horizontally transmitted
between humans according to standard incidence (see, for example, [19]) with §;; the rate of disease
transfer from infective individual in group j to susceptible individual in group i. The rate of human
movement, from group i to group j, is given by m;; with m;; > 0 and is assumed to be the same for
each type of individual. Therefore, the multi-group SIR epidemic model with human movement can
be described by the following system of 3n ordinary differential equations

n I n
Si =0 - p)uN; - Zﬁijﬁsi — S+ Z(mjiSj = mi;S ),
j=1 J j=1
Il = Z,Bijﬁj_Si = pili = yili + Z(mjilj = my;ly), (1.1)
j=1 J j=1
R: = pi,uiNi =+ yili — IJ[RI' + Z(mﬂRj - mini),
=1

where the prime (") denotes the differentiation with respect to time ¢ and the sub-population number
N; =S, + I; + R;. In patch i, y; is both the birth and death rate; p; is the proportion of immune at birth;
vi is the recovery rate. Here, parameters p;,y; are positive constants and p;, 5;;, m;; are non-negative
constants.

In this model, we consider disease transmission can occur not only in the same groups (8;; > 0 for
i = j) but also in different groups (B;; > 0 for some i # j). This kind of system is called epidemic model
with hybrid of multi-group [3] or epidemic model with group mixing [12]. To our knowledge, Kuniya
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and his cooperators studied several multi-group epidemic models with group mixing and population
movement (see, for example [5,20,21]). In this paper, we will use the graph-theoretical approach [3,4]
to present the global dynamics of multi-group SIR model (1.1) with both group mixing and human
movement.

The organization of this paper is as follows. In the next section, we quote some results from graph
theory which are very useful in the proof of our main results. In Section 3, we study the existence
of equilibria and derive the expression of control reproduction number. We investigate the global
stability of each equilibrium in Sections 4 and 5. Two numerical examples are performed to verify our
theoretical results in Section 6. A brief conclusion is given in the final section.

2. Preliminaries

Let A = (aij)nxn and C = (cij)uxn be nonnegative matrices, namely, all of their elements are
nonnegative. We write A > Cif a;; > ¢;; foralliand j,A > CifA> Cand A # C,and A > Cif
a;j > ¢;j for all i and j. The matrix A which satisfies A > 0 is called positive matrix.

Definition 1. ( [22], p.27) An n X n matrix A is cogredient to a matrix P if for some permutation matrix
Q, QAQT = P (superscript T represents transpose). A is reducible if it is cogredient to

A 0
P=(a a)
where Ay and Az are square matrices, or if n = 1 and A = 0. Otherwise, A is irreducible.

Denote G(A) as the associated directed graph of n X n matrix A, which is a set of n vertices and a set
of directed arcs joining two vertices. Irreducibility of matrices can be easily tested using the associated
directed graphs.

Definition 2. ([22], p.30) A directed graph G(A) is strongly connected if for any ordered pair (Q;, Q;)
of vertices of G(A), there exists a sequence of edges (a path) which leads from Q; to Q.

Theorem 1. ( [22], p.30) Matrix A is irreducible if and only if G(A) is strongly connected.

The matrix A has nonpositive off-diagonal and nonnegative diagonal entries, we have the following
results on A.

Definition 3. ( [22], p.133) Any matrix A of the form
A=sI-B, s>0, B>0,

for which s > p(B) (the spectral radius of B), is called an M-matrix. Here, I is identity matrix.

Lemma 1. ([22], p.134) If all off-diagonal entries of matrix A are nonpositive, then the followings are
equivalent.

(1) A is a nonsingular M-matrix;
(i1) A is semipositive; that is, there exists x > 0 with Ax > 0;
(iii) A is inverse-positive; that is, A~! exists and A~' > 0;
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(iv) A does not reverse the sign of any vector; that is, if x # 0 and y = Ax, then x;y; > 0 for some
subscript i.

Consider a linear system
Ax =0, (2.1)

where A = (a;j)nxn With a; = — Z;;i aji and a;; < 0 for all i # j. Then the following lemma holds.

Lemma 2. ( [3], Lemma 2.1) Assume that the matrix A in linear system (2.1) is irreducible and n > 2.
Then the solution space of system (2.1) has dimension 1, and a basis of the solution space can be given
by

Vi va, v = (A, A, -+ L A,

where A; > 0 denotes the cofactor of the i-th diagonal entry of A, 1 <i < n.
3. Equilibria and control reproduction number

Denote contact matrix B = (;;).x, and the movement matrix M = (m;;),x,. Unless otherwise
indicated, in this paper, matrices B and M are always assumed to be irreducible. In fact, contact matrix
B is irreducible which means that an infected individual in the first group can cause infection to a
susceptible individual in the second group through an infection path. While, movement matrix M is
irreducible which means that each patch are strongly connected with respect to human movement.

For ease of notations, let diag(a;) denote a diagonal matrix whose diagonal entries starting in the

upper left corner are a;,a,, - - - , a, and off-diagonal elements are all zero, and define n X n matrices
Gy = diag( Z m,-j) —~M" and G, = diag(/,ci + Z m,-j) -MT,
=1 =1

Obviously, matrix Gy is also irreducible due to the assumption that movement matrix M is irreducible.
Since all off-diagonal entries of matrix G, are negative and the sum of the entries in each column
is positive, it follows from the equivalent conditions of Lemma 1 that matrix G, is a nonsingular
irreducible M-matrix and is inverse-positive, i.e., G;l exists and G;l > 0.

Notice that the total population number N(¢) = Y7, Ni(t) = X7, (S:(f) + I(t) + Ri(7)) satisfies the
equation N'(¢) = X, N/(¢) = 0, which implies that N(¢) is always constant, denoted by N,. Therefore,
the feasible region

T = {1, 1Ry, Sy L Ry €RY | ) (Si+ I+ Ry) = N}

i=1
is positively invariant with respect to system (1.1).

In absence of infectious disease, we have the following results on the existence and uniqueness of
the disease-free equilibrium for system (1.1).

Theorem 2. (i) There exits a unique disease-free equilibrium E° = (§9,0,RY,---,S9,0,R%) € RY" for
system (1.1).

(i1) There exists only one equilibrium whose coordinates include zero, i.e., the disease-free
equilibrium E°.
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Proof. First we prove (i). In absence of infectious diseases, the disease-free equilibrium of system
(1.1) must satisfy the following linear system

(1 = puiN; — ;S i + Z(mjiSj -m;S;) =0,
J=1
PiiN; — uiR; + Z(mjiRj —m;;R;) =0, 3.1

=1
n

Z(mjiNj—mijNi):(), i=1,2,---,n.

J=1

The algebraic equations (3.1) can be easily expressed by the following form of matrix system
diag((1 = pp)u)N - G,S =0,
diag(pi)N - G,R = 0, (3.2)
GoN =0,

where # = (#,,#,,--- ,#,)" and # represents S, I, R and N. It follows from > Ni = N, and Lemma 2
that linear system GoN = 0 has a unique positive solution N = N with

N, T

NO é(NoaNga"' ’Nr(,))T = Zn V(VI’VZa"' ’Vn) ) (33)
i=1"7i

where v; > 0 is the cofactor of the i-th diagonal entry of G. Substituting N° into the first two equation
of (3.2), it is easy to derive that the first equation of (3.2) has a unique solution S = S° and the second
equation has a unique solution R = R°, where

S0 =(89.8%,---.SN" =G, diag((1 - p)u)N° > 0,

and
R’ = (RLR, -, R)" = G, diag(pi)N° > 0.

Next we prove (ii). Using Lemma 2 and G, is irreducible, it follows from the third equation of (3.2)
that N; > 0 at any equilibrium. Furthermore, it is impossible to have S; = 0 at any equilibrium, since at
S; = 0 the first equation of (3.1) becomes (1 — p;)u;N; + Z?zl m;;S ; > 0. This is a contradiction. In the
following, we only need to show that /; = 0 for some i implies that /; = 0 for all j. If I; = 0, it follows
from the second equation of (1.1) that

Z,B,-jS,-Ij+ZmﬁIj:0. (34)
Jj#i j=1
Since §; > 0,1; > 0 for all i, then equation (3.4) implies that
Zmﬁlj =0 and Z,BijS,-Ij =0. (35)
=1 i
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For the first equation of (3.5),if mj; > 0, then I; = Omeans I; = 0O forany 1 < i, j <n, i.e.,
I; =0and mj; > Oimplies /; =0, Vi, j=1,2,---,n. 3.6)

Following the Definition 2 and Theorem 1, the movement matrix M is irreducible which ensures that
there exists a sequence of ordered pairs {(i,71),(71,T2), -, (5 )} such  that
Mz, > 0,my -, >0,--- Mg, > 0,7=12,---,n, k=1,2,--- ,gand g > 0. Applying (3.6) to each
pair in such a sequence and using I; = 0, we derive I, =0, I, =0,---, I; = 0. Hence /; = O for all j
provided that M is irreducible. Similarly, if B is irreducible, it follows from the second equation of
(3.5) that I; = O for all j. Therefore, the disease-free equilibrium E° is the only one equilibrium
whose coordinates include zero. |

We should remark that the system may be decoupled into several small systems and may have
multiple boundary equilibria when the movement matrix M is reducible (see, for example, [26] and
references therein).

Using the techniques of van den Driessche and Watmough [25], the control reproduction number
can be expressed as

= p(FV™), 3.7)

where matrices F = (B;;S ? /N?)m and V = diag(w; + v;) + Gy respectively represent the new infection
terms and the remaining transfer terms for entire population, and p denotes the spectral radius.

4. Global dynamics when R, < 1

Notice that
dN;

— Z(mJ,N m;Ny), i=1,2,- (4.1)

j=1

The proof of Theorem 2 implies that system (4.1) has a unique positive equilibrium N° and one can
easily testify N° is globally asymptotically stable in '} i,e., lim,_,., N;(¢) = N?. Using the results from
Castillo-Chavez and Tieme [24] and Mischaikow et al. [28], we can obtain the analytical results by
considering the following limit system of system (1.1) in which the sub-population is assumed to be
constant NV

S7 = (1= pouiNy Zﬁu 5SS i+ Z(mﬂ = myS),
I = Z,BijN_JOSi = pil; = il + Z(mji]j — my;l;), 4.2)
= =1

Rl/ = p,/.l,NlO + ’}/iIl' — /.l,'R,‘ + Z(mﬁRj — ml-jRi).
=

System (1.1) and (4.2) have the same set of equilibria and the same existence conditions as given in
the previous section.

For the eventual boundedness of solutions S;,I;,R;, i = 1,2,--- ,n of system (4.2), we have the
following lemma.
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Lemma 3. For any solutions in I'y of system (4.2), it holds that

limsup S(f) < N?, limsup [;(f) < N, limsupRi() < N, i=1,2,--- ,n,
t—+o00 f—+o00 =00
in particular,
limsupS;(H <S? i=1,2,---,n

t—+00

Proof. The first equation of (4.2) implies that

ds; .
— < (L= p)iN} = S +Z(mﬂ —mySp, =12, . (4.3)

Using the right hand side of (4.3), let us define an auxiliary linear system

ds,

— = (L= poiN} — S, +Z<mﬂ —mSy), i=1,2, . (4.4)

j=1

A simple calculation shows that the positive equilibrium (§9,89,---,89) = (§9,89,---,89) is the
unique equilibrium of (4.4).

Let g(x) = x— 1 —Inx, x > 0. One can easily verify that g(x) > 0 with g(x) = O if and only if x = 1
and (x — 1)(1 —y) = g(x) + g(y) — g(xy) for any x,y € R,. Define

S;
=S, g( SO)

Differentiating Vf along system (4.4) and using S is the positive equilibrium of system (4.4), simple
calculation implies that

%%
=

dvs 5
dt ‘(44) - (1 - _z)
0
= (1 h S_l)[(l - pt)lulNO 'ulS + Z(mjg S ]

Si ) : 3,
- (-3 sl ) Zmﬂ 1) 2misi(s 1)

(A

0 3 SQ 0§ .
— ust(3) -y,-sg)g(%) e msie() - D imiste(3)
i i j=1 J j=1 =
C 0 S? : 0 S \ 0 Si
+ZmnS,g(§) Zmuslg(@ — LM lg(g_)
- 150 T S5 S
— _(1_ _ ) i2IY_ 20
= - p,)ulNO_(Sl) ;mﬂS?éi(S—ng) uiSte(5a)
+ Z mj,-S?g(S—é) - Z mijS?g(%)'
=1 J j=1 i
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Let Vs = 3, V3. By using ¥ 3% 1 m;iS%g ( ) PHEDNE 1m,jSO (So) we have

7|<44) Z(l —p,),u,NO ZZ i ]g S, S0 Z'ul ,g SO

i=1 j=1

which suggests that V§| @ S 0 with V;| “44)
Principle [29], the unique positive equilibrium (S,S,,---,8,) = (§9,89,---,89) is globally
asymptotically stable for system (4.4), i.e., lim.S;(r) = S? for all i. Following the standard

comparison theorem [11], we have lim sup,_,, ., S:(?) < S?, i=1,2,---,n. m]

= 0 if and only if §; = §Y. Using the LaSalle’s Invariance

Ifs;, =S ? forsomeiand §; < S ? for all j # i, it follows from Lemma 3 and the first equation of
system (4.2) that
72 (1 pouV? =D+ D= S = Y my S - ms? <0
J=1 j=1
This indicates that the subset of I';

C={(S,I,R, ,SuL,R)eET|S; <S8, i=1,2,---,n}

is the positively invariant with respect to system (4.2). Therefore, we can study system (4.2) in the
feasible region I'.

Theorem 3. (i) If R, < 1, then the unique disease-free equilibrium E, of system (4.2) is globally
asymptotically stable in T

(1) If R, > 1, then the disease-free equilibrium E, is unstable and system (4.2) is uniformly
persistent in I (the interior of T').

Proof. From Theorem 2 in van den Driessche and Watmough [25], the disease-free equilibrium E, of
system (4.2) is locally asymptotically stable if R, < 1, and unstable if R, > 1.
LetI = (I, 1, ,1I,)". Using the second equation of (4.2), it follows that
dl
p <(F-V)L
Let u > 0 be the left eigenvector of the nonnegative matrix FV~! with respect to the eigenvalue
p(FV™1) =R, thatis, u’ FV~! = R,u’. Construct a Lyapunov function

V=ul (4.5)
Differentiating (4.5) along the system (4.2) yields
dv rdl
e u’ o Su "F-VI=@Fv'-u")VI=®R, - Du' VL (4.6)

If R, < 1, then dV/dt < 0 with dV/dt = 0 if and only if /; = O for some i. Similar to the proof of
Theorem 2, it follows that the only invariant set where V' = 0 is the singleton {Ey}. Therefore, by
LaSalle’s Invariance Principle [29], E is globally asymptotically stable in I'.

If R, > 1, by continuity and (R, — u’ VI > 0 for I > 0, we have V’ > 0 in a neighborhood of E|
in I, In this case, the solutions in I sufficiently close to Ey move away from E|, that is, E is unstable
if R, > 1. Using the uniform persistence result from [27] and the similar argument as in the proof
of Proposition 3.3 of [30], we can show that the instability of E, implies the uniform persistence of
4.2). |
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5. Global dynamics when R, > 1

If R, > 1, by Theorem 2.8.6 in [23] or Theorem D.3 in [11], the uniform persistence of (4.2) and
the positive invariance of the compact set I" imply that system (4.2) admits at lest one equilibrium in I.
Let E* = (S1,1{,R},--- ,S,.1,,R}) be an endemic equilibrium for system (4.2), then we have

U I
(1= puiNy = > By N’OS* S + Z(mﬂ - myS}) =
j=1
n I*
Zﬁi/N—JOSf —wil; =yl + Z(mjilj - my;l7) =0, (5.1)
j=1 J j=1

PNy +il} = fil; + ) (mR; = miRp) = 0
j=1

Define .
Bij :ﬁijN_jQS;'k +myl;, (5.2)
and : )
B = Bipuar B = ding( ) pij)- B (5.3)
=1
Let :
w = (W1, Wy, ,w,) = (B, By, -+, B,,),

where B is the cofactor of the i-th diagonal entry of B* and B}, > 0, 1 < i < n. Then, we have the
following Lemma.

Lemma 4. The positive vector w is a basis of the solution space of linear system B*x = 0. Furthermore,
positive vector w satisfies

Z a)](ﬂﬂ + ml]) - (1),(/1, +yi+ Z ml]) (54)

Proof. Matrices B and M are irreducible which imply that matrix B* is also irreducible. Then it follows
from Lemma 2 that positive vector w = (w;, wa, - -+ , w,) 1s a basis of the solution space of linear system

B*w = 0. This indicates that . .
ZBijwi = Zﬁjiwj~
=1 =1

Thus, one can derive from the expressions of f3;; given in (5.2) and the second equation of (5.1) that

Zw]ﬁj, = w, Zﬁ,, = w; Z(BU S +ml}) = Wi + v + Z mi)I;.

j=1 j=1 J Jj=1
Therefore, we have

Zw](ﬁ], +m,J)—a)(/J,+y,+Zmu)

j=1
O O
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Theorem 4. If R, > 1, then the endemic equilibrium E* of system (4.2) is unique and it is globally

o S
asymptotically stable in I under the condition }_, w ;8 jing > WiYie

Proof. We prove that E* is globally asymptotically stable in I, which implies that the endemic
equilibrium is unique. Since S; + I; + R; = N} and the variable R; does not appear in the first two
equations in (4.2), then we can work on the following equivalent system

S!=(1 - p)uiN? Zﬁ,, L oSS i+ Z(mﬂ —miS),

. (5.5)

L= Bij—sSi—mli—vili+ Y (mjl; — myl).
; JN;) ]Zl JitJ J

Let g(x) =x—1—-1Inxand

Note that (x — 1)(1 —y) = g(x) + g(y) — g(xy) for any x,y € R, then using the equilibrium equations
(5.1) and differentiating ViS and Vl.l along system (5.5), we have

(1 - _l)( pz)ﬂt Zﬁu S /le + Zm/l's zn:mijsi)
j J=1
S S, S;
‘Z Bii—p *I*‘l)(l—s—)—ﬂs(ﬁ‘l)(]‘s—)
S*
+Zm]l __1 Zml} S*_ (I_S_,)

% n SI* n S**

S
~(1 - puiN’g (S—Z)—Zﬁl, No S]* Z] —~&(7)

j

+Zm,, Jg Zmﬂ jg SS* _(,Ui ) i )ng(g*),

J=1

(5.6)
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and
dav! I
= g
I\, <
= (1= N D B y,1,+zm, Zm,,
i =1 j
S8 I I; It
- S GE -0 wm-(E -0-5)
- 1. It L . I (5.7)
j=1 J ! !
C S?T’f Sijy < SI SII L
= Zﬁij NOJ (S I]) £ ﬁl] NO S Zm]llg
-zm,,zg y,+y,+;m,,zg(j)
Define a Lyapunov function as follows
V= Z w(V? + VD). (5.8)

Then combining equations (5.6) and (5.7) together, we have

62—‘; —Zw(l p,)u,NO Zzwmﬂ

ll]l

SI
_Zzw,ﬁU NO g S I ZZw,mJ,Ig

11]1 J i=1 j=1

L3S msi)- Dol 3ms

tl/l ] i=1

o3 Solpis e <§—’>—zwxwwzmu)frg(,’—i)
j=1

i=1 j=1 i=1 !

In fact

wim;; ,g( ) = w(M"¢1) = (@M")e; = Z Zw,ml,s g(

i=1 j=1 i=1 j=1

A
ilBiy + Ml g( > = w(Qc2) = (Q)e, = Z Z w,(ﬂﬂ i} g( >

i=1 j=1 J i=1 j=1

where w = (1., w,), €1 = (S’;g@—%), LS8 €2 = (g(R). J;:g(ﬁ—g))f, M = (1m;)n and
. s* .

0= (B,-j;.—@ + M j;)pxn- Therefore, from 377, w;(Bjigs + mij) = Wil + i + 2.j=1 m;j) and the condition
J i
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*

n Sj h
Zj=1 wjﬁjim > w;Yi, We have
1

d_V = —Zw,(l —P)/JINO Z wim i /g gx‘g:)
=1 e
S Sl
—;;wmﬂg LT ZJ /i By NY (S*II*)
Si
_;lewlﬂﬂNO l) L 171S g(S )
< 0.

It is easily to verify that V' = O if and only if §; = § and

*

I, I
Iin =1, that is, I_* = I*’ foralli,j=1,2,- (5.9

This equation is equivalent to /; = al;, where a is an arbitrary constant. Substituting S; = S, I; = al
into the first equation of (5.5), we have

(1= pNy = §; Zﬁl,—'—uls +Z(mﬂ - m;S7) = 0. (5.10)

Since the left-hand side of (5.10) is monotonically decreasing with respect to a, it follows from the
equation (5.1) that (5.10) holds if and only if @ = 1. That is, the only compact invariant subset of
V' = 0 is the only singleton point {£*}, here E* = (S1,17,85,1;,--- , S, I7). Using the LaSalle’s

Invariance Principle [29] and the similar argument to the proof of Theorem 3, we can show that E*
is unique and globally asymptotically stable for system (5.5). That is, the endemic equlhbrlum E* is

unique and globally asymptotically stable for system (4.2) in [if R, > 1 and Z _ w;Bji NO > iy O
6. Numerical simulations

In this section, we mainly perform some numerical simulations to verify the validity of the
theoretical results carried out in the previous sections. In this paper, the simulations are performed by
using Mathematica 10 software.

6.1. Two-group system

We first consider the two-group case (n = 2), which is thought to be suitable for infectious diseases
transmitted between two cities or communities. In this paper, we consider the unit of time as a year to
model the long-term spread of disease. For the two-group system, we fix

1 1
= —, b ==, v1 =0.03, y, =0.03, p; =0.8, p, =0.6.
H 30 H2 70 Y1 V2 P1 P2
If we denote /;; as the annual migration proportion from group i to j, then migration rate m;; determined
by m;; = —In(1 - [;;). Here we take migration proportion /;, = 0.1 and /,; = 0.11, which means that
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(a) R, =09938 < 1 (b) R, =1.0425> 1

Figure 1. Time plots of infected populations for the case n = 2. Initial conditions are:
S1(0) =0.999, §,(0) =1, 1;(0) = 0.001, 1,(0) = R (0) = R,(0) = 0.

10% population migrate from group 1 to group 2 during one year and 11% population migrate from
group 2 to group 1 during one year. We do not give the value of /; (which determined the values of
m;;) due to the fact that the theoretical results are independent of migration rate m;; for all i. Under
these settings, we only need to change the transmission rate §;; to explore the global stability of each
equilibrium.

0.1144 0.0286

s = ( 0.0429 0.1001

disease-free equilibrium E° = (0.2108,0,0.7396,0.2918, 0,0.6578) is the unique equilibrium of the

system (1.1) and it is globally asymptotically stable in I'. In fact, Figure 1(a) provides the simulations
of this case and it reveals that each infected population converges to zero.

If g = ( 0-12 - 0.03 ) we have R, = 1.0425 > 1. For this case, we have

), we have R, = 0.9938 < 1. Following Theorem 3, we know that the

0.045 0.105 J
min{B;S /N — y;} = 0.0009 > 0. Then, it follows from Theorem 4 that the positive equilibrium
E* = (0.2978,0.0039,0.7485,0.2801, 0.0036, 0.6659) is the unique endemic equilibrium and it is
globally asymptotically stable in I". In fact, Figure 1(b) gives the simulation results for this case and it
shows that each infected population converges to some positive steady states.

6.2. A geographical spread of disease

We next consider the 50-group case (n = 50), which can be considered as the system of geographical
spread of disease. Referring to the pervious example, we fix

1 1
i= s Yi= 3> i:0-2a ':1929”'950-
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Time
(a) Time evolution of infected population /;(¢). (b) Distribution of I;(¢) for each ¢ and i

Figure 2. Time plots of infected population I;(¢), i = 1,2,---,50 when R, = 0.9985 < 1.
Initial conditions are: S;(0) = 1, 1;(0) = 0, i # 25,26, S25(0) = S1(0) = 0.999, I,5(0) =
I56(0) = 0.001 and R;(0) = O for all .

We employ the following form of the movement matrix M = (m;;)s0xs0

O m m O O --- O
m 0 m m O 0
my, m 0 m m 0
M= (mipsoxso =| o . .| (6.1)

0 m m 0 m

0 0 0 0 m m O

where m; = —1In(1 - [;), i = 1,2 with [; = 0.15, [, = 0.1. It is easy to see that the movement matrix
M is irreducible. Using the diffusive-like form of contact matrix B = (B;;)s0xs0 considered in [6], the
contact matrix B in this paper can be expressed as:

B @ 0 - 0
@ ﬁx 1% e 0
B=@Bij)soxso =] * .. .. .. ], (6.2)
0 a B «
0 - 0 a B

where «, 8, are positive constants. Obviously, contact matrix B is irreducible. For simplicity, we fix
a = 0.01 and only change S, to observe the dynamical behavior of each equilibrium.
The simulations of system (1.1) with n = 50 can be seen in Figure 2 and Figure 3. In both figures, the
discrete groups are connected smoothly by the Mathematica commands “Plot3D” and “DensityPlot”.
If B, = 0.62, in this case, we have R, = 0.9985 < 1. Figure 2 gives the simulations of this case.
It shows that each infected population converges to zero, i.e., the disease-free equilibrium is globally
asymptotically stable if R, < 1. This verifies the conclusion of Theorem 3.
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(a) Time evolution of infected population ;(?). (b) Distribution of [;(¢) for each ¢ and i

Figure 3. Time plots of infected population /;(t), i = 1,2,---,50 when R, = 1.0609 > 1.
Initial conditions are: S;(0) = 1, ;(0) = 0, i # 25,26, S,5(0) = S(0) = 0.999, I,5(0) =
I,6(0) = 0.001 and R;(0) = O for all i.

If B, = 0.66, in this case, we have R, = 1.0609 > 1. Simulation results for this case are presented
in Figure 3. It suggests that each infected population trends to some positive steady states, i.e., the
endemic equilibrium is globally asymptotically stable when R, > 1. This simulation confirms the
theoretical results of Theorem 4.

In particular, by virtue of the form of contact matrix B and movement matrix M, we can observe
that two infection groups can cause infection to all groups. Meanwhile, the wave-like spreading pattern
which connect the disease-free equilibrium E° and the endemic equilibrium E*.

7. Conclusion

In this paper, we investigate the complete global dynamics of a multi-group SIR model that
incorporate group mixing and human movement. The results shows that model (1.1) exists a unique
disease-free equilibrium, which is the only one equilibrium whose coordinates include zero.
Meanwhile, model (1.1) has a unique endemic equilibrium if the control reproduction number R, > 1.
Due to the complexity of model (1.1), we simplify this model to the equivalent system (4.2). By using
the graph-theoretical approach [3], we obtain that the disease-free equilibrium is global
asymptotically s;table if R, < 1, and the endemic equilibrium is global asymptotically stable if R, > 1

and Z?:l ‘Ujﬁjiﬁ > Wyyi.
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