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Abstract. For emerging diseases like pandemic influenza, several factors could
impact the outcome of vaccination programs, including a delay in vaccine avail-
ability, imperfect vaccine-induced protection, and inadequate number of vac-
cines to sufficiently lower the susceptibility of the population by raising the
level of herd immunity. We sought to investigate the effect of these factors
in determining optimal vaccination strategies during an emerging influenza
infection for which the population is entirely susceptible. We developed a pop-
ulation dynamical model of disease transmission and vaccination, and analyzed
the control problem associated with an adaptive time-dependent vaccination
strategy, in which the rate of vaccine distribution is optimally determined with
time for minimizing the total number of infections (i.e., the epidemic final size).
We simulated the model and compared the outcomes with a constant vacci-

nation strategy in which the rate of vaccine distribution is time-independent.
When vaccines are available at the onset of epidemic, our findings show that
for a sufficiently high vaccine efficacy, the adaptive and constant vaccination
strategies lead to comparable outcomes in terms of the epidemic final size.
However, the adaptive vaccination requires a vaccine coverage higher than (or
equivalent to) the constant vaccination regardless of the rate of vaccine distri-
bution, suggesting that the latter is a more cost-effective strategy. When the
vaccine efficacy is below a certain threshold, the adaptive vaccination could
substantially outperform the constant vaccination, and the impact of adaptive
strategy becomes more pronounced as the rate of vaccine distribution increases.
We observed similar results when vaccines become available with a delay during
the epidemic; however, the adaptive strategy may require a significantly higher
vaccine coverage to outperform the constant vaccination strategy. The findings
indicate that the vaccine efficacy is a key parameter that affects optimal control
of vaccination dynamics during an epidemic, raising an important question on
the trade-off between effectiveness and cost-effectiveness of vaccination policies
in the context of limited vaccine quantities.
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1. Introduction. Vaccination remains a key preventive measure for reducing the
health and economic burden of influenza infection worldwide. However, the high
prepotency of influenza viruses for genetic mutations could lead to the emergence of
novel strains, such as pandemic viruses [54, 55, 6], for which no vaccine is available
at the time of disease emergence. The herald wave of the 2009 influenza H1N1 pan-
demic exemplifies such an event in the absence of a strain-specific vaccine. These
novel viruses tend to replace or co-circulate with predecessor strains in the subse-
quent epidemics [49], for which a strain-specific vaccine may become available.

There is a vast literature on the dynamics of vaccination for seasonal influenza,
for which the vaccine is generally available and administered prior to the onset of
epidemics [7, 42, 3]. However, such dynamics have been inadequately studied for
the scenarios in which vaccines become available during the course of the outbreak
[46], such as the second wave of the 2009 influenza H1N1 pandemic in northern
hemisphere. The outcome of vaccination during an epidemic depends critically on
several important factors, including the protection efficacy of vaccines against the
circulating strain, the time at which vaccination starts, and the speed with which
vaccination is administered [5]. While it is expected that vaccine reduces the sus-
ceptibility of the population, the vaccine-induced immunity may not fully protect
individuals from acquiring infection. However, protective effects of vaccination may
prevent the development of clinical disease with the associated symptoms. In this
context, asymptomatic infection (with no clinical symptoms) may develop in vac-
cinated individuals who can still spread the disease in the population. While the
overall disease incidence may be reduced with vaccination, low efficacy vaccines
may lead to a higher incidence of asymptomatic infection compared to the scenario
without vaccination.

Recent work on vaccination dynamics during an influenza epidemic [40, 47, 50,
53, 18, 52, 41, 37] has generally neglected to consider the simultaneous effects of
the aforementioned factors. Much of the efforts in determining optimal vaccination
strategies has been devoted to identifying age-specific vaccine allocation, optimiz-
ing vaccine distribution for minimizing infection and its outcomes (e.g., deaths or
hospitalization), or in a more theoretical context, characterizing the optimal control
with its type and possible singularities, and solving the optimality system. Previ-
ous work highlights the complexity of the vaccination dynamics during an emerging
influenza epidemic [5]. However, optimizing vaccination strategies with important
vaccine-related parameters (efficacy, timing, distribution capacity, and unintended
clinical consequences such as increase in asymptomatic infection due to imperfect
vaccine-induced protection) remains elusive. We propose to build upon the exist-
ing modelling frameworks, and address this question by applying control theory to
determine the optimal vaccination strategy with the objective of minimizing the
epidemic final size. The inadequate vaccine quantity also presents an important
control parameter, since vaccination of individuals who are recovered from asymp-
tomatic infection (but are still eligible to receive vaccine) results in wasteful use of
vaccines without enhancing the level of herd immunity in the population.

For the purpose of this study, we employ a compartmental modelling framework
and apply control theory to minimize both the epidemic final size and the num-
ber of asymptomatic infection. We attempt to identify the optimal vaccination
profile as a function of time, and determine analytic solutions for the control prob-
lem described below. For comparison purposes, we also consider the outcome of a
vaccination strategy with a constant distribution rate, which may resemble more
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closely the implementation of vaccination policies during an epidemic. We present
the modelling structure and simulation results of both adaptive and constant vac-
cination strategies, and provide details of our analyses for the control problem in
the Appendix. Finally, we place the findings in the context of public health for
implementation of vaccination strategies during epidemics of emerging influenza
viruses.

2. The model. The mathematical model, schematically represented in Figure 1,
describes the basic transmission dynamics of influenza infection in the presence of
vaccination. Similar to the previous work [5], we divide a homogeneously mixing
population into susceptible (S), symptomatically infectious (I), asymptomatically
infectious (A), and vaccinated (V ) classes of individuals. Transmission of disease
occurs through contacts between susceptible and infectious (symptomatic or asymp-
tomatic) individuals, at a rate β(I+δ

A
A), where β is the baseline transmission rate

of the infection, and δ
A
is the reduction factor for transmissibility of asymptomatic

infection.
In addition to susceptible individuals, asymptomatically infected individuals may

be considered for vaccination during an epidemic, since the lack of clinical symptoms
may classify these individuals as immunologically näıve to the infection. However,
vaccination of asymptomatic infection will have virtually no effect in raising the
level of herd immunity. Therefore, S/(S +A) represents the fraction of vaccinated
individuals who receive vaccines while being still susceptible to the disease. Thus,
the dynamics of the susceptible class is governed by

S′ = −β (I + δ
A
A)S −

S

S +A
γ S0, (1)

where the prime ‘ ′ ’ denotes the derivative of the compartment with respect to time;
γ is the rate at which individuals are vaccinated per unit time; and S0 represents
the initial size of the susceptible population. The vaccination term in (1) shows that
in the absence of asymptomatic infection, a maximum γS0 number of susceptible
individuals are vaccinated per unit time. In the model considered here, we omit
demographics (natural birth and death rates) during the relatively short course of
an epidemic compared to the average life-time.

Since vaccination may not provide full protection against infection, we assumed
that the susceptibility of vaccinated individuals is reduced by a factor of δ

V
com-

pared to the susceptible individuals. This gives

V ′ =
S

S +A
γ S0 − β (I + δ

A
A) δ

V
V, (2)

In our model, susceptible individuals who acquire infection will develop clinical
symptoms with the probability p. We assumed that vaccine-induced immunity
reduces the probability of developing clinical disease in vaccinated individuals if
infection occurs. This reduction depends on the protection efficacy of vaccine, and
we assumed a reduced probability of p

V
= δ

V
p for infected vaccinees to develop

clinical disease. These assumptions lead to the following differential equations for
the dynamics of infection

I ′ = β [p S + δ
V
p

V
V ] (I + δ

A
A)− µ I, (3)

A′ = β [(1− p)S + (1− p
V
)δ

V
V ] (I + δ

A
A)− µ

A
A, (4)
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Figure 1. Model diagram for the transitions between sub-
populations, where I = (I + δ

A
A).

where µ and µ
A
are the recovery rates from symptomatic and asymptomatic infec-

tions, respectively. Ignoring disease-induced death, and assuming that immunity
induced by natural infection provides full protection against re-infection, the equa-
tion for the class of recovered individuals (R) is given by

R′ = µ
A
A+ µ I.

For simplicity of our model and its analysis, we rewrite the system (1)–(4) in the
following form:

X ′ = G(t,X, p), (5)

where X = [x1, x2, x3, x4]
> = [S, V, I, A]> denotes the state of the control system,

and G = [g1, g2, g3, g4]
> is the functional form of the corresponding response of the

control system, with the initial conditions: S(0) = S0 > 0, I(0) > 0, A(0) > 0 and
V (0) = R(0) = 0. Table 1 summarizes the description and respective ranges of the
model parameters used for simulations.

For the model considered here, we attempt to address an adaptive time-dependent
vaccination profile as a function of the vaccine protection efficacy (σ = 1− δ

V
) and

the rate of vaccination (γ), when vaccine becomes available at different times dur-
ing the epidemic. Through simulation experiments, we compare the outcome of
this adaptive strategy with a constant vaccination rate. Although we do not in-
tend to imply that this modelling framework is the only approach to the optimal
vaccination problem, our results about this system offer new ideas and approaches
towards development of the control problem for more complex models of vaccination
dynamics.

3. Control problem and objectives. In the following analysis, the quantity γ S0

is the per-capita rate at which susceptible individuals are vaccinated per day. We
denote the vaccine-induced protection by σ, which ranges from 0 to 1.

The Pontryagin Maximum Principle (a multilevel algorithm for optimizing an
objective functional) will be applied to determine the analytical solutions to the
control problem with respect to the change in the level of vaccination with time in
the adaptive strategy. Below, we define the control problem and show the existence
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of an optimal control related to the time-dependent vaccination profile. Our objec-
tive is to determine the optimal time-varying strategy that minimizes the epidemic
final size, which can be mathematically expressed by

min
γ(t)≥0

J(γ), (6)

where the cost functional is given by

J(γ) =

∫ Tf

0

f(t,X, γ) ds, (7)

in which the integrant function f represents the outflow from infected classes, that
is, f(t,X, p) = (µ I + µ

A
A). For consistency with the published literature [22,

23, 24, 25], the upper bound of integration, Tf denotes the end of epidemic where
Tf = inf{t | (I+A)(t) = κ� 1}. For simplicity, we assumed that the recovery rates
are the same for both infectious classes (i.e., µ = µ

A
), denoted by µ. In this case,

the objective functional becomes

J(γ) = µ

∫ Tf

0

[I +A] ds. (8)

From Lemma A.4, it follows that minimizing the epidemic final size given by
equation (8) is equivalent to maximizing the total number of susceptibles and vacci-
nated individuals Sf+Vf at Tf , since the term (S(0)+A(0)+I(0)−κ) is fixed. From
now on, we consider our objective functional for minimizing −(Sf + Vf ) resulted
from equation (10) in Appendix A.

The primary stage in the process of finding optimal control is to investigate
the existence of a solution to the control problem under consideration. This will
consist of multiple components and adjoint variables. The transient and long-term
behaviour of the model will be affected by these variables in time, indicating that
the epidemic final size will be determined by these control variables. The existence
of an optimal control, namely γ∗ for the rate of vaccination, can be established by
applying the Fleming and Rishel theorem [17, Chapter III] (See Appendix A).

3.1. Characterization of the optimal control. A particular case of optimiza-
tion problem, in which the system of differential equations (1)–(4) is linear in terms
of the control variable γ, is considered in this subsection. The results of Pontrya-
gin Maximum Principle indicate an optimal control of the bang-bang type for this
problem. However, in Appendix A we will provide details of our arguments that the
optimal control may actually consist of intervals of singular control together with
intervals of bang-bang control. In this situation, we observe that the Hamiltonian
function H has an explicit linear form of the control, that is, H depends linearly on
the control variable during the course of epidemic [0, Tf ]. As a result, the optimal
control cannot be found directly by global minimization of the objective functional.
This special case arises frequently when the Hamiltonian is an affine function of
the control γ, i.e., the function H is given by H(γ) = ψ(t,X,Λ) γ(t) + Φ(t,X,Λ),
where the control is constrained to upper and lower bounds 0 ≤ γ(t) ≤ γmax, and
scalar functions ψ and Φ are the remaining non-linear terms which depend only
on the state and adjoint variables. The optimality condition, represented by the
time-dependent switching function, ψ,

ψ =
∂H

∂γ
=

S0S

S +A
(λ

V
− λS),
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takes positive values at some times, negative values otherwise, and is nonzero with
the possible exception of at most a finite number of times t; and the solution to
the control problem is easily obtained from (9). In this case, the optimal control
which is referred to as bang-bang control switches from 0 to γmax at finite number
of times corresponding to sign changes in ψ(t) at each switch [51, 57]. However, a
case of singularity for the control problem may arise when ψ(t) is zero on a time
interval t1 ≤ t ≤ t2. In this case, the minimization of the Hamiltonian function with
respect to the control γ does not provide any solution within the time interval [t1, t2].
The common technique for an explicit characterization of the control function is to
recurrently take the derivative of ∂H/∂γ with respect to time, which guarantees to
generate the explicit solution [8]. Setting the expression for ψ(t) to zero, the control
γ is determined by the requirement that the singularity condition continues to hold.
This characterizes the optimal control as follows

γ∗(t) =







0 if ψ(t) > 0,
? if ψ(t) = 0,

γmax if ψ(t) < 0.
(9)

Clearly, when ψ(t) = 0, the Hamiltonian function H is globally minimized for
all γ in some nonempty interval [0, γ0]. An approach to circumvent the singularity
in this situation follows from the fact that, with ψ ≡ 0 in the same time interval,
all derivatives of the switching function ψ along the optimal trajectory must vanish
in this time interval, i.e., ψ(n) ≡ 0 for n = 1, 2, 3, · · · . One may apply the differ-
entiation process until the control variable γ explicitly appears in a derivative. We
apply the Kelly theorem [26, 32, 34] in Appendix A to find the switching function
explicitly from the adjoint and state variables.

4. Simulation results. To illustrate the effect of adaptive vaccination profile, we
simulated the model for the dynamics of influenza infection to determine the total
number of infections in each class (i.e., symptomatic and asymptomatic) as a func-
tion of the vaccine efficacy (σ) and the rate of vaccine distribution in the population
(γ). For comparative purposes, we also calculated these numbers for a vaccination
strategy with a constant (time-independent) distribution rate. For this compari-
son, we used the ratio of the total infections in the adaptive strategy to the total
infections in constant vaccination. A ratio below 1 indicates that the adaptive vac-
cination outperforms the constant strategy. The ratio of the quantity of vaccines
used in each strategy was also calculated. We simulated the model for two plausible
scenarios: (i) vaccine is available at the onset of epidemic (no delay); (ii) vaccine be-
comes available at some point of time during the epidemic (with delay). Parameter
values used for simulation scenarios are summarized in Table 1.

4.1. Vaccination with no delay. For simulating the model in each scenario, we
considered two different values of p = 0.4, 0.8 corresponding to the fraction of in-
fected individuals who develop symptomatic infection. For the ratio of the total
number of infections in the adaptive vaccination strategy to that in the constant
vaccination strategy (Ra/Rc), Figure 2a (p = 0.4) shows that for sufficiently low
vaccine efficacy (below 80% in our simulations), the adaptive strategy outperforms
the constant vaccination, giving a ratio Ra/Rc below 1. However, for σ < 0.8, this
ratio depends on the rate of vaccine distribution (γ). For a relatively low vaccine
efficacy (approximately below 30%), increasing γ in the range 0 − 0.5 will reduce
the ratio Ra/Rc, and the effect of adaptive vaccination becomes more pronounced.
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Table 1. Values of the model parameters obtained from the pub-
lished literature.

Parameter Description Value (Range) References

β baseline transmission rate variable (day people)−1 [1, 5, 14, 15, 48, 43, 44]
γ vaccination rate variable (day)−1 [1, 5, 15, 43, 44]
δ
V

level of susceptibility after
vaccination

[0, 1] [1, 5, 14, 43, 44]

σ vaccine protection efficacy 1− δ
V

[1, 5, 14, 43, 44]
p probability of developing

symptoms without vacci-
nation

[0, 1] [5]

pV probability of developing
symptoms after vaccina-
tion (if infected)

δV p [5]

δA relative transmissibility of
asymptomatic infection

[0, 1] [5]

µ rate of recovery from infec-
tion

0.244 day−1 [1, 2, 5, 15, 43, 44]

In terms of vaccine usage, this ratio corresponds to a significantly higher vaccine
coverage in the adaptive strategy compared to that in the constant strategy, as
illustrated in Figure 2c. Faster distribution of vaccines with γ above 0.5 will have
virtually no impact in further reduction of Ra/Rc for any given σ < 0.3. As vaccine
efficacy increases in the range 0.3− 0.7, increasing γ will decrease Ra/Rc with rela-
tively sharp changes and with small increases in the rate of vaccine distribution. In
this range, there is a threshold curve above which increasing γ will have little or no
impact on decreasing Ra/Rc (blue region). The adaptive strategy still requires a
higher vaccine coverage compared to the constant strategy, but lower than the cor-
responding scenario for a given distribution rate when vaccine efficacy is below 30%.
When vaccine efficacy is sufficiently high (approximately above 80%), the outcome
of constant strategy is comparable to that of the adaptive strategy. Given the larger
vaccine quantities required for the adaptive strategy, constant vaccination appears
more cost-effective for σ > 0.8, especially if vaccine quantities are limited. We ob-
served similar results (Figures 2b,d) for the case where 80% of infected individuals
develop symptomatic infection (p = 0.8).

Comparing the ratios of asymptomatic and symptomatic infections in each strat-
egy, we observed patterns that closely resemble those of the total infections (Figures
3a-d). Not surprisingly, when higher fraction (p = 0.8) of infected individuals de-
velop clinical symptoms (Figures 3d), some reduction in the ratio of Ia/Ic may not
be achievable for sufficiently low vaccine efficacy (below 10%) as it would be possible
for p = 0.4 (Figures 3b).

4.2. Vaccination with delay. We simulated the model to compare the outcomes
when vaccines become available with a delay of 30 days after the onset of epidemic.
The results are largely similar to the case of vaccination with no delay (Figures 4,5).
However, the range of vaccine efficacy σ in which the adaptive strategy outperforms
the constant vaccination strategy shrinks (compared to the scenario with no delay)
to below approximately 60% (Figures 4a,b). For a very low vaccine efficacy (below
10%), increasing vaccine distribution has virtually no impact on raising the perfor-
mance of the adaptive vaccination strategy, but leads to a substantial increase in the
vaccine coverage, requiring as much as 6 times higher vaccine quantities compared
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Figure 2. Ratio of the total number of infections in the adaptive
vaccination strategy to the total number of infections in the con-
stant vaccination strategy (Ra/Rc) as a function of vaccine efficacy
(σ) and the rate of vaccine distribution (γ) for (a) p = 0.4; and (b)
p = 0.8. Ratio of the total number of vaccinated individuals in the
adaptive strategy to the total number of vaccinated individuals in
the constant strategy (Va/Vc) as a function of vaccine efficacy (σ)
and the rate of vaccine distribution (γ) for (c) p = 0.4; and (d)
p = 0.8. Vaccination started at the onset of epidemic with no delay.

to the constant strategy. For a vaccine efficacy in the range 0.1− 0.6, the reduction
in the ratio Ra/Rc depends on the rate of vaccine distribution. For a sufficiently
high vaccine efficacy (above 60%), the outcome of constant strategy is comparable
to that of the adaptive strategy, with virtually identical vaccine coverage. The ratio
of vaccine coverage (Va/Vc) is generally higher when p = 0.4 than when p = 0.8
(Figures 4c,d). Comparing the two strategy for the ratios of asymptomatic and
symptomatic infections, we found similar results for the range of vaccine efficacy
below 60%, and comparable outcomes for a vaccine efficacy above 60% (Figures
5a-d).

5. Discussion. In this study, we investigated optimal vaccination scenarios during
an epidemic episode, when vaccines become available after the onset of epidemic.
This is generally the case for novel influenza viruses with pandemic potential, where
identification of the specific strain is required for vaccine production. We applied
a population dynamical model of influenza infection to determine optimal control
of vaccination dynamics. We found that the optimality of an adaptive vaccina-
tion strategy, as characterized by the time-dependent control problem, depends on
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Figure 3. Ratio of the total number of asymptomatic infections
in the adaptive vaccination strategy to the total number of asymp-
tomatic infections in the constant vaccination strategy (Aa/Ac) as
a function of vaccine efficacy (σ) and the rate of vaccine distri-
bution (γ) for (a) p = 0.4; and (b) p = 0.8. Ratio of the total
number of symptomatic individuals in the adaptive strategy to the
total number of symptomatic individuals in the constant strategy
(Ia/Ic) as a function of vaccine efficacy (σ) and the rate of vac-
cine distribution (γ) for (c) p = 0.4; and (d) p = 0.8. Vaccination
started at the onset of epidemic with no delay.

two key parameters of the system, namely: vaccine efficacy, and the rate of vac-
cine distribution. Vaccine efficacy reflects the protection induced by vaccination
against infection which may not be complete. The immune response generated by
vaccination may prevent the development of symptomatic infection (if a vaccinated
individual is infected), and we therefore considered this imperfect protection as an
increased rate of developing asymptomatic infection. The rate of vaccine distribu-
tion reflects the capacity of the healthcare system to implement vaccination or the
rate at which vaccines become available.

Our results indicate that, for a given delay in start of vaccination during the
epidemic, if the vaccine efficacy is above a certain threshold (determined by pa-
rameterization of the model), the adaptive and constant vaccination strategies lead
to virtually identical outcomes in terms of the total numbers of asymptomatic and
symptomatic infections. However, adaptive vaccination generally requires a higher
(or equivalent) vaccine coverage compared to the constant strategy with a given
distribution rate. Below the threshold of vaccine efficacy, the adaptive strategy
outperforms the constant vaccination in reducing the total number of infections.
However, this reduction depends on both the efficacy and distribution rate of vac-
cines, and may require a significantly larger vaccine coverage. Nevertheless, our
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Figure 4. Ratio of the total number of infections in the adap-
tive vaccination strategy to the total number of infections in the
constant vaccination strategy as a function of vaccine efficacy (σ)
and the rate of vaccine distribution (γ) for (a) p = 0.4; and (b)
p = 0.8. Ratio of the total number of vaccinated individuals in the
adaptive strategy to the total number of vaccinated individuals in
the constant strategy as a function of vaccine efficacy (σ) and the
rate of vaccine distribution (γ) for (c) p = 0.4; and (d) p = 0.8.
Vaccination started 30 days after the onset of epidemic.

results suggest that, for a vaccine efficacy below the threshold, increasing vaccine
distribution rate could increase the benefits of the adaptive vaccination strategy.

Although this study provides a comparative evaluation of vaccination strategies,
our model does not fully address the optimality of vaccination dynamics during an
epidemic. Determining optimal vaccination, especially for emerging diseases, is a
challenging task [9], and may not be addressed with the use of a simple determin-
istic model. For example, in the context of influenza, most excess mortality occurs
in older individuals and those with comorbid illnesses; vaccination provides real
but limited protection against infection and disease outcomes in these vulnerable
groups [10, 11, 45]. However, most disease is likely to be transmitted by younger,
healthier individuals who are at low risk of severe disease outcomes. In the context
of limited vaccine supplies, it is not clear whether to vaccinate younger individuals
[20, 56], as a means of disrupting disease transmission, or older individuals, as a
means of reducing mortality and other severe outcomes. The optimal vaccine dis-
tribution also depends upon the criterion used to assess effectiveness [5, 13]. In
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Figure 5. Ratio of the total number of asymptomatic infections
in the adaptive vaccination strategy to the total number of asymp-
tomatic infections in the constant vaccination strategy as a function
of vaccine efficacy (σ) and the rate of vaccine distribution (γ) for
(a) p = 0.4; and (b) p = 0.8. Ratio of the total number of symp-
tomatic individuals in the adaptive strategy to the total number
of symptomatic individuals in the constant strategy as a function
of vaccine efficacy (σ) and the rate of vaccine distribution (γ) for
(c) p = 0.4; and (d) p = 0.8. Vaccination started 30 days after the
onset of epidemic.

this context, vaccination dynamics depends on decisions regarding allocation of po-
tentially limited vaccine supplies among specific groups with varying risk factors
for serious morbidity or mortality. Acceptance of vaccination will determine the
coverage of a given group, and acceptance may be affected by divergent perceptions
about the risks of vaccine versus the risks of infection, resulting in conflict between
individual and societal optimal approaches to vaccination [4]. Furthermore, other
factors influence optimality of vaccination strategies, such as transmission patterns,
population demographics, and the composition of risk groups that may widely vary
between different population settings. Recent work shows that in a non-crowded
setting with relatively low average persons-per-household, vaccination of young in-
dividuals remains a key factor in determining epidemic outcomes, regardless of the
age distribution of the population [36].

Our study highlights other parameters that should be included in the modelling
efforts for investigating vaccination dynamics, including the level of vaccine-induced
protection (which may be affected by health status of vaccinated individuals), the
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rate of vaccination (which may depend on the capacity of the healthcare system
and other factors involved in competing health priorities), and the timing of vac-
cine availability (which may depend on the type of disease and vaccine production
capacity). These factors merit further consideration in future modelling studies.

Acknowledgments. We would like to thank the reviewers for important comments
that have led to a substantial revision of our manuscript, and improved the quality
and presentation of our results.

Appendix A. Existence of a feasible solution. In this Appendix, we aim to
investigate an optimal control solution to system (5) that minimizes the epidemic
final size. The existence of an optimal control, γ∗ ∈ [0, γmax], is a necessary con-
dition required before the use of the Pontryagin Maximum Principle to reduce the
objective functional (8). We apply the theorem of Fleming and Rishel [17, Chapter
III] to show the existence of a solution. To this end, let Γ be a bounded subset of
R as the collection of all admissible controls, γ, with values in R, where admissible
controls γ : [0, T ] → Γ are measurable functions. We introduce

Γ(T ) = {γ : [0, T ] −→ R| γ is measurable and bounded},

as the set of all bounded measurable functions with values in R for arbitrary positive
time T , where T is the time of completion for the control program.

Theorem A.1 ([17, 21]). Let Γ be a bounded subset of R and γ ∈ Γ. Consider the
control problem (5) when G : Rn×Γ → R

n is continuous on both arguments X and
γ. Suppose there exist positive constants C1 and C2 such that

(i) ‖G(t,X, γ)‖ ≤ C1 (1 + ‖(X, γ)‖);
(ii) ‖G(t,X1, γ) − G(t,X2, γ)‖ ≤ C2 ‖X1 −X2‖ for all t ∈ R, X1, X2 ∈ R

n, and
γ ∈ Γ;

(iii) f : Rn × Γ → R is continuous (where f is given in equation (7));
(iv) Γ is compact;
(v) the set of admissible pairs (X, γ) is not empty;
(vi) the set of allowable boundary values is compact (the set of possible values for

the initial and final state values is called the set of allowable boundary values);
(vii) {(Z0, Z) |Z0 ≥ f(X, γ), Z = G(X, γ), γ ∈ Γ} is convex.

Then there exists a solution (X∗, γ∗) minimizing J(γ) given by (7) corresponding
to the problem (5).

Here we explicitly show the existence of an optimal solution for the control prob-
lem.

Theorem A.2. There exists an optimal solution for the control problem correspond-
ing to system (1)−(4) with constant initial values (S0, A(0), I(0), 0), (I + A)(0) >
κ > 0 and Tf = inf{t | (I +A)(t) = κ� 1}.

Proof. A direct application of Theorem A.1 leads to the proof. The reader may
consult [24, 25] for further details.

We now discuss the necessary conditions of optimality by introducing the Pon-
tryagin Maximum Principle (PMP) [16, 17, 22, 27, 28, 29, 30, 31, 35, 38, 39]. The
main technique in the PMP is to determine an admissible set of necessary conditions
for an optimal control problem. This admissible set decreases the cost functional
given by (7) provided that the adjoint variable and the corresponding state variables
hold under some general conditions imposed as follows.
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Theorem A.3 (PMP [38, 17, 33]). Let the pair (γ∗(t), X∗(t)) be an admissible
control for the corresponding solution of system (1)−(4). Then there exists an
absolutely continuous function

Λ(t) = [λ0, λS
(t), λ

V
(t), λ

I
(t), λ

A
(t)]> ∈ R

5,

such that Λ(t) 6= 0 for t ∈ [0, Tf ] with λ0 ∈ {0, 1} and

H(t,X∗,Λ, γ∗) = min
γ∈Γ

H(t,X∗,Λ, γ) Minimization Principle

for all admissible controls γ at each time t, where the Hamiltonian function is
defined by

H(t,X,Λ, γ) = λ0 f(t,X, γ) + 〈G(t,X, γ),Λ(t,X, γ)〉,

in which the map 〈·, ·〉 represents the standard inner product and the adjoint vari-
ables are obtained from

λ′xi
(t) = −

∂H(t,X,Λ, γ)

∂xi
, (i = 1, 2, 3, 4).

Furthermore, Λ(Tf) is orthogonal to ker(DΨ(X(Tf ))) where DΨ denotes the Jaco-
bian of the sets of possible values for the final states.

Lemma A.4. Minimizing the cost function given by (7) is equivalent to reducing
the influx rates from susceptible and vaccinated classes to symptomatic and asymp-
tomatic infections, i.e., the cost function can be written as

J(γ) =

∫ Tf

0

[β (S + δ
V
V ) (I + δ

A
A)] ds+ (A(0) + I(0)− κ)

= (S(0) +A(0) + I(0)− κ)− Sf − Vf (10)

where Sf = S(Tf) and Vf = V (Tf).

Proof. From (3)−(4), it follows that (µ is the recovery rate for both infectious
classes)

µ(I +A) = β (S + δ
V
V )(I + δ

A
A)− (I ′ +A′). (11)

Integrating each side of (11) from 0 to Tf gives the desired result.

It is worth noting that minimizing the cumulative number of infections (final
size of the epidemic) given by equation (7) is equivalent to maximizing the final
number of susceptible and vaccinated individuals Sf + Vf since the term (S(0) +
A(0) + I(0)− κ) is fixed. The quantities t0 = 0 and Tf are the start and end times
of the outbreak, respectively. With the aid of our newly developed objective, we
state that the outbreak will end as soon as the total number of (asymptomatic and
symptomatic) infections is equal to or less than 1.

Based on the PMP Theorem, the Hamiltonian for the optimal control theory can
simply be expressed by

H(t,X,Λ, p) = λ0 f(t,X, γ) + 〈g(t,X, p),Λ(t,X, p)〉

= S′λ
S
+A′ λ

A
+ I ′ λ

I
+ V ′ λ

V
(12)
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where λ0 ∈ {0, 1}. From the PMP, the adjoint equations corresponding to system
(1)−(4) are obtained from

λ′
S
(t) =β (λ

S
− pλ

I
− (1− p)λ

A
) (I + δ

A
A) +

(

γ S0

S +A
−

γ S0S

(S +A)
2

)

(λ
S
− λ

V
)

(13)

λ′
V
(t) =β δ

V
(−λ

I
p

V
+ (p

V
− 1)λ

A
+ λ

V
) (δ

A
A+ I) (14)

λ′
A
(t) = (λ

S
S − ((1− p)S + (1− p

V
) δ

V
V )λ

A
− (pS + p

V
δ
V
V )λ

I
+ δ

V
V λ

V
) δ

A
β

+ λ
A
µ

A
+

γ S0S

(S +A)
2 (λV

− λ
S
) (15)

λ′
I
(t) = (−pλ

I
+ (−1 + p)λ

A
+ λ

S
)β S

+ (−λ
I
p

V
+ (p

V
− 1)λ

A
+ λ

V
) δ

V
βV + λ

I
µ (16)

where the transversality conditions are given by

(λ
S
(Tf ), λV

(Tf ), λA
(Tf ), λI

(Tf )) = (−1,−1, q, q),

with q ≥ 0. The Hamiltonian function can then be represented by multiple identities
which will be used to study the dynamical model of influenza infection associated
with the following system:

H(t,X,Λ, γ) = 〈G(t,X, γ),Λ(t,X, γ)〉

=

(

−β S (I + δ
A
A)−

γ S0S

S +A

)

λ
S

+(β (I + δ
A
A) ((1− p)S + (1− p

V
) δ

V
V )− µ

A
A) λ

A

+(β (I + δ
A
A) (pS + p

V
δ
V
V )− µ I)λ

I

+

(

γ S0S

S +A
− β (I + δ

A
A)V

)

λ
V

(17)

Note that λ
V
(Tf ) 6= 0 (or q 6= 0); otherwise, using the Hamiltonian at Tf results

in q = 0 (λ
S
(Tf ) = 0) which contradicts the fact that Λ(t) 6= 0 for all t ∈ [0, Tf ] in

the PMP Theorem A.3.
The optimality condition represented by the switching function, ψ, is given by

ψ =
∂H

∂γ
=

S0S

S +A
(λ

V
− λ

S
), (18)

where the optimal control can be found using the following strategy

γ∗(t) =







0 if ψ(t) > 0,
? if ψ(t) = 0,

γmax if ψ(t) < 0.
(19)

Obviously, when ψ(t) = 0, all γ ∈ [0, γ0] globally minimize the Hamiltonian function
H in some nonempty interval. A plan to circumvent the singularity in this situation
follows from the Kelly theorem [26, 32, 34]. We need to differentiate ψ ≡ 0 within
the same time interval several times to obtain an explicit form for the switching
function ψ. Applying the Kelly theorem gives

ψ′ =

(

λ
S
(t)S0S (t)

(S (t) +A (t))2
+

S0λV
(t)

S (t) +A (t)
−

λ
S
(t)S0

S (t) +A (t)
−

S0S (t)λ
V
(t)

(S (t) +A (t))2

)

S′ (t)
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−

(

λ′
S
(t)
)

S0S (t)

S (t) +A (t)
+
S0S (t)λ′

V
(t)

S (t) +A (t)
+
λ

S
(t)S0S (t)A′ (t)

(S (t) +A (t))
2

−
S0S (t)λ

V
(t)A′ (t)

(S (t) +A (t))2

=
S0S (t)

S (t) +A (t)
(−λ′

S
(t) + λ′

V
(t))

=
S0S (t)

S (t) +A (t)
(−λ′′

S
(t) + λ′′

V
(t))

= [−β (λ
S
− pλ

I
− (1− p)λ

A
) (I + δ

A
A)]

′

+ [+β δ
V
(−λ

I
p

V
+ (p

V
− 1)λ

A
+ λ

V
) (δ

A
A+ I)]

′

= Θ1(I, A)λ
′
I
+Θ2(I, A)λ

′
A
+Θ3(I, A, I

′, A′,Λ, λ′
S
, λ′

V
) = 0, (20)

where the two scalar-valued functions Θ1 and Θ2 are the coefficients of λ′
I
and

λ′
A

obtained from differentiation of the previous equation. Also the scalar-valued
function Θ3 contains non-linear terms which depend only on the state and adjoint
variables for I, A and λ

S
, λ

V
. Using (20), we can now determine values of the

control γ for singular cases, since

ψ′ = ψ′′ = Θ1(I, A)λ
′
I
+Θ2(I, A)λ

′
A
+Θ3(I, A, I

′, A′,Λ, λ′
S
, λ′

V
)

= Θ1(I, A)λ
′′
I
+Θ2(I, A)λ

′′
A
+Θ4(I, A, I

′, A′,Λ,Λ′), (21)

and the second derivative of adjoint variables λ′′
I
and λ′′

A
are functions of S′ and V ′.

Thus, we can solve (21) for γ and get an explicit form for the control γ(t) which
depends on X , I ′, A′, Λ and Λ′, although this function is very complex with several
non-linear terms.

Theorem A.5. Suppose βS0 > µ and γ(0) = 0, and let (γ∗(t), X∗(t)) be an optimal
control for the corresponding solution of system (1)−(4). Then a switch in the
level of vaccination (from γ = 0 to γ > 0) must occur before Tf for minimizing
the epidemic final size and the expression for the final size satisfies the following
inequalities:

δ
A
δ
V

βS0

µ

[

1−
Sf + Vf
N0

]

≤ ln
(S0

Sf

)

≤
βS0

µ

[

1−
Sf + Vf
N0

]

. (22)

Proof. The proof is similar to Theorem 4 of [24, 25] and will be omitted.

Remark. We denote the ratio β S0/µ by R0, the so-called basic reproduction
number. In the epidemiological context, R0 is defined as the number of secondary
infectious cases generated by a single infected case introduced into an entirely sus-
ceptible population N0 ' S0 (assuming I(0) is small compared to S0) [12]. If
R0 > 1, then the outbreak will occur, and if R0 < 1, then the outbreak is expected
to die out.

Theorem A.6. Let the pair (γ∗(t), X∗(t)) be an optimal control for the correspond-
ing solution of system (1)−(4). Then there is a t0 > 0 such that the optimal control
value is given by γ∗(t) > 0 for t ∈ [0, t0]. In addition, there is no singularity before
the first switch, that is, γ∗(t) = γmax on this interval.

Proof. Suppose the pair (γ∗(t), X∗(t)) is an optimal control for the corresponding
solution of system (1)−(4). Assume to the contrary that γ(t) > 0 on some interval
t ∈ [0, t0]; therefore the Hamiltonian function is independent of V on the the same
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interval, and thus, the adjoint variable corresponding to this state equation is zero,
i.e. λ′

V
= 0. Using the adjoint variables (13)–(14), it follows that

λ′
S
(t) =β (λ

S
− pλ

I
− (1− p)λ

A
) (I + δ

A
A), (23)

λ′
V
(t) =β δ

V
(−λ

I
p

V
+ (p

V
− 1)λ

A
+ λ

V
) (δ

A
A+ I) = 0. (24)

We claim that no singularity occurs before the first switch. If a singularity occurs,
then based on the switching function, we must have λ

S
= λ

V
and λ′

S
= λ′

V
= 0,

from which and system (23)–(24) it follows that

λ
S
= pλ

I
+ (1− p)λ

A
, (25)

λ
V
= p

V
λ

I
+ (1− p

V
)λ

A
. (26)

Taking derivatives of both sides of above equations gives

λ′
I
= − (1− p)λ′

A
/p, (27)

λ′
I
= − (1− p

V
) λ′

A
/p

V
. (28)

Clearly we have λ′
I
= λ′

A
= 0. In view of the adjoint variable (16), we have λ

I
= 0.

From system (25)–(26) it follows that Λ(t) ≡ 0 on [0, t0] which contradicts the result
of PMP. This shows that our claim holds true, that is, γ(t) = γmax on some positive
interval [0, t0].

Theorem A.7. Let the pair (γ∗(t), X∗(t)) be an optimal control for the corre-
sponding solution of system (1)−(4). Then there exists some t1 < Tf such that the
optimal control value is given by γ∗(t) = γmax for t ∈ [t1, Tf ] provided that the size
of the susceptible class is positive.

Proof. Assume that the pair (γ∗(t), X∗(t)) is an optimal control for the correspond-
ing solution of system (1)−(4). If the susceptible class S is depleted before the end
of epidemic, that is, there exits some nonempty interval [t1, Tf ] (t1 < Tf) where
S = 0, then γ = 0 on [t1, Tf ]. However, if S is positive for all t < Tf , then from
system (1)−(4) it follows that there exists some [t2, Tf ] ⊂ [t1, Tf ] such that S′ < 0,
V ′ > 0, A′ < 0, and I ′ < 0. The transversality conditions for sufficiently large t
(t→ Tf ) gives λS

(Tf ) = λ
V
(Tf ) = −1 and λ

A
(Tf ) = λ

I
(Tf ) = q > 0. Substituting

these conditions into system (13)–(14), we get

λ′
S
(Tf ) =β (−1− q) (I(Tf ) + δ

A
A(Tf )), (29)

λ′
V
(Tf ) =β δV (−qp

V
+ (p

V
− 1) q − 1) (I(Tf ) + δ

A
A(Tf )), (30)

=β δ
V
(−q − 1) (I(Tf ) + δ

A
A(Tf )). (31)

Since δ
V
< 1, we have

λ′
S
(Tf ) = β (−1− q) (I(Tf ) + δ

A
A(Tf ))

< β δ
V
(−q − 1) (I(Tf ) + δ

A
A(Tf )) = λ′

V
(Tf ). (32)

Thus λ′
S
(Tf ) < λ′

V
(Tf) < 0, which implies that there exists some t1 (< Tf), such

that λ
S
(t) > λ

V
(t) for t ∈ [t1, Tf) from which the desired result is obtained, i.e.,

γ∗(t) = γmax for t ∈ [T0, Tf ].
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