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Abstract. Stochastic versions of several discrete-delay and continuous-delay

differential equations, useful in mathematical biology, are derived from basic

principles carefully taking into account the demographic, environmental, or
physiological randomness in the dynamic processes. In particular, stochastic

delay differential equation (SDDE) models are derived and studied for Nichol-

son’s blowflies equation, Hutchinson’s equation, an SIS epidemic model with
delay, bacteria/phage dynamics, and glucose/insulin levels. Computational

methods for approximating the SDDE models are described. Comparisons be-

tween computational solutions of the SDDEs and independently formulated
Monte Carlo calculations support the accuracy of the derivations and of the

computational methods.

1. Introduction. Many deterministic delay differential equation models in mathe-
matical biology have been developed, analyzed, and analytically or computationally
solved. (See, e.g., [6, 11, 14, 19, 21, 27, 33].) As these biological dynamical systems
are randomly varying, it important to derive and examine stochastic differential
equation models for these delay systems.

In the present investigation, stochastic versions of several discrete-delay and
continuous-delay (or distributed-delay) differential equation models, useful in math-
ematical biology, are derived from basic principles carefully taking into account the
demographic, environmental, or physiological randomness in the processes. By
demographic randomness, it is meant the variability inherent in the population
processes, such as births, deaths, migrations, and infections. Environmental ran-
domness differs from demographic randomness and the effects of environmental
randomness are considered collectively and are due to the variability, for example,
in the weather, in plant growth, and in populations of predators, prey, and com-
petitors. Physiological randomness is due to variability in bodily functions, e.g.,
sensory, response, or regulation, and is introduced in this paper. Physiological ran-
domness, as suggested here, is due to organs responding to incremental and not
continuous changes in levels. For example, it is well-known that there exist an
auditory threshold and a renal threshold, which are, respectively, the smallest per-
ceptible sound and the concentration in the blood above which the kidneys begin

2010 Mathematics Subject Classification. Primary: 60H10, 92D25; Secondary: 60H20, 65C30,
92B05.

Key words and phrases. Population biology, mathematical biology, stochastic delay differential

equation, stochastic differential equation, delay differential equation, stochastic model.

403

http://dx.doi.org/10.3934/mbe.2014.11.403


404 EDWARD J. ALLEN

to eliminate the material in the urine [35]. These threshold levels of perception
or of response result in randomly varying processes as illustrated later for the dy-
namics of glucose-insulin levels. Specifically, as a simplifying approximation to a
complex process, it is hypothesized in the present investigation that glucose and
insulin concentrations occur at discrete levels and, as a result, this hypothesis leads
to a randomly varying process.

Stochastic delay differential equation (SDDE) models, which include demograph-
ic, environmental, or physiological variability, are derived and studied for Nichol-
son’s blowflies equation, Hutchinson’s equation, an SIS epidemic model with delay,
bacteria/phage dynamics, and glucose/insulin levels. Specifically, environmental
variability is studied for bacteria/phage dynamics, because demographic variability
appears to be low due to the generally high densities of bacteria cells and viri-
ons. Physiological variability is studied for the dynamics of glucose-insulin levels.
Computational methods for approximating the delay SDE models are described.
Comparisons between computational solutions of the delay SDEs and independently
formulated Monte Carlo calculations support the accuracy of the derivations and of
the proposed computational methods.

The purpose of this investigation is to examine and illustrate the derivation of
stochastic differential equation models for randomly-varying biological delay prob-
lems. Care is is taken in deriving the stochastic terms in a biologically meaningful
manner. Indeed, deterministic differential equation models are simultaneously de-
rived along with the stochastic differential equation models, in particular, when
demographic, environmental, or physiological noise is present.

Before deriving the stochastic differential equations, it is useful to consider a few
properties of Brownian sheets [2, 12, 46]. The Brownian sheet W (x, t) satisfies:∫ t+∆t

t

∫ x+∆x

x

∂2W (x′, t′)

∂t′∂x′
dx′ dt′ ∼ N(0,∆x∆t). (1)

That is, the Brownian sheet is independent and normally distributed over rectan-
gular regions. In addition, if xi = i∆x for i = 0, 1, . . . , I, where ∆x = xmax/I, then
the Brownian sheet defines for i = 1, 2, . . . I, the standard Wiener processes, Wi(t),
where

dWi(t)

dt
=

1√
∆x

∫ xi+1

xi

∂2W (x, t)

∂t∂x
dx. (2)

In particular, notice that if tj = j∆t for j = 0, 1, . . . , J , then∫ tj

tj−1

dWi(t) =
√

∆t ηi,j (3)

where ηi,j ∼ N(0, 1) for each i = 1, 2, . . . I and j = 1, 2, . . . J . In addition, a double
stochastic integral is defined in an analogous way as the Itô integral for measurable,
mean-square integrable functions. Specifically,∫ a

0

∫ b

0

f(x, t)
∂2W (x, t)

∂t∂x
dxdt =

= lim
I,J→∞

I−1∑
i=0

J−1∑
j=0

f(xi, tj)

∫ xi+1

xi

∫ tj+1

tj

∂2W (x, t)

∂t∂x
dxdt

(4)

where xi = i∆x for i = 0, . . . , I, tj = j∆t for j = 0, . . . , J with ∆x = a/I and
∆t = b/J and the limit is taken in the mean square sense [17, 26].
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In the next section, demographic variability is investigated for several common
delay models in mathematical biology. In the following two sections, environmental
variability is studied for a bacteria-bacteriophage model and physiological random-
ness is considered in a model for glucose and insulin levels.

2. Derivation Of delay SDEs for populations with demographic variabil-
ity.

2.1. Nicholson’s blowflies equation. A well-known delay model originally de-
veloped to explain blowfly population data is Nicholson’s blowflies equation [10, 20,
22, 24, 41]:

du(t)

dt
= −δu(t) + pu(t− τ) exp(−au(t− τ)) (5)

where u(t) is the number of adult blowflies at time t, p is the maximum per capita
daily egg production, 1/a is the population size at which the blowflies reproduce
at maximum rate, δ is the per capita death rate, and τ is the time for larvae to
develop into adults. To include demographic stochasticity in this model, a discrete
stochastic model is first derived from the possible changes in the population for a
small time interval ∆t taking into account the randomness in the processes. The
discrete stochastic model then leads to a certain Itô SDE model using a widely
known modeling procedure, a variant of which was first used by Langevin [30] and
then later proposed or applied by other investigators [3, 4, 5, 18, 28]. Using this
procedure, the probability densities of solutions of the discrete stochastic model and
of solutions of the stochastic differential equation model will be similar.

A discrete stochastic model is defined from the changes that occur in the ran-
domly varying system for a small time interval. Let ∆u(t) be the change in the
number of adults at time t for small time interval ∆t. Based on the assumptions for
the blowfly model, the changes in u(t) with corresponding probabilities for small
time interval ∆t satisfy the values in the Table 1. The discrete stochastic model

Change ∆u(t) Probability
−1 δu(t)∆t
+1 pu(t− τ) exp(−au(t− τ))∆t

Table 1. Changes and probabilities for time interval ∆t define a
discrete stochastic model for (5)

of Table 1 implies a certain SDE model which has approximately the same mean
changes and covariance matrix of changes for small ∆t. Table 1 leads to the Itô
delay SDE model given by

du(t) =(−δu(t) + pu(t− τ) exp(−au(t− τ))) dt+
√
δu(t) dW1(t)

+
√
pu(t− τ) exp(−au(t− τ)) dW2(t)

(6)

where W1(t) and W2(t) are independent Wiener processes.
The discrete-delay blowfly SDDE model agrees well in computational compar-

isons with Monte Carlo calculations. In the Monte Carlo calculations, the popula-
tions are computationally followed for the specified time and unit adjustments are
made in the population levels for each small time step ∆t, applying the probabili-
ties in Table 1. Monte Carlo and SDDE calculations are performed using δ = 0.3,
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p = 10, τ = 2, a = 1/15, and y(t) = 40 for −τ ≤ t ≤ 0. The results of the
calculations are given in Table 2 and are illustrated in Figure 1. For this problem,
as time increases, the oscillations in the mean path decrease in magnitude with the
individual sample paths continuing to randomly vary about the mean. An inter-

Time Mean Standard Deviation
t = 4 64.06 (SDDE) 63.71 (MC) 7.16(SDDE) 6.85 (MC)
t = 25 54.03(SDDE) 53.82(MC) 8.35(SDDE) 8.03(MC)

Table 2. Calculated results for 1000 sample paths using SDDE
(5) and Monte Carlo
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Figure 1. Computed mean and one sample path for SDDE (5)
(upper) and Monte Carlo (lower)

esting distributed infinite-delay modification to (5) has been studied for modeling
single species growth with diffusion [20]. The distributed delay equation without
diffusion has the form:

du(t)

dt
= −δu(t) + p

(∫ t

−∞
f(t− s)u(s) ds

)
exp

(
−a
∫ t

−∞
f(t− s)u(s) ds

)
(7)

where the kernel f(t) ≥ 0 satisfies
∫∞

0
f(t) dt = 1. As for (5), the first and second

terms on the right-hand side of (7) model death and reproduction rates, respectively.
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The values in Table 1 can be correspondingly modified for this distributed delay
equation. The resulting SDDE model for (7) has the form:

du(t) =

(
−δu(t) + p

(∫ t

−∞
f(t− s)u(s) ds

)
exp

(
−a
∫ t

−∞
f(t− s)u(s) ds

))
dt

+

√
δu(t) + p

(∫ t

−∞
f(t− s)u(s) ds

)
exp

(
−a
∫ t

−∞
f(t− s)u(s) ds

)
dW (t).

(8)

2.2. A stage-structured delay model. Demographic stochasticity is briefly con-
sidered for a stage-structured delay model studied in [1, 7] where the two stages are
both explicitly considered. The deterministic form of this model is:

dNi(t)

dt
=αNm(t)− γNi(t)− α exp (−γτ)Nm(t− τ)

dNm(t)

dt
=α exp (−γτ)Nm(t− τ)− βN2

m(t)

(9)

where Ni(t) and Nm(t) are the numbers of immature and mature individuals, α is
the per capita birth rate, γ is the per capita death rate of immature individuals,
and βNm(t) is the death rate of mature individuals. A fixed proportion, exp (−γτ),
of immature individuals born at time t − τ survive to time t and exit from the
immature population and enter the mature population. Let ∆ ~N(t) be the change in
the number of immature and mature populations at time t for small time interval ∆t.

Based on the assumptions for the model, the changes in ~N(t) with corresponding
probabilities for small time interval ∆t satisfy the values in the Table 3. The discrete

Change ∆ ~N(t) Probability
[1, 0]T αNm(t)∆t

[−1, 0]T γNi(t)∆t
[−e−γτ , e−γτ ]T αNm(t− τ)∆t

[0,−1]T βN2
m(t)∆t

Table 3. Changes and probabilities for time interval ∆t define a
discrete stochastic model for (9)

stochastic model of Table 3 implies a certain Itô delay SDE model given by

dNi(t) =(αNm(t)− γNi(t)− α exp (−γτ)Nm(t− τ)) dt+
√
αNm(t) dW1(t)

−
√
γNi(t) dW2(t)− exp (−γτ)

√
αNm(t− τ) dW1(t− τ)

dNm(t) =(α exp (−γτ)Nm(t− τ)− βN2
m(t)) dt

+ exp (−γτ)
√
αNm(t− τ) dW1(t− τ)−

√
βN2

m(t) dW3(t)

(10)

where W1(t),W2(t), and W3(t) are independent Wiener processes. Notice that
W1(t − τ) occurs in both equations and the survival proportion of immature indi-
viduals, exp (−γτ), is assumed to be constant but depends on delay time τ .
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2.3. Hutchinson-Wright equation. A delay differential equation for a single
population may have the form of a delay logistic equation which is sometimes re-
ferred to as Hutchinson’s equation or the Hutchinson-Wright equation [6, 14, 37]:

dy(t)

dt
= ry(t)(1− y(t− τ)/K) (11)

with a discrete delay τ or for a continuous delay

dy(t)

dt
= ry(t)

(
1− 1

Kτ

∫ t

t−τ
h(s)y(s)ds

)
(12)

where it is assumed that y(t) is given for −τ ≤ t ≤ 0. Equation (11) or (12) may
model, for example, the population of a species such as Daphnia where the clutch
size may depend on the amount of food available when the eggs were forming [37].

To derive a stochastic differential equation model for logistic population growth
with delay it is useful to consider the demographic terms in an explicit manner.
Let y(t) be the population size at time t with birth terms associated with birth
rate parameters b1 and b2 and death terms associated with death rate parameters
d1 and d2. Then, a logistic delay equation for a single population may have the
general form

dy(t)

dt
= b1y(t) + b2y(t− τb)− d1y(t)− d2y(t)y(t− τd) (13)

with discrete delays τb and τd or for continuous delays it may have the form

dy(t)

dt
= b1y(t) + b2

∫ t

t−τb
hb(s)y(s)ds− d1y(t)− d2y(t)

∫ t

t−τd
hd(s)y(s)ds. (14)

A discrete stochastic model is now developed from the possible changes in the
population for a small time interval ∆t taking into account the randomness in
the demographic (birth and death) processes. As previously stated, the discrete
stochastic model then leads to a certain Itô SDE model using a widely known
modeling procedure, a variant of which was first used by Langevin [30] and then
later proposed or applied by other investigators [3, 4, 5, 18, 28].

First, for determining changes and probabilities for the continuous-delay case
(14), it is useful to approximate the integrals in (14) using a rectangular rule ap-
proximation with N intervals. In effect, this modification produces a delay equation
with 2N discrete delays. Later, N will be allowed to go to infinity. Hence, in par-
ticular, (14) is replaced with

dy(t)

dt
=b1y(t) + b2

N∑
j=1

hb(t− τb,j)y(t− τb,j)(∆s)b − d1y(t)

−d2y(t)

N∑
j=1

hd(t− τd,j)y(t− τd,j)(∆s)d.

(15)

where the continuous delays are replaced with 2N discrete delays τb,j = τb(1 −
(j − 1)/N) and τd,j = τd(1 − (j − 1)/N) for j = 1, . . . , N , with (∆s)b = τb/N and
(∆s)d = τd/N , and the integrals are approximated with sums. The demographic
changes and probabilities for a small time interval are listed in Tables 4 and 5 for
the two cases. The discrete stochastic models of Tables 4 and 5 imply certain SDE
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Change ∆y(t) Probability
+1 b1y(t)∆t
+1 b2y(t− τb)∆t
−1 d1y(t)∆t
−1 d2y(t)y(t− τd)∆t

Table 4. Changes and probabilities for time interval ∆t define a
discrete stochastic model for (13)

Change ∆y(t) Probability
+1 b1y(t)∆t
+1 b2hb(t− τb,j)y(t− τb,j)(∆s)b∆t for j = 1 to N
−1 d1y(t)∆t
−1 d2y(t)hd(t− τd,j)y(t− τb,j)(∆s)d∆t for j = 1 to N

Table 5. Changes and probabilities for time interval ∆t define a
discrete stochastic model for (14)

models. With discrete delays τb and τd, Table 4 leads to the Itô delay SDE model
given by

dy(t) =(b1y(t) + b2y(t− τb)− d1y(t)− d2y(t)y(t− τd)) dt

+
√
b1y(t) + b2y(t− τb) + d1y(t) + d2y(t)y(t− τd) dW (t).

(16)

With continuous delays with N discrete delays considered first, Table 5 leads to the
SDE system

dy(t)

dt
=b1y(t) +

√
b1y(t)

dWb(t)

dt
+ b2

N∑
j=1

h(t− τb,j)y(t− τb,j)(∆s)b

−d1y(t)−
√
d1y

dWd(t)

dt
− d2y(t)

N∑
j=1

h(t− τd,j)y(t− τd,j)(∆s)d

+

N∑
j=1

√
b2h(t− τb,j)y(t− τb,j)(∆s)b

dWj(t)

dt

−
N∑
j=1

√
d2y(t)h(t− τd,j)y(t− τd,j) (∆s)d

dŴj(t)

dt
.

(17)

Continuing from (14), (15), and (17), there are several possible approaches. In the
first approach, equivalent expressions for the Wiener processes in terms of Brownian
sheets are substituted into (17). In a second approach, the changes and probabilities
for time interval ∆t are reconsidered for (14) leading to an alternate but equivalent
model. This approach is discussed later. Using the first approach and referring to
(17), substitutions are made letting, for example,

dWj(t)

dt
=

1√
(∆s)b

∫ (sj)b+(∆s)b

(sj)b

∂2W (s, t)

∂t∂s
ds where (sj)b = t− τb,j .
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It follows that (17) becomes

dy(t)

dt
=b1y(t) +

√
b1y(t)

dW (t)

dt
+ b2

N∑
j=1

h(t− τb,j)y(t− τb,j)(∆s)b

−d1y(t)−
√
d1y

dŴ (t)

dt
− d2y(t)

N∑
j=1

h(t− τd,j)y(t− τd,j)(∆s)d

+

N∑
j=1

∫ (sj)b+(∆s)b

(sj)b

√
b2h(t− τb,j)y(t− τb,j)

∂2W (s, t)

∂t∂s
ds

−
N∑
j=1

∫ (sj)d+(∆s)d

(sj)d

√
d2y(t)h(t− τd,j)y(t− τd,j)

∂2Ŵ (s, t)

∂t∂s
ds

(18)

where
∂2W (s, t)

∂t∂s
and

∂2Ŵ (s, t)

∂t∂s
are independent Brownian sheets. Letting N go to

infinity in (18), the continuous-delay SDDE is implied of the form

dy(t)

dt
=b1y(t) + b2

∫ t

t−τb
hb(s)y(s)ds− d1y(t)− d2y(t)

∫ t

t−τd
hd(s)y(s) ds

+
√
b1y(t)

dW (t)

dt
+

∫ t

t−τb

√
b2hb(s)y(s)

∂2W (s, t)

∂t∂s
ds

−
√
d1y(t)

dŴ (t)

dt
−
∫ t

t−τd

√
d2y(t)hd(s)y(s)

∂2Ŵ (s, t)

∂t∂s
ds.

(19)

Interestingly in (19), Brownian sheets appear in the SDDE system when continuous
delays are present.

In the second alternate approach, an equivalent SDE model to (19) is derived
from (14) without applying Brownian sheets. Both approaches are described in
the present investigation as for a given problem it may be that the first procedure,
using Brownian sheets, is more easily applied than the second procedure. In the
second procedure, the changes and probabilities for the continuous delay case are
reconsidered and listed in Table 6. Notice that the problem is not approximated by
N discrete delays. The changes and probabilities given by the discrete stochastic

Change ∆y(t) Probability
+1 b1y(t)∆t

+1 b2
∫ t
t−τb hb(s)y(s)ds∆t

−1 d1y(t)∆t

−1 d2y(t)
∫ t
t−τd hd(s)y(s)ds∆t

Table 6. Changes and probabilities for time interval ∆t define a
discrete stochastic model for (14)
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model of Table 6 directly imply the Itô delay SDE model for (16) given by

dy(t) =

(
b2

∫ t

t−τb
hb(s)y(s)ds− d1y(t)− d2y(t)

∫ t

t−τd
hd(s)y(s) ds

)
dt

+b1y(t) dt+
√
b1y(t) dW (t) +

√∫ t

t−τb
b2hb(s)y(s) ds dWb(t)

−
√
d1y(t) dŴ (t)−

√∫ t

t−τd
d2y(t)hd(s)y(s) ds dWd(t).

(20)

where W (t), Ŵ (t),Wb(t) and Wd(t) are independent Wiener processes. Equations
(19) and (20) are equivalent SDE models for (14). Finally, it is pointed out that
only demographic stochasticity has been considered in deriving (16), (19), and (20).

The randomness due to environmental variability has been ignored up to now in
this section. To include environmental stochasticity for (13) and (14), it is reason-
able to assume that environmental changes have the effect of causing the individual
parameters in the model to vary randomly about average values, such as described
by mean-reverting Ornstein-Uhlenbeck processes [3]. In other words, it is reasonable
to suppose that the environment induces noise in the parameters of the differential
equation models. For example, the influence of the environment is likely to cause
the parameters b1, b2, d1, d2 in (13) to vary randomly. For example, b1 = b1(t) in
(13) or (16) may be modeled using the mean-reverting process

db1(t) = α1(be,1 − b1(t))dt+ α2 dW1(t)

for which, for a fixed value of t, b1(t) is nearly normally distributed with mean value
be,1 and variance (α2)2/(2α1).

Finally, it is useful to suggest how the delay SDE models can be computationally
solved using approximations based on the Euler-Maruyama approximation [25, 26].
For discrete delays for (16), the following computational method is suggested where
yi ≈ y(ti) satisfies

yi+1 =yi + b1yi∆t+ b2yi−mb
∆t− d1yi∆t− d2yiyi−md

∆t

+
√

(b1yi + d1yi + b2yi−mb
+ d2yiyi−md

)∆t ηi
(21)

assuming that mb = τb/∆t and md = τd/∆t are integers. In addition, the value
ηi for each i is a random number normally distributed with zero mean and unit
variance.

For continuous delays for (19), the following computational method is suggested
where yi ≈ y(ti) satisfies

yi+1 =yi + b1yi∆t− d1yi∆t+
√
b1yi∆t ηi −

√
d1yi∆t η̂i

+

i∑
j=i−mb+1

b2hb(tj)yj(∆t)
2 +

i∑
j=i−mb+1

√
b2hb(tj)yj(∆t)2ηj,i

−
i∑

j=i−md+1

d2yihd(tj)yj(∆t)
2 −

i∑
j=i−md+1

√
d2yihd(tj)yj(∆t)2 η̂j,i.

(22)

The values ηi, ηj,i, η̂i, η̂j,i are random numbers normally distributed with zero mean
and unit variance for each i and j. For continuous delays using (20), the following
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computational method is suggested where yi ≈ y(ti) satisfies

yi+1 =yi + b1yi∆t− d1yi∆t+
√
b1yi∆t ηi −

√
d1yi∆t η̂i

+

i∑
j=i−mb+1

b2hb(tj)yj(∆t)
2 +

√√√√ i∑
j=i−mb+1

b2hb(tj)yj(∆t)2 ηbi

−
i∑

j=i−md+1

d2yihd(tj)yj(∆t)
2 −

√√√√ i∑
j=i−md+1

d2yihd(tj)yj(∆t)2 η̂di

(23)

and where ηi, η
b
i , η̂i, η̂

d
i are random numbers normally distributed with zero mean

and unit variance.
The discrete-delay and the continuous-delay SDE models agree well in computa-

tional comparisons with Monte Carlo calculations. In the Monte Carlo calculations,
the populations are computationally followed for the specified time and unit adjust-
ments are made in the population levels for each small time step ∆t, applying the
probabilities in Tables 5 and 6. Monte Carlo and SDDE calculations are made
using b1 = 1, b2 = 0, d1 = 0, d2 = 0.01, hd(t) = 1.0, τd = 1, and y(t) = 110 for
−τd ≤ t ≤ 0. The results of the calculations are given in Tables 7 and 8 and are
illustrated in Figures 2 and 3.

Time Mean Standard Deviation
t = 1 99.65(SDDE) 99.27(MC) 15.17(SDDE) 12.68(MC)
t = 9 99.20(SDDE) 99.44(MC) 17.75(SDDE) 16.38(MC)

Table 7. Results for 1000 sample paths calculated using logistic
SDDE (16) and Monte Carlo

Time Mean Standard Deviation
t = 0.5 105.20(SDE) 105.12(MC) 9.99(SDE) 8.85(MC)
t = 9 98.32(SDE) 99.35(MC) 12.29(SDE) 11.11(MC)

Table 8. Computations for 1000 sample paths calculated using
logistic SDDE (19) and Monte Carlo

2.4. A delay SIS model. Consider a population of susceptible, S, and infected, I,
with a delay in recovery of the infected individuals. Standard deterministic models
[6] have the following forms with a discrete or a continuous delay, respectively,

dS(t)

dt
= −βI(t)S(t) + γI(t− τ) (24)

dI(t)

dt
= βI(t)S(t)− γI(t− τ) (25)

dS(t)

dt
= −βI(t)S(t) + γ

∫ t

t−τ
h(s)I(s) ds (26)

dI(t)

dt
= βI(t)S(t)− γ

∫ t

t−τ
h(s)I(s) ds. (27)
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Figure 2. Computational results for SDDE (16) (upper) and
Monte Carlo (lower)

To obtain a discrete stochastic model, it is convenient, as in the previous section,
to replace the continuous delay SIS model with N discrete delays. In effect, the
integrals in the SIS model are replaced using a rectangular rule approximation with
N intervals which produces a model with N discrete delays. Later, N will be allowed
to go to infinity. Hence, the continuous delay is replaced with N discrete delays
τj = τ(1 − (j − 1)/N) for j = 1, . . . , N and where ∆s = τ/N . Then, the integrals
are replaced with sums, and so, (26) and (27) become

dS(t)

dt
= −βI(t)S(t) + γ

N∑
j=1

h(t− τj)I(t− τj) ∆s (28)

dI(t)

dt
= βI(t)S(t)− γ

N∑
j=1

h(t− τj)I(t− τj) ∆s. (29)

The changes and probabilities in a small time interval ∆t define discrete sto-
chastic SIS models. These changes and probabilities are listed in Tables 9 and 10,
respectively, for the discrete and continuous delay SIS models. The stochastic
models defined by Tables 9 and 10 lead to certain SDE models whose solutions
have similar probability densities as the discrete stochastic models. With a discrete
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Figure 3. Computational results for SDDE (19) (upper) and
Monte Carlo (lower)

Change ∆[S(t), I(t)] Probability
[−1,+1] βS(t)I(t)∆t
[+1,−1] γI(t− τ)∆t

Table 9. Changes and probabilities for a time interval ∆t define
a discrete stochastic SIS model for (24) and (25)

Change ∆[S(t), I(t)] Probability
[−1,+1] βS(t)I(t)∆t
[+1,−1] γh(t− τj)I(t− τj)∆s∆t for j = 1 to N

Table 10. Changes and probabilities for a time interval ∆t define
a discrete SIS stochastic model for (28) and (29)

delay τ , the stochastic versions of (24) and (25) are

dS(t) =− βI(t)S(t) dt−
√
βI(t)S(t)dW1(t)

+γI(t− τ) dt+
√
γI(t− τ)) dW2(t)

(30)
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dI(t) =βI(t)S(t) dt+
√
βI(t)S(t)dW1(t)

−γI(t− τ)) dt−
√
γI(t− τ)) dW2(t).

(31)

For continuous delays with N discrete delays considered first, then the stochastic
versions of (28) and (29) are

dS(t)

dt
=− βI(t)S(t) + γ

N∑
j=1

h(t− τj)I(t− τj) ∆s

−
√
βI(t)S(t)

dW (t)

dt
+

N∑
j=1

√
γh(t− τj)I(t− τj)∆s

dWj(t)

dt

(32)

dI(t)

dt
=βI(t)S(t)− γ

N∑
j=1

h(t− τj)I(t− τj) ∆s

+
√
βI(t)S(t)

dW (t)

dt
−

N∑
j=1

√
γh(t− τj)I(t− τj)∆s

dWj(t)

dt
.

(33)

Substituting into (32) and (33) the relation

dWj(t)

dt
=

1√
∆s

∫ sj+∆s

sj

∂2W (s, t)

∂t∂s
ds where sj = t− τj ,

similarly as for the logistic problem in the previous section, and letting N go to
infinity, the continuous delay SDE is implied of the form

dS(t)

dt
=− βI(t)S(t) + γ

∫ t

t−τ
h(s)I(s) ds

−
√
βI(t)S(t)

dW (t)

dt
+

∫ t

t−τ

√
γh(s)I(s)

∂2W (s, t)

∂t∂s
ds

(34)

dI(t)

dt
=βI(t)S(t)− γ

∫ t

t−τ
h(s)I(s) ds

+
√
βI(t)S(t)

dW (t)

dt
−
∫ t

t−τ

√
γh(s)I(s)

∂2W (s, t)

∂t∂s
ds.

(35)

The continuous delay SDDE model is interesting as, unexpectedly, a Brownian sheet
appears in the stochastic differential equations. An equivalent stochastic system to
(34) and (35) is readily derived, as explained in the first section for the logistic
equation. This system has the form

dS(t) =

(
−βI(t)S(t) + γ

∫ t

t−τ
h(s)I(s) ds

)
dt

−
√
βI(t)S(t) W (t) +

√∫ t

t−τ
γh(s)I(s) ds dŴ (t)

(36)

dI(t) =

(
βI(t)S(t)− γ

∫ t

t−τ
h(s)I(s) ds

)
dt

+
√
βI(t)S(t) dW (t)−

√∫ t

t−τ
γh(s)I(s) ds dŴ (t).

(37)

where W (t) and Ŵ (t) are independent Wiener processes.
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A variation of an Euler-Maruyama approximation is suggested in the present
investigation for computational solution of the delay stochastic SIS models. In
particular, for (30) and (31), Si ≈ S(ti) and Ii ≈ I(ti) satisfy

Si+1 = Si + (γIi−m − βIiSi)∆t−
√
βIiSi∆t η1,i +

√
γIi−m∆t η2,i (38)

Ii+1 = Ii + (βIiSi − γIi−m)∆t+
√
βIiSi∆t η1,i −

√
γIi−m∆t η2,i (39)

where η1,i and η2,i are independent normally distributed numbers with zero mean
and unit variance for each i and where m = τ/∆t. For continuous delay equations
(34) and (35), Si ≈ S(ti) and Ii ≈ I(ti) satisfy

Si+1 =Si − βIiSi∆t+

i∑
j=i−m+1

γh(tj)Ij(∆t)
2 −

√
βIiSi∆t ηi

+

i∑
j=i−m+1

√
γh(tj)Ij(∆t)2ηj,i

(40)

Ii+1 =Ii + βIiSi∆t−
i∑

j=i−m+1

γh(tj)Ij(∆t)
2 +

√
βIiSi∆t ηi

−
i∑

j=i−m+1

√
γh(tj)Ij(∆t)2ηj,i

(41)

where ηi and ηj,i for each i and j are normally distributed numbers with zero mean
and unit variance.

The discrete-delay and the continuous-delay stochastic SIS models agree well
with Monte Carlo calculations. In the Monte Carlo calculations, the populations
are followed computationally for a specified time where unit changes are made in
the population levels for each small time step ∆t applying the probabilities in Table
9 or 10. Monte Carlo and SDDE calculations were made using β = 0.01, γ = 0.5,
h(t) = 1, and τ = 1, where S(t) = 100 and I(t) = 50 for −τ ≤ t ≤ 0. The results
of the calculations are given in Table 11 and in Figure 4 for the continuous-delay
problem. Notice that the SIS SDDE model and the Monte Carlo calculations agree
well.

Time Mean of S(t) Standard Deviation of S(t)
t = 0.5 86.19(SDE) 86.26(MC) 5.93(SDE) 6.64(MC)
t = 9 50.15(SDE) 50.97(MC) 6.92(SDE) 7.72(MC)

Table 11. A comparison of results for 1000 sample paths using
the stochastic SIS model (34)-(35) and Monte Carlo

3. Delay SDES for marine bacteria/bacteriophage dynamics. An environ-
mentally important specific time-delay problem involves the population dynamics
of bacteria and the viruses that infect them, bacteriophages, commonly referred to
as phages. In particular, virulent phage virions are infectious particles that inject
genetic material into bacteria cells where they replicate. Then, the cells eventu-
ally burst (cell lysis) releasing new phage particles. Over 5,000 phages have been
described and in the ocean alone there are estimated to be more than 1030 phage
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Figure 4. SIS SDDE (34)-(35) (upper) and Monte Carlo (lower) results

particles [15, 29, 36]. Bacteriophage is considered the most abundant form of biolog-
ical entity on the Earth and tailed bacteriophages are possibly the most abundant
biological entities in marine environments [15, 34, 36]. In spite of their small size
(about 20nm to 200nm in length), marine bacteriophages are an important part
of marine ecosystems. They influence many biogeochemical processes and impact
population sizes of marine bacteria [16, 44]. Indeed, the number of phage virions
to bacteria cells may range from five to twenty-five [15, 16, 36]. See, for example,
[16, 29, 42] for a discussion of the biology and for electron micrographs of phage.

For example, Prochlorococcus is a genus of small (600nm) marine cyanobacteria.
These bacteria are possibly the most abundant photosynthetic organisms and the
most plentiful species on Earth: a single milliliter of surface seawater may contain
more than 105 cells [13]. Members of this genus are among the primary producers
of oxygen in the ocean and of organic matter on the Earth. [23]. Several different
types of bacteriophage have been identified that infect Prochlorococcus [43].

The population dynamics of phage and bacteria can be modeled with a delay
induced by viral reproduction. The delay is the period of time from the moment
when a phage particle injects its genetic material into a bacterium cell until new
phage particles burst from the cell. Several deterministic models have been devel-
oped for the dynamics of bacteria and phage such as described in [8, 9, 21, 32]. One
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biologically reasonable bacteria-phage deterministic model has the form [21]:

dS(t)

dt
= αS(t)(1− S(t)/γ)−KS(t)P (t) (42)

dP (t)

dt
=− µpP (t)−mP 2(t)−KS(t)P (t)

+bKe−µiτS(t− τ)P (t− τ)
(43)

where S(t) and P (t) are population sizes of bacteria and phage, respectively, K is
an infection rate, τ is the delay until cell bursting, µi is the natural death rate of
infected bacteria, and b is the burst size. Deaths of phage are accounted for by
the rates −µpP (t) and −mP 2(t) which are assumed here to be independent, and
αS(t) and −αS2(t)/γ are assumed to be birth and death rates, respectively, for the
bacteria.

It is straightforward using the procedure described in the two previous sections
to incorporate demographic stochasticity into the population dynamics of (42) and
(43). This yields a delay SDE for the bacteriophage-bacteria dynamics of the form:

dS(t)

dt
=αS(t)(1− S(t)/γ)−KS(t)P (t) +

√
αS(t)

dW1(t)

dt

−
√
αS2(t)/γ

dW2(t)

dt
−
√
KS(t)P (t)

dW3(t)

dt

(44)

dP (t)

dt
=− µpP (t)−mP 2(t)−KS(t)P (t) + bKe−µiτS(t− τ)P (t− τ)

−
√
µpP (t)

dW4(t)

dt
−
√
mP 2(t)

dW5(t)

dt
−
√
KS(t)P (t)

dW3(t)

dt

+be−µiτ
√
KS(t− τ)P (t− τ)

dW3(t− τ)

dt

(45)

where Wi(t), i = 1, 2, . . . , 5 are independent Wiener processes. Notice that W3(t)
appears in one term in (45) with delay τ where it is assumed that the phage due to
bursting, be−µiτ , is constant but depends on the delay time τ .

To illustrate the dynamics of bacteria and bacteriophage, population sizes are
calculated for 1 ml of seawater for which it is assumed that the bacteria cells and
the virions are distributed homogeneously. Reasonable values of the parameters are
α = 1.34/day, K = 6.70 × 10−8/(virions day), γ = 2 × 106 virions, µp = 2.00/day,
m = 6.70 × 10−9/(virions day), b = 75, µi = 0.20/day, and τ = 2.24 days [21, 32].
Calculations are performed up to 72.36 days using the stochastic model (44)-(45).
Initial numbers of bacteria cells and phage particles are taken as 6 × 105 and 2 ×
106, respectively, in the 1 ml of seawater. The results are listed in Table 12 and
displayed in Figure 5. The calculations indicate that the high population densities
of the bacteria and phage result in low demographic stochasticity. Environmental
stochasticity was then studied for the bacteria-phage dynamics. In performing
this study, it was hypothesized that the parameters in the model were individually
influenced by the environment. Each parameter was individually assumed to satisfy
a mean-reverting Ornstein-Uhlenbeck process with standard deviation 1/5 of the
deterministic value. For example, for parameter α

dα(t) = (αe − α(t)) dt+
√

2α2
e/25 dW (t) with α(0) = αe, (46)

where for large t, α(t) is approximately normally distributed about mean αe with
variance α2

e/25 where αe = 1.34/day. The effects on bacteria and phage populations,
S(t) and P (t), were studied as each parameter, α, K, γ, µp, m, b, µi, τ , individually
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Time Mean of S(t) Standard Deviation of S(t)
t = 1.12 1.20× 106 1.36× 103

t = 72.36 5.81× 106 3.37× 103

Time Mean of P(t) Standard Deviation of P(t)
t = 1.12 1.87× 106 9.89× 102

t = 72.36 1.56× 107 5.28× 104

Table 12. Calculational results of 1000 sample paths for bacteria
and bacteriophage with demographic variability
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Figure 5. Bacteria (solid) and bacteriophage (dashed) SDE re-
sults with demographic variability

randomly varied with the environment. This calculational study gave the results
listed in Table 13. The dynamics in the population levels are most sensitive to
environmental variability in the parameter K. In particular, Figure 6 illustrates
the results specifically when K is chosen as the variable influenced by the environ-
ment. This figure should be compared with the earlier Figure 5 which shows the
populations influenced purely by demographic variability. Figure 6 clearly indicates
that the population sizes may be sensitive to the environment through variability
induced in the parameter values.
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Parameter Mean of S(tf ) Std. Dev. of S(tf )
α 7.76× 105 3.16× 105

K 8.00× 105 4.64× 105

γ 7.35× 105 2.14× 105

µp 7.99× 105 3.06× 105

m 5.93× 105 1.38× 104

b 7.74× 105 2.95× 105

µi 6.68× 105 1.23× 105

τ 7.57× 107 3.25× 105

Parameter Mean of P (tf ) Std. Dev. of P (tf )
α 1.26× 107 4.30× 106

K 1.22× 107 6.19× 106

γ 1.31× 107 3.24× 106

µp 1.24× 107 4.03× 106

m 1.55× 107 2.18× 105

b 1.27× 107 4.67× 106

µi 1.44× 107 2.00× 106

τ 1.48× 107 1.85× 106

Table 13. Calculational results of 1000 sample paths for bacteria
and phage with demographic and environmental variability at final
time tf = 72.36 days

4. Delay SDEs for insulin-glucose levels. An interesting physiological stochas-
tic delay problem is estimation of glucose and insulin levels [31, 33, 40, 45]. Under-
standing interactions that occur between insulin and glucose levels is aided through
computation of stochastic delay models. Two time delays exist in the glucose-insulin
regulatory system, a time delay in insulin production stimulated by an elevated glu-
cose concentration and a time delay for insulin to inhibit glucose production of the
liver. To model insulin levels with time lags, Sturis [40] proposed a deterministic
ODE model. Modifications of this model were subsequently investigated [31, 33, 45].

Many of the mathematical models of glucose-insulin dynamics use certain func-
tions to model specific physiological processes. These functions and processes
are briefly described: Gin is the source of glucose from food ingestion, f1(G) =
Rm/(1 + exp ((C1 −G/Vg)/a1)) models insulin production stimulated by glucose
level, f2(G) = Ub(1 − exp (−G/(C2Vg))) models insulin-independent glucose uti-
lization, f3(G)f4(I) = [G/(C3Vg)] [U0 + (Um − U0)/S] where S = 1 + exp (S0),
S0 = −β log((1/Vi + 1/(Eti))I/C4), and f3(G)f4(I) models insulin-dependent glu-
cose utilization, f5(I) = Rg/(1 + exp (α((I/Vp)− C5))) models glucose production
controlled by insulin concentration, di models insulin degradation or clearance rate,
τ1 is the time delay in insulin production stimulated by elevated glucose concentra-
tion, and τ2 is the time delay for insulin to inhibit hepatic glucose production. See,
for example, [31] or [40] for more detailed explanations of these functions.

Using these functions and discrete time delays, insulin and glucose may be de-
terministically modeled [31] with the delay differential equation system

dG(t)

dt
= Gin − f2(G(t))− f3(G(t))f4(I(t)) + f5(I(t− τ2)) (47)
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Figure 6. Bacteria-bacteriophage SDE calculational results with
environmental variability in K

dI(t)

dt
= f1(G(t− τ1))− diI(t). (48)

assuming a constant input rate of glucose Gin.
Given the rates of change implied by the functions and the differential equation

model (47)-(48), an SDE model could be readily derived if the glucose and insulin
levels changed by discrete amounts as, for example, population levels that change
by unit amounts. If the body organs sense and respond to infinitesimal changes in
glucose and insulin levels, calculated variability in glucose and insulin levels would
be exceedingly low and deterministic models would be accurate. However, actual
insulin and glucose levels appear to have a noticeable random component [38, 39, 40]
suggesting that the body may not detect or respond to minute changes in glucose
and insulin levels. It is therefore hypothesized in the present investigation that
there exist threshold changes in glucose concentrations and insulin concentrations
to which the body senses and responds. To model this effect in an approximate
manner, it is assumed that insulin and glucose concentrations occur at discrete
levels in the body. Of course, this is a simplification of a complex phenomenon. Let
λG and λI be the incremental changes, respectively, in glucose and insulin levels to
which it is assumed that the body detects.
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Now, assuming that λG and λI define the discrete change levels in the body, a
discrete stochastic model is straightforward to derive. The changes and the corre-
sponding probabilities for a small time ∆t are given in Table 14 assuming that the
rate processes are independent. This discrete stochastic model, defined by Table

Change ∆[G(t), I(t)] Probability
[−λG, 0] f2(G(t))∆t/λG
[−λG, 0] f3(G(t))f4(I(t))∆t/λG
[λG, 0] f5(I(t− τ2)∆t/λG
[0, λI ] f1(G(t− τ1))∆t/λI

[0,−λI ] diI(t)∆t/λI
Table 14. Changes and probabilities for time interval ∆t define a
discrete stochastic glucose-insulin model

14, leads directly to the SDE system:

dG(t)

dt
=Gin − f2(G(t))− f3(G(t))f4(I(t)) + f5(I(t− τ2))

−
√
λGf2(G(t))

dW1(t)

dt
−
√
λGf3(G(t))f4(I(t))

dW2(t)

dt

+
√
λGf5(I(t− τ2))

dW3(t)

dt

(49)

dI(t)

dt
=f1(G(t− τ1))− diI(t) +

√
λIf1(G(t− τ1))

dW4(t)

dt

−
√
λIdiI(t)

dW5(t)

dt

(50)

where λG and λI are incremental changes in glucose and insulin levels.
A computational approach is readily suggested for equations (49) and (50) anal-

ogous to the computational methods described for the SDDEs in the previous sec-
tions. Computations were performed for these models using the parameter val-
ues considered in [31]. Specifically, for plasma volume Vp = 3000ml and volume
of glucose space Vg = 100dl, let τ1 = 7min, τ2 = 12min, Gin = 108mg/min,
G(0) = 10000mg, I(0) = 100mU, di = 0.06/min, λ1 = G(0)/1000 = 10mg,
λ2 = I(0)/1000 = 0.1mU, Rm = 210mU/min, C1 = 2000mg/l, a1 = 300mg/l, Ub =
72mg/min, C2 = 144mg/l, C3 = 1000mg/l, U0 = 40mg/min, Um = 940mg/min,
β = 1.77, C4 = 80mU/l, E = .2l/min, Rg = 180mg/min, α = .29l/mU, C5 =
26mU/l, with final time = 488min. For these parameter values in (49) and (50),
the units of insulin, I(t), and the unit of glucose, G(t), are mg and mU, respec-
tively. To determine concentrations of insulin and glucose, the concentrations are
calculated as G(t)/Vg in units of mg/dl and 1000I(t)/Vp in units of µU/ml. The
values λG = 10mg and λI = 0.1mU are assumed in the present investigation and
are about 1/1000 of the average deterministic values of total glucose mass G(t) and
total insulin mass I(t), respectively. In particular, λG = 10mg corresponds to a
hypothesized incremental change level of 0.01mg/dl in glucose concentration and
λI = 0.1mU corresponds to a hypothesized incremental change level of 0.033µU/ml
in insulin concentration.

When λG = λI = 0, the calculations are deterministic and glucose and insulin
levels show a smooth oscillatory behavior indicated in the upper two graphs of
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Figure 7 and as, for example, previously demonstrated computationally in [31].
However, when the incremental changes, λG and λI , are nonzero, as in the lower
two graphs of Figure 7 where λG = 10mg and λI = 0.1mU, a random variability is
introduced into the levels similar to the random variability seen in actual glucose
and insulin levels. See, for example, the insulin and glucose levels of experimental
subjects presented in [38], [39], and [40]. This agreement between experiment and
computation supports the hypothesis that the body may not respond in a perfect
continuous manner to glucose and insulin concentration levels, i.e., microscopic
changes in insulin and glucose levels may not result in microscopic adjustments in
insulin and glucose production or utilization.
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Figure 7. Deterministic results (upper two graphs) with λG =
0.0, λI = 0.0, and stochastic results (lower two graphs) with λG =
10mg, λI = 0.1mU
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