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Abstract: Particle swarm optimizer was proposed in 1995, and since then, it has become an 

extremely popular swarm intelligent algorithm with widespread applications. Many modified 

versions of it have been developed, in which, comprehensive learning particle swarm optimizer is a 

very powerful one. In order to enhance its performance further, a local search based on Latin 

hypercube sampling is combined with it in this work. Due to that a hypercube should become smaller 

and smaller for better local search ability during the search process, a control method is designed to 

set the size of the hypercube. Via numerical experiments, it can be observed that the comprehensive 

learning particle swarm optimizer with the local search based on Latin hypercube sampling has a 

strong ability on both global and local search. The hybrid algorithm is applied in cylindricity error 

evaluation problem and it outperforms several other algorithms. 

Keywords: comprehensive learning particle swarm optimizer; Latin hypercube sampling; 

cylindricity error evaluation 

 

1. Introduction 

Global optimization problems widely exist in engineering application and scientific research. 

For linear and convex function optimization problems, the theories and corresponding optimization 
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algorithms are well-developed. However, these algorithms often fail to solve non-convex and  

non-differentiable problem with many optima. Since 1980s, intelligent optimization algorithms or 

so-called mate-heuristic algorithms have been developed. They can obtain near-optimal solutions 

even optima in reasonable time. Classic meta-heuristic algorithms include Simulated Annealing  

(SA) [1], Genetic Algorithm (GA) [2], Particle swarm optimizer (PSO) [3], Differential Evolution 

(DE) [4,5], Ant Colony Optimization (ACO) [6], Electromagnetism-like Mechanism Algorithm 7 etc. 

They have been used in extensive applications in areas such as engineering optimization [8–10] and 

scheduling optimization [11–13] etc. 

Particle swarm optimizer (PSO) was first proposed by Eberhart and Kennedy in 1995 3, and 

since then, it has become a very popular algorithm since PSO shows many advantages such as simple 

implementation, good optimization capability and minimum mathematical processing. In the review 

paper [14] about nature-inspired intelligence, PSO was considered one of the most popular  

nature-inspired algorithms according to related publications. However, the original PSO algorithm 

may get trapped easily in local optima for multimodal optimization problems. In order to improve 

the search ability of PSO, an increasing number of modified PSO versions have been proposed, 

including PSO with inertia weight (PSO-w) [15], PSO with constriction factor (PSO-cf) [16], fully 

informed particle swarm (FIPS) [17], unified particle swarm optimization (UPSO) [18], 

comprehensive learning particle swarm optimizer (CLPSO) [19], cellular particle swarm 

optimization (CPSO) [20], and adaptive division of labor PSO (ADOLPSO) [21] etc. 

Among these modified versions of PSO, the comprehensive learning particle swarm optimizer 

(CLPSO) proposed by Liang et al. 19 is a quite famous one which shows a superior ability for 

solving multimodal problems. Since CLPSO was published in 2006, it has been cited for 2500+ 

times in google scholar until now. Some researchers have developed new algorithms based on 

CLPSO. Peng and Lu [22] proposed a hierarchical PSO based on CLSPO. Gülcü and Kodaz [23] 

proposed a better variation of CLPSO which is named parallel comprehensive learning particle 

swarm optimizer (PCLPSO). These studies show that CLPSO has a strong vitality in the area of 

metaheuristic algorithms but there is still room for improvement. 

Adding other local search methods to PSO is a very popular way to improve its performance. 

Bao, Hu and Xiong [24] combined PSO with pattern search for SVMs parameters optimization. 

Petalas, Parsopoulos and Vrahatis [25] used the random walk with directional exploitation local 

search in PSO. Jia et al. [26] combined the canonical PSO with a chaotic and Gaussian local search 

procedure. The cellular particle swarm optimization (CPSO) [20] essentially used a local search 

based on cellular automata. Wu et al. [27] proposed a superior solution guided particle swarm 

optimization (SSG-PSO) combined with four gradient-based or derivative-free local search methods. 

In these algorithms, the local search usually focuses on enhancing the ability of intensification. Is there 

a local search method can also improve the capability of global search? To answer this question, in this 

work, Latin hypercube sampling with a control method is combined as the local search method. 

Latin hypercube sampling (LHS) is a stratified sampling method which was proposed by Mckay 

in 1979 [28]. Compared with the Monte Carlo sampling, Latin hypercube sampling is more efficient 

and able to reflect the population more accurately from fewer sample points. Since the LHS has 

strong global search ability, symmetric Latin hypercube design, a variant of LHS, was used for 

population initialization in differential evolution [29]. Recently, LHS was successfully applied in 

model updating of a historic concrete bridge at two different levels [30]. On one hand, LHS was 

implemented with a sensitivity analysis phase to define parameters which mostly influence the FEM 
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modal response. It was also used to define initiation points for another optimization algorithm called 

Trust-Region. The application also takes advantage of its global search ability. LHS was also used as 

local search method for a hierarchical PSO [22]. In their work, the length of each dimension of the 

hypercube is two times the length of the corresponding dimension of the selected particle [22]. The 

setting method will make the size of the hypercube be determined by the location of the selected particle. 

Actually, an optimization algorithm can be treated as a sampling method from the view of 

sampling. It uses some rules to a sample from the whole space of independent variables and tries to 

find the global optimal point. Therefore, Latin hypercube sampling can be available in CLPSO. In 

this work, it is used as a local search method for the global best particle in CLPSO, and this derived 

method is been called as CLPSO-LHS. A control method to set the size of a hypercube is also 

proposed in this work. At the beginning, the size of the hypercube is set as a relatively large value, 

which means that the hypercube for sampling is large such that the local search can improve the 

ability of global search. The size decreases with the iteration. In this way, the global search ability 

will be weakened and the local search ability will be strengthened. 

Since cylindrical shapes are very common in precision components, cylindricity error 

evaluation problem is an important issue in assembly automation which is critical part of intelligent 

manufacturing. This problem belongs to minimax problems which are not differentiable and it is 

tough to be solved by traditional optimization methods. The least squares method is often used in 

most current commercial software. However, it is prone to over-estimation [31]. Recently, many 

metaheuristic search methods have been applied in this problem, such as improved Genetic 

algorithms (GA) [32], particle swarm optimization (PSO) [33], hybrid particle swarm  

optimization-differential evolution algorithm (PSO-DE) [31], and hierarchical PSO with Latin 

sampling based memetic algorithm (MA-HPSOL) [22]. The CLPSO-LHS will be applied in this 

problem and compared with the above-mentioned algorithms. 

This paper is organized as follows: A detailed introduction of CLPSO-LHS is presented in 

Section 2. Then, benchmark testing for verifying the efficiency of the hybrid algorithm is shown in 

Section 3. Thereafter, the application of the hybrid algorithm in cylindricity error evaluation problem 

is presented in Section 4. And finally, Section 5 gives the conclusion of this work. 

2. The hybrid algorithm CLPSO with local search based on Latin hypercube sampling 

(CLPSO-LHS) 

2.1. PSO and comprehensive learning particle swarm optimizer (CLPSO) 

In the original PSO, a particle swarm simulating a bird flock is used to search the whole space. 

The i
th

 particle in t
th

 iteration is denoted as 
1 1

, , , ,( , ,... )D

i t i t i t i tX X X X  and its corresponding flying 

velocity is denoted as 
1 1

, , , ,( , ,... )D

i t i t i t i tV V V V . The corresponding personal best position which memories 

the best position found by the i
th

 particle is denoted as 
1 1

, , , ,( , ,... )D

i t i t i t i tpbest pbest pbest pbest . The 

global best position recording the best position discovered by the whole swarm is denoted as 

1 1( , ,... )D

t t t tgbest pbest pbest pbest . Shi and Eberhart proposed the PSO-w 15 by introducing an 
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inertia weight (w) into the original PSO to enhance the performance. Since it improves the 

performance significantly, many later researchers considered PSO-w as the standard PSO. The 

updating equations of velocity and position in PSO-w are shown as follows: 

. 1 , 1 1 , 1 , 2 2 1 ,( ) ( )i t i t i t i t t i tV wV c r pbest X c r gbest X            (1) 

, 1 , , 1i t i t i tX X V             (2) 

Where c1 and c2 are acceleration constants, r1 and r2 are random number generated by a uniform 

distribution in [0,1]. 

The comprehensive learning PSO (CLPSO) 19 adopts a learning strategy in which all other 

particles’ historical best information is used to update a particle’s velocity. The strategy makes the 

particles own more exemplars to learn from and a larger potential space to traverse to. The velocity 

updating way is shown in formula (3): 

, , ( ), ,
* * *( )

d d d d d

i t i t i fi d t i t
V w V c rand pbest X          (3) 

Here, [ (1), (2),..., ( )]i i i if f f f D  defines which particles’ pbests the particle i should follow. A 

parameter Pci, referred to as the learning probability, is used to assign the value for fi. If a random 

value (in the range [0, 1] in dimension d) is greater than Pci, i is assigned to fi(d). Otherwise, a 

random integer from the particles’ indexes is assigned to fi(d). The Pci value is set by the 

following expression: 

(exp(10( 1)) 1)
0.05 0.45*

(exp(10) 1)
i

i
Pc

 
 


       (4) 

( )

d

fi d
pbest  can be the corresponding dimension of any particle’s pbest, including its own pbest. 

2.2. Local search based on Latin hypercube sampling 

Only one sample is selected in each row or column of each sub hypercube in Latin hypercube 

sampling. The pseudocode of LHS is shown in Figure 1 [22]. Note that n is the dimension number of 

the original hypercube. 
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Figure 1. Pseudocode of Latin hypercube sampling. 

Figure 2 shows an example for sampling 5 points from a 2-dimensional square by LHS. It can 

be observed that only one sub hypercube is selected in each row or column. 

 

Figure 2. An example of LHS. 

2.3. Control method for the size of a hypercube 

When Latin hypercube sampling is used as a local search method, the size of a hypercube is a 

very important parameter which significantly impacts the efficiency of sampling. The parameter 

should decrease with the converge process. Based on the principle, the length vector of dimensions δ 

for a hypercube is set as formula (5). In formula (5), δmax is the initial value which is set as a ratio of 

(UpB-LowB). UpB and LowB denote upper boundary and lower boundary, respectively. And 

max_ genItera  , where Itera is the current iteration number and max_gen is the maximum 

number of iterations. γ is a number which determines the magnitude order. p is a positive integer 

which is the polynomial order. k is a non-negative integer which represents the cycle for the sine 

function. Note that the value Itera is the only variable in the formula. The value δ varies with the 
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current iteration number Itera. δ and δmax are vectors in a practical problem since each dimension’s 

UpB and LowB is different. 

max 10 sin(( 0.5) (1 ))
p

k            (5) 

Formula (5) is composed of an exponential function, a sine function and the exponential part of 

the exponential function is polynomial. Actually, it is obtained by trial and error. Based on the 

principle that δ value should decrease with the converge process, δ value was set firstly as linear 

control formula (6). It works well for global search. However, it converges too fast at the end leading 

to bad local search. Exponential control formula (7) is designed to overcome the shortage of 

formula (6). Further, formula (8) was designed to remaining the global search ability. At last, a sine 

function was added in order to improve the converge speed and search accuracy in formula (5). 

max (1 )              (6) 

max 10              (7) 

max
10

p


 


           (8) 

When δmax is 1, γ is 10, p is 3, k is 6 and Max_gen is 5000, the plots of the four control methods 

are shown in Figure 3. It can be observed that the converge curve of the linear control way for 

formula (6) decreases to zero suddenly at the end of iteration process, which would lead to poor 

intensification capability, although the global search ability is strong at the beginning. The curve of 

the exponential control method for formula (7) decreases as a straight line. Actually, it decreases so 

fast at the beginning, such that it may not provide sufficient help for global search. In order to 

overcome this shortage, a polynomial exponential part for the exponential function is designed in 

formula (8). Based on formula (8), a sine function is introduced in formula (5) to improve the 

converge speed and search accuracy. Compared with formula (8), the δ value in formula (5) varies 

periodically. Since the value will reach a smaller value shortly, it can speed the convergence if the 

near-optimal solution has been found. At the end of iterations, the δ value can reach a smaller value, 

which will improve the search accuracy. Since the local search only are executed every ten iterations, 

τ can only get discrete values (e.g. 10/5000, 20/5000…). The value (k+0.5)(1-τ) cannot be pure 

integer. This is the reason why the plot of formula (5) cannot reach 0 in figure 3. In a word,  

formula (5) is the outcome of balance between global search ability and local search ability. These 

control methods will be compared in Section 3.2. 
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Figure 3. Plot of δ value under different control methods. 

2.4. Flow chart of LHS local search 

The flow chart of LHS local search is shown in Figure 4. In CLPSO-LHS, the local search is executed 

for the gbest in CLPSO for every 10 iterations. The framework of CLPSO can be found from 19. 

 

Figure 4. Flow chart of Latin hypercube sampling-based local search. 
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2.5. Computational complexity of CLPSO-LHS 

Computational complexity analysis is important for evaluating the efficiency of an algorithm. 

The count of key program statements within an iteration in big O notation is used to represent 

computational complexity here. The CLPSO-LHS is compared with the original CLPSO. Based on 

the analysis from 20, CLPSO and simple PSO share the same computational complexity which is 

O(ND) where N is population size and D is dimensionality. The local search in Figure 6 includes two 

parts. Since the complexity of Randperm(H) which is used for generating a random sequence  

of [1,…,H] is O(H), the complexity for the first part is O(HD). Clearly, the complexity for the 

second part is also O(HD). The complexity for the whole local search is O(HD). Assuming the local 

search is executed for the gbest for every G iterations (G is 10 in current work), the total complexity 

for the CLPSO-LHS is O(ND + HD/G). Usually, H/G is less than N (N is 10 or 20, H and G is 10 in 

the benchmark testing), so the final complexity is still O(ND). As a conclusion, the computational 

complexity of the proposed CLPSO-LHS is the same as the original CLPSO. 

3. Benchmark testing 

In this section, eight benchmark functions with 10 and 30 dimensions in 19 are used to test the 

CLPSO with Latin hypercube sampling-based local search. The details of the test functions are 

attached in the Appendix. 

Firstly, the proposed hybrid algorithm is compared with the original CLPSO and the pure Latin 

hypercube sampling-based local search in Section 3.1. The four control methods are compared in 

Section 3.2. The comparison with other algorithms in literature is shown in Section 3.3. 

3.1. Comparison with the original CLPSO and the Latin hypercube sampling-based local search 

In order to prove the efficiency of the hybrid algorithm, firstly, it was compared with the 

original CLPSO and the Latin hypercube sampling-based local search. Note that the results for 

CLPSO here are different from those in 19, since that the population sizes are different. In order to 

take advantage of LHS, smaller population sizes have been used here to enlarge the Max_gen. The 

results in 19 will be compared with CLPSO-LHS in Section 3.3. 

The three algorithms were run 30 times randomly on all functions with 10 and 30 dimensions. 

The mean values (Mean) and standard deviation (Std) of the results were recorded. The parameters 

of the algorithms are shown in Table 1. CLPSO and CLPSO-LHS shared some common parameters. 

The initialization method in 19 was used here. For the pure LHS local search, only one solution was 

generated at the beginning, and formula (5) was used to set the size of hypercube. The total sampling 

number was set as MaxNFE value. The parameters in formula (5) were set as the same as in CLPSO-

LHS except δmax. The value was set as a bigger value in LHS local search such that the algorithm can 

search the whole solution space. 
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Table 1. Parameters of the algorithms. 

Parameters Value 

Population size ps 10 for 10 and 20 for 30 dimensions 

Maximum number of function evaluation MaxNFE 30,000 for 10 and 200,000 for 30 dimensions 

Inertial weight w w0 = 0.9; w1 = 0.4 

Acceleration constant c 1.49445 

Refreshing gap m 7 

Sampling scale H 10 

Initial length vector of dimensions for a hypercube in 

formula (5) δmax 

(UpB-LowB)/5 for CLPSO-LHS, (UpB-LowB) for pure 

LHS local search 

Polynomial order in formula (5) q 3 

Magnitude order in formula (5) γ 10 

Cycle for the sine function in formula (5) k 6 

Table 2. The results of the five algorithms. 

No. D 
CLPSO LHS local search CLPSO-LHS 

Mean ± Std Mean ± Std Mean ± Std 

F1 
10 1.69E-14 ± 4.33E-14 1.48E-20 ± 2.91E-21 1.37E-20 ± 9.46E-21 

30 1.69E-20 ± 1.97E-20 2.18E-21 ± 2.26E-22 6.57E-22 ± 4.01E-22 

F2 

10 2.54E+00 ± 1.97E+00 8.89E+00 ± 5.36E-03 9.09E-01 ± 2.17E+00 

30 1.89E+01 ± 4.74E+00 2.87E+01 ± 7.49E-04 8.14E-01 ± 4.43E+00 

F3 

10 1.41E+00 ± 3.42E+00 1.30E-10 ± 1.50E-11 1.12E-10 ± 3.01E-11 

30 1.81E+01 ± 4.49E+00 2.86E-11 ± 1.10E-12 1.70E-11 ± 5.95E-12 

F4 

10 1.15E-02 ± 1.06E-02 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

30 1.88E-13 ± 4.27E-13 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

F5 

10 4.57E-10 ± 1.64E-09 1.11E-10 ± 2.73E-11 5.56E-11 ± 5.55E-11 

30 0.00E+00 ± 0.00E+00 1.69E-11 ± 1.13E-12 0.00E+00 ± 0.00E+00 

F6 

10 9.63E-02 ± 2.94E-01 3.53E+00 ± 4.76E+00 0.00E+00 ± 0.00E+00 

30 8.59E-12 ± 2.05E-11 6.74E+00 ± 1.25E+01 0.00E+00 ± 0.00E+00 

F7 
10 9.68E-02 ± 2.96E-01 6.77E+00 ± 4.67E+00 0.00E+00 ± 0.00E+00 

30 1.29E-01 ± 3.35E-01 2.42E+01 ± 1.19E+01 0.00E+00 ± 0.00E+00 

F8 
10 6.50E+01 ± 8.42E+01 2.93E-14 ± 1.61E-13 0.00E+00 ± 0.00E+00 

30 2.67E+01 ± 4.95E+01 2.10E+02 ± 1.15E+03 0.00E+00 ± 0.00E+00 

From Table 2, it can be observed that the LHS local search found good solutions for 9 out from 

16 functions such as F1, F3, F4 and F5. However, for the other functions, the LHS local search 

performs worse than the original CLPSO. It can be inferred that the LHS local search does have 

strong local search ability and it also has some degree of global search ability. Otherwise, it cannot 

find good solutions for F3, F4, and F5 which are multimodal problems. However, its global search 

ability is limited, so it failed for some other functions and failed on more functions with 30 

dimensions which requires stronger global search ability because the solution space expands 

exponentially with the dimensionality. Since CLPSO has strong global search ability, it performed 

better than LHS local search on these functions. Since the hybrid algorithm CLPSO-LHS has the 

global search ability of CLPSO and the strong local search ability of LHS local search, it should 
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perform better than the former two algorithms. It did find best solutions for all functions. Even for F2 

which has a narrow valley from the perceived local optima to the global optimum 19, the results 

were much better than the original CLPSO and the pure LHS local search. For F2 with 10 and 30 

dimensions, CLPSO-LHS only failed five times and once to find the global optima, respectively. 

This is the reason why the standard deviation was large for F2. In a conclusion, it is worthwhile to 

combine those two algorithms to form CLPSO-LHS. 

3.2. Comparison of the four control methods 

Here, the CLPSO with Latin hypercube sampling-based local search using formula (6) to 

formula (8) have been denoted as CLPSO-LHS1, CLPSO-LHS2 and CLPSO-LHS3, respectively. 

The testing method and parameters are the same as those in Section 3.1. 

Table 3. The results of the four algorithms. 

No. D 
CLPSO-LHS CLPSO-LHS1 CLPSO-LHS2 CLPSO-LHS3 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

F1 
10 1.37E-20 ± 9.46E-21 8.83E-13 ± 2.43E-12 1.68E-18 ± 6.30E-19 3.10E-18 ± 9.31E-19 

30 6.57E-22 ± 4.01E-22 2.73E-19 ± 4.28E-19 1.85E-20 ± 2.59E-20 2.09E-19 ± 2.53E-19 

F2 
10 9.09E-01 ± 2.17E+00 1.91E+00 ± 3.03E+00 1.06E+00 ± 2.48E+00 1.01E+00 ± 2.65E+00 

30 8.14E-01 ± 4.43E+00 3.31E+00 ± 8.60E+00 5.04E+00 ± 1.02E+01 1.69E+00 ± 6.44E+00 

F3 
10 1.12E-10 ± 3.01E-11 7.71E-03 ± 1.49E-02 1.36E-09 ± 2.35E-10 1.79E-09 ± 3.11E-10 

30 1.70E-11 ± 5.95E-12 6.61E-03 ± 8.75E-04 1.70E-09 ± 9.37E-11 1.75E-09 ± 1.45E-10 

F4 
10 0.00E+00 ± 0.00E+00 4.24E-03 ± 2.68E-03 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

30 0.00E+00 ± 0.00E+00 1.98E-12 ± 1.02E-11 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

F5 
10 5.56E-11 ± 5.55E-11 4.48E-09 ± 1.05E-08 1.11E-09 ± 2.49E-09 3.28E-09 ± 5.54E-09 

30 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

F6 
10 0.00E+00 ± 0.00E+00 1.10E-08 ± 3.05E-08 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

30 0.00E+00 ± 0.00E+00 5.81E-11 ± 8.90E-11 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

F7 
10 0.00E+00 ± 0.00E+00 1.02E-08 ± 5.57E-08 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

30 0.00E+00 ± 0.00E+00 6.11E-12 ± 8.25E-12 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

F8 
10 0.00E+00 ± 0.00E+00 8.21E-13 ± 2.69E-13 0.00E+00 ± 0.00E+00 0.00E-00 ± 0.00E+00 

30 0.00E+00 ± 0.00E+00 5.28E-13 ± 8.26E-13 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

The mean values (Mean) and standard deviation (Std) of the results for the four algorithms are 

shown in Table 3. From the table, several items can be observed as follows. 1) Among the four 

algorithms, the algorithms with exponential control methods (CLPSO-LHS, CLPSO-LHS2,  

CLPSO-LHS3) perform better than that with the linear control method (CLPSO-LHS1). They get the 

global optima value (0) for 9 out 16 functions. From Figure 3, the reason can be inferred that the 

linear control method provides relatively large δ values in the almost whole search progress. Large δ 

values contribute the global search. As a result, CLPSO-LHS1 found near-optimum solutions for 

most functions. 2) CLPSO-LHS2 and CLPSO-LHS3 are comparable. However, CLPSO-LHS3 

performs better for F2. The difference between CLPSO-LHS2 and CLPSO-LHS3 locates at the p 

value in formula (8). The p value is 3 for CLPSO-LHS3 and it is 1 for CLPSO-LHS2. The p value 

determines the decrease speed of δ values and controls the balance between global search ability and 
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local search ability. Since F2 is a hard problem which needs stronger global search ability,  

CLPSO-LHS3 with larger p value performs better. 3) If any other algorithms got global optimal 

value for a function, CLPSO-LHS also obtained its global optimal value. It performs best on those 

functions whose global optimal value is unable to reach. CLPSO-LHS takes formula (5) to set the δ 

value for LHS local search. Compared with CLPSO-LHS3, a sine function is added for two purposes. 

On one hand, the sine function can make the search converge in advance. On the other hand, it can 

provide smaller δ values which helps find more accuracy solutions. From Table 3, the second 

purpose was verified. The first purpose will be verified in convergence curves. 

The convergence curves for the five algorithms (CLPSO is also included) for all of the 

functions are plotted in Figure 5 and Figure 6. Note that the iteration number is used as horizontal 

ordinate here. It is fair for comparison among the four CLPSO-LHS algorithms, because that they 

have the same number of function evaluations (NFE) at each iteration. However, the NFE in CLPSO 

is smaller than that in the four CLPSO-LHS algorithms. According to the parameters setting, the 

NFE in CLPSO approximately equals to ps/(ps + H/10) times of that in CLPSO-LHS at the same 

iteration. Since H value is 10, the difference between the NFE and ps/(ps + 1) *NFE is not big. 

Based on the above consideration, the iteration number is used as horizontal ordinate. By the way, 

since the MaxNFE is the same, the maximal iteration is larger for CLPSO. 

From the two figures, it can be observed that: 

1): The plots of the four hybrid algorithms are under the plots of CLSPO for most functions, 

especially at the beginning. Compared with CLPSO, LHS local search is added into the four hybrid 

algorithms. Since the local search is executed for the gbest particle and it has global search ability, 

the hybrid algorithms can find better solutions. 

2): The plots of the four hybrid algorithms found good solutions for most functions, especially 

for CLPSO-LHS. The reason is that the LHS has good local search ability. 

3): The plots of CLPSO-LHS1, CLPSO-LHS2 and CLPSO-LHS3 have similar trajectories with 

the plots for corresponding δ values in Figure 3 for some functions such as F2, F3. It can be inferred 

that when a near-optimum solution is found, the LHS local search works well and the search 

accuracy is determined by the δ value. 

4): The plots of CLPSO-LHS2 converge fast for most functions except for F2 which needs 

strong global search ability at the beginning. Since there is a narrow valley from the perceived local 

optima to the global optimum for F2, the original CLPSO cannot find its good solution. With the help 

of LHS, the hybrid algorithms can find better solutions. However, if the δ value decreases too fast, 

the global search ability is not strong enough and the hybrid algorithm cannot find good solutions. 

This situation happens on CLPSO-LHS2. 

5): The plots of CLPSO-LHS are staircase-like and they are under the plots of CLPSO-LHS3 

for most functions which indicate that the sine function in formula (5) works well. The sine function 

really contributes to the convergence speed. 

6): For most functions, CLPSO-LHS can reach better values at the beginning, and then, 

CLPSO-LHS2 exceeds it. However, CLPSO-LHS can find smaller values at the end. The sine 

function makes CLPSO-LHS converge fast at the beginning and it provides smaller δ values at the 

end leading to better final solutions. 

Based on the testing results and plots, some conclusions can be made as follows: 1) The LHS local 

search not only contributes to the local search ability but also global search ability for CLPSO-LHS.  

2) The control method shown in formula (5) can balance the global search and local search ability 
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well and the sine function part can accelerate the convergence and improve the final results. 

 

Figure 5. The convergence curves of five algorithms for 10-dimensional functions. 
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Figure 6. The convergence curves of five algorithms for 30-dimensional functions. 

3.3. Comparison with other variants of PSO 

In this section, CLPSO-LHS is compared with other 12 variants of PSO from literature. The 12 

algorithms are listed as follows. 

 PSO with inertia weight (PSO-w) 15 

 PSO with constriction factor (PSO-cf) [34] 

 Local version of PSO with inertia weight (PSO-w-local) 19 
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 Local version of PSO with constriction factor (PSO-cf-local) 16 

 UPSO 18 

 Fully informed particle swarm (FIPS) 17 

 FDR-PSO [35] 

 CPSO-H [36] 

 CLPSO 19 

 CPSO-inner 20 

 CPSO-outer 20 

 PCLPSO 23 

The first nine algorithms’ results are obtained from 19. For 10-dimentional functions, the nine 

algorithms’ population size is 10 and the maximum number of function evaluation is 30,000.  

For 30-dimentional functions, the population size is 40 and the maximum number of function 

evaluation (MaxNFE) is 200,000. CPSO-inner and CPSO-outer hybridized cellular automata in PSO. 

The results are from 20. The CPSO-inner is the hexagonal version which performed best among the 

three versions. In the two versions of CPSO, the population size is 36 and the maximum number of 

iterations is set as 5,000 for both 10-dimensional and 30-dimensional functions. The MaxNFE in 

CPSO-inner is 180,000 (36 × 5,000) and the value is 230,000 ((36 + 10) × 5,000) in CPSO-outer. 

PCLPSO 23 is a better variation of CLPSO. It uses a novel parallel multi-swarm strategy. The setting 

of population size and MaxNFE is the same as in the first nine algorithms. The parameters for 

CLPSO-LHS are set as in Table 1. The independent running number is 30 for all functions. 

The results of all the algorithms on 10-dimensional and 30-dimensional functions are shown in 

Table 4 and Table 5. The best results for each function are stressed by bold. 

From Table 4, 5, it can be observed that CLPSO-LHS performed best for 10 out from 16 

functions. CPSO-outer had best results for 7 10-dimensional functions since its MaxNFE was much 

larger. PCLSPO performed best for 6 functions. CLPSO archived 5 best results. CPSO-inner 

archived best results on 3 functions and CPSO-H performs best on 2 functions. Benefiting from the 

LHS local search, CLPSO-LHS still was able to achieve good results when almost all the other 

algorithms failed for F2. Only CLPSO, PCLPSO and CLPSO-LHS, three CLPSO based algorithms, 

archived good results for F8. For 10-dimensional F4, only CLPSO-LHS and CPSO-outer obtained 

good results. CLPSO-LHS still obtained good results for the other six functions where it didn’t 

perform best. PCLPSO and CLPSO performed very well on most functions. CPSO-outer shows good 

performance in 10-dimensional functions with the larger MaxNFE, but it is unable to perform well 

on most 30-dimensional functions. From an overall perspective, among all the compared algorithms, 

CLPSO-LHS outperformed other algorithms, especially for 30-dimentional functions. 

Table 4. The results for some variants of PSO on the 10-dimensional functions. 

Algorithm 
 

F1 F2 F3 F4 F5 F6 F7 F8 

PSO-w 
Mean 7.96E-51 3.08E+00 1.58E-14 9.69E-02 2.28E-03 5.82E+00 4.05E+00 3.20E+02 

Std 3.56E-50 7.69E+01 1.60E-14 5.01E-02 7.04E-03 2.96E+00 2.58E+00 1.85E+02 

PSO-cf 
Mean 9.84E-105 6.98E+01 9.18E-01 1.19E-01 6.69E-01 1.25E+00 1.20E+01 9.87E+02 

Std 4.21E-104 1.46E+00 1.01E+00 7.11E-02 7.17E-01 5.17E+00 4.99E+00 2.76E+02 

Continued on next page 
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Algorithm 
 

F1 F2 F3 F4 F5 F6 F7 F8 

PSO-w-local 
Mean 2.13E-35 3.92E+00 6.04E-15 7.80E-02 1.41E-06 3.88E+00 4.77E+00 3.26E+02 

Std 6.17E-35 1.19E+00 1.67E-15 3.79E-02 6.31E-06 2.30E+00 2.84E+00 1.32E+02 

PSO-cf-local 
Mean 1.37E-79 8.60E+01 5.78E-02 2.80E-02 7.85E-02 9.05E+00 5.95E+00 8.78E+02 

Std 5.60E-79 1.56E+00 2.58E-01 6.34E-02 5.16E-02 3.48E+00 2.60E+00 2.93E+02 

UPSO 
Mean 9.84E-118 1.40E+00 1.33E+00 1.04E-01 1.14E+00 1.17E+00 5.85E+00 1.08E+03 

Std 3.56E-117 1.88E+00 1.48E+00 7.10E-02 1.17E+00 6.11E+00 3.15E+00 2.68E+02 

FDR 
Mean 2.21E-90 8.67E-01 3.18E-14 9.24E-02 3.01E-03 7.51E+00 3.35E+00 8.51E+02 

Std 9.88E-90 1.63E+00 6.40E-14 5.61E-02 7.20E-03 3.05E+00 2.01E+00 2.76E+02 

FIPS 
Mean 3.15E-30 2.78e+00 3.75E-15 1.31E-01 2.02E-03 2.12E+00 4.35E+00 7.10E+01 

Std 4.56E-30 2.26E-01 2.13E-14 9.32E-02 6.40E-03 1.33E+00 2.80E+00 1.50E+02 

CPSO-H 
Mean 4.98E-45 1.53E+00 1.49E-14 4.07E-02 1.07E-15 0.00E+00 2.00E-01 2.13E+02 

Std 1.00E-44 1.70E+00 6.97E-15 2.80E-02 1.67E-15 0.00E+00 4.10E-01 1.41E+02 

CLPSO 
Mean 5.15E-29 2.46E+00 4.32E-14 4.56E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 2.16E-28 1.70E+00 2.55E-14 4.81E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

CPSO-inner3 
Mean 1.26E-03 6.89E+00 0.00E+00 6.83E-02 0.00E+00 1.22E-01 0.00E+00 1.94E+03 

Std 2.32E-03 1.14E+00 0.00E+00 3.34E-02 0.00E+00 2.85E-01 0.00E+00 4.25E+02 

CPSO-outer 
Mean 0.00E+00 2.66E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.21E+02 

Std 0.00E+00 1.01E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.17E+02 

PCLPSO 
Mean 4.29E-57 5.84E-01 4.00E-15 6.59E-04 0.00E+00 0.00E+00 0.00E+00 1.27E-04 

Std 1.17E-56 1.59E+00 2.41E-30 2.50E-03 0.00E+00 0.00E+00 0.00E+00 2.78E-13 

CLPSO-LHS 
Mean 1.37E-20 9.09E-01 1.12E-10 0.00E+00 5.56E-11 0.00E+00 0.00E+00 0.00E+00 

Std 9.46E-21 2.17E+00 3.01E-11 0.00E+00 5.55E-11 0.00E+00 0.00E+00 0.00E+00 

Table 5. The results for some variants of PSO on the 30-dimensional functions. 

Algorithm 
 

F1 F2 F3 F4 F5 F6 F7 F8 

PSO-w 
Mean 9.78E-30 2.93E+01 3.94E-14 8.13E-03 1.30E-04 2.90E+01 2.97E+01 1.10E+03 

Std 2.50E-29 2.51E+01 1.12E+00 7.16E-03 3.30E-04 7.70E+00 1.39E+01 2.56E+02 

PSO-cf 
Mean 5.88E-100 1.11E+01 1.12E+00 2.06E-02 4.10E+00 5.62E+01 2.85E+01 3.78E+03 

Std 5.40E-100 1.81E+00 8.65E-01 1.90E-02 2.20E+00 9.76E+00 1.14E+01 6.02E+02 

PSO-w-local 
Mean 5.35E-100 2.39E+01 9.10E-08 5.91E-03 4.94E-03 2.72E+01 2.08E+01 1.53E+03 

Std 4.41E-13 3.07E+00 8.11E-08 6.69E-03 1.40E-02 7.58E+00 4.94E+00 3.00E+02 

PSO-cf-local 
Mean 7.70E-54 1.71E+01 5.33E-15 5.91E-03 1.16E-01 4.53E+01 1.54E+01 3.78E+03 

Std 1.59E-53 9.16E-01 1.87E-15 8.70E-03 2.79E-01 1.17E+01 1.67E+01 5.37E+02 

UPSO 
Mean 4.17E-87 1.51E+01 1.22E-15 1.66E-03 9.60E+00 6.59E+01 6.34E+01 4.84E+03 

Std 3.15E-87 8.14E-01 3.16E-15 3.07E-03 3.78E+00 1.22E+01 1.24E+01 4.76E+02 

FDR 
Mean 4.88E-102 5.39E+00 2.84E-14 1.01E-02 7.49E-03 2.84E+01 1.44E+01 3.61E+03 

Std 1.53E-101 1.76E+00 4.10E-15 1.23E-02 1.14E-02 8.71E+00 6.28E+00 3.06E+02 

FIPS 
Mean 2.69E-12 2.45E+01 4.81E-07 1.16E-06 1.54E-01 7.30E+01 6.08E+01 2.05E+03 

Std 6.84E-13 2.19E-01 9.17E-08 1.87E-06 1.48E-01 1.24E+01 8.35E+00 9.58E+02 

CPSO-H 
Mean 1.2E-113 7.08E+00 4.93E-14 3.63E-02 7.82E-15 0.00E+00 1.00E-01 1.08E+03 

Std 2.9E-113 8.01E+00 1.10E-14 3.60E-02 8.50E-15 0.00E+00 3.16E-01 2.59E+02 

CLPSO 
Mean 4.46E-14 2.10E+01 0.00E+00 3.14E-10 3.45E-07 4.85E-10 4.36E-10 1.27E-12 

Std 1.73E-14 2.98E+00 0.00E+00 4.64E-10 1.94E-07 3.63E-10 2.44E-10 8.79E-13 

Continued on next page 
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Algorithm 
 

F1 F2 F3 F4 F5 F6 F7 F8 

CPSO-inner3 
Mean 1.60E+00 2.90E+01 3.13E+00 1.50E-01 1.15E+00 1.38E+00 1.42E-01 7.60E+03 

Std 6.94E-01 6.57E-01 6.79E-01 5.87E-02 1.85E+00 4.75E+00 3.46E-01 1.49E+03 

CPSO-outer 
Mean 9.48E-71 1.01E+00 5.03E-15 1.52E-02 1.91E+00 5.00E+01 7.52E+01 1.51E+03 

Std 5.13E-70 6.65E-01 2.90E-15 2.22E-02 1.38E+00 2.49E+01 3.52E+01 1.42E+03 

PCLPSO 
Mean 2.87E-28 6.63E+00 2.05E-14 9.22E-12 0.00E+00 0.00E+00 0.00E+00 3.82E-04 

Std 6.84E-28 1.17E+01 6.29E-15 4.25E-11 0.00E+00 0.00E+00 0.00E+00 7.40E-13 

CLPSO-LHS 
Mean 6.57E-22 8.14E-01 1.70E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Std 4.01E-22 4.43E+00 5.95E-12 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

4. Cylindricity error evaluation problem 

The calculation of cylindricity error is illustrated in Figure 7. Assuming that the axis direction is 

n(m, n, 1) and the radius is R. The aim of the problem is to find an optimal axis direction n which 

passes the point Q(x0, y0, 1) to minimize the cylindricity error. The variants are m, n, x0 and y0. Given 

a point set P = {Pk|k = 1, 2,…, M}, assuming that the length from point P1 to the axis is longest and 

the length from P2 to the axis is shortest, the cylindricity error is, 

 1 1 2 2 1 1 2 21 1 2 2 E P - ) E P|FP | |F P |= = E( P E| P |f R R        (7) 

If both |E1P1| and |E2P2| are bigger than R. When |E1P1| is bigger than R and |E2P2| is shorter than 

R, the cylindricity error is, 

 1 1 1 1 2 2 1 1 2 22 2 E P|FP |+|F P |=( |)+ E P = P |E P ER Rf        (8) 

When both |E1P1| and |E2P2| are shorter than R, the same formula is obtained. So the objective 

function is written as formula (9). 

1 2

| QP | | QP |
| | | | max min

| | | |

k k

kk
f EP EP

 

 
   

n n

n n
     (9) 
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
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


 

n

n
        (10) 

Four variables (x0, y0, l, m) were initialized in [−1, 1]. Two data sets from [33] and [37] were 

used to test the hybrid algorithm. The part for the first data set is with the dimension of 39 mm in 

radius and 120 mm in length. The measurement data for the cylindrical outer surface contains 80 

records. The radius and the length of the part for the second data set is 60 mm and 30 mm, 

respectively. There are 20 data records. The data records are formatted as (xk, yk, zk) which is the 
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input for the objective function as formula (9). 

The population size of the CLPSO-LHS was set to be 6 and the MaxNFE was set to be 40000. 

The other parameters were the same as those in Section 3.2. The algorithms were run 30 times 

independently on the two data sets. The statistical results (best, worst, median, mean value and the 

standard deviation) are shown as in Table 6. 

Table 6. The statistical results of the CLPSO-LHS for cylindricity error evaluation problems. 

 Best Worst Median Mean Std 

Data set 1 1.04864E-02 1.09565E-02 1.04864E-02 1.05072 E-02 8.38472E-05 

Data set 2 1.65742E-01 1.73070E-01 1.67500E-01 1.67889E-01 1.75039E-03 

 

Figure 7. The illustration of calculating the cylindricity error. 

Table 7 shows the comparison of best solutions between the CLPSO-LHS and other algorithms. 

The compared algorithms include improved GA1 [32], improved GA2 [38], PSO [33],  

MA-HPSOL [22], and PSO-DE [31]. 

Table 7. The comparison of best solutions between CLPSO-LHS and other algorithms 

for cylindricity error evaluation problems. 

Parameter 
Data set 1  Data set 2 

Improved GA1 PSO MA-HPSOL CLPSO-LHS  Improved GA2 PSO-DE MA-HPSOL CLPSO-LHS 

x0 0.0009250 0.003315 0.0020284 0.00181322  0.011853 0.010650 0.0106429 −0.0105382 

y0 −0.0002253 0.002814 0.0000496 4.67743e-5  0.047689 0.046918 0.0469181 0.0909596 

l 0.0000435 −0.00052 0.0000591 4.04684e-5  −0.000674 −0.000619 −0.000619 0.00121953 

M 0.0000162 0.000609 0.0000214 1.52445e-5  0.002960 −0.002915 −0.002915 −0.006714 

Cylindricity 0.0105976 0.025368 0.0104864 0.0104864  0.184274 0.183957 0.1839592 0.165742 
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CLPSO-LHS and MA-HPSOL perform best for the first data set. The best solution obtained by 

them is much better than the one obtained by PSO. For the second data set, CLPSO-LHS is the best 

one and it is much better than others including MA-HPSOL. 

5. Conclusions 

In this paper, a local search based on Latin hypercube sampling is combined with CLPSO. The 

local search shows a good performance when a control method is used to control the size of the 

hypercube. The numerical experiments show that, at the beginning, the local search method 

contributes to global search ability. Ultimately, it provides good fine search ability. The algorithm 

performs well on testing functions. The hybrid algorithm also shows a good performance on its 

application in cylindricity error evaluation problems. 

Although the algorithm is very effective, there is still some room for improvement. First, the 

designed control method has lots of parameters. A self-adaptive control method can be developed 

and its parameters can be reduced in the future. Second, although the local search method helps to 

find a good solution at the beginning, it can be observed from convergence figures that the solution 

cannot be improved for a short time for some functions, such as F1, F5 and F8. How to utilize the 

global search ability to accelerate the converge speed deserves further study. 
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