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Abstract: Non-alcoholic fatty liver disease is the most common cause of chronic liver disease.
Precipitated by the build up of extra fat in the liver not caused by alcohol, it is still not understood
why steatosis occurs where it does in the liver microstructure in non-alcoholic fatty liver disease.
It is likely, however, that the location of steatosis is due, at least in part, to metabolic zonation
(heterogeneity among liver cells in function and enzyme expression). Recently, there has been an influx
of computational and mathematical models in order to investigate the relationship between metabolic
zonation and steatosis in non-alcoholic fatty liver disease. Of interest among these models are
“compartments-in-series” models. Compartments-in-series models include the spatial distribution of
metabolite concentrations via series of compartments that are connected through some representation
of blood flow. In this paper, we analyze one such model, focusing specifically at how the number of
compartments and inclusion of dispersion in the flow affect simulation results. We find the number
of compartments to have a much larger effect than the inclusion of dispersion, however this is likely
due to numerical artifacts. Overall, we conclude that considering partial differential equations that are
equivalent to compartments-in-series models would be beneficial both in computation and in theoretical
analyses.

Keywords: liver disease; zonation; computational inverse models; dispersion in flows;
compartments-in-series models

1. Introduction

Non-alcholic fatty liver disease (NAFLD) encompasses a spectrum of liver disease that begins as
noninflammatory build-up of extra fat in liver cells (steatosis), can progress to non-alcoholic
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steatohepatitis (NASH) which is the occurrence of inflammation and liver damage in addition to the
steatosis and eventually lead to cirrhosis [5, 8, 45]. Globally, an estimated 11–46% of people suffer
from NAFLD [5, 8, 41]. Approximately 25–40% of patients with NAFLD will progress to NASH [8]
with 40–50% of patients developing fibrosis and 20% developing cirrhosis [6]. The increasing
prevalence of NAFLD has been linked to the rise of obesity [6] and is strongly associated with insulin
resistance and type 2 diabetes mellitus [6, 8, 41, 45]. Considered the hepatic manifestation of
metabolic syndrome [8, 17, 45], NAFLD is currently the most common cause of chronic liver
disease [5, 8] and NASH is the second leading cause of cirrhosis in adults waiting for liver transplants
in the United States [5, 41, 43], expected to become the first leading cause by 2030 [5, 6]. It has also
been suggested that a recent increase in the prevalence of hepatocellular carcinoma is caused by
NAFLD [5, 88].

As the prevalence of NAFLD continues to increase, the cause and pathogenesis of the disease
remains an area of intensive study. Though our understanding of this disease has progressed
substantially and continues to grow, there is much still to uncover. The pathogenesis of NAFLD is
multifactorial and extremely complex, comprised of environmental and genetic factors, the specific
contributions of which are not yet known [5]. Further, though the metabolic processes involved in
steatosis have been investigated for decades, there is still much unknown about why lipids accumulate
where they do in the liver.

In the continuing investigation of this disease, mathematical and computational models will serve
an important role as they give us the ability to explore the complex relationships between various
components in a low cost setting. In this paper, we will look at a model of the liver metabolism and
examine certain aspects of it in order to inform future development of such models.

1.1. Relevant biology

The liver is the main metabolic organ in the human body and, as such, plays a central role in
the regulation of key metabolites including glucose and free fatty acid (FFA). Most of the metabolic
processes that occur in the liver take place in the hepatocyte, the main cell type of the liver. These
hepatocytes are tightly organized into tesselating columns embedded into liver lobules which make up
each of the four lobes of the liver. The lobules have hexagonal cross sections, each corner of which
harbors a portal triad which is comprised of a bile duct, hepatic artery (which supplies the hepatocytes
with oxygenated blood), and a portal vein (which supplies the hepatocytes with nutrient filled blood).
The blood exits the lobule through the central vein which is located at the center of the hexagonal
structures. Numerous capillaries, called sinusoids, connect the periportal blood vessels of the portal
triad with the central vein (see Figure 1 as adopted from [7]). These sinusoids are surrounded by the
columns of hepatocytes and are the mechanism through which the hepatocytes have access to the blood
provided by the portal triad.

Hepatocytes vary in enzyme expression and function depending upon where they lie along the
sinusoid, a phenomena called zonation [40, 48–50, 53–55]. This heterogeneity among hepatocytes is,
at least in part, the result of differing concentrations of metabolites and signaling molecules along the
sinusoid. For example, as blood flows through the sinusoid, oxygen diffuses and is taken up into the
hepatocytes resulting in higher levels of oxygen on the periportal end of the sinusoid (near the portal
triad) and lower levels of oxygen on the pericentral end of the sinusoid (near the central vein). This
oxygen gradient was discovered decades ago and has long since been considered a significant driving

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1082–1114.



1084

force of zonation [14, 51, 52, 56–58, 89]. Some studies have also indicated that the hormones insulin
and glucagon play an important role in the regulation of zonated gene expression [50, 53, 72]. More
recently, other signaling pathways have also been proposed and studied as potential mechanisms for
zonation [25, 46, 87].

Periportal end Pericentral end

hepatic artery
central vein

bile duct

portal vein

hepatocyte

Figure 1. Portal axis of a liver sinusoid as in [7].

Metabolic zonation is not the only form of heterogeneity seen across the sinusoid. Most liver
diseases show a varying amount of damage across the liver microstructure [50]. In NAFLD, studies
have shown that, for adult patients, steatosis is typically most severe in pericentral cells [2, 18, 19, 23,
46, 91]. However not all patients show such an aberrant accumulation of lipids on a particular part of
the sinusoid [19, 23]. Further, steatosis in pediatric patients with NAFLD tends to occur most severely
in periportal cells [91]. The cause of this “zonated steatosis” in NAFLD is still not fully understood,
however the heterogeneity of hepatocytes likely results in certain liver cells being more vulnerable to
lipid build up than others [7]. Further, in patients who have progressed to NASH, inflammation and
fibrosis tends to be most severe on the pericentral end of the sinusoid [1, 18, 23, 46].

Although it is well known that lipids tend to accumulate heterogeneously across the sinusoid (both
in NAFLD and in other liver diseases), the effect of metabolic zonation on such zonated steatosis
has received limited attention experimentally. To a great extent, this is because investigating changes
in individual regions of the sinusoid is extremely time consuming and complex [7]. Computational
models of liver metabolism that are spatially distributed give us the ability to explore relationships
between metabolic zonation and zonated steatosis without the high cost of experimentation. Since
NAFLD is induced by a change in metabolism, that is, the build up of lipids in the liver, it is likely
that metabolic zonation plays a major role in the pathology of this disease. Thus, the development
of computational models of liver metabolism that include the spatial effects of zonation are of utmost
importance in the continuing effort to understand and find treatment for NAFLD.

1.2. Spatially distributed models of liver metabolism

Computational models have been used previously to study the effect of zonation on detoxification
processes such as the detoxification of ammonia [67], xenobiotics [39, 82, 84], and drugs [70, 74], as
well as more generally in pharmacokinetics [4,69]. However, few models currently exist that explicitly
consider the heterogeneous expression of enzymes which defines metabolic zonation.

Existing mechanistic models of liver metabolism that include spatial distribution can be roughly
divided into two categories depending on the types of equations used: those which use partial
differential equations (PDEs) and those which use ordinary differential equations (ODEs). As will be
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shown later on, models from different categories may not always be as different from each other as
may appear at first glance. The PDE models can further be divided into models derived using the
theory of porous media and models that utilize advection or advection-dispersion equations.

The advantages of deriving a system using the theory of porous media is in the ability to more
accurately describe the process of blood perfusion through the liver lobule. This is of particular interest
since steatosis can affect hepatic hemodynamics [34, 61, 65, 85]. In a series of publications [75–77],
Ricken et al. develop a multi scale approach that does just this, coupling the blood perfusion through
the liver lobule with a description of hepatic cell metabolism. While metabolic zonation is not explicitly
included, they are still able to simulate some zonated steatosis.

Models using advection or advection-dispersion equations to represent the blood flow in the liver
have been around for decades finding applications in many areas such as hepatic elimination, drug
clearance, and capillary tissue exchange [11, 12, 29, 69, 78]. These models have generally been
referred to as parallel-tube and distributed models (advective flow) [11, 12, 37] and dispersion models
(advective-dispersive flow) [79]. A rather succinct but complete discussion pertaining to mass balance
and mass transport involving compartmental modeling, local concentration gradients, advection and
advection/dispersion in moving fluids can be found in Chapter 4 of [10]. In particular see Sections
4.4.1 and 4.4.2 of that reference along with a number of other excellent similar presentations and
discussions in Chapter 5 of [80], Chapters 15–17 of [59] as well as the by now classical text of
Okubo [68].

Similar models to the dispersion model have been used in the past decade to study aspects of hepatic
metabolism as well [21,24]. In 2006, Chalhoub et al. [24] used advection-dispersion-reaction equations
to represent the concentrations of metabolites in the sinusoid, coupled through metabolic transport to
mass-balance equations for the metabolites in the tissue. Enzymatic zonation is included for central
carbohydrate pathways, but not for lipid metabolism. In 2008, Calvetti et al. [21] used a model similar
to the one given in [24] to illustrate how one may embed such a model of cellular liver metabolism
into a Bayesian framework for parameter estimation purposes. However, zonation is excluded from
the model and the system is only considered at steady state. Use of these types of PDEs to model the
liver microstructure has appeared to lag in the past decade as compartmental models have started to
show prevalence. An explanation for this may be due to the appearance of these PDEs as being more
difficult to use in comparison to compartmental models which are composed of ODEs [4, 42].

Compartmental models for the liver that include spatial distribution were originally inspired by
“tanks-in-series” models from chemical engineering [42] and can be considered “compartments-in-
series” models. These models are comprised of systems of ODEs derived by considering a series of
compartments that are connected together, typically through blood flow. While early models of this
type had each compartment represent both blood and tissue [42] so that there is only a single series
of compartments, modern models tend to separate blood and tissue into different compartments with a
transport between them [6,7,13,67,81]. These models have a series of hepatic blood compartments that
are connected through blood flow along with a series of tissue compartments which are only connected
to their corresponding hepatic blood compartment (i.e., there is no explicit connection between tissue
compartments). These models often treat the series of compartments as being lined up along the
portocentral axis of the liver sinusoid, and as such treat this as the repeating unit of the liver (rather than
the hepatocyte). Recently, compartmental models that include spatial distribution have been applied
more specifically to hepatic metabolism.
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Schleicher et al. [81] used a three compartment model to simulate hepatic lipid metabolism. The
hepatic blood flow is a basic advective flow that transports concentrations of metabolites in the hepatic
blood from the periportal to the pericentral end of the sinusoid. This three compartment model is used
to look at how the plasma oxygen gradient, plasma FA gradient, as well as the process for FA uptake
affect the zonation of steatosis under a high-fat diet. Despite the fact that zonated enzyme expressions
are not included in this model, model simulations do show a zonated steatosis.

A much more complex compartmental model was used by Berndt et al. [13] to study glucose
metabolism and how it is affected by zonated enzyme expressions, metabolite and hormone gradients
in the sinusoid, and blood perfusion. This model includes the blood in the sinusoid, accompanying
space of Disse, as well as the adjacent layers of hepatocytes allowing the authors to take into account
both morphological and systemic parameters. Each component (sinusoid, space of Disse, and
hepatocytes) is partitioned into 20 − 25 compartments and flow is modeled in both the sinusoid and
the space of Disse as an advective-dispersive flow.

Among the more advanced recent compartmental models for liver metabolism is the one presented
by Ashworth et al. in [6, 7]. This 8 compartment model does not include any morphology like the
model in [13], however it does include a rather detailed representation of glucose, lipid, and energy
metabolism including zonated enzyme expressions and metabolite and hormone gradients in the
hepatic blood. The blood flow through the sinusoid is given by a simple advective flow from the
periportal to the pericentral end of the sinusoid. This model was used to investigate causes of
pericentral cell susceptibility to steatosis in NAFLD, especially in the case of insulin resistance. A
distinctive aspect of this model is the inclusion of an extra compartment that holds a simplified
representation of metabolism in the rest of the body including hormone release by the pancreas. This
extra “body” compartment acts as an input into the first hepatic blood compartment of the series of
compartments and takes the output of the final hepatic blood compartment to update its own
concentrations, thus creating a type of feedback into the system.

As NAFLD becomes more and more prevalent, the ability to perform accurate in silico experiments
is an integral part of uncovering important mechanisms and targets for these conditions. Compartments
in series models are an attractive tool that allow one to investigate how metabolic zonation, hepatic
blood gradients of metabolites and hormones, and even blood perfusion, affect liver metabolism at
various levels of complexity. In particular, these models boast the ability to investigate various aspects
of liver metabolism with sharp detail while keeping computational times reasonable. However, one
may question if the simplification to a number of compartments rather than a continuum may result
in the loss of information or misrepresentation of results. In what follows, we will examine a model
similar to the one presented in [6, 7] in order to begin attempting to answer this question. The two
main goals of this paper are (i) to investigate the effect that the number of compartments has on model
simulations and (ii) to investigate the effect of dispersion on the system.

2. Materials and method

We present the models of the liver microstructure under consideration here. Our models closely
resembles that of [6, 7], with the main differences being how concentrations in the systemic blood are
modeled as well as how we view the equations in the hepatic blood. We chose this model because it
was similar to one used by one (MN) of us in an earlier computational effort during a summer project
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at Pfizer and because it seems sufficiently detailed to illustrate the ideas of our focus here: how the
number of compartments and inclusion of dispersion in the flow affect simulation results. Even though
it does not treat a number of important factors treated in other liver modeling efforts [39, 75–77, 84]
such as hematocrit, transfer of oxygen between blood and hepatocyte, Hep to Hep transfer, varying
sinusoidal velocities, etc., we believe the model is sufficient for our purposes here.

We do model the concentrations of a number of metabolites, hormones, and oxygen in the liver
sinusoid. Equations are separated into those for the hepatocytes (referred to as hepatic equations), for
hepatic blood (i.e., blood/plasma in the sinusoid), and systemic blood (i.e., blood/plasma in the rest
of the body). While oxygen, hormones, and metabolites are all modeled in the hepatic and systemic
blood, only metabolites are modeled in the hepatocyte. However, the concentration of hormones and
oxygen in the hepatic blood do affect the metabolic processes that occur in the hepatocyte. A full list
of all the concentrations modeled is included in Table 1 along with what kinds of equations they have
and their abbreviated variable name that will be used to denote them throughout this paper. Figure 2
(see Figure 1 of [6] ) gives a schematic of the overall structure of the model. We will use the following
notation convention: variables in the hepatocyte will have a subscript H, variables in the hepatic blood
will have a subscript HB, and variables in the systemic blood will have a subscript S B. The only
exception to this will be molecules whose concentrations are only modeled in the hepatocyte (see the
third column of Table 1) which will not have any subscript.

Systemic blood

Periportal end

Hepatic blood

Pericentral end

Oxygen

availability

Cross membrane 

transport of metabolites

Hepatocyte

Compartment 1

Hepatocyte

Compartment 2

Hepatocyte

Compartment 3

Hepatocyte

Compartment 4

Hepatocyte

Compartment 5

Hepatocyte

Compartment 6

Hepatocyte

Compartment 7

Hepatocyte

Compartment 8Hepatocytes

Figure 2. Schematic of PDE model after Figure 1 of [6].

Table 1. All molecules represented in the model with their abbreviated variable name.
H denotes hepatic, HB denotes hepatic blood, SB denotes systemic blood.

Eqns in H, HB, SB Eqns in HB, SB Eqns in H
Glucose gC Insulin Ins Glycogen G

Triglycerides TG Glucagon GL Glucose-6-phosphate g6p
Fatty acids FA Oxygen Oxy Glycerol-3-phosphate g3p
Glycerol gly Acetyl-CoA aCoA
Lactate Lac Inorganic phosphate P

Guanosine Tri/Di-phosphate gtp/gdp
Uridine Tri/Di-phosphate utp/udp

Adenosine Tri/Di/Mono-phosphate atp/adp/amp
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2.1. Hepatocytes

The equations for molecule concentrations in the hepatocytes are given in Table 3 below.
In the model presented in [6,7], the rate of hepatic metabolic processes are modeled through the use

of Hill functions. Rather than modeling every individual enzyme, sections of the metabolic pathways
are often modeled by a single function, thus depending upon a number of intermediate enzymes rather
than a single one. Each substrate and allosteric activator/inhibitor is represented by a Hill function and
the rate of the process is calculated to be the product of these Hill functions. The hepatic metabolic
processes included in the model are given in Tables 4–6 along with the function for the rate of that
process.

The transport of metabolites between plasma and hepatocyte are modeled similarly. For
uni-directional transports, the rate is calculated using a Hill function where the plasma molecule is
treated as the substrate and the hepatic molecule as the product. For bi-directional transports, the rate
is calculated by a “Hill-like” function that depends on the difference in concentration of the molecule
between the plasma and hepatocyte. Table 2 shows the rates of transport of metabolites between
plasma and hepatocyte.

Table 2. Transports between hepatocytes (H) and hepatic blood (HB).

Transport Rate

Glycerol Tgly =
vgly([glyHB]−[glyH])
Kgly

M +[glyHB]+[glyH]

Triglyceride TTG = − vVLDL[TGH]
KVLDL

M +[TGH] +
vTG

(
[TGHB]− [TGH ]

TGre f

)
KTG

M +[TGHB]+ [TGH ]
TGre f

Fatty acid TFA =
vFA([FAHB]−[FAH]

KFA
M +[FAHB]+[FAH]

Glucose (GLUT2) TgC =
vgCpump [gCHB]

K
gCpump
M +[gCHB]

+
vgCdi f f ([gCHB]−[gCH])

K
gCdi f f
M +[gCHB]+[gCH]

Lactate TLac =
vLac([LacHB]−[LacH])
KLac

M +[LacHB]+[LacH]

The regulation of fatty acid (FA) transport and uptake into the liver is a complex and often debated
topic [62]. There is strong evidence for protein-mediated FA uptake with a number of membrane
proteins being implicated [3, 62]. In particular, in the liver such proteins include fatty acid translocase
FAT/CD36 [20,62,63], liver fatty acid binding protein LFABP [66,73], and fatty acid transport proteins,
specifically FATP2, FATP3, and FATP5 [3, 15, 16, 32, 33, 35, 62, 64]. Passive diffusion also contributes
to hepatic FA uptake, however this process is minimal in comparison to facilitated uptake [62].

In [6, 7], the FFA transport is composed of a uni-directional, insulin dependent term and a
bi-directional, insulin independent term. We omit the insulin dependent term here as, under
physiological conditions, the hepatic FA transporters that appear to be the major players in hepatic FA
uptake (LFABP, FATP2, FATP3, and FATP5) [3, 16, 66] are not known to be regulated by insulin. The
greatest evidence for insulin regulated hepatic FA uptake is in FAT/CD36 mediated FA uptake.

FAT/CD36 is a fatty acid transporter that is regulated by muscle contraction and/or insulin and is
an important protein implicated in FA uptake by skeletal muscle cells, cardiomyocytes, and adipocytes
[20]. Under physiological conditions, FAT/CD36 is weakly expressed in hepatocytes suggesting FA
uptake is largely FAT/CD36 independent [20]. However, there is evidence that hepatic mRNA and
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protein levels of FAT/CD36 at the plasma membrane of hepatocytes increases in patients with NAFLD
[20, 62, 63].

Of the FATP family of transporters, the only one known to be regulated by insulin is FATP1 [3].
While FATP1 does have some expression in the liver, this transport is more significant for skeletal
muscle, heart, and adipose tissue [3, 16]. In fact, studies have shown that while mice lacking FATP1
show a decrease in insulin-stimulated long chain FA uptake in adipocytes and skeletal muscle, they
actually have an increase in long chain FA uptake in the liver [90].

Table 3. Equations for hepatic concentrations (H).

Molecule Equation

Glycogen ∂[G]
∂t = RGS − RGP

Glucose-6-phosphate ∂[g6p]
∂t = RGK − RG6Pase − RGS + RGP + 1

2RFBP − RPFK

Glucose ∂[gCH]
∂t = −RGK + RG6Pase + TgC

Glycerol-3-phosphate ∂[g3p]
∂t = RPEPCK − RFBP + 2RPFK − RPK − RTS yn + RGlyK

Lactate ∂[LacH]
∂t = −RPEPCK + RPK − RPDH + TLac

Acetyl-CoA ∂[aCoA]
∂t = RPDH + 8Rβoxi − RLgen −

1
12RAT PS

Fatty acid ∂[FAH]
∂t = −Rβoxi + 1

8RLgen + 3RLip − 3RTS yn + 1
2TFA

Triglyceride ∂[TGH]
∂t = −RLip + RTS yn + TTG

Glycerol ∂[glyH]
∂t = RLip − RGlyK + Tgly

Guanosine Tri-phosphate ∂[gtp]
∂t = −RPEPCK + RNDKG

Guanosine Di-phosphate ∂[gdp]
∂t = RPEPCK − RNDKG

Uridine Tri-phosphate ∂[utp]
∂t = −RGS + RNDKU

Uridine Di-phosphate ∂[udp]
∂t = RGS − RNDKU

Inorganic phosphate ∂[P]
∂t = RG6Pase + 2RGS − RGP + 2RPEPCK + 1

2RFBP

−2.25RPK − 2.5RPDH + 3Rβoxi + 7
8RLgen

+7RTS yn − RAT PS + RAT Pu − RPReg

Adenosine Tri-phosphate ∂[atp]
∂t = −RGK − 2RPEPCK − RPFK + 3.25RPK

+2.5RPDH − 2Rβoxi −
7
8RLgen − 3RTS yn − RGlyK

+RAT PS − RNDKU − RNDKG − RAK − RAT Pu

Adenosine Di-phosphate ∂[adp]
∂t = RGK + 2RPEPCK + RPFK − 3.25RPK

−2.5RPDH + Rβoxi + 7
8RLgen + RGlyK

−RAT PS + RNDKU + RNDKG + 2RAK + RAT Pu

Adenosine Mono-phosphate ∂[amp]
∂t = Rβoxi + 3RTS yn − RAK
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2.1.1. Zonation

The zonation of the enzyme expressions are modeled through the metabolic processes (pathways)
they are involved in by utilizing information about the enzymes involved in the process as well as the
location of the hepatocyte along the sinusoid. Hepatocytes are assigned values zx ∈ [−1, 1] (roughly)
depending upon the concentration of oxygen in the plasma at the same point as the hepatocyte along
the sinusoid. A negative zx value indicates the hepatocyte is on the pericentral end of the sinusoid,
while a positive zx value indicates the hepatocyte is on the periportal end.

Each metabolic process M is also assigned a zonation constant kM ∈ (−1, 1) that depends upon the
experimentally measured ratio of the enzyme expression in periportal cells to pericentral cells. The
rate constant for the metabolic process in a hepatocyte at point x along the sinusoid is then calculated
as

vM
x = (1 + zxkM)vM

b (2.1)

where vM
b is the base-value for the rate constant of metabolic process M.

2.2. Systemic blood

It is in the representation and inclusion of metabolic processes in the systemic blood (referred to
as the body compartment in [6, 7]) that the model presented here truly differs from the model in [6, 7]
(excluding the addition of dispersion discussed in Section 2.3.2). These changes were made in order to
improve biological detail as well as to simplify the equations here. Since the main focus of this model
is on liver metabolism, we leave these equations as simple as possible while keeping the concentrations
at realistic levels. The main issue we came across was that the meal inputs were too significant of a
driver of the system and resulted in metabolite concentrations falling too quickly in the absence of these
inputs. To address this, we adjust the equations for the concentrations of metabolites and hormones in
the systemic blood. A summary of the most significant changes is given below. Plots showing selected
metabolite and hormone levels in the systemic blood before and after these changes are given in Figure
3. Equations for the concentrations in the systemic blood are given in Table 7 (note, SIns and SGL are
the rates of release of insulin and glucagon, respectively, by the pancreas. This takes the same form
here as it does in [6], although constants may be changed).

2.2.1. Glucose uptake in body

In the original model, glucose uptake in the rest of the body is represented by a function S̃gCup

dependent on plasma glucose level alone. This function takes the form of a Michaelis-Menten or
Briggs-Haldane function [9, 80] (which is also called a simple Hill function with exponent 1) and is
given by

S̃gCup =
v[gCS B]

KM + [gCS B]
. (2.2)

While there is insulin independent glucose uptake in the body such as in the brain, the uptake of
glucose in other tissues (such as muscle and adipose) does depend upon insulin [22, 83]. For this
reason, we formulated a second term for the rate of insulin dependent glucose uptake in the body using
Hill functions. Our resulting function for the rate of glucose uptake in the rest of the body is given by

SgCup =
v1[gCS B]n1

Kn1
M1

+ [gCS B]n1
+ v2

 [InsS B]nI

KnI
MI

+ [InsS B]nI

  [gCS B]n2

Kn2
M2

+ [gCS B]n2

 . (2.3)

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1082–1114.



1094

0 5 10 15 20 25 30 35
time (hours)

0

1

2

3

4

5

6

7

8

9

Pl
as

m
a 

gl
uc

os
e 

(m
M

)

Updated model
Original model

(a) Systemic blood glucose levels over 36 hours.

0 5 10 15 20 25 30 35
time (hours)

-100

0

100

200

300

400

500

600

Pl
as

m
a 

in
su

lin
 (p

M
)

Updated model
Original model

(b) Systemic blood TG levels over 36 hours.

0 5 10 15 20 25 30 35
time (hours)

0

0.5

1

1.5

2

2.5

Pl
as

m
a 

tri
gl

yc
er

id
es

 (m
M

)

Updated model
Original model

(c) Systemic blood insulin levels over 36 hours.
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Figure 3. Concentrations in systemic blood before and after model changes.
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Table 7. Equations for systemic blood concentrations (S B).

Molecule Equation

Glycerol d[glyS B]
dt = QS ([glyHB(L, t)] − [glyS B]) + 1

3SAdLip

Triglyceride d[TGS B]
dt = QS ([TGHB(L, t)] − [TGS B]) + sTGSMeal −

ln 2
λ

[TGS B]

Fatty acid d[FFAS B]
dt = QS ([FAHB(L, t)] − [FAS B]) + SAdLip − c f [FAS B]

Glucose d[gCS B]
dt = QS ([gCHB(L, t)] − [gCS B]) + SMeal − SgCup

Lactate d[LacS B]
dt = QS ([LacHB(L, t)] − [LacS B])

Insulin d[InsS B]
dt = QS ([InsHB(L, t)] − [InsS B]) + sInsSIns + bIns

Glucagon d[GLS B]
dt = QS ([GLHB(L, t)] − [GLS B]) + sGLSGL

Oxygen d[OxyS B]
dt = QS ([OxyHB(L, t)] − [OxyS B]) + cOxy

The parameters for this function were estimated using a weighted least squares scheme with data
from [28] and predictions were tested using data from [86] (see Figure 4). Finally, to get SgCup in
terms of the correct units for our model, we divide the rate by the volume of distribution of glucose,
estimated to be 14 L.

We note that the data used to estimate the parameters for SgCup are extremely sparse and as such
identifiability is nearly impossible to obtain from this data set alone. However, in this work we
prioritize biological detail over identifiability concepts and as such assume our parameter estimates
are sufficient with low confidence.

2.2.2. Lipolysis in adipose tissue

With no adipose compartment in the model, there is also no triglyceride storage in adipose tissue. In
[6], plasma triglycerides are treated as adipose triglycerides for lipolysis in adipose tissue. To account
for the fact that the size of the plasma triglyceride pool is much smaller than those stored in adipose
tissue, rate constants that had a slow dependence upon plasma glucagon and insulin concentration were
used. In our simulations, however, this adjustment to the rate constants did not prevent the plasma
triglyceride pool from emptying during fasting periods (i.e., periods without meal inputs). To alleviate
this, we take the rate of lipolysis in adipose tissue to be driven by insulin action alone. Figure 5
gives schematic representations of how lipolysis in adipose tissue is represented in the model from [6]
(Figure 5a) and in the model given here (Figure 5b).

Following the work of Periwal et al. [60, 71], we model the rate of lipolysis in adipose tissue with
the following system

d[FAS B]
dt

= L(IA) − c f [FAS B] (2.4a)

dIA

dt
= cI([InsS B] − IA − Ib) (2.4b)

L(IA) = l0 +
l2

1 + (IA/IA2)α
(2.4c)
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where IA is insulin action with initial condition IA(0) = 0, L = SAdLip is the rate of lipolysis, and
c f is general clearance of FFA to the body. This model was fitted using data from [60] as well as
mean parameter estimates and standard deviations provided therein as initial guesses and weights in a
weighted least squares formulation. Figure 6 shows the fit to the FFA data where the model (2.4) was
driven by insulin data.

Once the parameters for (2.4) were estimated, parameters for the transport as well as c f were then
adjusted so that approximately 30% of FFA being cleared to the body is transported to the liver. This
amount is based on the percentage of palmitate cleared by the liver as indicated by data in [44].
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Figure 4. Data fit and model predictions for glucose uptake in rest of body.

(a) Adipose lipolysis in [6]. (b) Adipose lipolysis in model presented here.

Figure 5. Schematics of how adipose lipolysis is modeled.
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Figure 6. Data fit to (2.4).

2.2.3. Meal inputs

In [6], the meal inputs are given by a high-powered sine function (i.e., vin sin6(2πt/(2 hours)) for
some constant vin). This representation for meal input causes sharp peaks with steep slopes in plasma
glucose concentrations as well as other concentrations dependent on glucose (such as insulin).
However, data shows [26, 27, 31] that the effect of meal ingestion upon concentrations of plasma
metabolites should not give such a steep slope of decrease. These sharp peaks are largely due to the
dynamics of the high-powered sine function which itself exhibits sharp peaks. Thus, to reduce the
slopes of the peaks in plasma glucose concentration (and other plasma metabolites), we represent the
meal inputs using the solution to a basic differential equation (DE) that simulates the passage of food
through the body (see Figure 7).

Meal

��

G1
k1 // G2

k2 // Systemic blood

Figure 7. Schematic of meal input DE.

The DE used to simulate meal ingestion is a two-compartment model where each compartment
represents part of the gut and is given by dG1

dt = −k1G1 + αGin fs, G1(0) = αGin
dG2
dt = k1G1 − k2G2, G2(0) = 0.

(2.5)
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The rate of change in plasma glucose from the ingestion of meals is then given by Smeal = k2G2. The
source function, fs is a Gaussian centered at two hours after the beginning of the meal. The meal
cycle is: meals occur every 4 hours for 12 hours, then no meals for 12 hours (to simulate rest).

2.3. Hepatic Blood

In this paper, we will look at modeling the hepatic blood flow two different ways. One is modeling
the blood flow as just a pure advective flow, which leads us to an advection-reaction (AR) equation for
the concentrations of metabolites in the hepatic blood. The other is using Taylor’s axial dispersion
model which results in advection-dispersion-reaction (ADR) equations for the concentrations of
metabolites in the hepatic blood. We perform simulations using both the AR and ADR equations and
compare the results to determine whether or not the addition of dispersion in the blood flow, while
more biologically accurate, has a significant effect upon the model solutions. The equations for both
the AR system and the ADR system are given in Table 8. We note that we leave the equations for the
hormones and oxygen the same for both models as they just give a basic gradient.

Table 8. Equations for hepatic blood concentrations (HB).

Mol. AR Equation ADR Equation
gly ∂[glyHB]

∂t = QH
∂[glyHB]

∂x − γHTgly
∂[glyHB]

∂t = QH
∂[glyHB]

∂x − Dgly
∂2[glyHB]

∂x2 − γHTgly

TG ∂[TGHB]
∂t = QH

∂[TGHB]
∂x − γHTTG

∂[TGHB]
∂t = QH

∂[TGHB]
∂x − DTG

∂2[TGHB]
∂x2 − γHTTG

FA ∂[FAHB]
∂t = QH

∂[FAHB]
∂x − γHTFA

∂[FAHB]
∂t = QH

∂[FAHB]
∂x − DFA

∂2[FAHB]
∂x2 − γHTFA

gC ∂[gCHB]
∂t = QH

∂[gCHB]
∂x − γHTgC

∂[gCHB]
∂t = QH

∂[gCHB]
∂x − DgC

∂2[gCHB]
∂x2 − γHTgC

Lac ∂[LacHB]
∂t = QH

∂[LacHB]
∂x − γHTLac

∂[LacHB]
∂t = QH

∂[LacHB]
∂x − DLac

∂2[LacHB]
∂x2 − γHTLac

Ins ∂[InsHB]
∂t = QH

∂[InsHB]
∂x − kIns[InsHB] ∂[InsHB]

∂t = QH
∂[InsHB]

∂x − kIns[InsHB]
GL ∂[GLHB]

∂t = QH
∂[GLHB]

∂x − kGL[GLHB] ∂[GLHB]
∂t = QH

∂[GLHB]
∂x − kGL[GLHB]

Oxy ∂[OxyHB]
∂t = QH

∂[OxyHB]
∂x − kOxy[OxyHB] ∂[OxyHB]

∂t = QH
∂[OxyHB]

∂x − kOxy[OxyHB]

2.3.1. Advection-Reaction (AR) Version

In [6, 7], the authors explain that they partition the hepatocytes around the sinusoid and blood
flowing through the sinusoid into compartments depending upon where they lie on the sinusoid (see
Figure 8). In this view, one might think of the model as multiple two compartment models that are
connected by the blood flow through the hepatic blood compartments. This blood flow is modeled
through a basic rate-in minus rate-out term. That is, supposing we’ve partitioned the hepatic blood
into n compartments (note, in [6], these are referred to as “blood compartments”), if [CHB]i is the
concentration of metabolite C in hepatic blood compartment i, then the equation for [CHB]i is given by

d[CHB]i

dt
= vb f ([CHB]i−1 − [CHB]i) − γHT

C
i (2.6)

for i = 1, . . . , n. Here, γH is the ratio of hepatic to hepatic blood volume and T C
i is the rate of transport

of metabolite C between hepatic blood compartment i and hepatic compartment i. The rate of blood
flow vb f is given by

vb f = QHn (2.7)
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per second, where QH = 0.15. This value for QH was chosen in order to make a circuit of blood flow
last approximately 5 minutes [6]. Note then that we have

d[CHB]i

dt
=

QH

1/n
([CHB]i−1 − [CHB]i) − γHT

C
i (2.8)

and observe that
∂[CHB]i

∂x
≈

QH

1/n
([CHB]i−1 − [CHB]i) (2.9)

for i = 1, . . . , n, is the first order upwind advection discretization on an uniform mesh. Thus, while the
model in [6,7] can be considered a compartments-in-series model comprised solely of ODE’s, one can
also view it as an advection-reaction equation strongly coupled to mass-balance equations describing
the concentrations of metabolites [9, 10] in the liver cells (see Figure 2). That is, we allow [CHB] and
[CH] to be spatially dependent and write

∂[CHB]
∂t

= QH
∂[CHB]
∂x

− γHT
C([CHB], [CH]). (2.10)

We note that QH is in units 1
second . That is, this advection equation is dimensionless in the axial

direction. This implies that we can assume our sinusoid length is L = 1.
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Figure 8. Schematic of compartments-in-series model.

In [6, 7], when viewing the model as a compartments-in-series model, the authors treat the blood
flow in the systemic blood (referred to in [6, 7] as the body compartment) similarly. If [CHB]n is
the concentration of metabolite C is the final compartment of the hepatic blood, and [CS B] is the
concentration in the systemic blood, then

d[CS B]
dt

=
QH

γB
([CHB]n − [CS B]) + S (2.11)

where γB is the ratio between the volume of systemic blood to the volume of hepatic blood, and S
represents the metabolic processes included in the model from the rest of the body. When considering
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the concentrations of metabolites in the hepatic blood to be spatially dependent (rather than
compartment dependent), the concentration of metabolites in the systemic blood actually become
Dirichlet boundary conditions for the hepatic blood equations. Thus the dynamics of the
concentration of metabolite C in the hepatic blood is given by

∂[CHB]
∂t

= QH
∂[CHB]
∂x

− γHT
C([CHB], [CH]), 0 < x < 1, t > 0, (2.12)

[CHB](0, t) = [CS B](t), t > 0, (2.13)
[CHB](x, 0) = fHB, 0 < x < 1, (2.14)

where fHB represents the initial distribution of the concentration of metabolite C in the hepatic blood.
Here, we keep the feedback loop by using the ODE

d[CS B]
dt

=
QB

γB
([CHB](1, t) − [CS B](t)) + S, (2.15)

with initial condition [CS B](0) = fS B to obtain the value of [CS B].

2.3.2. Advection-Dispersion-Reaction (ADR) Version

While an AR equation such as the one given in Section 2.3.1 is a good model for simple flows, the
actual dynamics of blood flow through a capillary are much more complex than just a pure advective
flow. Here, we include the effect of the dispersion that occurs due to the flow by modeling the blood
flow using Taylor’s axial dispersion model [36]. This model has been used previously for blood flow
through the liver sinusoid in other works such as [21, 24]. Here, we add a dispersion or diffusion
term [10] to the AR model of Section 2.3.1 in order to get an advection-dispersion-reaction (ADR)
equation in order to compare the two and thus determine whether or not a dispersion term makes a
significant difference for the model presented here (one of the primary goals of this presentation).

The addition of a dispersion term, and thus the addition of a second spatial derivative, requires
boundary conditions at both the periportal and pericentral ends of the sinusoid in order to remain
well-posed (in contrast, the AR equation only requires boundary conditions at one end). To
accommodate this, we assign homogeneous Neumann conditions at the pericentral end to indicate that
the concentration of the metabolite leaving the sinusoid is the same as the concentration entering the
systemic blood. The concentration of metabolite C in the hepatic blood is now given by

∂[CHB]
∂t

= QH
∂[CHB]
∂x

− DC
∂2[CHB]
∂x2 − γHT

C([CHB], [CH]), 0 < x < 1, t > 0, (2.16)

[CHB](0, t) = [CS B](t), t > 0, (2.17)
∂[CHB]
∂x

(1, t) = 0, t > 0, (2.18)

[CHB](x, 0) = fHB, 0 < x < 1, (2.19)

where DC is the dispersion coefficient of metabolite C in blood and everything else is defined as in
Section 2.3.1 (including the equation for [CS B]).

Determining the appropriate values for DC is nontrivial due to the fact that QH is dimensionless in
the axial direction. This implies that we need DC to be dimensionless in the axial direction as well. The
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difficulty here is the requirement to keep things scaled appropriately with respect to the biology without
knowing the scaling factor used to render the AR equations dimensionless. In order to determine an
appropriate scaling factor, we must look more closely at the role of vb f in the model from [6, 7].

If n is the number of compartments into which the hepatic blood has been separated (in [6,7], these
are referred to as the blood compartments), then

vb f =
average rate of blood flow in the liver

volume of blood compartment
. (2.20)

In general, the rate of blood flow in the liver is given by the volume of blood in the liver divided by the
time it takes the blood to go through the liver. Since the volume of a blood compartment should be the
volume of blood in the liver divided by n (the number of compartments), we get that

vb f =
n

time it takes blood to go through the liver
. (2.21)

Thus, from (2.7), we have that, under this scaling, the time it takes blood to go through the liver is 1
QH

seconds.
In order to have an unscaled advection equation, we would need to know the velocity of the blood

in the liver. Let v be this velocity. Then

v =
distance traveled through liver

time it takes blood to go through the liver
=

L
1/QH

(2.22)

or
v = QHL. (2.23)

Now, while our model is of the liver microstructure (that is of a liver sinusoid and the surrounding
cells), the concentrations of metabolites our model gives is actually representative of the accumulation
from all sinusoids in the liver. On the other hand, in [24], the authors model the production from a
single sinusoid using Taylor’s axial dispersion and using physical measurements for the length of the
sinusoid, velocity of blood, etc. Assuming then that our model gives us the concentration from a single
sinusoid times the number of sinusoids in the liver, one can obtain that we should have v = vsin and
Ds

C = Dsin
C where vsin and Dsin

C are the velocity of blood and dispersion coefficient in a single sinusoid
respectively and Ds

C is the unscaled dispersion coefficient for our model. In [24] Lsin = 1mm is used as
the length of the sinusoid and τ = 5.4 seconds is assumed to be the time it takes blood to get through a
sinusoid. Thus, we can calculate

L =
v

QH
=

Lsin

QHτ
= 1.23mm. (2.24)

Now that we have our scaling factor L, we can follow the process and values in [24] to compute
Dsin

C and then divide by L2 in order to obtain the scaled dispersion coefficient DC that we will use in our
simulations. That is, we use Renkin’s equation [38]

Di
C = 1.013 × 10−4 × (MW)−0.46 cm2

s
(2.25)
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to compute the diffusion coefficient Di
C using the molecular weight MW of C. We then use the Aris-

Taylor’s relation [36]

Dsin
C = Di

C +

(
vsinds

2

)2

48Di
C

(2.26)

to calculate Ds
C (where ds is the diameter of the sinusoid (given in [24])). Finally, we scale the

dispersion coefficient to obtain

DC =
Ds

C

L2 . (2.27)

The values used here are the same as those used in Chalhoub, et al. We do not believe simulating
shorter sinusoids (e.g. 0.25 mm) with higher transit times (e.g., 1 second) will significantly affect the
results. Doing such a simulation would cause the scaling factor L to be 1.67 rather than 1.23 and
hence means that we would be dividing dispersion coefficients by 2.7889 rather than 1.5129. Since the
unscaled dispersion coefficients themselves are already on the order of 10−4, dividing by 2.7889 rather
than 1.5129 will not have a significant affect.

3. Results

Discretization in space is carried out using a first-order upwind difference for the advection term
and a second-order central difference for the dispersion term. The resulting ODE’s are then solved
using ode15s from the Matlab ODE suite.

First, we look at how varying the mesh size h = 1/n affects the numerical solutions of the AR
version of the model (equivalently, seeing how varying the number of compartments n affects the
compartments-in-series ODE model). Figure 9 shows some of the metabolite levels at the time when
the difference between the metabolite levels from the most coarse grid used (n = 5) and the most fine
grid used (n = 500) is largest. While the change in the metabolite levels from varying n can be rather
small in some cases (e.g. change in hepatic blood glucose levels only reaches 0.37 − 0.43% of the
span of hepatic blood glucose levels), in other cases it is much larger as can be seen from Table 9
which shows the largest change seen in the metabolites due to varying n from 5 to 500 using 72 hour
simulations. We note that since the span of the metabolite levels varies depending upon where the
level is taken on the sinusoid, these changes were calculated separately for each spatial grid point on
the coarse grid (in this case, n = 5) and the span given in Table 9 contains the largest changes in the
metabolite level at each coarse grid point.

The differences seen due to the mesh size (or number of compartments) can be explained by the
addition of numerical dispersion in the hepatic blood equations through the first-order upwind
advection discretization. It can be shown that while the first-order upwind scheme is first-order
accurate to the advection equation

ut + aux = 0, (3.1)

it is actually second-order accurate to the modified advection-dispersion equation

ũt + aũx =
1
2

ahũxx, (3.2)

where a is the advection coefficient and h the mesh size [47]. Thus, the amount of numerical
dispersion being introduced in the numerical solution is directly related to the mesh size (or number
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of compartments). We see further that the change in the hepatic blood metabolite levels also has a
strong effect on the hepatic metabolite levels seen through the large changes seen in these levels
(Table 9, two middle and two right columns). This is likely due to the strength of the coupling
between these sets of equations. We also note that, regardless of the addition of numerical dispersion,
it appears that if the mesh size h is not sufficiently small (or number of compartments n sufficiently
large), then interesting spatial dynamics of the levels in the hepatocytes may be lost as can be seen by
Figures 9e and 9f.

Secondly, we want to investigate how the intentional inclusion of dispersion affects the system. That
is, we wish to compare the AR simulation results with the ADR simulation results. In an attempt to
limit the effect of numerical dispersion from the advection term while keeping computation time fairly
short, we use n = 50 compartments (or a mesh size of h = 1/50). From Figure 9 it appears that most
of the metabolite levels start to converge around n = 50. Further, Table 10 shows that the changes in
all metabolite levels between n = 50 and n = 500 is less that 10% the span of the metabolite.

Table 9. Change of metabolite levels in over x from refining the mesh from n = 5 to n = 500
(relative to overall range of metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

gCHB 0.37 − 0.43% gCH 1.01 − 2.73% gdp 9.91 − 31.7%
TGHB 0.91 − 0.92% TGH 2.91 − 61.5% gtp 9.91 − 31.7%
FAHB 6.94 − 7.00% FAH 8.07 − 28.5% udp 3.87 − 10.9%
glyHB 6.87 − 17.4% glyH 3.51 − 28.2% utp 3.87 − 10.9%
LacHB 7.48 − 8.00% LacH 7.12 − 17.1% adp 15.4 − 54.7%
OxyHB 16.0 − 80.6% G 4.57 − 42.2% atp 11.1 − 26.2%
GLHB 6.43 − 9.94% g6p 3.47 − 36.9% amp 10.5 − 26.1%
InsHB 5.87 − 14.9% g3p 9.94 − 35.8% P 8.57 − 61.4%

aCoA 10.9 − 38.0%

Table 10. Change of metabolite levels over x from refining the mesh from n = 50 to n = 500
(relative to overall range of metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

gCHB 0.0342 − 0.0386% gCH 0.052 − 0.38% gdp 0.82 − 3.10%
TGHB 0.0832 − 0.0835% TGH 0.21 − 5.88% gtp 0.82 − 3.10%
FAHB 0.65 − 0.66% FAH 0.58 − 2.76% udp 0.18 − 1.16%
glyHB 0.63 − 1.69% glyH 0.30 − 3.29% utp 0.18 − 1.16%
LacHB 0.59 − 0.68% LacH 0.62 − 1.74% adp 1.42 − 4.39%
OxyHB 1.48 − 7.76% G 0.065 − 4.21% atp 0.69 − 2.42%
GLHB 0.60 − 0.93% g6p 0.32 − 7.11% amp 0.70 − 2.41%
InsHB 0.53 − 1.37% g3p 0.83 − 3.63% P 0.70 − 5.81%

aCoA 0.57 − 3.80%
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Figure 9. Metabolite levels for various mesh sizes across the sinusoid at time of largest
difference between h = 1/5 and h = 1/500 (72 hour simulations).
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Figure 10 depicts the metabolite levels across the sinusoid at the time for which the solutions to
the AR and ADR versions of the model have the largest difference for each particular metabolite (as
measured by the discrete 2 norm). As can be seen from Figure 10, there does not appear to be a
significant difference between the solutions from the AR and ADR versions of the model. Further
the differences are small in comparison to the span of the metabolite levels over time as can be seen
from Table 11. This indicates that the addition of dispersion may not have a significant effect on the
metabolite levels. However, we note that the presence of numerical dispersion could be muffling the
effect of the actual dispersion. In fact, in these simulations the numerical dispersion is on the order
of 10−3 while the actual dispersion is only on the order of 10−4. Thus, though the actual dispersion
does not have much of an effect in these numerical simulations, other discretizations could reveal the
dispersion to have a larger effect than seen here.

Table 11. Change of metabolite levels over x between AR and ADR simulation (relative to
overall range of AR simulation metabolite level).

Largest Largest Largest
Variable change Variable change Variable change

gCHB 0.434 − 0.527% gCH 0.438 − 0.520% gdp 0.279 − 1.557%
TGHB 0.135 − 0.136% TGH 0.251 − 0.656% gtp 0.279 − 1.557%
FAHB 0.7698 − 0.723% FAH 0.360 − 0.976% udp 1.27 − 1.49%
glyHB 0.705 − 1.37% glyH 0.763 − 1.72% utp 1.27 − 1.49%
LacHB 1.35 − 2.10% LacH 1.10 − 1.90% adp 0.325 − 1.52%
OxyHB 0.505e-4 − 3.82e-4% G 0.719 − 0.940% atp 0.380 − 1.27%
GLHB 0.258 − 0.493% g6p 0.375 − 0.670% amp 0.358 − 1.26%
InsHB 0.761 − 0.765% g3p 0.535 − 1.63% P 0.153 − 0.579%

aCoA 0.338 − 0.979%

Lastly, under this discretization, it appears that including the dispersion term actually increases
computation time exponentially. Simulations were run using various mesh sizes (from h = 1/5 to
h = 1/50) and computation times were recorded. Figure 11 illustrates the ADR computation times as a
function of the AR computation times. The Matlab function lsqcurvefit was used to fit an exponential
to this data and, at least empirically, appears to capture the trend quite well. The fit exponential is given
by

tADR = 0.1720e0.3119tAR (3.3)

where tADR and tAR are computation times for the ADR and AR systems respectively.

4. Conclusion

In this paper, we investigate the effect the number of compartments used in a model of the liver
microstructure (similar to the one presented in [6, 7]) has on the simulated concentrations as well as
how including dispersion affects the system. The model of the liver microstructure from [6, 7] was
adjusted in order to keep metabolic levels realistic when the system is not being driven by meal inputs.
This adjustment included, most influentially, the addition of insulin dependent glucose uptake in the
body excluding the liver, rate of lipolysis in adipose tissue depending solely upon insulin action, and
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Figure 10. Metabolite levels for AR and ADR versions of the model across the sinusoid at
time of largest difference (24 hour simulations).

representation of meal inputs as the solution to a two-compartment model of ingestion in the gut. The
model in [6,7] is presented as a compartments-in-series model, however we present it here as a system
of advection-reaction equations that give the dynamics of concentrations in the hepatic blood, coupled
to mass-balance equations that provide dynamics for the concentrations in the hepatic tissue. The
in-flow boundary condition for the hepatic blood equations is given by the solution to an ODE that
yields a basic representation of metabolism in the rest of the body which depends upon the out-flow
concentrations, hence creating a feedback loop. The reason for this difference in representation is the
fact that the equations for concentrations in the hepatic blood in the compartments-in-series model
given in [6, 7] are equivalent to advection-reaction equations that have been spatially discretized using
a upwind forward difference and a mesh size of h = 1/8 (corresponding to n = 8 compartments).
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Numerical simulations were carried out using the upwind forward difference discretization for the
advection term in order to investigate how changing the number of compartments n affects the
compartments-in-series model. We find that the value of n does have a large affect on the simulated
concentrations, as can be seen from Table 9. One of the advantages of viewing this system as a PDE
as opposed to a compartments-in-series ODE is the ability to analyze the numerical simulations in
terms of spatial discretization. Indeed, by analyzing the modified equation (3.2) we see that numerical
dispersion has been introduced into the solution, the amount of which has an inverse relationship with
the number of compartments n. Interestingly, we find that the value of n has, in many cases, an even
larger affect on the hepatic concentrations than on the hepatic blood concentrations. This seems
counter intuitive as there is no spatial discretization in the equations for hepatic concentrations, thus
no numerical dispersion is directly introduced to these concentrations. Thus, the numerical dispersion
can only affect these concentrations indirectly through the coupling of the hepatic blood to the hepatic
equations. This, then, is a testament to the strength of the coupling in the system, both between
hepatic and hepatic blood variables as well as between the hepatic variables themselves since not all
hepatic equations are directly coupled to a hepatic blood equation.

We also address how intentionally included dispersion affects the system. This is of interest because
it is biologically more accurate and has been included in other models of the liver microstructure. Most
notably, Berndt et al. [13] include a dispersive affect in the blood flow of their compartments-in-series
model. When looked at closely, one sees that this dispersion is in fact modeled through a second-order
central difference discretization for a standard dispersion term (that is, a discretization for ∂2

∂x2 ). We
use the same discretization in our simulations here and find that the inclusion of dispersion does not
appear to have a significant affect on our system (see Table 11). Further, the addition of dispersion
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appears to increase computation time exponentially. Thus, we conclude that for models discretized in
this way, it is more efficient to use just the AR version over the ADR version. However, we note that
the numerical dispersion is dominating the actual dispersion, and is thus likely muting the effect of the
actual dispersion. If we consider the system as a PDE system, then we can utilize more accurate spatial
discretizations in order to better analyze the effect of dispersion. Advection-dispersion equations are
known to be difficult to solve numerically and every discretization has its pros and cons [47]. However,
because of this there is a wide breadth of research on how to solve these systems numerically, and as
such there is an abundance of existing algorithms one could utilize. Unfortunately, the size of the
system considered in this paper along with the stiffness and strong coupling of the system make other
discretizations difficult to implement and computationally costly. Because of this, we recommend
testing other discretizations on a smaller system that has the same form as the one considered here.
This preliminary study on a smaller system will lend valuable insights into what numerical scheme
will be most effective for systems of this type.

In the past, arguments have been made for compartments-in-series models over PDE models for
hepatic elimination often citing the mathematical simplicity of ODEs compared to PDEs [4, 42].
However, many of these compartments-in-series models are equivalent to a spatially discretized PDE,
especially in how they’ve been used thus far to model liver metabolism. Thus, considering these
models strictly as ODEs is potentially limiting the information and insights these systems may be able
to give us. In particular, if our goal is to understand why and how certain spatially dependent
processes occur, such as metabolic zonation and the phenomena of zonated steatosis in liver disease,
then it makes sense to consider systems of PDEs which give us more options when it comes to
discretizing spatially in numerical schemes. Further, PDEs lends themselves more appropriately in
this problem to theoretical analyses that can unveil properties of the system such as the functional
framework and stability. Compartments-in-series models are very useful computational tools and
considering these systems from the perspective of a PDE does not diminish that. Rather, it provides
more options and tools with which to analyze the system, both numerically and theoretically.
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Aspichueta, J. González-Gallego and C. Garcı́a-Monzón, Hepatic fatty acid translocase CD36
upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in
non-alcoholic steatohepatitis and chronic hepatitis C, Gut, 60 (2011), 1394–1402.

64. H. Mitsuyoshi, K. Yasui, Y. Harano, M. Endo, K. Tsuji, M. Minami, Y. Itoh, T. Okanoue and
T. Yoshikawa, Analysis of hepatic genes involved in the metabolism of fatty acids and iron in
nonalcoholic fatty liver disease, Hepatol. Res., 39 (2009), 366–373.

65. A. Mohammadi, M. Ghasemi-rad, H. Zahedi, G. Toldi and T. Alinia, Effect of severity of steatosis
as assessed ultrasonographically on hepatic vascular indices in non-alcoholic fatty liver disease,
Med. Ultrason., 13 (2011), 200–206.

66. E. P. Newberry, Y. Xie, S. Kennedy, X. Han, K. K. Buhman, J. Luo, R. W. Gross and N. O.
Davidson, Decreased hepatic triglyceride accumulation and altered fatty acid uptake in mice with
deletion of the liver fatty acid-binding protein gene, J. Biol. Chem., 278 (2003), 51664–51672.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1082–1114.



1113

67. H. Ohno, Y. Naito, H. Nakajima and M. Tomita, Construction of a biological tissue model based
on a single-cell model: a computer simulation at metabolic heterogeneity in the liver lobule, Artif.
Life, 14 (2008), 3–28.

68. A. Okubo, Difffusion and Ecological Problems: Mathematical Models, Springer-Verlag, Berlin,
Heidelberg, New York, 1980.

69. K. S. Pang, M. Weiss and P. Macheras, Advanced pharmacokinetic models based on organ
clearance, circulatory, and fractal concepts, AAPS J., 9 (2007), E268–E283.

70. S. Park, S. H. J. Kim, G. E. P. Ropella, M. S. Roberts and C. A. Hunt, Tracing multiscale
mechanisms of drug disposition in normal and diseased livers, J. Pharmacol. Exp. Ther., 334
(2010), 124–136.

71. V. Periwal, C. C. Chow, R. N. Bergman, M. Rick, G. L. Vega and A. E. Sumner, Evaluation of
quantitative models of the effect of insulin on lipolysis and glucose disposal, Am. J. Physiol. Regul.
Integr. Comp. Physiol., 295 (2008), R1089–R1096.

72. I. Probst, P. Schwartz and K. Jungermann, Induction in primary culture of ‘gluconeogenic’ and
‘glycolytic’ hepatocytes resembling periportal and perivenous cells, Eur. J. Biochem., 126 (1982),
271–278.

73. G. Rajaraman, M. S. Roberts, D. Hung, G. Q. Wang and F. J. Burczynski, Membrane binding
proteins are the major determinants for the hepatocellular transmembrane flux of long-chain fatty
acids bound to albumin, Pharm. Res., 22 (2005), 1793–1804.

74. V Rezania, D. Coombe and J. A. Tuszynski, A physiologically-based flow network model for
hepatic drug elimination III: 2D/3D DLA lobule models, Theor. Biol. Med. Model., 13 (2016).

75. T. Ricken, U. Dahmen and O. Dirsch, A biphasic model for sinusoidal liver perfusion remodeling
after outflow obstruction. Biomech. Model. Mechanobiol., 9 (2010), 435–450.

76. T. Ricken, D. Werner, H. G. Holzhütter, M. König, U. Dahmen and O. Dirsch, Modeling function-
perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of
a coupled two-scale PDE-ODE approach, Biomech. Model. Mechanobiol., 14 (2015), 515–536.

77. T. Ricken, N. Waschinsky and D. Werner, Simulation of steatosis zonation in liver lobule–a
continuummechanical bi-scale, tri-phasic, multi-component approach, in Lecture Notes in Applied
and Computational Mechanics, Vol. 84, (eds. P. Wriggers and T. Lenarz), Springer, (2018), 15–33.

78. M. S. Roberts and M. Rowland, Correlation between in-vitro microsomal enzyme activity and
whole organ hepatic elimination kinetics: analysis with a dispersion model, J. Pharm. Pharmacol.,
38 (1986), 177–181.

79. M. S. Roberts and M. Rowland, Hepatic elimination–dispersion model, J. Pharm. Sci., 74 (1985),
585–587.

80. S. I. Rubinow, Introduction to Mathematical Biology, John Wiley & Sons, New York, 1975.

81. J. Schleicher, U. Dahmen, R. Guthke and S. Schuster, Zonation of hepatic fat accumulation:
insights from mathematical modelling of nutrient gradients and fatty acid uptake, J. R. Soc.
Interface, 14 (2017), 20170443.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1082–1114.



1114

82. S. Sheikh-Bahaei, J. J. Maher and C. A. Hunt, Computational experiments reveal plausible
mechanisms for changing patterns of hepatic zonation of xenobiotic clearance and hepatotoxicity,
J. Theor. Biol., 265 (2010), 718–733.

83. J. Shi and K. V. Kandror, Study of glucose uptake in adipose cells, Methods Mol. Biol., 456
(2008), 307–315.

84. J. P. Sluka, X. Fu, Maciej Swat, J. M. Belmonte, A. Cosmanescu, S. G. Clendeno, J. F. Wambaugh,
and J. A. Glazier, A liver-centric multiscale modeling framework for xenobiotics, PLOS ONE (11),
2016: DOI:10.1371/journal.pone.0162428.

85. M. Soresi, L. Giannitrapani, D. Noto, A. Terranova, M. E. Campagna, A. B. Cefalú, A.
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