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ABSTRACT. Diabetes is a condition in which the body either does not produce
enough insulin, or does not properly respond to it. This causes the glucose
level in blood to increase. An algorithm based on Integral High-Order Sliding
Mode technique is proposed, which keeps the normal blood glucose level auto-
matically releasing insulin into the blood. The system is highly insensitive to
inevitable parametric and model uncertainties, measurement noises and small
delays.

1. Introduction. Diabetes is a chronic disorder of glucose metabolism, caused by
inadequate production or improper use of insulin. Insulin is a hormone produced in
specialized cells in the pancreas, whose function in the body is to use and to store
glucose.People with normal pancreatic function produce it to cover their needs.
Upon digestion of carbohydrates, glucose levels in the blood begin to rise. As
the blood and the glucose flow into the pancreas and the blood glucose level raises,
insulin is directly secreted by the pancreatic beta cells into the bloodstream. Insulin
causes the blood glucose to be removed from the bloodstream and to be stored in
the liver and muscle cells. Thus, as the blood sugar goes higher, additional insulin
brings the blood sugar back down. As the blood sugar level goes back to normal,
the beta cells stop spurting insulin. As the glucose level approaches a low mark, the
pancreatic alpha cells release glucagons directly into the bloodstream. Glucagons
cause the liver to release the stored glucose back into the bloodstream. These
hormones form two inverse feedback loops in controlling the blood glucose level.
Normal blood glucose levels are in a narrow range of 70-110 mg/dl. If someone’s
glucose level stays constantly high out of this range, the person is considered to
have diabetes. When the decease is not carefully managed by keeping the amount
of glucose in the blood at the right level, the resulting high glucose amounts wreak
havoc on nearly every organ system in the body. Complications of diabetes can
range from sudden, urgent issues to those that develop slowly over the years. These
complications include heart disease and stroke, vision loss and blindness, kidney
failure, diabetic ketoacidosis, diabetic coma, and are not limited only by them.
Implementing accurate glucose control in patients is the most important issue in
diabetes management. The current medical practice suggests three to four daily
glucose measurements and the same number of subcutaneous insulin injections.
The development of less invasive methods with less frequent injections has been the
subject of interest for many researchers working in this area. The ultimate goal of
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most of them is to create a fully automatic glucose control system which works like
an artificial pancreas.

The existing insulin pumps dispense the insulin according to a preset program or
when they have been triggered manually, and not according to body’s needs. Obvi-
ously, the main task is to develop an effective computer-based feedback controller
that interprets the data from a real-time glucose sensor and respectively instructs
the pump how much insulin to release.

The number of control algorithms have been developed for various models of
glucose-insulin dynamics. In particular, they include controllers, belonging to the
proportional-integral-derivative (PID) control family [2],[5], pole placement, and
model predictive control (MPC) methods [13]. The PID methods are applicable to
the linearized models only. On the other hand, in order to apply the MPC approach
one has to predict accurately the future values of blood glucose concentration level
using the analysis of the glucose- insulin dynamics in the past. Unfortunately, such
an approach becomes impractical, as patient’s medical condition varies in time, and
the model parameters change in an unpredictable way. In additional, the above
controllers do not address the unmodeled dynamics of the system, like patient-
model mismatch, which in general may significantly affect system performance.

It is clear that in practice the control algorithm, employed for blood glucose
regulation, has to deal with the uncertainty existing between the model, used in
the controller design, and the actual patient. Such controller has been developed
by Kienitz [7] within the H-infinity framework, but its robustness has never been
proven. Shtessel and Kaveh [14] have developed controller based on the High-
Order Sliding Mode (HOSM) technique [9] which operates with the information from
the real-time system measurements. Although the HOSM algorithm features high
accuracy and robustness with respect to various internal and external disturbances,
its application in [14] has some restrictions. In particular, the insulin release cannot
be negative, only the model describing the system dynamics after one food intake is
considered; the results are only valid for patients, whose insulin secretory function
is completely disabled, the uncertainty of transient process has not been treated.

The closed-loop control system of the glucose level regulation which is proposed
in this paper can also be described as “artificial pancreas”. The system consists
of three parts: the real-time subcutaneous glucose sensor; the control system that
calculates the necessary insulin dosage based on the real time glucose levels; and
the pump, which releases the desired amount of insulin.

The controller is based on the Integral High-Order Sliding Mode (IHOSM) tech-
nique [11]. This approach preserves the main advantages of traditional HOSM -
robustness and high accuracy in presence of parameter variations and external dis-
turbances. Having been compared to the HOSM methods, the presented algorithm
enables choosing transient dynamics and assigning the transient time function of
the initial conditions, avoids all kinds of uncertainties and extreme changes in the
blood glucose concentration level from the very beginning.

The resulting control presents the amount of insulin released to the blood and
should be always positive. The restriction holds, for the control value is kept very
close to the insulin release level maintaining the transient glucose level assigned
in advance (i.e. the equivalent control [15]. Due to the integral sliding mode the
influence of system uncertainties is suppressed starting from the very moment of
the control application. To increase the model feasibility it was modified by adding
some casual food intake as a disturbance.
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Section 2 describes some fundamentals of HOSM design [8],[9]. In Section 3 a
mathematical model which describes the glucose- insulin dynamics in human body
is introduced. The model is based on the minimal model commonly used in the
literature, which belongs to Bergman [1]. Section 4 deals with the design of THOSM
controller. Simulations are presented in Section 5.

2. High-order sliding mode fundamentals. Consider a single input-single out-
put dynamic (SISO) system

& =a(t,x) +b(t,x)u, w€ R,o0=0(t,x) € R,x € R", (1)

with output o. Assume that a,b o are unknown smooth functions, the dimension
n can also be uncertain. The task is to make the output function vanish in finite
time and to keep it zero afterwards by means of possibly discontinuous feedback.
The solution is understood in Fillipov sense, and system trajectories are supposed
to be infinitely extendable in time for any bounded Lebesgue- measurable input.

Let the relative degree of the system is constant and known, and equals r. The
equality of relative degree of the system (1) to r means that control u appears for
the first time in the r-th total time derivative of the output, i.e

o =h(t,z)+g(t,x)u, g(t,z)#0 (2)
holds with some uncertain functions
M(t2) = 0" lumo, 0(t,2) = Se0” #0. Q
Suppose that
0< K,, < (,%UT < Kpyy |0 |u=0 <C (4)

for some K,,, Kj;,C > 0.These inequalities are satisfied at least locally for any
smooth system (1) which has a well-defined relative degree at a given point with

c=6=..=0"1=0. (5)

Assume that (3) hold globally. Then we can replace equations (2), (3) by the
differential inclusion

o" € [-C,Cl+ [Km, Knu. (6)

The problem of nullifying of output in finite time and keeping it zero afterwards is
solved in two steps. First, a bounded feedback control

u=—p(0,6,..,0" " (7)

is constructed such that all trajectories of (6), (7) converge in finite time to o =
& =..=0""1 =0 - the origin of the r - sliding phase space ¢,7,...,0"~!. Then
the lacking derivatives are real-time evaluated by means of robust exact differen-
tiator, producing an output-feedback controller. Since the inclusion (6) does not
“remember” the original system (2), such controller is robust with respect to any
perturbations preserving the system relative degree and (4). If the relative degree r
of the system is 1, i.e. control appears in the first derivative of output function and
o), > 0, then the standard sliding mode control (SM) u = —asigno accomplishes
the task. Arbitrary-order sliding-mode controllers with finite-time convergence were
developed by Levant [8, 9]. Following are quasi continuous higher order sliding mode
controllers for r=1-4:
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u = —asignao,
u=—a( + |o|"2signo) (6| + |o|'/*) 7,
u=—a((G +2(|o] + |0[**)712(6 + |a]*2signo)) /(15| + 2(|6] + [o[*/*)1/?),
3.4 =0 +3(5 + (|6 + 0.5]03/4)~V3(6 + 0.5|0 |3/ 1signo)

(|6] +|&| +0.50[3/4)2/%)~1/2
Ny,a = [0%] +3(|6] + (|6] + 0.5 [/4)2/%)1/2
u=—ops34/N34
The produced controllers are discontinuous functions of ¢ and of its real-time calcu-
lated successive derivatives o, &, ..., 0"~ 1. They provide for n- th order accuracy with
respect to sampling interval. It is proven by Levant that this is the best possible
accuracy with discontinuous control [8].

Originally HOSMs were proposed in order to remove the chattering effect, caused
by is discontinuity of the control. The main idea of the HOSM is to consider the
k-th-order time derivative of the actual control as the new control input. As a
result, the relative degree raises, and a new (r + k)-sliding controller is applied,
corresponding to the new relative degree r + k. The real control becomes output
of an integrator chain, thus it is smooth of the needed order k. Note that when
the relative degree is increased, the input u and its (k-1) successive derivatives are
considered as as additional system coordinates.

A specific problem arises due to the artificial increase of the relative degree. Some
interaction of u and its derivatives during the convergence to the (r + k)-sliding
mode 0 = & = ... = ¢"tF¥~1 = 0 is inevitable. Generally speaking, such an (r +
k)- sliding controller is for sure effective only in some vicinity of the (r + k)-sliding
mode, where u is close to the so-called equivalent control [14], which is independent
on u. The global convergence was provided only for the transfer from r = 1 to r =
2 by a suitable controller modification [9].

An additional drawback of the approach is an uncertainty of transient process.
The SM technique assures the ultimate robustness of the system motions only when
the sliding mode occurs. However, during the reaching phase, i.e. before estab-
lishment of the SM, there is no guarantee of robustness of the system and ever
trajectories remain uncertain.

The recently developed THOSM technique successfully treats on all these draw-
backs. The idea is to choose a transient trajectory in advance and to keep it from
the very beginning by means of HOSM. As the result, the interaction between the
control and its derivatives is excluded and the semi-global convergence is assured.
Also the robustness of the system performance is ensured from the beginning.

- W

3. Integral r-sliding mode. The main idea of IHOSM is to provide the equality
of sliding variable and it’s first r+k, £ > 0 derivatives to some chosen-in-advance
transient values from the very beginning. Let the above requirements are fulfilled if

o(t,z(t)) = s(t),
which means, in particular, that
s(to) = a(to), (o) = d(to), ..., s  *(to) = 0" (to) (8)
at the initial moment and
s(t) =0, with t > t; (9)

Let S(T_l)(t) be a Lipshitz function, i.e. it is absolutely continuous, almost every-
where differentiable, and its derivative is bounded by the Lipschitz constant in its



GLUCOSE LEVEL REGULATION 553

absolute value. Thus, s((t) is a globally bounded function. The last statement
implies that the function S(t,z) = o(t,x) — s(t) satisfies conditions (2), (3) with
some changed constants, and the equality S(¢,z) = 0 can be kept by any known r-
sliding controller.

3.1. Transient time assignment for r-sliding mode. Obviously, any constant
value of the transient time 1" = ¢; — to requires unacceptably large control values
in order to steer the trajectory to the r-sliding mode ¢ = 0 from far-distanced
initial values, and leads to very low convergence rate if the initial values of 7 =
(0,6,...,0"=1) are close to zero. Thus, choose transient time being a continu-
ous positive-definite r-sliding homogeneous function of the initial conditions of the
degree 1, i.e.

V k0 T(dyd) = kT(7). (10)
For example, the choice
T() = Mo (to) [P/ + [6(to)[P/" " + ... 4+ [cT= D (o) |P)P, with p,A >0 (11)

is valid.

3.2. Integral high order sliding mode controller based on optimal control
technique. One of the natural ways to choose a smooth function s(t) satisfying
(8), (9) is to choose a control which connects the initial point with the origin by
a trajectory optimal in some sense [12]. Note that due to the uncertainty of the
original system the optimality will take place for the auxiliary dynamic system (8),
(9) only.

Define 7 (t) = (2(t), 2(t), ..., 27~V (¢)). Consider an auxiliary control system

2 = Az + B, (12)
z€ R", veR, Aisn xn order quadratic matrix.
o1 0 --- 0
oo 1 -0
An,n =1 e (13)

o O
o O -
o O
O =

and
Bi,=0 00 - 1)7 (14)

The control objective is to drive the state Z(tg) to Z(ty) = 0 during the time
T =ty —to (10). The task can be fulfilled by minimizing the cost function

1(Z(to, v() = / V2(t)dt.

Since the system (12)—(14) is reachable, the minimal energy control that drives the
initial state to the origin exists. Let v* be the optimal control which fulfills the
task. Then v* can be calculated by

v*(t) = =BT e )G (g, t)e 0 5(ty), (15)
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where
T
Glto,ts) = / eAlts =TI pBT A" (tr=7) g7 (16)
0

is the continuous reachability Grammian [12]. Solving the differential equation (12)
and substituting (15) into the solution, get the optimal trajectory

t
2(t) = et 5 (1) + /eA(t_T)BBTeAT(t_T)G_l(to,tf)z(to)eA(tf_T)dT (17)
0
Note that in order to derive the reachability gramian there is no need to perform the
integration (16) which can be very messy. Taking into account that the grammian
is actually solution of Lyapunov’s differential equation [12]
P =AP+ PAT + BB”, t > tg (18)

with the initial condition

P(to) =0 (19)

one has only to solve the initial value problem (18), (19). Since in [12] the grammian
is calculated of-line, it’s computation must be redone for any given initial condi-
tion. Let solve the system (18), (19) in real time. Recall that P(t) is a quadratic
symmetric matrix which depends on the reaching time 7. Define

P11 P12 - DPin
P21 P22 0 P2
Pn,n = . . . .
Pna1 Pn2 - Pn,n
Substituting P in (18) and solving it with initial conditions (16) get
x (T_t)n—l (T_t)n—Q
vo=- ( =11 =) R At 1) X
a1l N e Gin—1 Ain
T2n—1 Tntl Tn
a1 a2n—1 A2n
SHLL 2n 20,
. ) ) X
G L. L. G g,
Tr 2 T
T'n.72 T'n.fl
LT (n—2)! (nflg!
"=
0 1 . o .
SRR : o x(2(0) 2(0) e e 2TD(0)) L (20)
0o o0 - T 1
00 --- . 1

The optimal control v*(t, Z(t)) is a uniformly bounded function in the whole space
[3]-

Theorem 3.1. Let the function s(t,d(to)) satisfies conditions (8), (9) and have
the uniformly bounded r-th order derivative s (t,&(to)) within the segment to <
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t7(d(to)). Then, with sufficiently large constant any r- sliding order finite-time con-
vergent homogeneous controller,

w=—aVU. (2,9, 20" with S=0—s

establishes the finite-time-stable r-sliding mode o = 0 independently of the initial
conditions. The equality o(t,z(t)) = s(t,d(to)) is kept during the transient.

Proof. The uniform boundedness of s(")(¢) means that it is bounded by a certain
constant which does not depend on initial condition and time. Thus the new con-
straint function ¥ = o — s satisfies condition (6),(7) with some changed constants
problem of stabilization can be solved by a corresponding-order sliding-mode con-
troller. For example the quasi continuous controller can fit. See [9]for detailed
proof. O

3.2.1. Chattering attenuation process. Choose some integer k > r and consider
u*=") as a new control. The new relative degree of the system is k. The k-th order
smooth function s which satisfies conditions
S(to) = O'(to), S(tg) = ()’(to), ceey Skil(to) = O'kil(to)
at the initial moment and
s(t) =0, with t > t;
is considered. Take the transient time
T(7) = Mo (to)[P/™ + |6 (to)[P/™~L + ... + |o* =D (t0) |P) /P, withp, A > 0,k > 7.

(21)
Consider the new constraint function
o(t,x) —s(t), to<t<ty
Z =
o(t,x), t>ty
and define the bounded feedback controller by
uF ) = —aW (2, 8, ..., nk), (22)

with arbitrary initial values u(tg), ..., u* =1 (to).

Theorem 3.2. Let the initial conditions tg, s(t,dtg), u(to), w(to), ..., u* "= (tg)
belong to some compact set in R" F="+1 Then controller (22) with sufficiently
large constant establishes the k-sliding mode o = 0 with the transient time (21).
The equality o(t,z(t)) = s(t,d(to)) is kept during the transient.

Proof. The proof explicitly follows from the theorem (3.1) and boundness of optimal
controller (20). O

4. Model of insulin-glucose dynamics regulation. The physiological model
commonly used in the interpretation of the intravenous tolerance test is a so called
Minimal Model developed by Bergman [1]. In this paper a modified model is con-
sidered, where some patient food intake is assumed:

G = —p1(G(t) — Gy) — X (£)G(t) + D(t)

X = —po X (t) + ps(I(t) — I) (23)
I =—n(I(t)— 1)+ p(t) + uy
1

b= (Gt~ D)3 — (2p(t) — pan)?)
P
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where

e G[mg/dl] is the blood glucose concentration at time t[min];

e [[uUl/dl] is the blood insulin concentration;

e X(t)[min~1] is an auxiliary function describing insulin excitable tissue glucose
uptake ability, its is always considered equal zero at initial time;

e Gyp[mg/dl] is patient’s baseline glucose level;

o [,[uUL/ml] is patient’s baseline insulin level;

e p;[1/min] is the insulin-independent rate constant of glucose uptake in muscles
and liver;

e po[l/min] is the rate constant expressing the spontaneous decrease of tissue
glucose uptake ability;

o p3[min=2(pUl/ml)~1] is the insulin-dependent rate of increase in tissue glu-
cose uptake ability, per unit of the insulin concentration excess over the base-
line insulin;

o y[uUl/mi] = [mg/dl~ min—2] is the rate of pancreatic release of insulin af-
ter the bolus, per minute and per mg/dl of glucose concentration above the
“target” glycemia;

o n[min~!] is the first order decay rate for insulin in blood;

e h[mg/dl] is the threshold value of glucose above which the pancreatic cells
insulin.

The system (23) assumes repeated food intake, which is not a case in model used
in [1, 14]. Since the IHOSM controllers are insensitive to bounded matched distur-
bances, the last equation in insulin-glucose regulation model (23) can be replaced by
any other suitable subsystem, not compromising the performance. One should note
that p € (0, par) is bounded function, and [ > 1 is some positive number. The term
D(t) shows the rate at which glucose is absorbed to blood following food intakes.
Since in diabetic patients the normal regulatory system does not exist, this glucose
absorption is considered as disturbance for the presented system. The disturbance
can be modeled by any continuous non-negative bounded function D(t) € [0, D]
and is measured in [mg/dl/min]. The control function u(t) defines the insulin in-
jection rate and replaces the normal regulatory system of the body, which does not
exist in diabetic patients.

4.1. Control design. Let rewrite the model (23) in the state-space form:

7y = —pi(x1 — Gy) — x22 + D(2)
¥y = —paxo + p3(x3 — I)
X3 = —n(xs — Ip) + p(t) + us

p= oyl — )2 — (2p(t) — par)).
Py

The state variables x1, 2 and x3 represent the blood plasma glucose concentration,
the insulin effect on the net glucose disappearance and the insulin concentration
in plasma respectively. The task is to stabilize the glucose concentration level
in patient’s blood at the basal level, which is an output-tracking problem. The
tracking error is defined as the difference between the glucose concentration level
and its basal value as

c=G,—G(t)=Gp — a1
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which in fact is the sliding variable. Suppose that inequalities (3) hold at least
locally. Then the relative degree of the system is 3 [6] and it can be rewritten as

o® = h(t,z) + g(t, z)u, (24)

where h(t,2) = 0,0, g(t,z) = %0(3) # 0 are some unknown smooth functions.
To ensure the smoothness of control, let increase the relative degree of the system
by one, defining the controls derivative as a new control. Then the equation (24)
can be rewritten as follows:

o™ = hy(t,z,u) + g1 (t, )i, (25)
and the problem of stabilization of o at zero can be solved by any known fourth
order sliding controllers, e.g., [8, 9].

Let s(t) be a smooth function, which satisfies conditions (8), (9) with r = 4.
Define an auxiliary function S = s — ¢ and transient time as:
T(7) = Ao (to)* + |6 (to)|* + [0 (20)|® + [0® (20)"*) /2.

Then the controller

[ o, t<to,t >ty
0=\ %, rrnen
B 0, ) . t <tp
“= _a@3,4(0_fad_£v&_570(3)_5(3))1 toﬁtﬁtf

with z(¢) being an optimal trajectory in (17), establishes the 4-th order sliding
mode o = 0. The equality o(t) = z(t) is kept during the transient. Implementing
the corresponding order robust exact differentiator [8] obtain the output-feedback

controller
] 0 t <tg,t >ty
f@‘{zm, € lto.t/]
w— { 0, ) . t <tp
—aWs4(s0 — & 51— & 80 — &, 85 — €B)), to <t <ty

where sg, s1, s2, and sz are the outputs of the differentiator estimating respectively

o, ¢, 5, c®:

S0 = v, 19 = —3LY4|sq — o> Asign(so — o) + s1,
s1=uv,v = —2L1/3|51 — VO\Z/Ssign(sl — 1) + S,
So = Ug, Vg = —1.5L1/2|52 — V1|1/2sign(52 — 1) + 83,

8.3 = —1.1L(83 — 1/2).

Here L is to be larger than sup|(c?)|. In the simulations presented here, L=80.
The time tq is required to ensure that the differentiator has already converged.
The initial values of the differentiator are taken sg = s; = so = s3 = 0. Define
S; = s; — &;, then the fourth order sliding mode quasi-continuous controller takes
form:

Hy = S5+ 3[|Sa| + (|S1] + 0.5|S0[*/*)71/3[8y + 0.5|S|* *signSy)] =/
(Se + (|S1] + 0.5|So|3/4)_1/3(51 + 0.5|So|3/4sign50)),
Hy = |Ss| + 3[|S2| + (|S1] 4 0.5|S0[3/4)~1/3|S1 4 0.5|S0|*/4signSy)] /2
|S2 + (]S1] + 0.5|So|3/4)_1/3(51 + O.5|SO|3/4signSo)|,
W3 4(So, S1, 59, 83) = —Hy /Hy.



558 LELA DOREL

The missing parameters are @« = 70, A\ = 12. The integration was by the Euler
method and the sampling step is set to be equal to the numerical integration step
T =10"°.

5. Simulation. The parameters of the model are listed in the following table [14]:

Normal Patient 1 Patient 2 Patient3
P1 0.0317 0 0 0
D2 0.0123 0.02 0.0072 0.0142
ps | 4.92x 107953 %x107%[216x107]9.94 x 10~°
¥ 0.0039 0.005 0.0038 0.0046
n 0.2659 0.3 0.2465 0.2814
h 79.0353 78 77.5783 82.9370
Gy 70 70 70 70
I 7 7 7 7
Go 291.2 220 200 180
Iy 364.8 50 55 60

TABLE 1. The values of parameters used in numerical computations

The feasibility of model (23) is shown in Fig.1. The assumption is that the per-
son consumes food every four hours. The glucose level concentration is changing
according to the food intakes. In the “healthy person” case, when the glucose level
starts to increase, additional insulin is released to reduce it. However, as the glucose
level reaches its low mark, insulin also converges to its basal value.

Concentration level

0 200 800

Tirﬁg?t(min) 600
FIGURE 1. Glucose level (mg/dL, dashed)/insulin level (pUl/dL,
solid) concentration of the healthy person.

The task of glucose level stabilization in the blood of diabetic patient is completed
by the controller presented in Section 4. The insulin-glucose concentration levels of
three different patients are demonstrated in Fig. 2.

The basal value of glucose concentration level is considered 100[mg/dl] in the
simulations. Any deviation of the glucose level from the normal value is immediately
treated by additional insulin injection (actual control), thus keeping the glucose
concentration into the blood on its basal value. Note that the amount of insulin
released in the blood is always positive. The food intake treated as disturbance is
D(t) = 5sin?(240t), where ¢ is a time in [min]. The parameter [ in the model (23)
is equal 2 in the simulations.
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@
=]

Concentration level
2
3

0 200 600 800

400
Time, t (min.)

Concentration level

0 200 800

400 600
Time, t (min)

Concentration level

0 200 600 800

Tirr‘:g?t(min)
FIGURE 2. Glucose level (mg/dL, dashed)/insulin level (uUl/dL,
solid)concentration of the patients 1-3 (from top to bottom).

6. Concluding remarks. Robust Controller based on the Integral High Order
Sliding Mode technique is proposed for glucose-insulin regulatory system. The
control suppresses any kind of uncertainties from the beginning; the amount of
insulin released into the blood is recalculated every time according to the body
needs. The future extension of this work will take into account the effect of the
pump dynamics unmodeled here.
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