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ABSTRACT. Stochastic versions of several discrete-delay and continuous-delay
differential equations, useful in mathematical biology, are derived from basic
principles carefully taking into account the demographic, environmental, or
physiological randomness in the dynamic processes. In particular, stochastic
delay differential equation (SDDE) models are derived and studied for Nichol-
son’s blowflies equation, Hutchinson’s equation, an SIS epidemic model with
delay, bacteria/phage dynamics, and glucose/insulin levels. Computational
methods for approximating the SDDE models are described. Comparisons be-
tween computational solutions of the SDDEs and independently formulated
Monte Carlo calculations support the accuracy of the derivations and of the
computational methods.

1. Introduction. Many deterministic delay differential equation models in mathe-
matical biology have been developed, analyzed, and analytically or computationally
solved. (See, e.g., [6, 11, 14, 19, 21, 27, 33].) As these biological dynamical systems
are randomly varying, it important to derive and examine stochastic differential
equation models for these delay systems.

In the present investigation, stochastic versions of several discrete-delay and
continuous-delay (or distributed-delay) differential equation models, useful in math-
ematical biology, are derived from basic principles carefully taking into account the
demographic, environmental, or physiological randomness in the processes. By
demographic randomness, it is meant the variability inherent in the population
processes, such as births, deaths, migrations, and infections. Environmental ran-
domness differs from demographic randomness and the effects of environmental
randomness are considered collectively and are due to the variability, for example,
in the weather, in plant growth, and in populations of predators, prey, and com-
petitors. Physiological randomness is due to variability in bodily functions, e.g.,
sensory, response, or regulation, and is introduced in this paper. Physiological ran-
domness, as suggested here, is due to organs responding to incremental and not
continuous changes in levels. For example, it is well-known that there exist an
auditory threshold and a renal threshold, which are, respectively, the smallest per-
ceptible sound and the concentration in the blood above which the kidneys begin
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to eliminate the material in the urine [35]. These threshold levels of perception
or of response result in randomly varying processes as illustrated later for the dy-
namics of glucose-insulin levels. Specifically, as a simplifying approximation to a
complex process, it is hypothesized in the present investigation that glucose and
insulin concentrations occur at discrete levels and, as a result, this hypothesis leads
to a randomly varying process.

Stochastic delay differential equation (SDDE) models, which include demograph-
ic, environmental, or physiological variability, are derived and studied for Nichol-
son’s blowflies equation, Hutchinson’s equation, an SIS epidemic model with delay,
bacteria/phage dynamics, and glucose/insulin levels. Specifically, environmental
variability is studied for bacteria/phage dynamics, because demographic variability
appears to be low due to the generally high densities of bacteria cells and wviri-
ons. Physiological variability is studied for the dynamics of glucose-insulin levels.
Computational methods for approximating the delay SDE models are described.
Comparisons between computational solutions of the delay SDEs and independently
formulated Monte Carlo calculations support the accuracy of the derivations and of
the proposed computational methods.

The purpose of this investigation is to examine and illustrate the derivation of
stochastic differential equation models for randomly-varying biological delay prob-
lems. Care is is taken in deriving the stochastic terms in a biologically meaningful
manner. Indeed, deterministic differential equation models are simultaneously de-
rived along with the stochastic differential equation models, in particular, when
demographic, environmental, or physiological noise is present.

Before deriving the stochastic differential equations, it is useful to consider a few
properties of Brownian sheets [2, 12, 46}. The Brownian sheet W (z,t) satisfies:

t+At  pr+Azx 2W /)
/ /
/ / t/a —=dx" dt’ ~ N(0, AzAt). (1)
That is, the Brownian sheet is independent and normally distributed over rectan-
gular regions. In addition, if z; = iAz for i = 0,1,...,I, where Az = Zy,44/1, then
the Brownian sheet defines for i = 1,2,... I, the standard Wiener processes, W;(t),
where
dW Ti+1 62
®) / TW(z,t) dx. (2)
dt \/M atax

In particular, notice that if t; = jAt for j =0,1,...,J, then

/ 1 dW;(t) = VAt (3)

_7

where n; j ~ N(0,1) for each ¢ =1,2,...7 and j =1,2,...J. In addition, a double
stochastic integral is defined in an analogous way as the It0 integral for measurable,
mean-square integrable functions. Specifically,

Aofz,t) ( IW@t) ot =

I-1J-1

. Tit+1 J+1 82 )
= Jm > D Sty / / 8t8 dt

i=0 j=0

(4)

where z; = i{Az for ¢ = 0,...,I, t; = jAt for j = 0,...,J with Az = a/I and
At =b/J and the limit is taken in the mean square sense [17, 26].
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In the next section, demographic variability is investigated for several common
delay models in mathematical biology. In the following two sections, environmental
variability is studied for a bacteria-bacteriophage model and physiological random-
ness is considered in a model for glucose and insulin levels.

2. Derivation Of delay SDEs for populations with demographic variabil-
ity.

2.1. Nicholson’s blowflies equation. A well-known delay model originally de-
veloped to explain blowfly population data is Nicholson’s blowflies equation [10, 20,
22, 24, 41]:

du(t)

dt

where u(t) is the number of adult blowflies at time ¢, p is the maximum per capita
daily egg production, 1/a is the population size at which the blowflies reproduce
at maximum rate, § is the per capita death rate, and 7 is the time for larvae to
develop into adults. To include demographic stochasticity in this model, a discrete
stochastic model is first derived from the possible changes in the population for a
small time interval At taking into account the randomness in the processes. The
discrete stochastic model then leads to a certain It6 SDE model using a widely
known modeling procedure, a variant of which was first used by Langevin [30] and
then later proposed or applied by other investigators [3, 4, 5, 18, 28]. Using this
procedure, the probability densities of solutions of the discrete stochastic model and
of solutions of the stochastic differential equation model will be similar.

A discrete stochastic model is defined from the changes that occur in the ran-
domly varying system for a small time interval. Let Au(t) be the change in the
number of adults at time ¢ for small time interval At. Based on the assumptions for
the blowfly model, the changes in u(t) with corresponding probabilities for small
time interval At satisfy the values in the Table 1. The discrete stochastic model

= —ou(t) + pu(t — 7) exp(—au(t — 7)) (5)

Change Au(t) Probability
-1 ou(t)At
+1 pu(t — 1) exp(—au(t — 7)) At

TABLE 1. Changes and probabilities for time interval At define a
discrete stochastic model for (5)

of Table 1 implies a certain SDE model which has approximately the same mean
changes and covariance matrix of changes for small At. Table 1 leads to the It6
delay SDE model given by

du(t) =(—0u(t) + pu(t — 7) exp(—au(t — 7))) dt + /du(t) dW;(t)
+\/pu(t — 1) exp(—au(t — 7)) dWa(t)

where W1 (t) and Wa(¢) are independent Wiener processes.

The discrete-delay blowfly SDDE model agrees well in computational compar-
isons with Monte Carlo calculations. In the Monte Carlo calculations, the popula-
tions are computationally followed for the specified time and unit adjustments are
made in the population levels for each small time step At, applying the probabili-
ties in Table 1. Monte Carlo and SDDE calculations are performed using § = 0.3,

(6)
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p =10, 7 = 2, a = 1/15, and y(t) = 40 for —7 < t < 0. The results of the
calculations are given in Table 2 and are illustrated in Figure 1. For this problem,
as time increases, the oscillations in the mean path decrease in magnitude with the
individual sample paths continuing to randomly vary about the mean. An inter-

Time Mean Standard Deviation
t=4 | 64.06 (SDDE) 63.71 (MC) | 7.16(SDDE) 6.85 (MC)
t =25 | 54.03(SDDE) 53.82(MC) | 8.35(SDDE) 8.03(MC)
TABLE 2. Calculated results for 1000 sample paths using SDDE
(5) and Monte Carlo
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FIGURE 1. Computed mean and one sample path for SDDE (5)
(upper) and Monte Carlo (lower)

esting distributed infinite-delay modification to (5) has been studied for modeling
single species growth with diffusion [20]. The distributed delay equation without
diffusion has the form:

d%(t’” — u(t) +p ( [ ; £t — s)uls) ds) exp (a [ ; F(t = s)u(s) ds) (7)

where the kernel f(t) > 0 satisfies [, f(t)dt = 1. As for (5), the first and second
terms on the right-hand side of (7) model death and reproduction rates, respectively.
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The values in Table 1 can be correspondingly modified for this distributed delay
equation. The resulting SDDE model for (7) has the form:

du(t) = (—5u(t) +p ( /_ too £t = syu(s) ds) exp (—a /_ ; £t — s)u(s) ds)) dt
+\/ Su(t) + p ( /_ ; F(t = s)u(s) ds> exp (—a /_ ; £t = syu(s) ds) AW (2).

(8)

2.2. A stage-structured delay model. Demographic stochasticity is briefly con-
sidered for a stage-structured delay model studied in [1, 7] where the two stages are
both explicitly considered. The deterministic form of this model is:

dN; (1)
dt

AN (t)
dt

=Ny, (t) = YNi(t) — aexp (=y7) N (t — 7)
(9)

= exXp (_'YT)Nm(t - T) - 6N731(t)

where N;(t) and N,,(t) are the numbers of immature and mature individuals, « is
the per capita birth rate, v is the per capita death rate of immature individuals,
and SN,,(t) is the death rate of mature individuals. A fixed proportion, exp (—y7),
of immature individuals born at time ¢ — 7 survive to time ¢ and exit from the
immature population and enter the mature population. Let AN (t) be the change in
the number of immature and mature populations at time ¢ for small time interval At.
Based on the assumptions for the model, the changes in N(t) with corresponding
probabilities for small time interval At satisfy the values in the Table 3. The discrete

Change AN(t) | Probability
[1,0]T aN,,(t)At
(=10 TNi(t)At
[T, e 7T | aN,(t — T)At
[0, —1]" BN (t)At

TABLE 3. Changes and probabilities for time interval At define a
discrete stochastic model for (9)

stochastic model of Table 3 implies a certain Itd delay SDE model given by

dN;(t) =(aNm (t) = yNi(t) — cvexp (=y7) N (t = 7)) dt + \/aNp (t) dW1(2)
—v/YN; (t) dWa(t) — exp (—y7)v/aNp(t — 7) AW (t — T)
AN, (1) =(0vexp (—ym) Nt — 7) — BNZ, (1)) dt

Fexp (—7) /AN (t — 7) AWy (t — 1) — \/BNZ () dWs(t)

(10)

where Wi (t), Wa(t), and Ws(t) are independent Wiener processes. Notice that
Wi1(t — 7) occurs in both equations and the survival proportion of immature indi-
viduals, exp (—v7), is assumed to be constant but depends on delay time 7.
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2.3. Hutchinson-Wright equation. A delay differential equation for a single
population may have the form of a delay logistic equation which is sometimes re-
ferred to as Hutchinson’s equation or the Hutchinson-Wright equation [6, 14, 37]:

d?‘(/T(t” — ry(t)(1 - y(t — 7)/K) (1)

with a discrete delay 7 or for a continuous delay

WOy (1 -/ h(s)y(s)ds) (12)

where it is assumed that y(t) is given for —7 < ¢ < 0. Equation (11) or (12) may
model, for example, the population of a species such as Daphnia where the clutch
size may depend on the amount of food available when the eggs were forming [37].

To derive a stochastic differential equation model for logistic population growth
with delay it is useful to consider the demographic terms in an explicit manner.
Let y(t) be the population size at time ¢ with birth terms associated with birth
rate parameters b; and by and death terms associated with death rate parameters
dy; and dy. Then, a logistic delay equation for a single population may have the
general form

dy(t
WO bry(t) + bay(t ) — duy(t) — oy (Bt — 72 (13)
with discrete delays 7, and 74 or for continuous delays it may have the form

WO bry(r) +bs /t_Tbhus)y(s)ds—dly(t)—d2y<t> | matsiwts. ()

—ry
A discrete stochastic model is now developed from the possible changes in the
population for a small time interval At taking into account the randomness in
the demographic (birth and death) processes. As previously stated, the discrete
stochastic model then leads to a certain 1t6 SDE model using a widely known
modeling procedure, a variant of which was first used by Langevin [30] and then
later proposed or applied by other investigators [3, 4, 5, 18, 28].

First, for determining changes and probabilities for the continuous-delay case
(14), it is useful to approximate the integrals in (14) using a rectangular rule ap-
proximation with IV intervals. In effect, this modification produces a delay equation
with 2N discrete delays. Later, N will be allowed to go to infinity. Hence, in par-
ticular, (14) is replaced with

d
LG +b22hb — )yt~ T3)(Ds)y — dyy(t)

(15)

—dgy t—de t—Td’j)(AS)d.

HMZ

where the continuous delays are replaced with 2N discrete delays 7, ; = 7,(1 —
(j—1)/N)and 7q; =1q(l — (j —1)/N) for j =1,..., N, with (As), = 7,/N and
(As)q = 74/N, and the integrals are approximated with sums. The demographic
changes and probabilities for a small time interval are listed in Tables 4 and 5 for
the two cases. The discrete stochastic models of Tables 4 and 5 imply certain SDE
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Change Ay(t) Probability
11 by AL
+1 bay(t — ) At
-1 dly(t)At
-1 dgy(t)y(t — Td)At

TABLE 4. Changes and probabilities for time interval At define a
discrete stochastic model for (13)

Change Ay(t) Probability
+1 bahy(t — 755 )y(t — 7,5)(As)pAt for j =1to N
-1 dyy(t)At
-1 doy(t)ha(t — 7a,;)y(t — 7 ;) (As)gAt for j =1 to N

TABLE 5. Changes and probabilities for time interval At define a
discrete stochastic model for (14)

models. With discrete delays 7, and 74, Table 4 leads to the It6 delay SDE model
given by

dy(t) =(bry(t) + bay(t — 1) — dry(t) — day(t)y(t — 7a)) dt
+/01y(t) + bay(t — 1) + diy(t) + doy(t)y(t — 74) AW ().

With continuous delays with N discrete delays considered first, Table 5 leads to the
SDE system

N
WO _pry(t) + Vo ® 2 i Y= ult =) (A

dWy( o
—diy(t) — /dry dd —day(t) Y bt — 7a;)y(t — 7a)(As)a
=t (17)

+ Z \/b2 = 7o)yt = 7,5)(As)y dVZ(t)

. ; Vaay(Oht 7 )ult ) (Be) 2,

Continuing from (14), (15), and (17), there are several possible approaches. In the
first approach, equivalent expressions for the Wiener processes in terms of Brownian
sheets are substituted into (17). In a second approach, the changes and probabilities
for time interval At are reconsidered for (14) leading to an alternate but equivalent
model. This approach is discussed later. Using the first approach and referring to
(17), substitutions are made letting, for example,

dW;(t) (si)v+(As)e 92717 W(s,t)

dt ,/ As /s Jtos

ds where (sj)p=t—1;.
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It follows that (17) becomes

N
di/ii(tt) =biy(t) + Vbry(t) dvzt(t) Z h(t = 7.3)y(t = 75.3)(As)s

dW

—diy(t) — Vdiy Zh = 7a)y(t — 7a,;)(As)a

N +(As) BQW( ) (18)

53)ot(As)s s, t
+ / bg thb Tby') — (s
(SJ)b \/ J J 8t68

o [lan)at (B 92W (s, 1)
- doy(t)h(t — 7aj)y(t — Taj) —FH5——ds

= /(SJ)d \/ 87588

2 2171
O*W (s,t) n O*W (s,t)

Otds

where 3
s
infinity in (18), the continuous-delay SDDE is implied of the form

are independent Brownian sheets. Letting IV go to

d@#) =biy(t) + bz/t  Inlsy(s)ds = diy(t) - dzy(t)/t ha(s)y(s) ds

Td

W (s, 1)
NE (s, (19)

b1y
1y - T otds
8 W (s,t)
_
Vdiy(t) /t 5 Vday(t)ha(s ~hos

Interestingly in (19), Brownian sheets appear in the SDDE system when continuous
delays are present.

In the second alternate approach, an equivalent SDE model to (19) is derived
from (14) without applying Brownian sheets. Both approaches are described in
the present investigation as for a given problem it may be that the first procedure,
using Brownian sheets, is more easily applied than the second procedure. In the
second procedure, the changes and probabilities for the continuous delay case are
reconsidered and listed in Table 6. Notice that the problem is not approximated by
N discrete delays. The changes and probabilities given by the discrete stochastic

Change Ay(t) Probability
+1 bry(t)At
+1 by j;tfrb hy(s)y(s)dsAt
-1 dyy(t)At
-1 doy(t) [, ha(s)y(s)dsAt

TABLE 6. Changes and probabilities for time interval At define a
discrete stochastic model for (14)
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model of Table 6 directly imply the It6 delay SDE model for (16) given by

)= (o2 [ muCoh)as = ua0) o) [ o) as) a

Td

+b1y(t) dt + /bry(t) AW (t) + \//t bahp(s)y(s) ds dWy(t) (20)

t
—/dyy(t) dW(t) — \// day(t)ha(s)y(s) ds dWy(t).
t—T7q

where W (t), W (t), Wy(t) and Wy(t) are independent Wiener processes. Equations
(19) and (20) are equivalent SDE models for (14). Finally, it is pointed out that
only demographic stochasticity has been considered in deriving (16), (19), and (20).

The randomness due to environmental variability has been ignored up to now in
this section. To include environmental stochasticity for (13) and (14), it is reason-
able to assume that environmental changes have the effect of causing the individual
parameters in the model to vary randomly about average values, such as described
by mean-reverting Ornstein-Uhlenbeck processes [3]. In other words, it is reasonable
to suppose that the environment induces noise in the parameters of the differential
equation models. For example, the influence of the environment is likely to cause
the parameters by, bs,d;1,ds in (13) to vary randomly. For example, by = by (t) in
(13) or (16) may be modeled using the mean-reverting process

dbl (t) = Oél(beJ - b1 (t))dt + dW1 (t)

for which, for a fixed value of ¢, by (t) is nearly normally distributed with mean value
be,1 and variance (az2)?/(2a1).

Finally, it is useful to suggest how the delay SDE models can be computationally
solved using approximations based on the Euler-Maruyama approximation [25, 26].
For discrete delays for (16), the following computational method is suggested where
yi ~ y(t;) satisfies

Yit1 =Vi + 01y At + bayi—m, At — d1ys At — doysyi—m, Al

(21)
v/ (01yi + dvyi + b2Yi—my + doviVi—m, ) At 7;

assuming that my, = 7,/At and mg = 74/At are integers. In addition, the value
n; for each 7 is a random number normally distributed with zero mean and unit
variance.

For continuous delays for (19), the following computational method is suggested
where y; ~ y(t;) satisfies

Yir1 =Yi + 01y At — diys At + /b1y At m; — /dry; At 7

+ > balw(ty (A + Y bahy(t;)y; (AL)*n;,i

j=i—mp+1 j=i—mp+1 (22)
— Y dwhalt)y (A 3T\ fdayihalty)uy(AD2 iy
j=i—ma+1 j=i—ma+1

The values n;, 7,7, ;,; are random numbers normally distributed with zero mean
and unit variance for each ¢ and j. For continuous delays using (20), the following
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computational method is suggested where y; = y(t;) satisfies

Yir1 =Yi + b1y At — diys At + /by At m; — / diyi At 7

g

+ i baha(t;)y; (At)* + Z bahi (t5)y; (A1) ]

jmi—my+1 jmi—my+1 (23)
— > dayihalty)y;(AL)? — > dayihalty)y;(At)? Hf
j=i—mg+1 Jj=t—mgq+1

and where 7;,n?,7;,7¢ are random numbers normally distributed with zero mean
and unit variance.

The discrete-delay and the continuous-delay SDE models agree well in computa-
tional comparisons with Monte Carlo calculations. In the Monte Carlo calculations,
the populations are computationally followed for the specified time and unit adjust-
ments are made in the population levels for each small time step At, applying the
probabilities in Tables 5 and 6. Monte Carlo and SDDE calculations are made
using by = 1, by = 0, d; = 0, da = 0.01, hy(t) = 1.0, 74 = 1, and y(¢) = 110 for
—7q <t < 0. The results of the calculations are given in Tables 7 and 8 and are
illustrated in Figures 2 and 3.

Time Mean Standard Deviation
t=1199.65(SDDE) 99.27(MC) | 15.17(SDDE) 12.68(MC)
t =9 | 99.20(SDDE) 99.44(MC) | 17.75(SDDE) 16.38(MC)
TABLE 7. Results for 1000 sample paths calculated using logistic
SDDE (16) and Monte Carlo

Time Mean Standard Deviation
t=0.5 | 105.20(SDE) 105.12(MC) | 9.99(SDE) 8.85(MC)
t=9 98.32(SDE) 99.35(MC) | 12.29(SDE) 11.11(MC)
TABLE 8. Computations for 1000 sample paths calculated using
logistic SDDE (19) and Monte Carlo

2.4. A delay SIS model. Consider a population of susceptible, S, and infected, I,
with a delay in recovery of the infected individuals. Standard deterministic models
[6] have the following forms with a discrete or a continuous delay, respectively,

%Et) — _BI(®)S(t) +AI(t —7) (24)
PO _ s1(tyst) -1~ (25)
%(f) = —BI(t)S(t) + /t : h(s)I(s)ds (26)
%’5) = BI(t)S(t) — 7/; h(s)I(s) ds. (27)
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FIGURE 2. Computational results for SDDE (16) (upper) and
Monte Carlo (lower)

To obtain a discrete stochastic model, it is convenient, as in the previous section,
to replace the continuous delay SIS model with N discrete delays. In effect, the
integrals in the SIS model are replaced using a rectangular rule approximation with
N intervals which produces a model with IV discrete delays. Later, N will be allowed
to go to infinity. Hence, the continuous delay is replaced with N discrete delays
7, =7(1—=(j—1)/N) for j =1,...,N and where As = 7/N. Then, the integrals
are replaced with sums, and so, (26) and (27) become

%ﬁt) = —ﬂl(t)S(t)+7;h(t—7-j)](t_7-j)AS (28)
MO _ prwysi - DRI )

The changes and probabilities in a small time interval At define discrete sto-
chastic SIS models. These changes and probabilities are listed in Tables 9 and 10,
respectively, for the discrete and continuous delay SIS models.  The stochastic
models defined by Tables 9 and 10 lead to certain SDE models whose solutions
have similar probability densities as the discrete stochastic models. With a discrete
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FIGURE 3. Computational results for SDDE (19) (upper) and
Monte Carlo (lower)

Change A[S(t), I(t)] | Probability
[—1,+1] BS()I(t)At
[+1, —1] ~I(t —71)At
TABLE 9. Changes and probabilities for a time interval At define
a discrete stochastic SIS model for (24) and (25)

Change A[S(t), ()] Probability
(-1, +1] BS()I(t)At
[+1, 1] yh(t —7;)I(t — 7;)AsAt for j =1 to N

TABLE 10. Changes and probabilities for a time interval At define
a discrete SIS stochastic model for (28) and (29)

delay 7, the stochastic versions of (24) and (25) are

dS(t) = — BI(t)S(t) dt — /BI(t)S(t)dW1(¢)
+yI(t —7)dt + /VI(t — 7)) dW5(t)
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dI(t) =BI(t)S(t)dt + /BI(t)S(t)dWr(t
—'yIt—T \/’)/It—T de

For continuous delays with N discrete delays considered ﬁrst, then the stochastic
versions of (28) and (29) are

(31)

%i)_—ﬂ] +'yth—TJ —7j)As
(32)
VBT Wt — )1t~ ry)as D0
M—BI(t)S(t) Nht V(t—1) A
i _’YZ; (t—7)I(t—1;)As
” (33)

BI(1)S(

Z\/ (t—m)I(t—15)As dw;t(t).
Substituting into (32) and (33) the relatlon
dW;( SITAS 9211 (s, 1)
dt ~ VA 0tos

similarly as for the loglstlc problem in the previous section, and letting N go to
infinity, the continuous delay SDE is implied of the form

ds where s; =1t—T;

%it) =—BI)S(t) + /t_T h(s)I(s) ds "
BIDS() dVZt“) [ S P (Rl 8t85 )
%t) =BI)S(t) —~ /t B h(s)I(s)ds N

BI)S(2) dIZt(t) AR e 8t83

t—7
The continuous delay SDDE model is interesting as, unexpectedly, a Brownian sheet
appears in the stochastic differential equations. An equivalent stochastic system to
(34) and (35) is readily derived, as explained in the first section for the logistic
equation. This system has the form

as(t) = (ﬁﬂ)()+v/t )H)dﬁdt
JEIDS® \// vh(s)I(s) ds dVW (1)
dW—@UleﬁWU@ﬁ

+/BI)S(t) dW (¢t \// s)ds dW (t).

where W (t) and W (t) are independent Wiener processes.

(36)
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A wvariation of an Euler-Maruyama approximation is suggested in the present
investigation for computational solution of the delay stochastic SIS models. In
particular, for (30) and (31), S; = S(¢;) and I; = I(t;) satisfy

Sit1 =8i+ (vLimm — BLS;) At — \/BLS; At i + /Y i—m At 12, (38)
Iivi = L+ (BLS; —vLi—m) At + / BLSiAt 1 i — /i At 125 (39)

where 77 ; and 7, ; are independent normally distributed numbers with zero mean
and unit variance for each i and where m = 7/At. For continuous delay equations
(34) and (35), S; ~ S(t;) and I; ~ I(t;) satisfy

Siy1 =5; — BI;S; At + Z Yh(t;)1;(At)? — \/BLS; At n;

j=i—m+1

i (40)
+ ) V() Li(A)
j=i—m+1
Iiyy =I; + BL;S; At — Z Yh(t;)1;(At)? + \/BL:S; Atn;
i Jmimm (41)
— > WA L(AY;,

j=i—m+1
where n; and 7;; for each 7 and j are normally distributed numbers with zero mean
and unit variance.

The discrete-delay and the continuous-delay stochastic SIS models agree well
with Monte Carlo calculations. In the Monte Carlo calculations, the populations
are followed computationally for a specified time where unit changes are made in
the population levels for each small time step At applying the probabilities in Table
9 or 10. Monte Carlo and SDDE calculations were made using 8 = 0.01, v = 0.5,
h(t) =1, and 7 = 1, where S(¢) = 100 and I(¢t) = 50 for —7 < ¢ < 0. The results
of the calculations are given in Table 11 and in Figure 4 for the continuous-delay
problem. Notice that the SIS SDDE model and the Monte Carlo calculations agree
well.

Time Mean of S(t) Standard Deviation of S(t)
t=0.5 | 86.19(SDE) 86.26(MC) 5.93(SDE) 6.64(MC)
t=9 | 50.15(SDE) 50.97(MC) 6.92(SDE) 7.72(MC)
TABLE 11. A comparison of results for 1000 sample paths using
the stochastic SIS model (34)-(35) and Monte Carlo

3. Delay SDES for marine bacteria/bacteriophage dynamics. An environ-
mentally important specific time-delay problem involves the population dynamics
of bacteria and the viruses that infect them, bacteriophages, commonly referred to
as phages. In particular, virulent phage virions are infectious particles that inject
genetic material into bacteria cells where they replicate. Then, the cells eventu-
ally burst (cell lysis) releasing new phage particles. Over 5,000 phages have been
described and in the ocean alone there are estimated to be more than 103° phage
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FIGURE 4. SIS SDDE (34)-(35) (upper) and Monte Carlo (lower) results

particles [15, 29, 36]. Bacteriophage is considered the most abundant form of biolog-
ical entity on the Earth and tailed bacteriophages are possibly the most abundant
biological entities in marine environments [15, 34, 36]. In spite of their small size
(about 20nm to 200nm in length), marine bacteriophages are an important part
of marine ecosystems. They influence many biogeochemical processes and impact
population sizes of marine bacteria [16, 44]. Indeed, the number of phage virions
to bacteria cells may range from five to twenty-five [15, 16, 36]. See, for example,
[16, 29, 42] for a discussion of the biology and for electron micrographs of phage.

For example, Prochlorococcus is a genus of small (600nm) marine cyanobacteria.
These bacteria are possibly the most abundant photosynthetic organisms and the
most plentiful species on Earth: a single milliliter of surface seawater may contain
more than 10° cells [13]. Members of this genus are among the primary producers
of oxygen in the ocean and of organic matter on the Earth. [23]. Several different
types of bacteriophage have been identified that infect Prochlorococcus [43].

The population dynamics of phage and bacteria can be modeled with a delay
induced by viral reproduction. The delay is the period of time from the moment
when a phage particle injects its genetic material into a bacterium cell until new
phage particles burst from the cell. Several deterministic models have been devel-
oped for the dynamics of bacteria and phage such as described in [8, 9, 21, 32]. One
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biologically reasonable bacteria-phage deterministic model has the form [21]:

as(o)

o = S =5()/7) - KS)P() (42)
%f) = — upP(t) — mP?(t) — KS(t)P(t) (43)

+bKe MTS(t —T1)P(t —7)

where S(t) and P(t) are population sizes of bacteria and phage, respectively, K is
an infection rate, 7 is the delay until cell bursting, p; is the natural death rate of
infected bacteria, and b is the burst size. Deaths of phage are accounted for by
the rates —u,P(t) and —mP?(t) which are assumed here to be independent, and
aS(t) and —aS?(t) /v are assumed to be birth and death rates, respectively, for the
bacteria.

It is straightforward using the procedure described in the two previous sections
to incorporate demographic stochasticity into the population dynamics of (42) and
(43). This yields a delay SDE for the bacteriophage-bacteria dynamics of the form:

%ff) —aS(t)(1 - S(t)/v) ~ KS(t)P(t) + /aS(t) dWTltﬁ)

\/7 dW2 \/K.Si dWS (44)
%t) =— ppP(t) — mP2(t) — KS(t)P(t) + bK e‘“ffS(t - )Pt - T>

dW4 \/7 dW5 W dW3 (45)
+be‘“”\/KS(t T (A Gk Eit ™)
where W;(t), i = 1,2,...,5 are independent Wiener processes. Notice that W;5(t)
appears in one term in (45) with delay 7 where it is assumed that the phage due to
bursting, be™#i" | is constant but depends on the delay time 7.

To illustrate the dynamics of bacteria and bacteriophage, population sizes are
calculated for 1 ml of seawater for which it is assumed that the bacteria cells and
the virions are distributed homogeneously. Reasonable values of the parameters are
a = 1.34/day, K = 6.70 x 1078 /(virions day), v = 2 x 10° virions, u, = 2.00/day,
m = 6.70 x 1079 /(virions day), b = 75, u; = 0.20/day, and 7 = 2.24 days [21, 32].
Calculations are performed up to 72.36 days using the stochastic model (44)-(45).
Initial numbers of bacteria cells and phage particles are taken as 6 x 10° and 2 x
108, respectively, in the 1 ml of seawater. The results are listed in Table 12 and
displayed in Figure 5. The calculations indicate that the high population densities
of the bacteria and phage result in low demographic stochasticity. Environmental
stochasticity was then studied for the bacteria-phage dynamics. In performing
this study, it was hypothesized that the parameters in the model were individually
influenced by the environment. Each parameter was individually assumed to satisfy
a mean-reverting Ornstein-Uhlenbeck process with standard deviation 1/5 of the
deterministic value. For example, for parameter o

da(t) = (ae — a(t)) dt + \/2a2/25 dW (t) with a(0) = a., (46)
where for large ¢, «(t) is approximately normally distributed about mean «, with
variance o /25 where o, = 1.34/day. The effects on bacteria and phage populations,
S(t) and P(t), were studied as each parameter, o, K, 7, pp, m, b, p;, 7, individually
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Time Mean of S(t) | Standard Deviation of S(t)
t=1.12 1.20 x 108 1.36 x 103
t=7236| 5.81x10° 3.37 x 10°

Time | Mean of P(t) | Standard Deviation of P(t)
t=112 [ 1.87 x10° 9.89 x 10?
t=72.36] 1.56 x 107 5.28 x 10°

TABLE 12. Calculational results of 1000 sample paths for bacteria

and bacteriophage with demographic variability
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randomly varied with the environment. This calculational study gave the results
listed in Table 13. The dynamics in the population levels are most sensitive to
environmental variability in the parameter K. In particular, Figure 6 illustrates
the results specifically when K is chosen as the variable influenced by the environ-
ment. This figure should be compared with the earlier Figure 5 which shows the
populations influenced purely by demographic variability. Figure 6 clearly indicates
that the population sizes may be sensitive to the environment through variability

induced in the parameter

values.
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Parameter | Mean of S(tf) | Std. Dev. of S(ty)

a 7.76 x 10° 3.16 x 10°

K 8.00 x 10° 4.64 x 10°

v 7.35 x 10° 2.14 x 10°

Ly 7.99 x 10° 3.06 x 10°

m 5.93 x 10° 1.38 x 10%

b 7.74 x 10° 2.95 x 10°

I 6.68 x 10° 1.23 x 10°

T 7.57 x 107 3.25 x 10°
Parameter | Mean of P(ty) | Std. Dev. of P(ty)

o 1.26 x 107 4.30 x 10°

K 1.22 x 107 6.19 x 10°

~ 1.31 x 107 3.24 x 10°

[y 1.24 x 107 4.03 x 10°

m 1.55 x 107 2.18 x 10°

b 1.27 x 107 4.67 x 10°

i 1.44 x 107 2.00 x 106

T 1.48 x 107 1.85 x 10°

TABLE 13. Calculational results of 1000 sample paths for bacteria
and phage with demographic and environmental variability at final
time t; = 72.36 days

4. Delay SDEs for insulin-glucose levels. An interesting physiological stochas-
tic delay problem is estimation of glucose and insulin levels [31, 33, 40, 45]. Under-
standing interactions that occur between insulin and glucose levels is aided through
computation of stochastic delay models. Two time delays exist in the glucose-insulin
regulatory system, a time delay in insulin production stimulated by an elevated glu-
cose concentration and a time delay for insulin to inhibit glucose production of the
liver. To model insulin levels with time lags, Sturis [40] proposed a deterministic
ODE model. Modifications of this model were subsequently investigated [31, 33, 45].

Many of the mathematical models of glucose-insulin dynamics use certain func-
tions to model specific physiological processes. These functions and processes
are briefly described: G, is the source of glucose from food ingestion, f1(G) =
R../(1 + exp ((C1 — G/Vy)/a1)) models insulin production stimulated by glucose
level, f2(G) = Up(1 — exp (—G/(C2V,))) models insulin-independent glucose uti-
lization, f3(G)fs(I) = [G/(C5Vy)][Uo+ (Upm —Uy)/S] where S = 1 + exp (So),
So = —plog((1/V; + 1/(Et;))I/C4), and f3(G) f4(I) models insulin-dependent glu-
cose utilization, f5(I) = Ry/(1 + exp (a((I/V,) — Cs))) models glucose production
controlled by insulin concentration, d; models insulin degradation or clearance rate,
71 is the time delay in insulin production stimulated by elevated glucose concentra-
tion, and 73 is the time delay for insulin to inhibit hepatic glucose production. See,
for example, [31] or [40] for more detailed explanations of these functions.

Using these functions and discrete time delays, insulin and glucose may be de-
terministically modeled [31] with the delay differential equation system

dG(t)

= Gin — f2(G(t)) = f3(G(1) fa(L(})) + f5(L(t — 72)) (47)
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FIGURE 6. Bacteria-bacteriophage SDE calculational results with
environmental variability in K

dI(t) 4
T = (G- ) — (). (48)

assuming a constant input rate of glucose G,.

Given the rates of change implied by the functions and the differential equation
model (47)-(48), an SDE model could be readily derived if the glucose and insulin
levels changed by discrete amounts as, for example, population levels that change
by unit amounts. If the body organs sense and respond to infinitesimal changes in
glucose and insulin levels, calculated variability in glucose and insulin levels would
be exceedingly low and deterministic models would be accurate. However, actual
insulin and glucose levels appear to have a noticeable random component [38, 39, 40]
suggesting that the body may not detect or respond to minute changes in glucose
and insulin levels. It is therefore hypothesized in the present investigation that
there exist threshold changes in glucose concentrations and insulin concentrations
to which the body senses and responds. To model this effect in an approximate
manner, it is assumed that insulin and glucose concentrations occur at discrete
levels in the body. Of course, this is a simplification of a complex phenomenon. Let
Mg and A be the incremental changes, respectively, in glucose and insulin levels to
which it is assumed that the body detects.
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Now, assuming that Ag and A; define the discrete change levels in the body, a
discrete stochastic model is straightforward to derive. The changes and the corre-
sponding probabilities for a small time At are given in Table 14 assuming that the
rate processes are independent. This discrete stochastic model, defined by Table

Change A[G(t), I(t)] Probability
[=Ac, 0] f2(G(1)At/Aa
(=X, 0] fs(G(0) f1(I(1)) At/ Aq
[Ac, 0] [s(I(t —72)At/Aq
[0, Ar] Si(G(t — 7)) At/ A
[0, ~\7] diI(H) AL\

TABLE 14. Changes and probabilities for time interval At define a
discrete stochastic glucose-insulin model

14, leads directly to the SDE system:

%it) =Gin — f2(G(t)) — f3(G(@)) fa(I(t)) + fs(I(t — 72))
~Vrahe®) P _ semeonrm 22 )
VA ) 2B
dI(t)

EE (Gl —m) — diT(1)+ Mﬁ@“‘ﬁ”ﬂg®
~ i el

where Ag and A; are incremental changes in glucose and insulin levels.

A computational approach is readily suggested for equations (49) and (50) anal-
ogous to the computational methods described for the SDDEs in the previous sec-
tions. Computations were performed for these models using the parameter val-
ues considered in [31]. Specifically, for plasma volume V,, = 3000ml and volume
of glucose space V; = 100dl, let 7 = 7min, 7» = 12min, G;, = 108mg/min,
G(0) = 10000mg, I(0) = 100mU, d; = 0.06/min, A; = G(0)/1000 = 10mg,
A2 = 1(0)/1000 = 0.1mU, R,, = 210mU/min, C; = 2000mg/1, a; = 300mg/l, U, =
72mg/min, Cy = 144mg/l, C5 = 1000mg/l, Uy = 40mg/min, U,, = 940mg/min,
8 =177, C4y = 80mU/]l, E = .21/min, R, = 180mg/min, o = .291/mU, C5 =
26mU/1, with final time = 488min. For these parameter values in (49) and (50),
the units of insulin, I(¢), and the unit of glucose, G(t), are mg and mU, respec-
tively. To determine concentrations of insulin and glucose, the concentrations are
calculated as G(t)/V, in units of mg/dl and 1000I(¢)/V}, in units of pU/ml. The
values A\¢ = 10mg and A\; = 0.1mU are assumed in the present investigation and
are about 1/1000 of the average deterministic values of total glucose mass G(t) and
total insulin mass I(t), respectively. In particular, A¢ = 10mg corresponds to a
hypothesized incremental change level of 0.01mg/dl in glucose concentration and
A7 = 0.1mU corresponds to a hypothesized incremental change level of 0.033U /ml
in insulin concentration.

When Ag = A; = 0, the calculations are deterministic and glucose and insulin
levels show a smooth oscillatory behavior indicated in the upper two graphs of

(50)
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Figure 7 and as, for example, previously demonstrated computationally in [31].
However, when the incremental changes, A¢ and \j, are nonzero, as in the lower
two graphs of Figure 7 where A¢ = 10mg and A; = 0.1mU, a random variability is
introduced into the levels similar to the random variability seen in actual glucose
and insulin levels. See, for example, the insulin and glucose levels of experimental
subjects presented in [38], [39], and [40]. This agreement between experiment and
computation supports the hypothesis that the body may not respond in a perfect
continuous manner to glucose and insulin concentration levels, i.e., microscopic
changes in insulin and glucose levels may not result in microscopic adjustments in
insulin and glucose production or utilization.
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FIGURE 7. Deterministic results (upper two graphs) with A\g =
0.0, A\; = 0.0, and stochastic results (lower two graphs) with Ag =
10mg, A; = 0.1mU
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