
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2011.8.627
AND ENGINEERING
Volume 8, Number 2, April 2011 pp. 627–641

A DELAY–DIFFERENTIAL EQUATION MODEL OF HIV

RELATED CANCER–IMMUNE SYSTEM DYNAMICS
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Abstract. In the human body, the appearance of tumor cells usually turns
on the defensive immune mechanisms. It is therefore of great importance to

understand links between HIV related immunosuppression and cancer progno-

sis. In the paper we present a simple model of HIV related cancer – immune
system interactions in vivo which takes into account a delay describing the time

needed by CD4+ T lymphocyte to regenerate after eliminating a cancer cell.

The model assumes also the linear response of immune system to tumor pres-
ence. We perform a mathematical analysis of the steady states stability and

discuss the biological meanings of these steady states. Numerical simulations
are also presented to illustrate the predictions of the model.

1. Introduction. AIDS (acquired immunodeficiency syndrome) was first recog-
nized in 1981 and in the period 1981–2005 it is estimated that in the world, more
than 25 million people died after contracting it (compare data in [16]). AIDS is
characterized by deeply impaired functionality of immune system and various clini-
cal expressions. In 1981, during examinations of gay males with AIDS in Southern
California and New York City, American public health scientists noticed clusters
of Kaposi’s sarcoma (skin cancer) and Pneumocystis pneumonia (PCP) – a form
of pneumonia, caused by the yeast-like fungus. Although pneumocystis is common
and specific for humans it can be dangerous for people with a weak immune system
as a source of opportunistic infection, including lung infection.

In 1983, two separate research groups led by Robert Gallo and Luc Montagnier
independently declared that a novel retrovirus may have been infecting AIDS pa-
tients. In 1986, that retrovirus was subsequently named human immunodeficiency
virus or HIV. HIV targets, among others, the CD4+ T lymphocytes, which are the
most abundant white blood cells of the immune system. It is thought that HIV,
although attacking many different cells, wreaks the most havoc on the CD4+ T-
cells by causing their destruction and decline, and thus decreases the body’s ability
to fight infection [8]. The last stage of HIV infection (AIDS) shows symptoms of
various opportunistic infections and cancers such as Kaposis’s sarcoma, cervical
cancer and cancers of the immune system known as lymphomas, compare [19] and
also [3, 4]. In the cancer cells of HIV infected patients no viral sequence in the DNA
was found, therefore it seems the virus doesn’t induce cancer itself. Moreover, it
has been discovered that there exist tumor-specific antigens and the immune system
has the ability to prevent cancer development. It is a common ability not only for

2000 Mathematics Subject Classification. 92C60, 37G15, 34K20, 34K60.

Key words and phrases. HIV infection, AIDS, cancer, time delay, stability switches.

627

http://dx.doi.org/10.3934/mbe.2011.8.627
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human immune system. Thus, it appears that the role of the immune system is to
prevent development of tumors that arise on a frequent basis (immune surveillance
hypothesis [14]).

In current bio-mathematical literature there appear many papers focused on
either the tumor growth modeling (compare [21, 6] and the references therein) or the
HIV virus dynamics (compare [8, 17, 18, 20] and the references therein). Due to the
occurrence of several types of cancers related to the presence of the HIV virus it is
important to combine these two types of models to describe such a combined disease.
In the papers of Lou et al. [14, 15] the basic model of this phenomenon in the tissue
cultures (in vitro) was proposed and studied without ([14]) and with ([15]) time
delay. They describe the HIV related cancer – immune system interactions using
three populations of cells: cancer cells, healthy and infected CD4+ T lymphocytes.
Their model concerns the cell-to-cell spread of the HIV virus because that transfer
mechanism has been estimated to be much more important in areas such as the
brain and lymph tissue, where 98% of the CD4+ T cells in vivo are found [14].
In [15] there is taken into account the time delay for the incubation phase when the
target cells are infected. In [1, 2] some modification of the model of Lou et al. was
proposed. The main idea of this modification was to change the intrinsic cellular
dynamics of cancer/effector cells. Moreover, the time delay in another process was
taken into account. In [11, 10] it is claimed that after killing a tumor cell the effector
cell is able to have cytotoxic effect on other tumor cells but it needs some time for
regeneration. The delay considered in [1, 2] describes the time needed by CD4+ T
lymphocyte for regeneration after eliminating the cancer cell.

In this paper we consider the next modification of the cancer – immune system
interactions dynamics in which we address the issue of immune reaction against
tumor in vivo. It is known that there is a second way for HIV to disseminate in
vivo: circulating free viral particles to T cells directly [14]. On this basis, we consider
an additional variable in our model: the concentration of free HIV viral particles.
Moreover, it occurs that effector cells (which are mainly CD4+ T lymphocytes)
in the compartments other than brain or lymph tissue are mainly recruited from
outside of the antigen – effector cells system. This suggest that the logistic dynamics
proposed by Lou et al. [14, 15] and Bodnar et al. [1, 2] in the description of effector
cells evolution should be changed.

Apart from the current Section 1, the paper is organized in the following way. In
Section 2, we propose the model that reflects this external recruitment and incorpo-
rates both ways of HIV dissemination. We also identify the model parameters. In
Section 3, we perform the basic mathematical analysis of the proposed model and
discuss the biological meaning of steady states and their stability. In Section 4, we
show numerical simulations which complete and extend the analytical results. In
the last Section 5 we discuss the presented results and predictions of the model.
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2. The model. We propose the following system of differential equations as a
model of the HIV related cancer–immune system dynamics in vivo:

dT

dt
= r1T (t)− k1T (t)E(t) ,

dE

dt
= r2T (t) + α− µ1E(t)− k1T (t)E(t)+

+(1− ε)k1T (t− τ)E(t− τ)− k′2E(t)I(t)− k3E(t)V (t) ,
dI

dt
= k′2E(t)I(t) + k3E(t)V (t)− µ2I(t) ,

dV

dt
= NδI(t)− cV (t) ,

(1)

where all parameters are non-negative and the variables T (t), E(t), I(t), V (t) de-
note the concentration of cancer cells, healthy effector cells (mainly CD4+ T-cells),
effector cells infected by the HIV virus, and the free HIV viral particles, respectively.
We do not consider any space dependency in the model and all concentrations reflect
averages at time t.

We assume that the dynamics of cancer cells is governed by two processes: cancer
cells proliferation and their interactions with the immune system. Similarly to [9]
we assume the cancer cell proliferation term is linear with respect to the cancer cell
concentration T (t). This means that in the absence of the immune system surveil-
lance the tumor grows exponentially. Such type of tumor growth is experimentally
observed at the beginning of the tumor development [21]. We take the term describ-
ing the influence of effector cells on cancer cells dynamics as proportional to the
product of both concentrations. The same simple form of this term was proposed
by Lou et al. [14]. A slightly more complicated form of it can be found in [12].

The concentration of effector cells increases due to the direct presence of the
tumor, where the parameter r2 reflects the antigenicity of the tumor and the term
r2T (t) models the recruitment of effector cells, compare [12]. Antigenicity can be
thought of as a measure of the difference between the tumor and the normal tissue.
The parameter α is the ”normal” (non-enhanced by cancer cells presence) rate
of the flow of mature effector cells into the region of cancer cells localization [13].
Parameter µ1 is the positive constant representing the rate of elimination of effector
cells, resulting from their destruction and migration. Following the ideas presented
in [1, 2], the fourth and fifth terms in the equation for effector cells dynamics
describe the process of effector cells regeneration after the injection of lytic granules
into the target cells. Cytotoxic T-cells kill target cells mainly using lytic granules
containing perforin, granzymes and TNF. They bind to the surface of the target
cell and trigger the extracellular release of perforin molecules from the granules;
these polymerize to form transmembrane channels which may facilitate lysis of the
target by permitting entry of granzymes which induce apoptotic cell death through
activation of the caspase protease cascade and ultimate fragmentation of nuclear
DNA [10]. We assume that the delay τ describes the time needed by effector cells
to regenerate lytic granules. In addition, we incorporate the fact that the small
percentage (denoted by ε) of effector cells do not survive the attempt to eliminate
target cell, as the granzymes released from lytic granules may breach into the T-cell.

The last two terms in the equation determining evolution of the healthy effector
cells concentration describe the transition of the healthy effector cell into the in-
fected one due to the direct contact with infected cells or by the infiltration by the
free viral particles. Like in the papers by Lou et al., we assume that cells which
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have been infected by the HIV virus may only migrate or undergo spontaneous
destruction, which is described by the parameter µ2 in the third equation of the
model.

Following Perelson et. al [20], we assume that the dynamics of the free viral
particles is governed by two processes: secretion of new viral particles by infected
effector cells and loss of that particles due to migration or other processes [8]. The
term describing the release of the new free viral particles by the infected cells is
multiplied by the additional parameter N to represent the number of those parti-
cles released by the single infected cell. Furthermore, we assume that the rate of
change of the free HIV viral particles is high relative to the rate of change of the
concentration of considered cellular populations. Thus, we assume that during the
whole process dV/dt ≡ 0, that is V (t) ≡ Nδ/c I(t). Under that assumption Eqs. (1)
reduce to the following system of three differential equations:

dT

dt
= r1T (t)− k1T (t)E(t) ,

dE

dt
= r2T (t) + α− µ1E(t)− k1T (t)E(t)+

+(1− ε)k1T (t− τ)E(t− τ)− k2E(t)I(t) ,
dI

dt
= k2E(t)I(t)− µ2I(t) ,

(2)

where

k2 = k′2 + k3
Nδ

c
.

In the following, we consider the simplified form (2) of the full model (1). To
complete the mathematical model of the biological process we should specify the
ranges for values of the parameters. If we consider Eqs. (2) in the absence of the
tumor and the HIV infected cells, that is T (t) ≡ I(t) ≡ 0, we see that the solution
E(t) converges to the ratio α/µ1 as t→∞. Thus, the ratio α/µ1 reflects the normal
physiological level of the effector cells. According to the literature [11], in healthy
persons this value is estimated to be between 800 and 1200 CD4+ T-cells/mm3.
As most of the terms in our model are similar to those of the models in [12], [14],
[8], [20] and [2], we explored the choices for most of the parameters as presented
in those studies. The ranges of parameters values and corresponding references are
given in Table 1.

r1 [14] k1 [14] r2 [12] α/µ1 [11] k′2 [14] k3 [8]

0,05 ∼ 0.5 10−5 ∼ 10−3 0 ∼ 0.05 800∼1200 10−5 ∼ 5× 10−4 2.4× 10−5

µ2 [14] δ [20] c [20] µ1 [12] ε [2] N [8]

0.3 0.3 ∼ 0.7 2.1 ∼ 3.8 0.03 0.1 100 ∼ 2000

Table 1. The ranges of parameters values and corresponding references.

Following the ideas from [1, 2], we focus on comparing the cancer–immune system
interactions dynamics in two cases: when there is no HIV infection and when the
HIV virus is present in the system. Thus, Eqs. (2) for I(t) ≡ 0, that is when there
is no HIV virus in the system, stands for our control case. In the control case we
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verify the immune surveillance hypothesis, that is the possibility of preventing the
tumor development by the immune system. Then, in the following sections, we
consider introduction of the HIV virus to the model and focus on its influence of
the tumor development under surveillance of the impaired immune system.

3. Mathematical analysis.

3.1. Control case. We begin with the analysis of the control case, that is when
I(t) ≡ 0, in order to verify if the healthy immune system is able to prevent the
cancer development. We consider the following two–variable system:

dT

dt
= r1T (t)− k1T (t)E(t) ,

dE

dt
= r2T (t) + α− µ1E(t)− k1T (t)E(t) + (1− ε)k1T (t− τ)E(t− τ) .

(3)

where parameters values are the same as in the full model (2) (see Table 1).

3.1.1. Analysis for τ = 0. In the case when there is no delay in the system, that is
for τ = 0, the model (3) reduces to the following set of equations:

dT

dt
= r1T (t)− k1T (t)E(t) ,

dE

dt
= r2T (t) + α− µ1E(t)− εk1T (t)E(t) .

(4)

Several different types of that system dynamics are possible depending on the model
parameters. We start from the analysis of the null-clines which are described by
the following equalities

Ṫ = 0 ⇐⇒ T = 0 or E = r1
k1
,

Ė = 0 ⇐⇒ E =
α+ r2T

µ1 + εk1T
.

It can be easily seen that there always exists a cancer free steady state:

(T̃ , Ẽ) =

(
0,
α

µ1

)
,

in which the concentration of the healthy effector cells is at the physiological level
α/µ1. We can also see that, if r2 >

αεk1
µ1

, then the null-cline for E is an increasing

function, while for r2 <
αεk1
µ1

it is decreasing. Moreover, it takes all the values in

the range
(

min( αµ1
, r1εk1 ),max( αµ1

, r1εk1 )
)

. Hence, if

r2

ε
< r1 <

αk1

µ1
or

αk1

µ1
< r1 <

r2

ε
, (5)

then the null-cline for E crosses the non-trivial null-cline for T once, which means
that there exists the unique strictly positive steady state:

(T̄ , Ē) =

(
µ1r1 − αk1

k1(r2 − εr1)
,
r1

k1

)
.

If non of Ineqs. (5) hold, then the null-cline for E lies above or under the non-
trivial null-cline for T , which means that there does not exist any strictly positive
steady state. We can interpret the strictly positive steady state as the case when
the immune system is able to successfully prevent further cancer development.
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It should be mentioned that for the parameters values presented in Table 1 all the
considered above types of the system behavior are possible. However, we are mainly
interested in the case when the rate of tumor growth reflected by the parameter
r1 is relatively large comparing to the rate of cancer elimination by the immune
system, that is k1.

Theorem 3.1. The set D = R2
+ is invariant for system (4). Moreover, for every

solution in D there is E(t) ≤ max{E(0), r2εk1 ,
r1
k1
}.

If r1 >
αk1
µ1

and

• ε < r2
r1
, then there exists the unique positive steady state (T̄ , Ē), which is

globally stable in D;
• ε > r2

r1
, then there is no positive steady state and for all solutions T (t) → ∞

as t→∞.

Proof. Invariance of D is obvious due to the form of the right-hand side of Eqs. (4).
Boundedness of E is a consequence of the phase-space analysis, compare Fig. 1.
Moreover, the phase-space analysis for ε < r2

r1
shows that every orbit of Eqs. (4) is

bounded, compare the left-hand graph in Fig. 1.
Local stability of (T̄ , Ē) for ε < r2

r1
follows from the form of the Jacobi matrix:

MJ(T̄ , Ē) =

(
0 −k1T̄

r2 − εr1 −µ1 − εk1T̄

)
with trMJ < 0 and detMJ > 0. Global stability is a corollary from the Dulac –
Bendixson criterion. More precisely, defining B(T,E) = 1

TE one gets

∂

∂T
B(T,E)G1(T,E) +

∂

∂E
B(T,E)G2(T,E) = − 1

E2

(α
T

+ r2

)
< 0

in D, where G = (G1, G2) denotes the right-hand side of Eqs. (4). This implies
that there is no closed orbit in D yielding global stability of (T̄ , Ē) according to the
Poincaré – Bendixson theorem.

On the other hand, if ε > r2
r1

, then the analysis of the phase-space portrait yields
T → ∞ for t → ∞ and T is either increasing for all t > 0 or has one minimum,
compare the middle graph in Fig. 1.

Remark 1. Similarly we can show that for r1 < αk1
µ1

when r2 is large, that is

r2 >
αεk1
µ1

, there is no positive steady state and all solutions are attracted by the

cancer free state (T̃ , Ẽ), compare the right-hand graph in Fig. 1, while if (T̄ , Ē)
exists, then it is a saddle and we observe two types of the system dynamics: either
(T̃ , Ẽ) attracts the solution (for solutions above the stable manifold for the saddle
point) or T → +∞ as t→ +∞.

3.2. Analysis of the full system for τ = 0. It is obvious that for I(0) 6= 0 there
is I(t) 6= 0 for t > 0, which yields that the set IR3

+ is invariant for Eqs. (2) with
τ = 0. Studying the behavior of the full system (2) for τ = 0 we see that there can
be three steady states:

1. T = 0 and I = 0 =⇒ Ē1 = α
µ1

, that is S1 = (0, αµ1
, 0) describes the healthy

state;
2. T = 0 and I 6= 0 =⇒ Ē2 = µ2

k2
and Ī2 = αk2−µ1µ2

µ2k2
, that is the steady state

S2 =
(

0, µ2

k2
, αk2−µ1µ2

µ2k2

)
describes the HIV infection without cancer;
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Figure 1. Exemplary phase-space portraits for Eqs. (3) for dif-
ferent values of r1 and with parameters values used in numerical
simulations presented in Section 4.

3. T 6= 0 =⇒ Ē3 = r1
k1

=⇒ I = 0 and T̄3 = µ1r1−αk1
k1(r2−εr1) , that is the steady state

S3 =
(
µ1r1−αk1
k1(r2−εr1) ,

r1
k1
, 0
)

describes the cancer – immune system interactions

without the HIV infection.

We see that S2 exists only if α > µ1µ2

k2
and S3 has the same T and E coordinates

as (T̄ , Ē), that is the positive steady state of Eqs. (4). On the other hand, there is
no positive steady state describing the coexistence of the tumor and the HIV virus.

Recalling that r1 is relatively large comparing to k1, as in the control case, we
prove the following.

Proposition 1. The set D = (R+)3 is invariant for Eqs. (2).
If r1 >

αk1
µ1

, then S1 is unstable (a saddle point). Moreover

• if ε < r2
r1
, then S3 exists; if additionally r1 <

µ2k1
k2

, then it is locally asymp-
totically stable;

• if α > µ1µ2

k2
, then S2 exists; if additionally r1 <

µ2k1
k2

, then this state is stable.

Proof. Studying local stability we calculate the Jacobi matrix of Eqs. (2). We have r1 − k1E −k1T 0
r2 − εk1E −µ1 − εk1T − k2I −k2E

0 k2I k2E − µ2

 .

For S1 we easily see that the characteristic values are equal to λ1 = r1 − αk1
µ1

,

λ2 = µ1, λ3 = αk2
µ1
− µ2 and the stability requires r1 ≤ αk1

µ1
, which contradicts the

assumption.
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For S2 the characteristic polynomial has the form

PS2(λ) =

(
r1 −

µ2k1

k2
− λ
)(

λ2 + λ
αk2

µ2
+ αk2 − µ1µ2

)
and we know that for αk2 > µ1µ2 this state exists. This implies that the quadratic
term of PS2

has either real negative roots or complex roots with negative real part.

Hence, if λ1 = r1 − µ2k1
k2

< 0, then S2 is locally stable.
For S3 there is

PS3
(λ) =

(
λ2 + λ(µ1 + εk1T̄3) + k1T̄ (r2 − εr1)

)(r1k2

k1
− µ2 − λ

)
and similarly as for the state S2, if λ3 = r1k2

k1
− µ2 < 0, then S3 is stable assuming

ε < r1
r2

which yields that S3 exists.

Remark 2. If the states S2 and S3 do not exist, then we easily calculate eigenvalues
for S1 as λ1 = r1 − k1α

µ1
, λ2 = −µ1, λ = k2α

µ1
− µ2 and see that they are negative,

which yields local stability of S1. We also suspect global stability in this case,
because the immune system is strong.

For the parameters values used in simulations in Section 4 the state S2 does not
exist. We have performed the series of simulations for the full system and observe
that the type of dynamics for both Eqs. (2) and (3) for τ = 0 is similar.

3.3. Case τ > 0. In this subsection we look for the stability switches with increas-
ing delay. Because we are interested in comparing the control case of the cancer
– immune system interactions to the HIV related cancer – immune system inter-
actions we are mainly interested in the case when inequality r1 >

αk1
µ1

holds. The

same inequality is assumed in Theorem 3.1 and Proposition 1.
We perform the analysis for the full system (2) but the analysis for Eqs. (3) is a

part of that analysis. Moreover, stability changes for the steady state S3, which we
study below, are the same as stability changes for the positive steady state (T̃ , Ẽ)
for Eqs. (3).

We focus on the stability of S3 and hence we calculate the characteristic matrix
for Eqs. (2) at S3, which reads

∆(λ, τ) =

 −λ −k1T̄3 0
r2 − r1 + (1− ε)r1e

−λτ −µ1 − k1T̄3 + (1− ε)k1T̄3e
−λτ − λ −k2Ē3

0 0 k2Ē3 − µ2 − λ


We see that

W (λ, τ) = det ∆(λ, τ) = (k2Ē3 − µ2 − λ)W2(λ, τ) ,

W2(λ, τ) = P (λ) +Q(λ)e−λτ ,
(6)

where

P (λ) = λ2 + (µ1 + k1T̄3)λ+ (r2 − r1)k1T̄3, Q(λ) = k1T̄3(1− ε)(−λ+ r1)

and W2 is the characteristic quasi-polynomial for the reduced two-variable sys-
tem (2) with I ≡ 0.

From the form (6) of the characteristic quasi-polynomial we have the following.

Corollary 1. If r2 < εk1 and
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• µ2 < k2Ē, then if (T̄ , Ē) is stable as a steady state in the two-variable system,
then S3 is stable as a steady state for system (2);

• µ2 > k2Ē, then S3 is unstable.

Let us study the stability changes in the two-variable system with the character-
istic quasi-polynomial W2. If r2 < εk1, then (T̄ , Ē) is stable for τ = 0. Studying
stability switches we follow the ideas from [7]. The necessary condition for stability
switches is the existence of purely imaginary eigenvalue:

λ = iω, ω > 0, for some threshold value τth.

If iω is an eigenvalue for τth, then

W2(iω, τth) = 0 =⇒ P (iω) = −Q(iω)e−iωτth

which implies

||P (iω)|| = ||Q(iω)||.
Defining

F (ω) = ||P (iω)||2 − ||Q(iω)||2

we get the auxiliary function F which positive zeros define eigenvalues iω. Let
y = ω2. There is

F (y) = y2 +Ay +B

with

A = ε(2− ε)k2
1T̄

2 + 2(µ1 − r2 + r1)k1T̄ + µ2
1

and

B = (r2 − r1(2− ε))(r2 − r1ε)k
2
1T̄

2.

We have r2 − r1ε > 0 and ε < 1. We can show that A > 0. Hence,

1. if r2 − r1(2− ε) > 0, then there is no positive roots of F ;
2. if r2 − r1(2− ε) < 0, then F has exactly one positive root ȳ.

Theorem 3.2. Assume that the steady state S3 of system (2) exists, that is the
state (T̄ , Ē) for the system (3) also exists.

If r2 − r1(2− ε) > 0, then (T̄ , Ē) is stable for any positive delay τ > 0.
If r2−r1(2−ε) < 0, then there exists the threshold dealy τth > 0 such that (T̄ , Ē)

is stable for τ < τth, loses stability at τ = τth in which Hopf bifurcation occurs.

Proof. If r2− r1(2− ε) < 0, then there exists a pair of purely imaginary eigenvalues
±iω0 with ω0 =

√
ȳ which is the unique positive root of the auxiliary function F .

For these eigenvalues we calculate the sinus and cosine of ω0τth from the identity

cos(ω0τth)− i sin(ω0τth) = e−iω0τth =
P (iω0)

Q(iω0)
=

<P (iω0)<Q(iω0) + =P (iω0)=Q(iω0)

||Q(iω0)||2
− i<P (iω0)=Q(iω0)−=P (iω0)<Q(iω0)

||Q(iω0)||2
.

Hence,

τth =
arg
(
<P (iω0)<Q(iω0)+=P (iω0)=Q(iω0)

||Q(iω0)||2 − i<P (iω0)=Q(iω0)−=P (iω0)<Q(iω0)
||Q(iω0)||2

)
ω0

.

Finally, the change of stability occurs when

d<λ
dτ

∣∣∣
τ=τth

> 0.
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However, this value has the same sign, compare [7], as

F ′(y)
∣∣∣
y=ω2

0

and it is positive when F has only one positive zero.
Thus, (T̄ , Ē) loses stability at τth and Hopf bifurcation occurs.
If r2 − r1(2− ε) > 0, then the characteristic quasi-polynomial W2 has no purely

imaginary roots and therefore the change of stability is impossible.

Remark 3. From the analysis presented above it is obvious that the state S3 cannot
recover stability for larger values of τ .

Remark 4. Studying stability of S1 when S2 and S3 do not exist we easily see
that the eigenvalues at S1 do not depend on the delay. This implies that there is
no stability changes for S1 with increasing delay.

4. Numerical simulations. In this section we would like to illustrate the analyt-
ical results presented in the previous section. We consider two cases: infection by
the HIV virus after the development of primary tumor and the tumor development
in the host already infected by the HIV virus. In the first case we address the issue
of the tumor whose further growth has been successfully prevented by the healthy
(not infected by the HIV virus) immune system. Thus, we consider the case when

αk1

µ1
< r1 <

r2

ε
,

that is when the unique positive steady state for Eqs. (4) exists and is globally
asymptotically stable (see Theorem 3.1). The set of parameters we have chosen for
the simulations is presented in Table 2. For the simulations we assume constant

r1 k1 r2 α/µ1 k′2 k3 µ2 δ c µ1 ε N

0.1 10−4 0.03 800 5× 10−5 2.4× 10−5 0.3 0.3 3.8 0.03 0.1 275

Table 2. Parameters values chosen for the numerical simulations.

initial functions

T (t) = 50 and E(t) = 780 for t ≤ 0 .

In Fig. 2 we present the solutions to Eqs. (3) for the chosen set of parameters and
different values of delay. As we can see, for the chosen values of the time delay
growth of the tumor is successfully prevented by the immune system and the time
delay causes only the appearance of oscillations around the steady state. Thus, in
this case the tumor is under the healthy immune system surveillance.

Now we assume that at the time moment t = 250 the HIV infected effector
cells appear in the system. The results of that kind of the virus introduction are
presented in Fig. 3. It can be seen that for each value of delay the tumor starts to
grow rapidly due to the presence of the infecting cells. The virus causes the decrease
of the healthy effector cells concentration which allows the tumor to escape from
the surveillance of the immune system.

That kind of numerical result is consistent with the analytical results presented
in previous section, that is if before the HIV infection there exists globally stable
positive steady state, then after the introduction of the infected effector cells, the
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Figure 2. Solution to Eqs. (3) for the parameters values presented
in Table 2 and for different values of the time delay.
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Figure 3. Solutions to Eqs. (2) in the case when the HIV infected
cells of the initial amount E0 = 1 are introduced at t = 250.

concentration of the cancer cells tends to infinity with t → +∞. In other words,
if before the infection the patient has the primary tumor which is kept by the
immune system under control, then the HIV infection causes the development of
that tumor. Although the analytical results predict unbounded tumor growth, it
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Figure 4. Solutions to Eqs. (2) in the case when the HIV infected
cells of the initial amount E0 = 1 are introduced at t = 250 and
the following parameters are fixed at: k′2 = 0.000015, N = 100.

should be marked that it is the asymptotic behavior. As we can see in Fig. 4, the
long lasting coexistence of the HIV virus and the tumor cells is possible, depending
on the model parameters. Hence, it is obvious that such type of the dynamics can
be observed in a clinical practise.

Now, we study the case of the primary HIV infection. We use the same param-
eters set as in the previous case except the value of k1 parameter

k1 = 0.00022 ,

that is we assume higher efficacy of the immune system in eliminating the cancer
cells. If the tumor is not present in the system, we need only to specify the initial
conditions for the healthy and infected effector cells at t = 0

E0 = 780 and I0 = 10 .

In Fig. 5 the result of numerical simulation in that case is presented. As it can
be seen the presence of the HIV virus causes the long lasting decrease in the con-
centration of the healthy effector cells. Thus, in this case the immune system is
impaired by the virus. Now we consider the introduction of the cancer cells to the

0 50 100 150 200
0

100

200

300

400

500

600

700

800

t − time (days)

co
nc

en
tr

at
io

n

 

 

E(t) − effector cells
I(t) − HIV infected cells

Figure 5. Solution to Eqs. (2) in a cancer free case for the pa-
rameters values presented in Table. 2 and for k1 = 0.00022.

HIV infected system as we would like to verify if the immune system is able to
prevent the tumor development. In Fig. 6 the numerical simulations in that case
are presented. As we can see for each chosen value of the time delay the partially
impaired immune system is still able to successfully eradicate the tumor. Thus,
even in a patient with the HIV virus the immune system might be still able to keep
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Figure 6. Solutions to Eqs. (2) in the case when the cancer cells
in the initial amount of T0 = 200 are introduced at t = 100.

the tumor under surveillance. This may explain the large time lag between the
primary infection by the HIV virus and the occurrence of the first AIDS syndromes
as not every cancer is able to escape from the surveillance of even impaired immune
system.

5. Discussion. Virus related cancers, such as Kaposi’s sarcoma, cervical cancer or
B cell lymphoma are significant burden to the patients infected by HIV. It is im-
portant to understand the causes of higher incidence of those cancers in individuals
with the immune deficiency related to the HIV virus. It is known that there exists
the immune response against cancer cells and in some cases the immune system
can prevent the cancer development. It is argued that the HIV virus decreases the
immune system ability to fight the cancer and this allows the cancer to escape from
the surveillance of the immune system.

In this paper we have developed the mathematical model of the HIV related
cancer–immune system interactions in vivo which takes into account the delay de-
scribing the time needed by CD4+ T lymphocyte to regenerate after eliminating one
cancer cell. The model assumes also the linear response of the immune system to the
tumor presence. We perform the basic mathematical analysis of the model which
is very preliminary and should be extended for the cases when the HIV infection is
primary and the cancer is its consequence.

In the absence of the HIV virus the model successfully reproduces the immune
surveillance phenomenon. Depending on the parameters values we have three pos-
sible cases: the healthy immune system eradicate the tumor completely, the tumor
is kept at some level of development or the tumor escapes from the immune surveil-
lance and grows unlimitedly. We are especially interested in first two cases as it
appears that their existence is compromised by the immune deficiency related to
the HIV virus. In the presence of the infected effector cells the model predicts two
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interesting phenomenas concerning both cases. In the first case it occurs that, if
before the infection the patient has the primary tumor which is kept by the immune
system under control, then the HIV infection causes the rapid development of that
tumor. However, depending on the model parameters the concentrations of the
tumor cells and the HIV virus can be kept on the relatively small level for a long
time and such type of the behavior is also observed in reality. In the second case
it appears that even in a patient with the HIV virus the immune system might be
still able to eradicate the tumor. This may explain the large time lag between the
primary infection by the HIV virus and the occurrence of the first AIDS syndromes
as not every cancer is able to escape from the surveillance of even impaired immune
system.

The next step should be to investigate the influence of several kinds of can-
cer/HIV therapies on the systems dynamics. It is crucial that the influence of
such kind of treatments cannot be studied separately as it is well known that the
immune therapy causes the recruitment of additional effector cells that might be
subsequently infected by the HIV virus and chemotherapy is not selective to the
cancer cells.
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Salmon, G. Chêne and P. Morlat, Malignancy-related causes of death in human immunodefi-
ciency virus-infected patients in the era of highly active antiretroviral therapy, Cancer, 101

(2004), 317–324.
[4] C. Boshoff and R. Weiss, AIDS-related malignancies, Nat. Rev. Cancer, 2 (2002), 373–382.

[5] S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed im-

munotherapy for superficial bladder cancer , Bull. Math. Biol., 70 (2008), 2055–2076.
[6] L. Preziosi, “Cancer Modeling and Simulation,” Chapman & Hall, 2003.
[7] K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations, Funkcialaj

Ekvacioj, 27 (1986), 77–90.
[8] R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+

T-Cells, Math. Biosci., 165 (2000), 27–39.
[9] C. DeLisi and A. Rescigno, Immune surveillance and neoplasia: A minimal mathematical

model, Bull. Mat. Biol., 39 (1977), 201–221.
[10] P. J. Delves, D. J. Martin, D. R. Burton and I. M. Roitt, “Roitt’s Essential Immunology,”

11th edition, Blackwell Science, Oxford, 2006.
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