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ABSTRACT. Inferring gene regulatory networks is an important problem in sys-
tems biology. However, these networks can be hard to infer from experimental
data because of the inherent variability in biological data as well as the large
number of genes involved. We propose a fast, simple method for inferring reg-
ulatory relationships between genes from knockdown experiments in the NIH
LINCS dataset by calculating posterior probabilities, incorporating prior infor-
mation. We show that the method is able to find previously identified edges
from TRANSFAC and JASPAR and discuss the merits and limitations of this
approach.

1. Introduction. Gene regulatory networks are very important in understanding
the biological functioning of cells. Identifying the interactions between genes can
aid biologists in their attempts to understand how the cell functions both in steady
state and in reaction to external stimuli. Unfortunately, due to the complexity of
the cells and the large number of genes involved, discovering the true networks is
very difficult. In most cases the number of genes measured far exceeds the number
of observations, as is typical in microarray or sequencing experiments. Any method
for analyzing such data must take this fact into account. Often this is done by
enforcing a sparsity constraint, either via an added penalty on non-sparseness or
via priors placed on the model. Even with these constraints, the ability to make
valid inference is limited in these high-dimensional regimes as the number of genes
grows compared to the number of observations [55, 54].

Many methods have been developed for inferring relationships between genes
from gene expression data. One approach is to model the network holistically using
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Bayesian networks [40, 21, 22, 62, 24, 48]. This yields good interpretable models, but
often does not scale well and is hard to apply at the whole-genome level. Regression-
based methods, where the expression level of a target gene is modeled as a function
of the expression level of that gene’s regulators, can be applied to much larger sets
of genes but do not provide an overarching model of the entire network. Inference
for these models generally becomes a statistical variable selection or model selection
problem. Common methods for this include Significance Analysis of Microarrays
[53], Least Absolute Shrinkage and Selection Operator (LASSO) [52, 17, 36] and
Bayesian Model Averaging (BMA) [42, 19, 57, 29, 59]. Another class of methods
looks at mutual information among the measured genes [2, 34, 13, 37].

When looking for regulatory relationships, it has been found that the information
available from knockout experiments, where a single gene is fully suppressed, can be
highly informative since they give a way to identify a causal pathway, direct or indi-
rect. In the DREAM4 in silico network challenge [32, 33, 10], the winning method
used only the data from the knockout experiments to infer the true networks, ignor-
ing the time-series data entirely [41]. In real biological experiments, full knockout
experiments are not possible for many essential genes, but knockdown experiments,
where the target gene is partially suppressed, are often available. Methods for
analyzing knockdown or knockout data include correlation-based approaches [45],
implicit latent variable scoring [58], and Bayesian network scoring [14, 44, 15]. In
addition, there has been some work in combining steady-state data with knockdown
data to improve results [51, 5].

In this paper, we propose a simple, fast method for inferring gene regulatory
relationships from knockdown data alone. Our method uses a simple linear regres-
sion model focusing on single regulator-target gene pairs based on knockdown data.
This method allows the incorporation of prior knowledge about the relationships
and generates posterior probabilities which can be used to form a ranked edgelist
or as a part of a more expansive analysis.

2. Data. Our data come from the National Institute of Health (NIH) Library of
Integrated Network-based Cellular Signatures (LINCS) program [28, 11]. The aim
of this program is to generate genetic and molecular signatures of cells in response
to various perturbations. One thrust of this program is the large-scale generation
of gene expression profiles using L1000 technology. This technology has resulted in
measurements from over one million experiments to date on over fifty human cell
lines. These cell lines are populations of cells descended from an original source
cell and having the same genetic makeup, kept alive by growing them in a culture
separate from their original source.

Each of the L1000 experiments measures the expression levels of 1000 landmark
genes in the human genome. These genes were selected specifically to cover as much
of the gene expression variation in cellular expression as possible, since all 20,000+
genes cannot be measured. These experiments have measured cellular responses
to more than 20,000 different chemical perturbagens. In addition, knockdown and
over-expression experiments, where a single gene is targeted to control its expres-
sion level, have been performed on thousands of individual genes, both within and
outside of the 1000 landmark genes.

The L1000 experiments were performed using Luminex Bead technology [12], in
which color-coded microspheres were coded to attach to specific RNA sequences
corresponding to a landmark gene and to fluoresce according to the level of that
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gene’s expression. Sets of beads for measuring the 1000 landmark genes were added
to the solution for a single experiment along with the perturbing agent. The ex-
periment was left for a specified period of time and then the gene expression levels
were measured.

Experiments were done in sets on a single plate having individual wells for 384
experiments. This minimizes some external sources of error, such as environmental
conditions, across these experiments. A small set of these experiments were used as
controls with no perturbation. This gives a baseline distribution of expression level
for each gene from which to measure deviations in other experiments. A common
approach in this setup is to look at deviations in the perturbation experiments from
the controls on the same plate, again recognizing that experiments on the same
plate are likely to be more similar than those on different plates. Multiple plates,
typically three or four, are prepared and analyzed together as a batch. These plates
are prepared as technical replicates, with a given perturbation being prepared and
then put into the same well of each plate. This gives additional power in removing
systematic biases. Any given perturbation also is performed in multiple different
batches, resulting in biological replicates since the sets of experiments were not
prepared together.

3. Methods. We want to use the L1000 data to infer gene regulatory networks.
This means that we need a method for inferring causality. One way to do this
would be to use a causal time-series model, but the L1000 data include a very
small number of time points (drug perturbation experiments include only one to
two time points). Instead, we use knockdown experiments to identify a single gene
as a putative causal agent. Although this limits the amount of information we can
gain from a single experiment, it allows us to use a straightforward model with a
clearly defined regulatory gene.

When looking at the knockdown experiments, it is important to understand
that not all experiments are equally useful. The efficacy of the perturbation varies
between target genes and even between experiments for the same target. The
experimental setup of the LINCS data is helpful in identifying these differences. We
use the control experiments on a plate to get an estimate of the normal variability
of a gene. This eliminates some of the variability due to effects we cannot control
or even measure, including differences in experimental conditions such as ambient
temperature and the scientist performing the experiment, since these are captured
in plate-level effects.

To take advantage of this aspect of the LINCS data, we calculate plate-level z-
values for each gene in a knockdown experiment. To do this, we first calculate the
baseline mean, Zp,, and standard deviation, sj,, for each gene h across all control
experiments on plate p. Then the z-value for gene h in knockdown experiment ¢ on
plate p is
Thi — Thyp

Shp '

Once we have transformed the data in this way, we use a simple linear regression
model to model the change in a target gene t as dependent on the change in the
knockdown gene h:

*
Thi =

x:‘kz = 60+ﬂ1$7ﬂ:+6i7 1= 17"'anh (1)

€ iid N(0,02). (2)
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Here, nj, is the number of available knockdown experiments for gene h. This model
specifies a linear relationship between the z-score of the knockdown gene h and
that of the target gene ¢t. This is a simplification of the true process underlying
the relationship between genes h and t, but it can still be effective for discovering
relationships.

We estimate this model with a Bayesian approach using Zellner’s g-prior [60] for
the model parameters (By, £1,02), namely

2
go

51\02,9 ~ N(O»*);
Zith

p(Bo,0%) o« 1/c%

The parameter g specifies the expected size of the regression parameter 5y relative
to the standard error of the OLS estimate of $;. The choice g = 1 indicates that
the regression parameter is expected to be nearly indistinguishable from the noise,
and thus gives a practical lower bound for g. Also, ny/g is the effective number of
data points in the prior, with ¢ = nj corresponding to a unit information prior and
giving similar results to BIC. We do not want a prior that has more spread than a
unit information prior [43], and thus we choose g in the range 1 < g < ny. In this
case, we used g = /n;,. We have found this to be a good compromise between the
extremes. We found that when we estimated g using an Expectation-Maximization
algorithm [7, 59], the estimated value was often close to \/ny,.

The regression model with the g-prior allows us to quickly calculate the posterior
probability that gene h regulates gene ¢t [6]. We first calculate the ratio of the
posterior probability that h regulates t given the data x, Pr(h — t|x), to the
posterior probability that there is no regulatory relationship, Pry. Further, we can
incorporate a prior probability of regulation, mp;, which reflects prior information
about a regulatory relationship between genes h and t. This gives us

Pr(h — t|x
iy = P 19
1)

exp [(nn — 2)log(1 + g)/2 — (nn — 1) log(1 + g(1 — R?))/2] ,

_ Tht
1 — Tht

where R? is the coefficient of determination for the simple linear regression model
(1). From this we can get the posterior probability that h regulates ¢, or posterior
edge probability:

Pr(h — t|x) The
N Pr(h — t|X) + Prg 1 + Tht'
We use this posterior edge probability to rank potential edges and find likely edges
for further investigation.

Two advantages of this method are its speed and simplicity. To compute the z-
scores, we first get plate-level means and standard deviations, which can be done in a
single read through the baseline data by keeping track of sums and sums of squares.
From there, standardization of the knockdown data is quick and we need only to
calculate correlations between the knockdown gene and each other gene to get the
posterior edge probabilities. Additionally, including external knowledge through the
prior edge probability can provide a significant boost in accuracy and precision [59].
Finally, these posterior probabilities have a straightforward interpretation, namely
the probability that a given regulator-target pair is a true relationship given the
data.

Pht
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4. Results. We computed posterior probabilities for edges on the LINCS data for
cell line A375. Cell line A375 is a human skin melanoma cell line with over 100,000
experiments in the LINCS data. That includes approximately 15,000 knockdown
experiments on landmark genes. This gives a good set of data to evaluate our
method. We set the prior probability of any edge being present to 0.0005, reflecting
the average expected number of regulators (parents) for each node determined by
Guelzim et al. [16] for yeast and the assumption that transcription factors will
regulate approximately the same proportion of target genes regardless of the total
number of genes available.

To assess our results, we need a reference standard. In our case, we looked at the
Enrichr website [4], which has collected numerous gene-set libraries, including some
that list gene regulatory relationships. We used the TRANSFAC and JASPAR
lists of edges; these list transcription factors as well as putative binding sites on
other genes using a position weight matrix [56, 47]. This is not a comprehensive
gold standard for assessment since these regulatory relationships are limited to
well-studied transcription factors. However, assessment of gene networks in the
mammalian systems is non-trivial due to incomplete knowledge.

The TRANSFAC and JASPAR (T&J) dataset includes 37 transcription factors
that overlap with the LINCS landmark genes. Thus we limit our assessment to
only those genes as potential regulators. For these 37 transcription factors, the
T&J dataset has 4,303 regulation-target pairs where both the transcription factor
and the target are among the landmark genes. For each transcription factor in T&J,
there is a variable number of knockdown experiments in the L1000 data targeting
that particular gene, generally between 10 and 20 per gene. These are used to
calculate posterior probabilities for about 42,000 pairs of genes to be compared
with the T&J reference dataset.

To further evaluate our method, we compared our results with results from apply-
ing Significance Analysis of Microarrays (SAM) [53] and mutual information meth-
ods to the data. SAM is an adaptable method for identifying significant changes in
gene expression level while estimating the false discovery rate. It is widely used to
evaluate microarray data and is implemented in the R package samr. Mutual infor-
mation methods, based in information theory, have also been used extensively to
identify relationships among genes. We used the minet package in R [38] to analyze
our data with three different mutual information methods: Context Likelihood of
Relatedness (CLR) [13], Algorithm for the Reconstruction of Accurate Cellular Net-
works (ARACNE) [34], and minimum redundancy - maximum relevance (MRMR)
[9, 37]. These three methods offer differing approaches for identifying relationships
between genes.

Each method produces a list of gene pairs along with some measure of the
strength of their relationship. SAM returns p-values for each relationship, the
mutual information methods produce weights indicating the strength of the rela-
tionship, and our method gives posterior probabilities. We can sort these to produce
a ranked list and evaluate these lists against the reference dataset.

First, we looked at two-by-two tables from each method. For the posterior prob-
ability method, we used probability cutoffs of 0.5 and 0.95 to define found edges.
SAM provides a list of relationships found to be significant. The mutual information
methods do not define a particular cutoff for significance, and so all relationships
returned with non-zero weight were included. These two-by-two tables are produced
in Table 1.
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To assess whether the lists and the T&J dataset are related, we also report
approximate (non-Bayesian) p-values by using the probability of getting at least
the number of true positives found using a binomial(n, p) distribution, where n
is the number of pairs in the inferred list and p is the probability of selecting a
true edge from the total number of possible edges. Note that these p-values are
not the same as the posterior probability thresholds, and inference is based on the
posterior probability thresholds. The p-values turn out to be equal to 0.02 for both
thresholds, indicating that the posterior edge probabilities are related to the T&J
results at conventional levels of significance. The competing methods are not able
to accurately identify a small number of edges as true, returning many more than
the posterior probability method.

TABLE 1. Assessment results showing 2x2 tables for cell line A375
using knockdown experiments for finding edges via posterior proba-
bility calculation and compared to approximately 4,200 edges from
TRANSFAC and JASPAR across 37 transcription factors. PP in-
dicates the posterior probability method at the given threshold.
When looking at edges with posterior probability of 0.5 or greater
(top left table), 41 of the 292 candidate edges are found in TRANS-
FAC and JASPAR, and 14 of the 76 candidate edges at a cutoff
of 0.95 (top center table) are true edges. Binomial approximate
p-values are 0.02 (left) and 0.02 (right). Lower p-values indicate
better results. The competing methods return many more edges as
true but are not as precise, resulting in higher p-values.

PP 0.5 PP 0.95 SAM

Yes No Yes No Yes No

T&J Yes 41 4262 14 4289 1193 | 3110
No | 251 | 37566 62 | 37755 11151 | 26666
p-value: 0.02 p-value: 0.02 p-value: 0.98

CLR ARACNE MRMR

Yes No Yes No Yes No

T&J Yes | 1651 | 2652 34 4269 1530 | 2773
No | 14671 | 23146 910 | 36907 13533 | 24284
p-value: 0.67 p-value: 1.00 p-value: 0.60

We expect errors from the assessment results in the form of both false positives
and false negatives due not only to limitations of our method, but also due to the
nature of the data and the TRANSFAC and JASPAR reference standard by which
we evaluate our edges. This is in part because the T&J reference standard is not
specific for the given cell line A375. Also, false positives might arise because the
expression levels of target genes change due to indirect effects. The path from the
transcription factor to the target gene may go through intermediate genes. In fact,
since only about 5% of the human genes are measured by the LINCS experiments,
there are likely to be many genes in relevant pathways that are not measured. If
we had measurements for all 22,000 genes, using a link removal procedure could be
very useful [23, 41]. We also expect false negatives since the T&J dataset is not a
set of confirmed regulatory relationships. Rather, it is informed from attributes of
the transcription factor as well as the target gene. This means that many of the
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true relationships as designated by the T&J dataset may not in fact reflect true
interaction at the cellular level. In general, we do not expect a transcription factor
to affect 10% of the possible targets, which is what the T&J dataset reports, so it is
likely that the T&J data is overestimating the number of regulatory relationships.

Another way of looking at the results is via the precision-recall curve. Precision
and recall are both calculated by truncating our ranked list of edges and looking only
at those proposed edges. Precision is the proportion of the proposed edges which
are true edges. Recall is the proportion of true edges which are in the proposed
set. The precision-recall curve takes a ranked list of edges from a procedure and
shows how the precision varies as more and more edges are included from that
list. High precision at low recall indicates that the procedure is good at identifying
true edges at the highest probability. This is important in many cases, particularly
genetic studies, because it gives researchers good information on where to focus
their efforts in subsequent studies.

Figure 1 shows the precision-recall curves generated by the different methods.
We do see that the edges most highly ranked by posterior probability yield better
results than expected from random guessing by a factor of 1.5 to 2. The precision
declines as we add more edges, returning to hover near random guessing. The
MRMR and ARACNE results fare worse than random guessing, and although CLR
ranks a few true edges highly, it returns to random much faster than the posterior
probability edges. The ranked list from SAM performs comparably to the posterior
probability method, but it is unable to differentiate between the edges at the very
top of its list, with 168 edges yielding the same lowest p-value. From a scientific
point of view, it is important to have high precision among the edges ranked most
highly, since there are limited resources for designing and executing experiments
investigating particular edges more closely. Of course it would be preferable to see
even better precision, but our previous discussion has shown why that may not be
achievable with this dataset and standard.

5. Discussion. We have demonstrated a straightforward approach to inferring
gene regulatory network edges from knockdown data. This approach is simple
to apply to large datasets and includes the ability to incorporate prior information
when available. This approach is able to find confirmable regulatory relationships
between genes from the L1000 data. We showed that our method performs com-
parably to or better than popular approaches for identifying important regulatory
relationships as found in the TRANSFAC & JASPAR evaluation dataset.

One key benefit of this approach is that it can be applied to extremely large
datasets, requiring only one read through the data to compile all sufficient statistics
for computing the posterior probabilities. There is no need to retain all the data
after reading it and no iterative methods, such as Expectation-Maximization or
Markov Chain Monte Carlo, are used. Methods which model the entire network
[24, 48, 31, 46] may yield more comprehensive network results but are also generally
restricted to a smaller set of genes due to computational constraints. Our approach
is complementary to these other approaches in potentially narrowing down the set
of edges for further investigation.

We have applied the method to knockdown data in order to identify causal reg-
ulatory relationships. This method can also be applied to over-expression data or
even steady-state data, although for steady-state data the resulting edges would
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FI1GURE 1. Precision-recall curves for cell line A375 using knock-
down experiments for finding edges via posterior probability calcu-
lation evaluated against approximately 4,200 edges from TRANS-
FAC and JASPAR across 37 transcription factors. To the left of
the red line are those edges with a posterior probability of at least
0.95, while the blue line shows the cutoff for edges with a posterior
probability of 0.5. The horizontal dashed line shows the expected
precision of 0.1 that would result from randomly ranking edges.
The color version of this plot is available in the online version of
the paper as well as on arXiv (http://arxiv.org/abs/1603.
04835).

lack directionality [39]. This method could also be used to infer differential expres-
sion for a perturbation such as a drug treatment. This could be done using a 2-class
model where the predictor variable indicates whether the expression measurements
come from a perturbation experiment or a control experiment. An implementation
of our method is available as an R package, BayesKnockdown, on Bioconductor,
including functions for both knockdown and perturbation data.

We considered using an edge reduction technique, such as that used by Pinna et
al. [41], but ultimately decided against it. Since we used only 37 genes as regulators
due to our assessment data, the resulting networks did not tend to have multiple
pathways from one gene to another. In cases where the resulting networks have
more multi-gene pathways, using an edge reduction method may be appropriate.

Another possible use of this method is to use the resulting edge probabilities
as an informative prior for another method using a different type of data. This
could allow the integration of multiple data sources and increase the usefulness
of knockdown data that provide only a small amount of evidence within a larger
experimental context.
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