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Abstract: In this paper, we construct a discrete time delay Lac operon model with nonlinear
degradation rate for mRNA, resulting from the interaction among several identical mRNA pieces. By
taking a discrete time delay as bifurcation parameter, we investigate the nonlinear dynamical behaviour
arising from the model, using mathematical tools such as stability and bifurcation theory. Firstly, we
discuss the existence and uniqueness of the equilibrium for this system and investigate the effect of
discrete delay on its dynamical behaviour. Absence or limited delay causes the system to have a
stable equilibrium, which changes into a Hopf point producing oscillations if time delay is increased.
These sustained oscillation are shown to be present only if the nonlinear degradation rate for mRNA
satisfies specific conditions. The direction of the Hopf bifurcation giving rise to such oscillations is also
determined, via the use of the so-called multiple time scales technique. Finally, numerical simulations
are shown to validate and expand the theoretical analysis. Overall, our findings suggest that the degree
of nonlinearity of the model can be used as a control parameter for the stabilisation of the system.
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1. Introduction

Since the first mathematical model was developed by Brian in 1965 [1] and Joseph and
co-workers [2–4] further developed the work, researchers have shown a growing interest in studying
mathematical models of Genetic Regulatory Networks (GRNs) and/or gene expression. One of the
reasons is that these models can be used to understand important aspects of living organisms and may
help tackle illnesses influenced by genetic factors, such as genetic disorders, diabetes and cancer.
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Recent studies on gene expression and/or GRNs are rich and many significant results have been
reported in the literature [4–8]. These studies involve a number of different mathematical models and
investigate multiple aspects of such networks, concentrating on biologically important themes such as
network oscillations, effects of time delays, interactions between different constituents such as DNA,
RNA and proteins, etc.

For example, the authors of Ref. [9] considered a typical GRNs model with a delay, and applied
perturbation methods and centre manifold reduction to quantify how delay could drive oscillations
in gene activity. Wang et al. [10] investigated the stability and Hopf bifurcation of a four-dimension
GRNs model with double genes, whereas Zang and her collaborators [11] looked at the dynamics of a
GRNs using normal form theory as proposed by Elowitz and Leibler [12]. Further, Monk [4] developed
a model for Hes1 with time delays, where transcription time delay describes the time needed to copy
the information to a messenger RNA (mRNA) and translation time delay measures how long it takes
to translate the protein from the ribosome. Other examples that constitute the background for the study
we propose can be found, for instance, in Liu et al. [13], who introduced a model with nonlinear
degradation using the interaction between mRNA and small non coding RNA (sRNA) and one protein,
and showed how oscillations and bistability can be produced. This model was also investigated by
Liu et al. in another paper [14], where they concluded that oscillations can be induced not just by
interactions between RNAs and protein, but also by time delays during the diffusion or transportation
of molecules in a cell.

Another interesting example is also given by the work of Yildirim and Mackey [8], who developed
and analysed a nonlinear mathematical model of the Lac operon in bacterium Escherichia coli [15],
which, in some cases, could be a strong contributor to colon carcinogenesis. Then, Nikolov et al. [5]
proposed a model for the process of expression of B-galactosidase from a Lac Z gene, noting that
a bifurcation associated with the presence of time delay causes the appearance of limit cycles in the
model. Time delay is one the fundamental ingredients in these models, and will play a central role in
the current work as well. This focus is justified because delays serve important functions in nature, and
occur in a vast number of phenomena, some of which have been subjected to mathematical analysis.
Examples are given by population dynamics [16], lake eutrophication ecosystems [17], insect outbreak
dynamics [18], vegetation ecological system [20, 21] and grazing ecosystem [19] to name a few. The
key role of delay in all these cases is to be a driver of regime shifts between stable states or between
oscillatory-non oscillatory regimes, with non trivial consequences for the behaviour of these systems.

A final, essential component of GRNs is mRNA, whose interactions with the other components of
the system is essential to the dynamics of gene expression [22, 24–28], and is included in a number
of different types of genetic regulatory networks systems with time delay [29–32, 37]. The two major
questions that we try and address in this work, and that are common to the formulations we have just
referred to, are:

1. How do the degradation rates affect system dynamics?
2. What will happen if mRNA breaks down into several parts?

Because of these two questions, our modelling attempt includes an important new assumption
describing the breakdown of mRNA into several identical parts. This, in turn, implies that a nonlinear
degradation rate for mRNA is present, and has to be modelled accordingly. Our interest in a nonlinear
degradation rate stems from the fact that the existing literature (for instance, see Refs. [5, 33, 34]) only

Mathematical Biosciences and Engineering Volume 16, Issue 4, 1729–1749.



1731

partially describes the role of discrete time delay in destabilising the dynamics of GRNs. Most
authors limit their analysis to the study of limit cycles (if present) when the delay is small. To expand
the breadth of the analysis, we will instead

(a) investigate the effect of the nonlinear degradation rate for mRNA for the stability of equilibrium
solutions, and the amplitude and period of periodic solutions, and

(b) provide insight into the behaviour of gene expression processes.

Our work starts with model development, which introduces a nonlinear degradation term for mRNA,
and adds transcription and/or translation time delays to reflect the oscillatory phenomena observed
experimentally. Mathematical tools, such as stability and bifurcation theory are then used to investigate
the dynamics. Our results will show that different regimes exist and are influenced by time delay and
nonlinear degradation.

This paper is organised as follows. The derivation and formulation of the Lac operon model is in
Section 2. In Section 3, we study its steady state and the significance of the degree of nonlinearity
for the model. In Section 4, we analyse the stability of the positive equilibrium with a nonlinear
degradation rate under the effect of time delay, and give sufficient conditions to prove the existence
and the direction of a Hopf bifurcation. In Section 5, some numerical simulations are discussed as a
validation of the theoretical analysis and as a generalisation of the proven results. Discussion and a
brief conclusion are given in Section 6, with Future directions being illustrated in Section 7.

2. Model derivation and formulation

A number of diseases generally indicated as dynamical diseases exist. These diseases are
characterised by a dramatic change in the dynamics of a physiological variable [23]. It is thus
essential to understand the underlying mechanisms of genetic regulatory dynamics and account for
different regulation scenarios mediated by several mRNA, which may drive such change. In particular
and as mentioned above, oscillatory phenomena revealed by several mRNA regulation mechanisms
can help understand the crucial role of mRNA in gene regulation.

Given all this, we introduce a new assumption to the Lac operon model first described in Ref. [5] and
require that mRNA breakdown results in several identical parts and that these parts translate to enzyme
B-galactosidase, as sketched in Figure 1. The process of transcription and translation of information is
assumed to be regulated and represented by the following chemical reactions

H(p)
−−−→ M + M + . . . + M

K3
−−→ Y

k4
−→ P

k5
−→, (2.1)

where H(p) is the Hill function, and the other variables will be introduced shortly. If the transcription
factor is an activator, this function can be represented as

H(p) =
pn1

1+kpn
,

where n is coefficient of the Hill function or the cooperativity, n1 represents transcription factors and
k = k1

k2
. On the other hand, if the transcription factor is a repressor, we have that

H(p) =
1

1+kpn
,
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Figure 1. Major biological assumption of the present model: LacZ gene transcribes to
mRNA j, j = 1, 2, . . . ,N, when the promoter is active. Then, mRNA j is translated to protein
B-galactosidase, which has an effect on the synthesis of repressor protein.

where n measures the cooperativity of the end product repression. Mathematically, the regulation can
be modelled with three equations, as follow:

dm
dt = H(p)−G(m),
dy
dt = k3m−k4y,
dp
dt = k4y−k5 p,

(2.2)

where the temporal evolution of mRNA (m), enzyme B-galactosidase (y) and repressor protein (p) are
described, and G(m) = k3mN , is the nonlinear degradation rate. The important constant N describes
the degree of nonlinearity and we always have N > 0. As it is customary, the following dimensionless
variables are introduced

m = γ1m′, y = γ2y′, p = γ3 p′ and t = γ4t̂,

with
γ1 = γ4, γ2 = k3γ

2
4, γ3 = k3k4γ

3
4 and γ4 =

1

(k(k3k4)n)
1

3n

,

Then, after dropping the prime and the hat, the system (2.2) becomes adimensional and the new
equations read 

dm
dt = 1

1+pn −σ1mN ,
dy
dt = m−σ2y,
dp
dt = y−σ3 p,

(2.3)

where σ1 = k3γ
N
4 , σ2 = k4γ4, and σ3 = k5γ4. As mentioned, time delay is one of the key features of the

present paper. If we introduce transcription and translation delays in the process, we arrive at the final
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system 
dm
dt = 1

1+pn(t−τ1)
−σ1mN ,

dy
dt = m(t − τ2)−σ2y,
dp
dt = y(t − τ3)−σ3 p,

(2.4)

where τ j, j = 1, 2, 3 are time delays. It is important to note that if N = 1, namely a linear degradation
rate is considered, the model is the same as the one studied in Ref. [34], foe which the authors have
shown that a Hopf bifurcation exists.

3. Solving for the steady state

The steady state of the model with no delay, i.e. equations (2.3), is determined by equating the
right-hand sides of the equations to zero:

0 = 1
1+p∗n

−σ1m∗N ,
0 = m∗−σ2y∗,
0 = y∗−σ3 p∗.

Then, we obtain solutions y∗ = σ3 p∗ and m∗ = σ2σ3 p∗, where p∗ is the root of equation

H(p) ≡ pN+n + pN −
1

σ1σ
N
2 σ

N
3

= 0. (3.1)

Note that H(0) = − 1
σ1σ

N
2 σ

N
3
< 0 and lim

p→+∞
H(p) = +∞, implying that at least one positive root exists. A

straightforward calculation shows that

H′(p) = (N + n)pN+n−1 + N pN−1 > 0,

meaning that H(p) is monotonically increasing in the half-plane (0,+∞). As a result, the positive root
of equation (3.1) is unique. This means that the uniqueness of the positive equilibrium of (2.3) has
been proven.

3.1. Steady state of the model and significance of the parameter N

The differential equations of the model (2.3) could be numerically solved to explore the effect of
the nonlinear degradation rate for mRNA. Looking at how steady solutions change as N is varied, we
note that the positive equilibrium for variables m, y, and p, increases or decreases in a common fashion
for all variables. So, the steady state of p, as a function of the parameter N, for example, for various
values of n, is shown in Figure 2. From this diagram we can see that there is a range of N values i.e. N
∈ (0, 2], at which a decrease in protein level occurs until a larger value for the steady state is attained
at larger N. Thinking about N as a bifurcation parameter, the plot shows that a regime switch, with the
higher value of the steady state as a “on” position and the lower as a “off” position, can be driven by N.
The diagram also suggests that the decrease occurs for both non-cooperative repression (n = 1), and
cooperative repression (n > 1), in the end product repression. An essential prediction of the model is
that this switching mechanism is only active when the degree nonlinearity is in the interval N ∈ (0, 2].
When N > 2, then there is no role for the cooperativity of the end product repression and concentration
of protein is stable, with no regime changes.
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Figure 2. Values for the steady state solution of variable p as a function of parameter N, for
various values of the parameter n.

4. Dynamical behaviour of model’s equilibrium and delay

The dynamical behaviour of the equilibrium is now studied, in the absence and presence of delay,
via an analysis of the stability and the Hopf bifurcation in the system. As customary practice, we
linearize the model around its equilibrium and check the eigenvalues of the corresponding
characteristic equation. Furthermore, a Hopf bifurcation can be observed from genetic expression as
for previous Refs. [1, 4, 12], yielding helpful information about the stability of the periodic solution
and its character.

4.1. Linearisation and characteristic equation

Let ζ(t) = m(t) − m∗, η(t) = y(t) − y∗ and Γ(t) = p(t) − p∗. Shifting the equilibrium to the origin
results in the following: 

˙ζ(t) = 1
1+(Γ(t−τ1)+p∗)n −σ1(ζ(t) + m∗)N ,

η̇(t) = ζ(t − τ2)−σ2η(t),
Γ̇(t) = η(t − τ3)−σ3Γ(t),

(4.1)

which, once linearised around the origin, gives:
ζ̇(t) = −F1Γτ1

−Nσ1m∗N−1ζ(t),
η̇(t) = ζτ2

−σ2η(t),
Γ̇(t) = ητ3

−σ3Γ(t),
(4.2)
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where F1 =
np∗n−1

(1+p∗n)2 , Γτ1 = Γ(t − τ1), ζτ2 = ζ(t − τ2), and ητ3 = η(t − τ3). This system has the following
characteristic equation

4 ≡ λ3 + q1λ
2 + q2λ + q3 + F1e−τλ = 0, (4.3)

where τ = τ1 + τ2 + τ3 is known as the total time delay and

q1 = σ2 + σ3 + Nσ1m∗N−1, q2 = σ2σ3 + Nσ1m∗N−1(σ2 + σ3) and
q3 = Nσ1σ2σ3m∗N−1.

4.2. Stability in the absence of delay

Without delay, i.e. with τ = 0, the characteristic equation (4.3) becomes

λ3 + q1λ
2 + q2λ + q3 + F1 = 0. (4.4)

To determine the sign of the real parts of roots of equation (4.4) and find their stability, we make the
following, important hypothesis:

(H1) : q1q2 − q3 − F1 > 0.

The above assumption leads to the following lemma.

Lemma 4.1. If (H1) holds, then the roots of the characteristic equation (4.4) have negative real part.

Proof. The principal diagonal minors, ∆i, of the Hurwitz matrix for equation (4.4) are:

∆1 = q1,∆2 =

∣∣∣∣∣∣ q1 1
q3 + F1 q2

∣∣∣∣∣∣ and ∆3 = (q3 + F1)∆2.

Notice that qi > 0 (i = 1, 2, and 3) and F1 > 0. If hypothesis (H1) holds, then all leading principal
minors of the Hurwitz matrix are positive. Therefore, we conclude that the roots of (4.4) have negative
real part, meaning that the unique positive equilibrium is stable. �

Next, we will study the effect of discrete delay in the dynamical behaviour of equation (2.4), always
assuming that condition (H1) holds.

4.3. Time delay and oscillation

Assume that λ = iω(ω > 0) is a pure imaginary root of equation (4.3). If we substitute it into
equation (4.3), we obtain

− iω3 − q1ω
2 + iq2ω + q3 + F1e−τiω = 0. (4.5)

Then we have {
−ω3 + q2ω = F1 sinωτ,
−q1ω

2 + q3 = −F1 cosωτ,
(4.6)

from which we obtain  cosωτ =
q1ω

2−q3
F1

≡ R,

sinωτ =
−ω3+q2ω

F1
≡ S .

(4.7)
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If we now let u = ω2, we obtain

G(u) ≡ u3 + p1u2 + qu + r = 0, (4.8)

where

p1 = q2
1 − 2q2 = σ2

2 + σ2
3 + (Nσ1m∗N−1)2,

q = q2
2 − 2q1q3 = σ2

2σ
2
3 + (Nσ1m∗N−1)2(σ2

2 + σ2
3),

r = q2
3 − F2

1 = (Nσ1σ2σ3m∗N−1)2 − F2
1 .

Noticing that p1 > 0 and q > 0, it can be verified that, when r ≥ 0, equation (4.8) has no positive
solution. Contrary, if r < 0, the equation has precisely one positive solution u0 as G(0) = r < 0 and
G′(u) > 0 for u ∈ [0,+∞). Note also that r < 0 if and only if q3 < F1.

For the root u0 of equation (4.8), we now letω∗ =
√

u0, which is also known as the critical frequency,
and obtain the corresponding critical time delays τ = τ∗j, i.e.

τ∗j =

 1
ω∗

[arccos(R) + 2 jπ], if S ≥ 0,
1
ω∗

[2π − arccos(R) + 2 jπ], if S < 0,
with j = 0, 1, 2, . . . (4.9)

At critical time delays τ∗j, we have that the following lemma holds, which will help determine the
conditions for oscillatory solutions.

Lemma 4.2. Let λ be the root of equation (4.3). We then have

dReλ
dτ

∣∣∣∣
τ=τ∗j

> 0, j = 0, 1, . . . .

Proof. From equation (4.3) we find(
dλ
dτ

)−1

=
(3λ2 + 2q1λ + q2)eλτ − τF1

F1λ
.

Then substituting λ = iω∗, one has

Re
(
dλ
dτ

)−1 ∣∣∣∣
λ=iω∗

=
2q1ω

∗ cosω∗τ∗j + (−3ω∗2 + q2) sinω∗τ∗j
F1ω∗

=
2q1ω

∗(q1ω
∗2 − q3) + (−3ω∗2 + q2)(−ω∗3 + q2ω

∗)
F2

1ω
∗

=
3ω∗5 + 2(q2

1 − 2q2)ω∗3 + (q2
2 − 2q1q3)ω∗

F2
1ω
∗

=
G′(ω∗)
2F2

1ω
∗
> 0,

since G′(u) > 0. This is completes the proof. �

From the above analysis, Lemma 4.1 and Lemma 4.2, the following important result on the existence
of oscillations holds.
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Theorem 4.3. Assume hypothesis (H1) holds. Then, for the characteristic equation of system (4.3) we
have the following:

(i) all roots have negative real part if one of the following holds

• τ = 0,
• τ > 0 and σ1 ≥

np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 ,

• τ ∈ (0, τ∗0) and σ1 <
np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 ;

(ii) if σ1 <
np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 and τ = τ∗j, with j = 0, 1, . . ., only purely imaginary roots λ = ±iω∗ exist;

(iii) system (4.3) has at least one root with positive real part if τ ∈ (τ∗0,+∞) and σ1 <
np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 .

From the above Theorem, we can draw the the following conclusions.

Theorem 4.4. For system (2.4),

(i) the equilibrium E∗ = (m∗, y∗, p∗) is stable if one of the following conditions holds

• τ = 0,
• τ > 0 and σ1 ≥

np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 ,

• τ ∈ (0, τ∗0) and σ1 <
np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 ;

(ii) when σ1 <
np∗n−N

NσN
2 σ

N
3 (1+p∗n)2 , the equilibrium E∗

• undergoes a Hopf bifurcation at τ = τ∗j,
• is unstable if τ ∈ (τ∗0,+∞).

Given these results, we will now determine the stability of the bifurcating periodic solution by using
the so-called multiple time scale technique.

4.4. The direction of the Hopf bifurcation

The direction of the Hopf bifurcation is studied by applying the so-called multiple time scales
technique. The direction (or type) can be either supercritical and subcritical [35]: a supercritical Hopf
bifurcation leads to a stable branch of limit cycle with sustained oscillations, whereas the opposite
occurs for the subcritical case. For simplicity of discussion, we assume τ1 = τ2 = τ3 = τ and let
t = t∗τ, so that only a single, normalised time delay is present. After dropping the asterisks for
notational simplicity, system (4.1) becomes

Ẋ(t) = τGX + τGτXτ + τF + . . . , (4.10)
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where

G =


−Nσ1m∗N−1 0 0

0 −σ2 0
0 0 −σ3

 , Gτ =


0 0 −F1

1 0 0
0 1 0

 ,
X =


ζ(t)
η(t)
Γ(t)

 , Xτ =


ζ(t − 1)
η(t − 1)
Γ(t − 1)

 and

F =


F2Γ

2(t − 1) − N(N−1)σ1m∗N−2

2 ζ2(t) + F3Γ
3(t − 1) − N(N−1)(N−2)σ1m∗N−3

3! ζ3(t)
0
0

 ,
with

F2 = −
np∗n−2(pn + n(p∗n − 1) + 1)

2!(p∗n + 1)3 ,

F3 =
np∗n−3(n2(p∗2n − 4p∗n + 1) + 3n(p∗2n − 1) + 2(p∗n + 1)2)

3!(p∗n + 1)4 .

To determine the normal form of the centre manifold near the equilibrium of system (4.10), we
introduce time scales T0 = t and T2 = ε2t, where |ε | � 1 is a non-dimensional bookkeeping
parameter [11, 36]. The derivative with respect to t can be written as

d
dt

=
∂

∂T0
+ ε2 ∂

∂T2
≡ D0 + ε2D2, (4.11)

and the solution of the system can be expanded in terms of ε as follows

X(t) =

∞∑
i=1

ε iXi(T0,T2). (4.12)

So,

X(t − 1) =

3∑
i=1

ε iXi(T0 − 1,T2) − ε3D2X1(T0 − 1,T2) + . . . . (4.13)

At τ∗ = τ∗j, let τ = τ∗ + ε2δ, where δ > 0 is known as the detuning parameter [11, 36], and substitute
equations (4.11)-(4.13) into (4.10). After equating coefficients with same powers of ε, we obtain

for ε1 : D0X1 − τ
∗GX1 − τ

∗GτX1τ = 0, (4.14)
for ε2 : D0X2 − τ

∗GX2 − τ
∗GτX2τ = τ∗[F2Γ

2
1(T0 − 1) − N(N − 1)σ1m∗N−2ζ2

1 ]e1, (4.15)
for ε3 : D0X3 − τ

∗GX3 − τ
∗GτX3τ = −D2X1 + δ[GX1 + GτX1τ − τ

∗D2GτX1τ]
+τ∗[2F2Γ1(T0 − 1)Γ2(T0 − 1)
−N(N − 1)σ1m∗N−2ζ1ζ2 + F3Γ

3
1τ]

−
N(N − 1)(N − 2)σ1m∗N−3

3!
ζ3

1e1, (4.16)
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where e1 is the canonical basis. Since equation (4.14) is homogeneous, one can easily obtain the
general solution as

X1 = B(T2)Ceiω∗τ∗T0 + B(T2)Ce−iω∗τ∗T0 , (4.17)

where C =

(
−F1e−iω∗τ∗

iω∗+Nσ1m∗N−1 ,
iω∗+σ3
e−iω∗τ∗ , 1

)T
and the overhead bar indicates complex conjugation. Then, using

equation (4.17), we obtain

Γ2
1(T0 − 1) = B2e2iω∗τ∗T0 + 2BB + B

2
e−2iω∗τ∗T0

and
ζ2(T0,T2) = B2c2

1e2iω∗τ∗T0 + 2c1c1BB + c1
2B

2
e−2iω∗τ∗T0 .

A straightforward calculation shows that equation (4.15) has a particular solution of the following
form:

X2 = aB2e2iω∗τ∗T0 + bBB + aB
2
e−2iω∗τ∗T0 . (4.18)

Substituting equation (4.18) into (4.15) and equating coefficients for the term e2iω∗τ∗T0 , we find

a =


(2ω∗i+σ2)(2ω∗i+σ3)

e−4iω∗τ∗

2ω∗i+σ3
e−2iω∗τ∗

1

 a3,

where

a3 =
(F2e−i2ω∗τ∗ − N(N − 1)σ1m∗N−2c2

1)e−i4ω∗τ∗

(2ω∗i + Nσ1m∗N−1(2ω∗i + σ2)(2ω∗i + σ3)) + F1e−i6ω∗τ∗ . (4.19)

Also, equating coefficients for term BB, allows us to find that

b =


σ2σ3

σ3

1

 b3 with b3 =
2(F2 − N(N − 1)σ1m∗N−2c1c1)

Nσ1σ2σ3m∗N−1 + F1
.

Substituting equations (4.17) and (4.18) into (4.16), we have

D0X3 − τ
∗GX3 − τ

∗GτX3τ = −(I + τ∗Gτe−iω∗τ∗)CB′eiω∗τ∗T0+

δ(G + Gτe−iω∗τ∗)CBeiω∗τ∗T0+[
2F2(b3 + a3)e−iω∗τ∗ + 3F3e−iω∗τ∗

− N(N − 1)σ1m∗N−2(b1c1 + a1c1)

−
N(N − 1)(N − 2)σ1m∗N−3

2
c2

1c1

]
T ∗B2Beiω∗τ∗T0e1 + CC + NS T,

(4.20)

where CC refers to the complex conjugate of the secular terms and NST represents the non-secular
terms. As shown in Refs. [36, 37], if a so-called “solvability condition” is satisfied, then equation
(4.20) has a solution. Let us now assume that the particular solution of the above equation is of the
form

X3(T0,T2) = φ(T2)eiω∗τ∗T0 + CC.
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We can then obtain the following:

(τ∗G + τ∗Gτe−iω∗τ∗ − iω∗τ∗I)φ(T2) = (I + τ∗Gτe−iω∗τ∗)CB′ − δ(G + Gτe−iω∗τ∗)CB

−

[
(2F2(b3 + a3)e−iω∗τ∗ + 3F3e−iω∗τ∗−

N(N − 1)σ1m∗N−2(b1c1 + a1c1)−

N(N − 1)(N − 2)σ1m∗N−3

2
c2

1c1

]
T ∗B2Be1.

(4.21)

The solvability condition requires to find a vector d such that the next adjoint homogeneous equation
is satisfied

(τ∗GT + τ∗GT
τ eiω∗τ∗ + iω∗τ∗I)d = 0, (4.22)

where

d =


d1

d2

d3

 , d2 = (Nσ1m∗N−1 − iω∗)d1 and d3 = (σ2 − iω∗)(Nσ1m∗N−1 − iω∗)d1.

Here, we now apply the following condition

d
T
· (I + τ∗Gτe−iω∗τ∗)C = 1, (4.23)

which makes d1 unique and yields

d1 =
Nσ1mN−1 + iω∗

L1 + iL2
,

where the following coefficients have been found

L1 =r1ω
∗ − r2ω

∗2 + r3ω
∗4,

L2 =p1ω
∗ − p2ω

∗3,

r1 =N2σ2
1m2(∗N−1)(σ2 + σ3 + σ2σ3) + Nσ1m∗N−1q3(1 + τ∗),

r2 =Nσ1m∗N−1(4 + 2σ2 + 2σ3 + Nσ1m∗N−1 + q1 + q1τ
∗) + q2 + q1 + σ2 + σ3 + σ2σ3,

r3 =2 + τ∗,

p1 =2Nσ1m∗N−1(σ2 + σ3 + σ2σ3) + (Nσ1m∗N−1q2 + q3)(1 + τ∗) + q2 + q3

+ N2σ2
1m2(∗N−1)(2 + σ2 + σ3),

p2 =3 + σ2 + σ3 + Nσ1m∗N−1(3 + τ∗) + q1(1 + τ∗).

Finally, if we now multiply d
T

from the left to each side of equation (4.21), we obtain

B′ = δm1B + m2B2B, (4.24)

where
m1 = d

T
· (G + Gτe−iω∗τ∗)

and

m2 = d
T
·

[
(2F2(b3 + a3) + 3F3)τ∗e−iω∗τ∗ − N(N − 1)σ1m∗N−2(b1c1 + a1c1)

−
N(N − 1)(N − 2)σ1m∗N−3c2

1c1

2

]
τ∗e1.
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This allows us to arrive at the final result if we let B = ze−iω∗τ∗t with z = x + iy. In fact, we can now
convert equation (4.24) into a more familiar normal form term, i.e.{

ẋ = −ω∗τ∗y + δ(Re(m1)x − Im(m1)y + Re(m2)x − Im(m2)y)(x2 + y2),
ẏ = ω∗τ∗y + δ(Re(m1)x + Im(m1)y + Re(m2)x + Im(m2)y)(x2 + y2),

(4.25)

where we used real coordinates. Using x = ρ cos θ and y = ρ sin θ, provides the polar form of (4.25){
ρ′ = ρ(δRe(m1) + Re(m2)ρ2),
θ′ = ω∗τ∗ + O(|δ, ρ2|).

(4.26)

This last equation allows us to arrive at the stability of the bifurcating periodic solution and the direction
of the Hopf bifurcation of system (4.1), studying the sign of Re(m1)Re(m2) [35]. We can summarise
the final result in the following theorem.

Theorem 4.5. The equilibrium E∗ = (m∗, y∗, p∗) of (2.4) undergoes a Hopf bifurcation at τ = τ∗, and
the bifurcation direction is determined by the normal form (4.26) as follows:

(i) if Re(m1)Re(m2) > 0, then there is no periodic solution bifurcating from the equilibrium of system
(2.4);

(ii) if Re(m1)Re(m2) < 0, the Hopf bifurcation exists and

• is supercritical when Re(m1) > 0, i.e. the periodic solution is stable; and
• is subcritical when Re(m1) < 0, i.e. an unstable bifurcating periodic solution is present.

5. Numerical simulations

In this section, numerical simulations are carried out to expand on our theoretical analysis, using
Matlab c©code (dde23) and the DDE-Biftool software. Based on published experimental and
theoretical results such as those of Ref. [34], parameters are chosen as follows: σ1 = 0.25, σ2 = 0.1,
σ3 = 0.36 and a Hill coefficient of n = 2. Then, straightforward calculation shows that

np∗n−N

NσN
2 σ

N
3 (1 + pn)2

< σ1, if N ∈ (0, 2)
> σ1, if N ∈ [2,∞)

Given the results discussed in the previous section, the Hopf bifurcation induced by time delay occurs
when N ∈ (0, 2) and, as a result, in our simulation we probe different values of N within this interval
and outside, i.e. N = 0.5, 1, 1.5, 1.75, 2 and 10. The effect of the degree of nonlinearity N on the
values of the critical delay is shown in Table 1. It is found that the critical value τ∗ increases with N,
showing that τ∗ is highly sensitive to the change of the degree of nonlinearity. However, when N ≥ 2,
the equilibrium E∗ remains stable for different values of delay. This is also understood by virtue of
Theorem 4.4, since the positive equilibrium is always stable when τ = 0.
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Table 1. Bifurcation point τ∗versus the degree of nonlinearity and amplitude and period of
bifurcating periodic solution.

N Bifurcation point τ∗ amplitude period

1 11.340 0.8 60
1.5 29.7596 1 90
1.75 59.5612 1.6 120

In Figure 3, time series of system variables (and no time delay) for cases N = 0.5, 1.5, 2 and 10
are shown. The system reaches a stable equilibrium also for a time delay smaller than the critical
value, namely τ ∈ (0, τ∗) with np∗n−N

NσN
2 σ

N
3 (1+pn)2 < σ1. This behaviour is shown in Figure 4 for chosen

values of τ < τ∗, with the left panel showing a time series for the case N = 0.5 and the right panel
depicting a phase portrait for the case N = 1.75. In both cases, it is clear that after a short oscillating
transient, the system is damped down to a stable plateau. When the delay is particularly large, on the
other hand, the equilibrium is still stable. In particular, if np∗n−N

NσN
2 σ

N
3 (1+pn)2 > σ1, then even a very large

delay gives rise to a stable equilibrium. Figure 5 shows a typical behaviour of this kind, for the case
N = 2, τ1 + τ2 + τ3 = 100. Note the different time scale from Figure 4 and the longer transient.

When the previously mentioned condition is not met, if time delay exceeds its critical value, the
system shows a periodic solution, as depicted in Figure 6. Notably, the amplitude and the period of
the periodic solution get larger as N is increased, as reported in Table 1, and shown in Figure 6. As
expected, the Hopf bifurcation is supercritical and, as shown in Figure 7 where periodic solutions for
N = 1.5, and N = 1.75 are plotted, the basin of attraction of the periodic branch includes parameter
that can be less than those at which the Hopf point occurs. Studying the distribution of the roots of
the characteristic equation using DDE-Biftool, we can find when the complex conjugate characteristic
root pair crosses the imaginary axis and obtain numerical values for the parameters at which the Hopf
bifurcation occurs (see Figure 8). From all the above results, we conclude that sustained oscillations
are induced by time delay and its destabilising role in the dynamic of GRNs non trivially depends on
the the degree of nonlinearity N. In other words, N can be used as a control parameter for the given
GRNs.

6. Discussion and conclusion

The goal of this study is to explore the equilibrium and oscillatory dynamics of a chosen GNRs
architecture, mediated by the interaction among several identical parts of mRNA. The main biological
hypothesis in our approach is that the breakdown of the original mRNA in the Lac operon model is
coherent with the framework introduced by Ref. [5]. It should be noted that, in that work, the authors
focussed on the role of cooperativity of the end product repression, and concluded that cooperativity
has an essential role in the stability of equilibrium of the system. For example, they found that the
magnitude of oscillations enlarges as the value of cooperativity is increased. In addition, authors in
Ref. [33] concluded that discrete delay has a destabilising role in the dynamics of the Lac operon
model.

Differently than the existing literature, in this model we have shown that the degree of nonlinearity
plays also an essential role in the stability of the equilibrium. For example, we have shown that a degree
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Figure 3. Comparison of concentrations of species when N = 0.5, N = 1.5, N = 2 and
N = 10 respectively, and τ = 0.

of nonlinearity N ≥ 2, suppresses any effect of cooperativity and the equilibrium of the model remains
stable. However, when N ∈ (0, 2), there is a notable decrease in the concentration of the protein, which
can be further depressed as cooperativity is enhanced. An important key observation can be made
from Figure 2 with regards to the nonlinear degradation rate N, for mRNA: an increase in the end
product repression measure when N ∈ (0, 2), reduces the concentration of protein. This observation
may suggest a possible way to monitor a change in the status of GRNs networks that can be indicative
of an occurrence of genetic illnesses.

On the other hand, the use of hypothesis (H1) warrants a stable, positive equilibrium for the system
in the absence of time delays. If, on the contrary, a time delay is present, conditions have been found for
the existence of a Hopf bifurcation, which produces oscillatory solutions. In the case of a homogeneous
delay, the Hopf bifurcation occurs when τ is larger than a critical value and its direction has been found
to be supercritical, implying a sustained oscillatory behaviour for the model.

Another interesting characteristic of our model is that limit cycles increase their amplitude as the
degree of nonlinearity is increased, as Figure 6 shows, up until the limit value N = 2. When N ≥ 2,
the oscillations are suppressed and the equilibrium of system (2.4) regains its stability. According to
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Figure 4. Time series of the model for N = 0.5 (left) and phase portrait for N = 1.75 (right)
showing a stable equilibrium when time delay is less than its critical value. Parameters are:
τ1 = 0.8, τ2 = 1.6, τ3 = 0.6 for the case N = 0.5, and τ1 = 11.5, τ2 = 20.3, τ3 = 13.2 in case
N = 1.75. Condition for stability np∗n−N

NσN
2 σ

N
3 (1+pn)2 < σ1 is satisfied.

Ref. [22], wide-amplitude protein oscillations are estimated to coexist with the steady state solutions,
indicating that GNRs tend to respond to significantly large perturbation with apoptosis. Our model
may show that the occurrence of some diseases such as cancer could be related to proteins being in a
so-called “off” positions, which dynamically correspond to the lowest protein steady states.

7. Further research

The model proposed in this work can be expanded to tackle more questions and increase the level
of realism of the system. One of the interesting topics that has not been discussed in this work is the
role of noise in the processes and results we have illustrated. This is particularly relevant as noise in
biological systems is ubiquitous, and, as far as gene expression dynamics is concerned, most processes
are stochastic. Both intrinsic and extrinsic noise [38] can play a part in our GRNs: intrinsic noise results
from the probabilistic nature of chemical dynamics, whereas extrinsic noise occurs due to random
fluctuations in environmental parameters, such as temperature and pressure.

In particular, there have been a number of interesting recent papers on gene dynamics [39,40,42] that
describe the effect of noise on oscillations. In Ref. [40] the authors found that the cooperative binding
of repressor molecules is not essential for the oscillatory behaviour and provided new insights into the
nature of network oscillations. Cruz et al. [39] investigated different escape dynamics from a stable
limit cycle in an oscillatory biochemical state, whereas Potoyan and Wolynes [42] contributed two new
mathematical approaches to gain understanding in dephasing phenomena in gene oscillators, showing
that essential behaviour arising from model bifurcations results from dichotomic noise from gene-state
switching. In conclusion and in line with these studies, further research will consider the effect of noise
onto our model and investigate the dynamical behaviour of the network and its oscillations.
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