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Abstract. We examine a model for a disease with SIR-type dynamics circu-
lating in a population living on two or more patches between any pair of which
migration is allowed. We suppose that a pulse vaccination strategy (PVS) is
carried out on each patch. Conditions are derived on each PVS such that the
disease will be eradicated on all patches. The PVS on one patch is assumed
to be essentially independent of the PVS on the other patches except in so
far as they are all performed simultaneously. This independence is of practical
value when we bear in mind that the patches may represent regions or coun-
tries with autonomous public health authorities, which may make individual
decisions about the days appropriate for a vaccination pulse to occur in their
own region or country. Simulations corroborate our theoretical results.

1. Introduction. Following the global eradication by 1979 of smallpox, the World
Health Organisation has set as goals the global eradication of other diseases, in-
cluding poliomyelitis [30] and Guinea worm disease [4, 14], and the global reduction
of, for example, measles [33]. Global eradication of a disease obviously requires
eradication from every single region or country in the world. But if, for example,
a vaccination program is to be implemented in any particular region, some level of
participation or co-ordination will be required by existing health authorities in that
region.

Suppose a disease is present in a number of different regions between any pair of
which migration may occur. This is a common enough scenario in our world today -
economic globalisation and the popularity of international holidays have promoted
the development of transport links. Assume that each region has an autonomous
public health authority that wishes to eradicate the disease from its region. If one
authority were to implement a vaccination program in the region it controls, there
would be no guarantee of eradication in that region since new infectives could enter
it from the other regions. All of the regions agree, then, after common consultation,
to implement vaccination programs. The regions share information on migration
rates and on other parameters governing the spread of the disease such as birth rates,
death rates, contact rates, and recovery rates. Each region decides to implement
a pulse vaccination strategy (PVS), perhaps in consequence of a recommendation
by the World Health Organisation that this is a sensible method of control for
the disease in contention. (It is certainly true that pulse vaccination strategies have
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attained real-world success in the control of poliomyelitis and measles in Central and
South America [26] and of poliomyelitis in India [5].) However, each autonomous
public health authority wishes to retain some independence in choosing the exact
details of the PVS in its region. After all, the days appropriate for a vaccination
pulse in one region may not be appropriate in another - different countries have
different customs, national holidays, and election days. The question therefore
arises as to whether or not it is possible to eradicate the disease from all regions if
the PVS in each region is chosen with some freedom. In this paper we discover, for a
particular model, that such eradication is possible, provided each PVS is sufficiently
strong.

The model we will study will be for a disease with SIR-type dynamics on n ≥ 2 re-
gions or “patches”, applicable to a disease such as poliomyelitis, influenza, measles,
or rubella. Multi-patch disease models are often labelled as metapopulation models
in the literature and the populations on the different patches are sometimes called
subpopulations [7, 2, 18]. Pulse vaccination strategies in a two-patch SEIR model
have been simulated by Earn et al [7]. Their simulation shows that the infective
populations on the different patches can become synchronised by the influence of
the pulse vaccination strategies. The pulse vaccination strategies on the two patches
are identical in their simulation. Earn et al offer no analytical explanation for their
observation but they do comment how Heino et al [12] have stressed that synchronic-
ity between subpopulations in ecological models can be an important contributory
factor to the extinction of all the subpopulations. Earn et al suggest that if pulse
vaccination strategies can promote synchronicity on the different patches of a multi-
patch epidemiological model, then disease extinction on all the patches may become
more likely. We will not explore synchronicity in this paper but remark that such
an exploration could yield valuable new results.

Numerical and theoretical studies of pulse vaccination strategies have been ap-
pearing regularly since the 1990s. Conditions on pulse vaccination strategies such
that disease eradication is guaranteed have been found for many types of model in
the last decade [21, 22, 19, 35, 23, 9, 10, 34, 32, 17]. However, the need to design
pulse vaccination strategies with care has been emphasised by Choisy et al [6], who
show by simulation in an SEIR model that increasing the pulse frequency (that
is, decreasing the inter-pulse time) can have perverse effects such as increasing the
number of infectives by causing resonance in the underlying dynamical system.

This paper has the following format. In section 2 we describe the n-patch SIR
model to be investigated. In section 3 we consider the behaviour of the disease in
the absence of vaccinations, showing in particular that it may die out naturally or
persist indefinitely depending on conditions involving the model parameters. Then
in sections 4 and 5 we construct conditions on pulse vaccination strategies on the n

patches such that the disease will be eradicated simultaneously on all n patches. In
section 6 we comment on how our PVS conditions depend on the model parameters,
focusing on migration rates. Simulations are included in section 7 and we end the
paper with a discussion in section 8.

2. The model. Assume there are n ≥ 2 patches on each of which a human popula-
tion is present. Suppose an infectious disease with SIR-type dynamics is circulating
on at least one of the patches. For 1 ≤ j ≤ n, let there be Sj(t) susceptibles, Ij(t)
infectives, and Rj(t) removeds at time t on patch j. Notice that the population on
patch j at time t is Nj(t) = Sj(t) + Ij(t) + Rj(t). Assume, for 1 ≤ j ≤ n, that
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the population on patch j is mixing homogeneously and that every individual has
the same average number of contacts βj > 0 per unit time, where βj is a constant.
The assumptions of the last sentence will lead to a standard incidence function on
patch j [13].

Suppose all new borns on all patches are susceptible - there is no vertical trans-
mission. Suppose further that the birth rate at time t on patch j is a function of
the population on patch j, namely bj(Nj(t)). Let the birth functions satisfy the
following biologically sensible requirements:

bj(0) = 0 and bj(x) > 0 for x > 0 where 1 ≤ j ≤ n. (1)

There are different ways to model migration [18]. We shall follow an approach
used by Arino and van den Driessche [2]. Assume, then, that migration occurs
between any pair of patches at the following rates:

• mS
k,j = per capita migration rate of susceptibles from patch k to patch j

• mI
k,j = per capita migration rate of infectives from patch k to patch j

• mR
k,j = per capita migration rate of removeds from patch k to patch j .

These migration rates are all non-negative constants. It is not sensible to think of
individuals migrating out of their patch and into it at the same instant, so we set
mS

j,j = mI
j,j = mR

j,j = 0 for 1 ≤ j ≤ n. Natural mortality rates are known to vary
significantly from one country to another, so there is no reason to assume that the
natural mortality rate is the same on all patches. Similarly the disease mortality
and recovery rates may be patch-dependent. Define, then, the following parameters:

• µS
j = per capita death rate of susceptibles on patch j

• µI
j = per capita death rate of infectives on patch j

• µR
j = per capita death rate of removeds on patch j

• γj = per capita recovery rate of infectives on patch j

All of these parameters are assumed to be positive constants. Contraction of
an infectious disease seldom reduces mortality, so we assume for 1 ≤ j ≤ n that
µI

j ≥ µS
j . Recovery from a disease generally reduces mortality, so we assume for

1 ≤ j ≤ n that µI
j ≥ µR

j . Assume that recovery confers permanent immunity. By
considering the changes in the numbers of susceptibles, infectives, and removeds on
patch j (1 ≤ j ≤ n) in a short time interval [t, t + dt], and letting dt → 0 whilst

noticing, for example, that limdt→0

(

Sj(t+dt)−Sj(t)
dt

)

=
dSj(t)

dt
, our hypotheses lead

to the following model:

dSj

dt
= bj(Nj) − βj

SjIj

Nj

− µS
j Sj +

(

n
∑

k=1

mS
k,jSk

)

−
n
∑

k=1

mS
j,kSj (2)

dIj

dt
= βj

SjIj

Nj

− (γj + µI
j )Ij +

(

n
∑

k=1

mI
k,jIk

)

−
n
∑

k=1

mI
j,kIj (3)

dRj

dt
= γjIj − µR

j Rj +

(

n
∑

k=1

mR
k,jRk

)

−
n
∑

k=1

mR
j,kRj (4)

for t > 0 and for 1 ≤ j ≤ n, where we use the shorthand Sj , Ij , Rj , and Nj for
Sj(t), Ij(t), Rj(t), and Nj(t) respectively.

Equations (2), (3), and (4) represent a model without vaccinations for the spread
of the disease across the n patches. For a sensible model we require initial data.
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Therefore assume, for 1 ≤ j ≤ n, that

Sj(0) ≥ 0, Ij(0) ≥ 0, Rj(0) ≥ 0, Sj(0) + Ij(0) + Rj(0) > 0. (5)

We must have Ij(0) > 0 for at least one value of j, for otherwise the disease is
already absent from all n patches at the initial time t = 0.

A pulse vaccination strategy (PVS) can be introduced onto each patch in accor-
dance with the following definition:

Definition 2.1. On patch j, for 1 ≤ j ≤ n, pulses occur every Tj > 0 time units,
where Tj is constant. The first pulse occurs at time t1,j > 0 and, for i ≥ 2, the i-th
pulse occurs at time ti,j = t1,j + (i − 1)Tj. Each pulse instantaneously transfers a
fixed proportion pj (where 0 < pj < 1) of susceptibles in patch j to the removed
class in patch j. Thus Sj(ti,j) = (1− pj)Sj(t

−
i,j) and Rj(ti,j) = Rj(t

−
i,j) + pjSj(t

−
i,j)

where t−i,j is the time “momentarily” before time ti,j . Between pulses, the system on

patch j evolves according to equations (2), (3), and (4), and the system begins with
the initial data (5). The birth functions are assumed to satisfy (1). Let qj = 1−pj .

The model with pulse vaccination strategies on each patch therefore consists of
a series of infinitely many initial value problems (IVPs), with the initial time of the
(i + 1)-th IVP being the time of the first pulse that occurs strictly later than the
initial time of the i-th IVP. At the initial time of the i-th IVP, it is possible that
pulses occur simultaneously on more than one patch.

For both of the models - without vaccination or with pulse vaccination strategies
- it is easy to deduce from standard results that a unique solution exists for t > 0.
It is also straightforward to deduce from known results (p. 81, [29]) that, given
our assumptions on the initial data in (5) and given (1), then Sj(t) ≥ 0, Ij(t) ≥ 0,
Rj(t) ≥ 0, and Nj(t) > 0 for t > 0 for 1 ≤ j ≤ n. These properties are collectively
known as positivity.

3. Natural extinction and endemicity. If it is known that a particular disease
will die out naturally, public health authorites may decide not to implement a
vaccination program against it. Of course a disease which is dying out may still
claim some victims, but the resources of a public health authority are limited and
fatal diseases that are endemic are likely to be of greater priority than diseases
that will die out by themselves. Therefore, before constructing successful pulse
vaccination strategies in the SIR model defined in the last section, it is sensible to
have an understanding of when the disease will die out naturally and when it will
persist naturally.

Theorem 3.1. Consider the model defined by (1), (2), (3), (4), and (5). Suppose
for 1 ≤ j ≤ n that βj < γj + µI

j . Then Ij(t) → 0 as t → ∞ for 1 ≤ j ≤ n.

Proof. Add together all n equations defined by (3) for 1 ≤ j ≤ n to obtain:

d

dt





n
∑

j=1

Ij(t)



 =

n
∑

j=1

(

βj

Sj(t)

Nj(t)
−
[

γj + µI
j

]

)

Ij(t). (6)

Let θ = max1≤j≤n

{

βj −
(

γj + µI
j

)}

. Notice that θ < 0 since we know by as-

sumption that βj < γj + µI
j for 1 ≤ j ≤ n. Also, by positivity we know that

Sj(t)
Nj(t)

≤ 1 and Ij(t) ≥ 0 for t > 0 where 1 ≤ j ≤ n. Therefore by (6) we can write:

dI(t)

dt
≤ θI(t) for t > 0, (7)
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where I(t) =
∑n

j=1 Ij(t). Hence (using theorem 1.1, pp. 78-79, [29]) we know that

I(t) ≤ I∗(t) for t ≥ 0 where I∗(0) = I(0) > 0 and where dI∗(t)
dt

= θI∗(t) for t > 0.
Solving for I∗(t) and using positivity of Ij(t), we then have, for 1 ≤ j ≤ n:

0 ≤ Ij(t) ≤ I(t) ≤ I∗(t) = I(0)eθt for t > 0. (8)

Combining (8) with the fact that θ < 0 immediately yields that Ij(t) → 0 as
t → ∞ for 1 ≤ j ≤ n, as required.

Rigorous proofs of endemicity in metapopulation models are, at present, scarce.
However, disease persistence for a special case of an SIS model has been established
analytically by Jin and Wang [16]. Also, simulations demonstrating endemicity in
a two-patch SEIR model for a non-fatal disease have been carried out by Arino
et al [1]. We shall now demonstrate by simulation that the disease can remain
endemic in the model of (2), (3), (4), and (5) when there are two or three patches.
Our simulations are not based on real-world data but it is likely that we will use
such data in future work.

In figure 1(a) we simulate the model of (2), (3), and (4) when there are n = 2
patches and where the parameters are chosen as follows:

β1 = 12 µS
1 = 1.0 µI

1 = 1.1 µR
1 = 1.0 γ1 = 0.9

β2 = 15 µS
2 = 1.1 µI

2 = 1.2 µR
2 = 1.1 γ2 = 1.2.

The migration rates are:

mS
1,2 = 1.0 mI

1,2 = 0.8 mR
1,2 = 1

mS
2,1 = 1.2 mI

2,1 = 1.0 mR
2,1 = 1.2.

The initial conditions are (S1(0), I1(0), R1(0)) = (10, 8, 0) and (S2(0), I2(0), R2(0)) =
(13, 7, 10). The population unit may be thousands of individuals so it is not neces-
sary to worry about stochastic effects from apparently low initial conditions. The
birth functions in figure 1(a) are both of the form b(N) = λ1Ne−λ2N : on patch 1 we
have b1(N1) = 3N1e

−0.03N1 and on patch 2 we have b2(N2) = 4N2e
−0.09N2 . A birth

function of the form b(N) = λ1Ne−λ2N is a Ricker functional form [24, 25], so we
shall refer to such a birth function as being of Ricker type. Ricker birth functions
are commonly used in population models [11, 27, 31]. Notice that if a population
N is suitably small, then b(N) = λ1Ne−λ2N behaves like a linear function, reflect-
ing the idea that a small population may grow quickly because there may be less
competition for food or to find a mate.

Figure 1(b) differs from figure 1(a) only in the choice of the contact rates and
the birth functions. Thus the contact rates are now β1 = 1.2 and β2 = 6.5 and the
birth functions are as follows: on patch 1 we have b1(N1) = 1.5N2

1 e−0.05N1 and on
patch 2 we have b2(N2) = 2N2

2 e−0.1N2 . It is not unusual in the literature to see a
birth function of the form b(N) = α1N

2e−α2N for positive constants α1, α2 [27].
In a recent paper, we labelled such a birth function as being of Allee type in view
of its connection to a phenomenon called the Allee effect in which a population can
be small enough as to be unsustainable [31]. The same label will be adopted in this
paper.

In figure 2(a) we demonstrate endemicity on three patches when the birth func-
tions on all patches are of Ricker type, namely b1(N1) = 3N1e

−0.03N1, b2(N2) =
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(a) Ricker birth functions
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(b) Allee birth functions

Figure 1. Natural endemicity on two patches. See section 3 for
parameter choices and comments.

4N2e
−0.09N2 , and b3(N3) = 5N3e

−0.1N3 . Parameters are chosen as follows:

β1 = 3 µS
1 = 0.8 µI

1 = 1.3 µR
1 = 0.8 γ1 = 0.5

β2 = 4 µS
2 = 0.9 µI

2 = 1.2 µR
2 = 0.9 γ2 = 0.6

β3 = 3 µS
3 = 1.0 µI

3 = 1.2 µR
3 = 1.0 γ3 = 0.5.

The migration rates are:

mS
1,2 = 0.7 mI

1,2 = 0.5 mR
1,2 = 0.7 mS

1,3 = 0.7 mI
1,3 = 0.4 mR

1,3 = 0.7

mS
2,1 = 0.9 mI

2,1 = 0.6 mR
2,1 = 0.8 mS

2,3 = 1.0 mI
2,3 = 0.8 mR

2,3 = 0.9

mS
3,1 = 0.8 mI

3,1 = 0.6 mR
3,1 = 0.8 mS

3,2 = 0.8 mI
3,2 = 0.5 mR

3,2 = 0.8.

The initial conditions are (S1(0), I1(0), R1(0)) = (10, 8, 0), (S2(0), I2(0), R2(0)) =
(13, 7, 10), and (S3(0), I3(0), R3(0)) = (12, 4, 2).

Finally, in figure 2(b) we demonstrate endemicity on three patches when the
birth functions on all patches are of Allee type, specifically b1(N1) = 1.5N2

1 e−0.05N1 ,
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(b) Allee birth functions

Figure 2. Natural endemicity on three patches. See section 3 for
parameter choices and comments.

b2(N2) = 2N2
2 e−0.1N2 , and b3(N3) = 3N2

3 e−0.2N3. The model parameters and initial
conditions are chosen as in figure 2(a).

Figures 1 and 2 show that the disease can remain endemic when the birth func-
tions are of Ricker or Allee types and when there are two or three patches. Certainly,
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then, there appear to be grounds for seeking vaccination strategies to eradicate the
disease.

4. Pulse vaccination strategies. We have seen evidence in the previous section
that the disease can remain endemic in the model of (2), (3), (4), and (5). In
this section we seek conditions on the pulse vaccination strategies such that the
disease will be eradicated on all n patches simultaneously whilst asking if the PVS
parameters on every patch can be chosen with some automony along the lines stated
in the introduction.

Although many human populations have been growing in recent decades and
centuries, this growth is unlikely to continue forever [20]. Also, despite dire predic-
tions by numerous gloomy individuals, there has not been a major global human
population crash for many centuries. It seems reasonable to eventually hope for
some sort of stability in human populations. The reason we mention these details is
because we use the idea that our subpopulations are stable in order to find success-
ful pulse vaccination strategies. We begin with a lemma in which we bound below
the populations on every patch.

Lemma 4.1. Consider the PVS model of definition 2.1. For 1 ≤ j ≤ n, define:

Dj = max

{

µS
j +

n
∑

k=1

mS
j,k, µI

j +
n
∑

k=1

mI
j,k, µR

j +
n
∑

k=1

mR
j,k

}

. (9)

(A1) If the birth function on patch j is of Ricker type, with bj(Nj) = λ1,jNje
−λ2,jNj ,

and if Dj < λ1,j, then bj(Nj) = DjNj has a unique positive solution N∗
j and

Nj(t) > 0.99N∗
j for all t large enough.

(A2) If the birth function on patch j is of Allee type, with bj(Nj) = α1,jN
2
j e−α2,jNj ,

and if Dj <
α1,j

eα2,j
, then bj(Nj) = DjNj has two positive solutions, which we

may label N∗
1,j and N∗

2,j, with N∗
1,j < N∗

2,j. If Nj(0) > N∗
1,j then Nj(t) > N∗

1,j

for t > 0 and Nj(t) > 0.99N∗
2,j for all t large enough.

Proof. Bearing in mind that Nj(t) = Sj(t) + Ij(t) + Rj(t) and that Nj(t) is not
impulsively changed when any vaccination pulse occurs on any patch, we add to-
gether (2), (3), and (4) to obtain, for t > 0:

dNj

dt
= bj(Nj) +

(

n
∑

k=1

mS
k,jSk

)

+

(

n
∑

k=1

mI
k,jIk

)

+

(

n
∑

k=1

mR
k,jRk

)

−
(

µS
j +

n
∑

k=1

mS
j,k

)

Sj −
(

µI
j +

n
∑

k=1

mI
j,k

)

Ij −
(

µR
j +

n
∑

k=1

mR
j,k

)

Rj . (10)

By positivity we have
(

n
∑

k=1

mS
k,jSk

)

+

(

n
∑

k=1

mI
k,jIk

)

+

(

n
∑

k=1

mR
k,jRk

)

≥ 0, (11)

and

−
(

µS
j +

n
∑

k=1

mS
j,k

)

Sj −
(

µI
j +

n
∑

k=1

mI
j,k

)

Ij −
(

µR
j +

n
∑

k=1

mR
j,k

)

Rj

≥ −DjSj − DjIj − DjRj = −DjNj . (12)
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Using (10), (11), and (12), we can write, for t > 0:

dNj

dt
≥ bj(Nj) − DjNj . (13)

It follows (using theorem 1.1, pp. 78-79, [29]) that Nj(t) ≥ N∗
j (t) for t ≥ 0 where

N∗
j (0) = Nj(0) > 0 and where, for t > 0, we have

dN∗

j

dt
= bj(N

∗
j ) − DjN

∗
j . Results

(A1) and (A2) of the lemma now follow trivially.

Now in real life a birth rate will never be infinite. Also we know by lemma 4.1
that the populations on the different patches can be bounded below for all time
large enough. Hence we are in a position to bound above the susceptible, infective,
and removed populations on every patch in our next result:

Lemma 4.2. Consider the PVS model of definition 2.1. For 1 ≤ j ≤ n, assume
that Nj(t) ≥ Lj for t ≥ t∗j where Lj and t∗j are positive constants (this is a sensible

assumption in view of lemma 4.1). Let L = min1≤j≤n {Lj} and t̄ = max1≤j≤n

{

t∗j
}

.
Suppose that the birth functions are bounded above, that is, suppose, for 1 ≤ j ≤ n,
that maxNj≥0 {bj(Nj)} ≤ Mj where Mj is a positive constant. Also let N(t̄) =
∑n

j=1 Nj(t̄). Then Sj(t) ≤ M
d

and Ij(t) ≤ M
d

and Rj(t) ≤ M
d

for t > t∗ where

M =
∑n

j=1 Mj and d = min1≤j≤n

{

µI
j

}

, and where

t∗ =

{

t̄ if N(t̄) ≤ M
d

+ L

t̄ + 1
d

ln
(

N(t̄)−M
d

L

)

if N(t̄) > M
d

+ L.
(14)

Proof. If we add together all 3n equations defined by (2), (3), and (4) for 1 ≤ j ≤ n,
and bear in mind that Sj(t) + Ij(t) + Rj(t) = Nj(t), we obtain, for t > 0:

d

dt





n
∑

j=1

Nj(t)



 =

n
∑

j=1

(

bj(Nj(t)) −
[

µS
j Sj(t) + µI

jIj(t) + µR
j Rj(t)

])

. (15)

Equation (15) holds both for the model without vaccinations and for the PVS
model. This is because in the PVS model, the model equations are the same between
pulses as in the model without vaccinations and each instantaneous pulse on any
patch does not alter the total size of the population on that or any other patch.

Let N(t) =
∑n

j=1 Nj(t). Then using the definition of d given in the statement

of the lemma and the assumptions (in section 2) that, for 1 ≤ j ≤ n, then µI
j ≥ µS

j

and µI
j ≥ µR

j , we see by (15) that, for t > 0:

dN(t)

dt
≤





n
∑

j=1

bj(Nj(t))



− dN(t). (16)

Since Nj(t) > 0 for all t > 0 by positivity, we can use (1), the assumption in the
statement of the lemma that maxNj≥0 {bj(Nj)} ≤ Mj for 1 ≤ j ≤ n, and (16) to
deduce that:

dN(t)

dt
≤ M − dN(t), (17)

for t > 0 where M =
∑n

j=1 Mj .

Since (17) holds for t > 0, it must hold in particular for t > t̄ where t̄ is defined
in the statement of the lemma. But then it follows by theorem 1.1 on pages 78-79
of [29] that N(t) ≤ N∗(t) for t ≥ t̄ where N∗(t̄) = N(t̄) =

∑n
j=1 Nj(t̄) > 0 (we have
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noted that Nj(t) > 0 for any t > 0 by positivity) and where, for t > t̄, we have
dN∗(t)

dt
= M − dN∗(t). Solving for N∗(t) reveals that:

N(t) ≤ N∗(t) =
M

d
+

(

N(t̄) − M

d

)

e−d(t−t̄) for t ≥ t̄. (18)

Since e−d(t−t̄) → 0 as t → ∞, we can deduce by (18) that, for all t large enough,
then

N(t) ≤ M

d
+ L, (19)

where L is a positive constant defined in the statement of the lemma. In fact (19)
can be seen to hold for all t > t∗ where t∗ is defined in (14).

Consider the j-th patch. By assumption there are at least two patches, so there
exists an i-th patch where i 6= j. By positivity we know that 0 ≤ Sj(t) ≤ Nj(t) ≤
N(t) and that Ni(t)+ Nj(t) ≤ N(t) for t ≥ 0 and therefore for t ≥ t∗. Furthermore
we know by assumption that Ni(t) ≥ Li for t ≥ t∗i and that t∗ ≥ t∗i , so that
Ni(t) ≥ Li, or equivalently −Ni(t) ≤ −Li, for t ≥ t∗. Combining the observations
made so far in this paragraph with the fact that (19) holds for t > t∗, we find that:

Sj(t) ≤ Nj(t) ≤ N(t) − Ni(t) ≤
M

d
+ L − Li for t > t∗. (20)

But L−Li = min1≤j≤n {Lj}−Li ≤ 0. Hence by (20) we have Sj(t) ≤ M
d

for t > t∗.
Similarly we may bound above Ij(t) and Rj(t).

By lemma 4.1, we know that there will be circumstances under which the pop-
ulation on patch j (1 ≤ j ≤ n) will remain bounded below. Also we have noted
before lemma 4.2 how in real life a birth rate will never be infinite. In particular,
however, it is sensible to expect the per capita birth rate on each patch to be finite,

that is, to expect maxNj≥0

{

bj(Nj)
Nj

}

to be finite, and indeed if bj is either of the

two commonly used birth function mentioned in section 3 - Ricker or Allee - then
such an expectation holds. Thus we can be sure that the assumptions made in the
following theorem are reasonable:

Theorem 4.3. Consider the PVS model of definition 2.1. As in lemma 4.2, as-
sume, for 1 ≤ j ≤ n, that maxNj≥0 {bj(Nj)} ≤ Mj where Mj is a positive constant,
and that Nj(t) ≥ Lj for t ≥ t∗j where Lj and t∗j are positive constants. Suppose

also, for 1 ≤ j ≤ n, that maxNj≥0

{

bj(Nj)
Nj

}

≤ Kj for a positive constant Kj.

Let M =
∑n

j=1 Mj and d = min1≤j≤n

{

µI
j

}

. Also let

Aj = Kj +

(

n
∑

k=1

mS
k,j

)

(

M

dLj

)

+ µS
j + µI

j + µR
j +

n
∑

k=1

(

mS
j,k + mI

j,k + mR
j,k

)

. (21)

Assume, for 1 ≤ j ≤ n, that the PVS on patch j satisfies the relationship:
(

1 − e−AjTj
) [

1 + qj

(

1 − e−AjTj
)]

1 − qje−AjTj
<

γj + µI
j

βj

. (22)

Then, for 1 ≤ j ≤ n, we have Ij(t) → 0 as t → ∞.

Proof. First note by the quotient rule for differentiation that:

d

dt

(

Sj

Nj

)

=
dSj

dt

Nj

− Sj

Nj

(

dNj

dt

Nj

)

for t > 0, t 6= ti,j where i ≥ 1, (23)
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where (recall by definition 2.1) ti,j is the time of the i-th pulse on patch j.

By positivity −βj
Sj(t)Ij(t)

Nj(t)
≤ 0 and Nj(t) > 0 for t > 0, so by (2) we can write:

dSj

dt

Nj

≤ bj(Nj)

Nj

+

(

n
∑

k=1

mS
k,jSk

)

(

1

Nj

)

−
(

µS
j +

n
∑

k=1

mS
j,k

)

(

Sj

Nj

)

(24)

for t > 0, t 6= ti,j where i ≥ 1.
By positivity

∑n
k=1 mI

k,jIk ≥ 0 and
∑n

k=1 mR
k,jRk ≥ 0 for t > 0. Also Sj + Ij +

Rj = Nj , so by the positivity of Rj we have −Ij = −Nj +Sj +Rj ≥ − (Nj − Sj) for
t > 0. Similarly −Rj ≥ − (Nj − Sj) for t > 0. Combining the observations made
so far in this paragraph with (10), we find, for t > 0, t 6= ti,j where i ≥ 1, that:

dNj

dt
≥ bj(Nj) +

(

n
∑

k=1

mS
k,jSk

)

−
(

µS
j +

n
∑

k=1

mS
j,k

)

Sj

−
(

µI
j + µR

j +

n
∑

k=1

(

mI
j,k + mR

j,k

)

)

(Nj − Sj) . (25)

Since Nj > 0 and − Sj

Nj
≤ 0 by positivity, we deduce by (25) that

− Sj

Nj

(

dNj

dt

Nj

)

≤ −
[

bj(Nj)

Nj

+

(

n
∑

k=1

mS
k,jSk

)

(

1

Nj

)

]

(

Sj

Nj

)

+Pj

(

Sj

Nj

)2

+ Qj

(

1 − Sj

Nj

)(

Sj

Nj

)

, (26)

where Pj = µS
j +

∑n
k=1 mS

j,k and Qj = µI
j + µR

j +
∑n

k=1

(

mI
j,k + mR

j,k

)

.

Again by positivity 0 ≤ Sj

Nj
≤ 1. But then:

Pj

(

Sj

Nj

)2

+ Qj

(

1 − Sj

Nj

)(

Sj

Nj

)

≤ Pj + Qj

(

1 − Sj

Nj

)

. (27)

Using (24), (26), and (27) in (23), we therefore deduce that:

d

dt

(

Sj

Nj

)

≤
(

bj(Nj)

Nj

+

(

n
∑

k=1

mS
k,jSk

)

(

1

Nj

)

+ Pj + Qj

)

(

1 − Sj

Nj

)

(28)

for t > 0, t 6= ti,j where i ≥ 1.

Now we know that 1 − Sj

Nj
≥ 0. Also, by assumption, maxNj≥0

{

bj(Nj)
Nj

}

≤ Kj

and, for t ≥ t∗j , then 1
Nj(t)

≤ 1
Lj

. Furthermore, by lemma 4.2, we know that Sk ≤ M
d

for 1 ≤ k ≤ n for t > t∗ where t∗ is defined in the statement of lemma 4.2. Note
that t∗ ≥ t∗j for 1 ≤ j ≤ n. By the observations made so far in this paragraph and

by (28), we have:

d

dt

(

Sj

Nj

)

≤ Aj

(

1 − Sj

Nj

)

for t > t∗, t 6= ti,j where i ≥ 1, (29)

where Aj is a positive constant defined in (21).

Let xj(t) =
Sj(t)
Nj(t)

. We know that pulses occur on patch j at times ti,j as outlined

in definition 2.1. Let tuj ,j be the time of the first pulse on patch j to occur strictly
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later than t∗. Then we can write, by (29):

dxj(t)

dt
≤ Aj (1 − xj(t)) for t > tuj ,j , t 6= ti,j where i > uj. (30)

Then (using theorem 1.1, pp. 78-79, [29]), we can say, for any i ≥ uj , that
xj(t) ≤ gj(t) for t ∈ [ti,j , ti+1,j) where gj(ti,j) = xj(ti,j) and where

dgj(t)

dt
= Aj (1 − gj(t)) for t ∈ (ti,j , ti+1,j). (31)

Solving for gj(t) reveals that:

xj(t) ≤ gj(t) = 1 + (xj(ti,j) − 1) e−Aj(t−ti,j) for t ∈ [ti,j , ti+1,j), i ≥ uj. (32)

But then:

xj(t
−
i+1,j) ≤ 1 + (xj(ti,j) − 1) e−AjTj for i ≥ uj , (33)

where (recall by definition 2.1) t−i+1,j denotes the time “momentarily“ before the
time ti+1,j .

Observe that xj(ti+1,j) = qjxj(t
−
i+1,j) since, by definition 2.1, Sj(ti+1,j) =

qjSj(t
−
i+1,j) and Nj(ti+1,j) = Nj(t

−
i+1,j). Hence by (33):

xj(ti+1,j) = qjxj(t
−
i+1,j) ≤ qj

(

1 − e−AjTj
)

+ qje
−AjTj xj(ti,j) for i ≥ uj . (34)

Let zi = xj(ti,j). Then by (34):

zi+1 ≤ Ej + Fjzi for i ≥ uj, (35)

where

Ej = qj(1 − e−AjTj ) > 0 and Fj = qje
−AjTj . (36)

Iterating (35) we quickly find, for i > uj, that:

zi ≤ F
i−uj

j zuj
+ Ej

i−uj−1
∑

r=0

F r
j . (37)

Now 0 < Fj = qje
−AjTj < 1, so the partial sum in (37) will be less than the

entire sum, that is,
∑i−uj−1

r=0 F r
j <

∑∞

r=0 F r
j = 1

1−Fj
. Hence:

zi ≤ F
i−uj

j zuj
+

Ej

1 − Fj

for i > uj . (38)

It is clear by positivity that
Sj(tuj,j)

Nj(tuj,j)
≤ 1. Hence, zuj

= xj(tuj ,j) =
Sj(tuj,j)

Nj(tuj,j)
≤ 1.

Therefore by (38) xj(ti,j) = zi ≤ F
i−uj

j +
Ej

1−Fj
for i > uj . But then by (32) we

have, for t ∈ [ti,j , ti+1,j) for i > uj , that:

Sj(t)

Nj(t)
= xj(t) ≤ 1 +

(

F
i−uj

j +
Ej

1 − Fj

− 1

)

e−Aj(t−ti,j)

= 1 − e−Aj(t−ti,j) +

(

F
i−uj

j +
Ej

1 − Fj

)

e−Aj(t−ti,j). (39)

On the interval t ∈ [ti,j , ti+1,j) (where i > uj) it is clear that 1 − e−Aj(t−ti,j)

is bounded above by 1 − e−AjTj and that e−Aj(t−ti,j) is bounded above by 1. But
then, using (39), we can write, for t ∈ [ti,j , ti+1,j), i > uj, that:

Sj(t)

Nj(t)
≤ 1 − e−AjTj + F

i−uj

j +
Ej

1 − Fj

. (40)
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Recalling the definitions of Ej and Fj from (36), we may rewrite the right hand
side of (40) to obtain:

Sj(t)

Nj(t)
≤
(

1 − e−AjTj
) [

1 + qj

(

1 − e−AjTj
)]

1 − qje−AjTj
+ F

i−uj

j . (41)

Now since 0 < Fj = qje
−AjTj < 1, then for any ǫ > 0 we have F

i−uj

j < ǫ for all
i large enough. In particular this is true for

ǫ =
1

2

(

γj + µI
j

βj

−
(

1 − e−AjTj
) [

1 + qj

(

1 − e−AjTj
)]

1 − qje−AjTj

)

, (42)

a quantity which is positive in view of assumption (22). Hence there exists i∗j > uj

such that, for i ≥ i∗j , then F
i−uj

j < ǫ where ǫ is given by (42). Therefore, by (41),

we find, for t ∈ [ti,j , ti+1,j), i ≥ i∗j , that:

Sj(t)

Nj(t)
≤ 1

2

(

γj + µI
j

βj

+

(

1 − e−AjTj
) [

1 + qj

(

1 − e−AjTj
)]

1 − qje−AjTj

)

. (43)

Using (43) and (6) and the positivity of Ij(t), we can write,

d

dt





n
∑

j=1

Ij(t)



 ≤ −
n
∑

j=1

αjIj(t) for t ∈ [ti,j , ti+1,j), i ≥ i∗j , (44)

where αj =
(

βj

2

)

(

γj+µI
j

βj
− (1−e

−AjTj )[1+qj(1−e
−AjTj )]

1−qje
−Aj Tj

)

. Note that, for 1 ≤ j ≤ n,

then αj > 0 by (22). It follows that α > 0 where α = min1≤j≤n {αj}. Therefore
by (44) we have:

d

dt





n
∑

j=1

Ij(t)



 ≤ −α

n
∑

j=1

Ij(t) for t ∈ [ti,j , ti+1,j), i ≥ i∗j . (45)

Let I(t) =
∑n

j=1 Ij(t). Since vaccination pulses do not make the infective popu-

lation on any patch change impulsively we deduce by (45) that dI(t)
dt

≤ −αI(t) for
all t ≥ ti∗

j
,j. But then (using theorem 1.1, pp. 78-79, [29]) we know that I(t) ≤ I∗(t)

for t ≥ ti∗j ,j where I∗(ti∗j ,j) = I(ti∗j ,j) ≥ 0 and where dI∗(t)
dt

= −αI∗(t) for t > ti∗j ,j .

Solving for I∗(t) and using positivity, we then have, for 1 ≤ j ≤ n:

0 ≤ Ij(t) ≤ I(t) ≤ I∗(t) = I(ti∗j ,j)e
−α(t−ti∗

j
,j) for t ≥ ti∗j ,j . (46)

Combining (46) with the knowledge that α > 0 immediately yields that Ij(t) → 0
as t → ∞ for 1 ≤ j ≤ n, as required.

5. Strategy existence. Now let us comment on how restrictive condition (22) is.

If we set Hj =
γj+µI

j

βj
> 0, then the condition may be written:
(

1 − e−AjTj
) (

1 + qj − qje
−AjTj

)

1 − qje−AjTj
< Hj . (47)

Note first of all that if 0 < qj < 1, then (47) clearly holds when Tj = 0. Also the
left hand side in (47) is a continuous function of Tj for Tj ≥ 0, so there will exist a
range of Tj > 0 such that (47) holds. In other words, a PVS can always be found
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to satisfy (47), although we have yet to comment on how small Tj might have to
be.

Secondly note that if qj = 1, then (47) becomes

2 − e−AjTj < Hj . (48)

Condition (48) holds automatically for Tj > 0 if Hj ≥ 2. Also, if 1 < Hj < 2

then (48) holds if 0 < Tj < 1
Aj

ln
(

1
2−Hj

)

. Hence if Hj > 1 then a PVS exists on

patch j which satisfies (47) and for which qj = 1. But if qj = 1, then pj = 1−qj = 0,
so that the PVS effectively does nothing. Hence when Hj > 1 we can say that a
PVS is not needed on patch j at all. It follows that if Hj > 1 for 1 ≤ j ≤ n,
then the disease will go extinct on all n patches simultaneously even if there are
no vaccinations on any patch. However, this should not surprise us because if

Hj =
γj+µI

j

βj
> 1 for 1 ≤ j ≤ n then theorem 3.1 will hold. Hence condition (47)

takes into account the possibility that the disease may die out naturally and does
not necessarily ask for a PVS to be carried out on patch j.

Now suppose that Hj ≤ 1. Then (48) cannot hold for any Tj > 0, so a non-trivial
PVS is needed if condition (47) is to be satisfied. Suppose, then, that 0 < qj < 1.
Given such a qj we now find a T ∗

j > 0 such that condition (47) holds for 0 < Tj < T ∗
j .

Let Xj = e−AjTj and note that, since Tj > 0, we must have 0 < Xj < 1. If we
define fj,1(Xj) = (1 − Xj)(1 + qj − qjXj) and fj,2(Xj) = Hj(1 − qjXj), then (47)
becomes:

fj,1(Xj) = (1 − Xj)(1 + qj − qjXj) < Hj(1 − qjXj) = fj,2(Xj). (49)

The trivial forms of the functions fj,1(Xj) and fj,2(Xj) make it easy to determine
when (49) holds for 0 < Xj < 1. A simple sketch (see figure 3) reveals that, for
0 < Hj ≤ 1 and 0 < qj < 1, then fj,1(Xj) = fj,2(Xj) has two solutions, namely Xj,1

and Xj,2 where 0 < Xj,1 < 1 < Xj,2. Also fj,1(Xj) < fj,2(Xj) for Xj,1 < Xj < 1.
Since fj,1(Xj) = fj,2(Xj) is a quadratic equation, we may find Xj,1 explicitly:

Xj,1 =
(1 + 2qj − qjHj) −

√{
(1 + 2qj − qjHj)

2 − 4qj(1 + qj − Hj)
}

2qj

. (50)

The fact that (49) holds for 0 < Xj,1 < Xj < 1 may be proven by using the
inequalities 0 < qj < 1, and 0 < Hj ≤ 1 in (50). We will not include the actual
calculations since the results are obvious geometrically.

Since (49) holds for 0 < Xj,1 < Xj < 1 when 0 < qj < 1 and 0 < Hj ≤ 1, and
since Xj = e−AjTj , we deduce that (47) will hold for any Tj with 0 < Tj < T ∗

j

where

T ∗
j =

1

Aj

ln

(

1

Xj,1

)

. (51)

We may conclude that, when Hj =
γj+µI

j

βj
≤ 1, a PVS of the strength required by

theorem 4.3 exists no matter what strength the pulses are, as long as they each do
something (so that 0 < qj < 1), and the inter-pulse time Tj is less than T ∗

j in (51).
In the situation in which Hj ≤ 1, we can gain further insight into how restrictive

condition (47) is by plotting “stability” diagrams. In figure 4 we plot the region in
the qj-Tj parameter space such that (47) holds in two cases, each with a different
value of βj . These regions are called stable regions in the plots. The region in each
plot is the set of points (qj , Tj) where 0 < qj < 1 and 0 < Tj < T ∗

j where T ∗
j

satisfies (51). Note that T ∗
j can be considered a function of qj .
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Figure 3. Comparison of left and right hand sides of (49) when
0 < Hj ≤ 1 and 0 < qj < 1. Here qj = 0.4 and Hj = 0.9.

Observe that the stable region shrinks as βj increases. This is intuitively sensible
because, if the contact rate βj increases, we would expect the disease to spread more
easily, so that a stronger vaccination strategy would be needed to bring it under
control. Note that a strong PVS will be near the origin, since a PVS is stronger
when Tj is smaller and when pj is larger, making qj = 1 − pj smaller. Notice also
that successful pulse vaccination strategies may exist which lie outside the stable
regions, since we have proven (47) to be sufficient but not necessary for disease
eradication.

6. Comments on model parameters. It is useful to know in what ways our
condition for vaccination strategy success - condition (22) - depends on the model
parameters, particularly the migration rates. Now we have already noted in the

previous section that when Hj =
γj+µI

j

βj
> 1 then a PVS is not needed on patch j

but if Hj ≤ 1 then a PVS is needed on patch j in order for condition (22) to be
satisfied. Hence, by theorem 4.3 at least, the need for a PVS on patch j depends

only on the size of
γj+µI

j

βj
and not on any migration rates. Of course theorem 4.3

provides conditions sufficient for disease eradication from all patches but we have
not shown these conditions to be necessary. Future research could involve seeking
necessary conditions. In any event, we have uncovered a result that is perhaps
a little counter-intuitive - no matter how quickly individuals of any disease class
migrate into or out of patch j, a PVS will not be needed on patch j as long as
γj+µI

j

βj
> 1.

Even if
γj+µI

j

βj
≤ 1, so that a PVS is required on patch j, the strength of the

required PVS, determined by condition (22) and equation (21), has no dependence
on the migration rates of infectives or removeds into patch j. Hence the quarantine
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Figure 4. Stability diagrams for pulse vaccination strategy on
patch j. The stable region depicts where 0 < qj < 1 and where
condition (47) holds. For further comments see section 5. In both

plots, Aj = 1, γj = 1, µI
j = 1. Left plot: Hj =

γj+µI
j

βj
= 0.9524.

Right plot: Hj = 0.4762.

of infective individuals entering patch j would make no difference to the strength
of the PVS required by theorem 4.3. However, the quarantine of infectives may
make a difference to the speed with which the disease is eradicated, an issue we
may consider exploring in future work.

So far we have commented on how migration rates do not influence condition (22).

Now let us comment on how they do influence (22). Assuming that Hj =
γj+µI

j

βj
≤ 1

then we have seen in the last section that a PVS with parameters qj and Tj will
satisfy (22) (or equivalently (47)) if 0 < qj < 1 and 0 < Tj < T ∗

j where T ∗
j

satisfies (51). For given values of Hj and qj , the minimum strength of the required
PVS will depend on T ∗

j , which in turn depends on migration rates by being inversely

proportional to Aj , where Aj is given in (21). The constant Aj is proportional to
susceptible migration into patch j and to migration of all disease classes out of
patch j. No other migration terms appear in Aj .

Thus we can say that a stronger PVS is required on patch j (stronger in the
sense that the pulse frequency must be higher) if susceptible migration into patch
j is higher or if migration of any disease class out of patch j is higher. It is sensible
to expect that a stronger PVS will be needed on patch j if susceptible migration
into patch j is higher because susceptible migration into patch j provides fuel for
the disease on patch j. It is harder to explain the need for a stronger PVS on
patch j when migration of any disease class out of patch j is higher. Certainly it
is intuitive to expect to need a stronger PVS on patch j if migration of infectives
into patch j is higher but we have said that such migration does not feature in the
term Aj in (21). Perhaps as individuals migrate out of patch j, the disease may be
encouraged to spread on the other patches, which may in turn promote the spread
of the disease on patch j as individuals migrate into patch j, with the result that
a stronger PVS may be needed on patch j. This is a matter we wish to clarify in
future research.
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We have noted that if Hj =
γj+µI

j

βj
> 1 then a PVS is not needed on patch j.

It follows that if the disease is particularly deadly, so that µI
j is large, then the

condition Hj > 1 is more likely to hold. In effect, an especially virulent disease can
kill more quickly than it infects, causing the disease to kill itself off naturally. Also,
if the recovery rate γj is large, then the condition Hj > 1 is more likely to hold - in
other words, if individuals recover more quickly, a PVS is less likely to be needed.
Finally, if the contact rate βj is small, then it is more likely that Hj > 1. Thus,
a country which does not possess a stockpiled vaccination for the disease can in
theory control it by introducing measures to reduce contacts between infectives and
susceptibles. Methods of disease control that do not involve vaccinations, including
isolation of the sick, voluntary home quarantine, travel restrictions, and the closure
of schools and workplaces, have been discussed by a number of authors [15, 8].

7. Simulations. In this section we present simulations in which independent pulse
vaccination strategies are carried out when there are two or three patches. In
figure 5(a) we plot the number of infectives on two patches by simulating the model
of (2), (3), and (4), with the same initial data, model parameters, and Ricker-type
birth functions as those used in figure 1(a). In figure 5(a), a PVS with constant
pulse strength p1 = 0.9 (so that q1 = 1−p1 = 0.1) begins on patch 1 at time t1,1 = 2,
with pulses occurring thereafter every T1 = T ∗

1 time units where T ∗
1 = 0.0120 is

found by setting j = 1 in (51). (The calculation of T ∗
1 involves the calculation of

A1, which we found by setting j = 1 in (21). In order to find A1, we found L1

using part (A1) of lemma 4.1.) A PVS with constant pulse strength p2 = 0.85
(so that q2 = 1 − p2 = 0.15) begins on patch 2 at time t1,2 = 2.2, with pulses
occurring thereafter every T2 = T ∗

2 time units where T ∗
2 = 0.0075 is found by

setting j = 2 in (51). (As in the calculation of T ∗
1 , we used part (A1) of lemma 4.1

in the calculation of T ∗
2 .)

If we were to choose T1 and T2 to be anything less than the values used in
figure 5(a), then theorem 4.3 would guarantee that I1(t) → 0 and I2(t) → 0 as
t → ∞. As it is, even by choosing T1 and T2 as we have, figure 5(a) still apparently
shows that I1(t) → 0 and I2(t) → 0. But this should not necessarily surprise us.
We have not proven that the pulse vaccination strategies of theorem 4.3 are the
weakest strategies that succeed in eradication - weakest in terms of frequency of
application. Indeed, if we repeat the simulation of figure 5(a), changing only the
pulse frequencies, we see by figure 5(b) that disease eradication may still occur
when T1 = T2 = 0.3, that is, when the inter-pulse times are around 30 or 40 times
larger than the values required by theorem 4.3. Other simulations (not included)
have suggested to us that when T1 and T2 are approximately 0.32 then disease
eradication does not occur. In future research we will seek to construct the weakest
successful independent pulse vaccination strategies.

In figure 6(a) we plot the number of infectives on two patches by simulating the
model of (2), (3), and (4), with the same initial data, model parameters, and Allee-
type birth functions as those used in figure 1(b). We have seen in section 5 that if
γj+µI

j

βj
> 1 then vaccinations are not needed on patch j. For the simulation depicted

in figure 6(a), this means that no vaccinations are needed on patch 1. However,
vaccinations are needed on patch 2. A PVS with constant pulse strength p2 = 0.9
(so that q2 = 1−p2 = 0.1) begins on patch 2 at time t1,2 = 3, with pulses occurring
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(a) Inter-pulse times: T1 = 0.0120, T2 = 0.0075.
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(b) Inter-pulse times: T1 = 0.3, T2 = 0.3.

Figure 5. Independent pulse vaccination strategies on two
patches, when (a) eradication is guaranteed by theorem 4.3 and
(b) eradication is determined numerically. The birth function is of
Ricker type on both patches. Infective populations depicted. PVS
parameters on patch 1: t1,1 = 2, p1 = 0.9. PVS parameters on
patch 2: t1,2 = 2.2, p2 = 0.85. The inter-pulse times are stated
under each subfigure.

thereafter every T2 = T ∗
2 time units where T ∗

2 = 0.0150 is found by setting j = 2
in (51). (We used part (A2) of lemma 4.1 in the calculation of T ∗

2 .)
If the PVS on patch 2 has inter-pulse time T2 smaller than T ∗

2 = 0.0150, then dis-
ease eradication is guaranteed for both patches by theorem 4.3. Even with T2 = T ∗

2 ,
figure 6(a) suggests disease eradication will occur. In fact, increasing the inter-pulse
time T2 to 1.15 (77 times larger than T ∗

2 ) still suggests the disease will be eradi-
cated, as demonstrated by figure 6(b). Simulations (not included) have suggested
to us that when T2 = 1.2 then disease eradication does not occur. It would appear
that the restrictions of theorem 4.3 may be quite strong.
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(a) No pulses on patch 1. On patch 2 the inter-pulse time is T2 = 0.0150.
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(b) No pulses on patch 1. On patch 2 the inter-pulse time is T2 = 1.15.

Figure 6. Independent pulse vaccination strategies on two
patches, when (a) eradication is guaranteed by theorem 4.3 and
(b) eradication is determined numerically. The birth function is of
Allee type on both patches. Infective populations depicted. By the-

orem 4.3, vaccinations are not needed on patch 1 since
γ1+µI

1

β1

> 1.

PVS parameters on patch 2: t1,2 = 3, p2 = 0.9. The inter-pulse
times are stated under each subfigure.

In figure 7 we plot the number of infectives on three patches, using the same initial
data, model parameters, and Ricker-type birth functions as those used in figure 2(a).
Pulse vaccination strategies are carried out on each of the patches; the parameters
for each PVS are stated in figure 7. The inter-pulse times (T1, T2, T3) were found
by the same technique as that used to find the inter-pulse times in figure 5(a).
Simulations (not included) have suggested to us that, when T1 = T2 = T3 = 1.6
(approximately 50 to 144 times larger than the values for T1, T2, T3 used in figure 7),
then disease eradication still occurs. Hence the restrictions of theorem 4.3 may be
even stronger for three patches than for two. If this is true, it need not surprise us.
Applying theorem 4.3 involves bounding a number of quantities but some of these
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Figure 7. Disease eradication on three patches. The birth func-
tion is of Ricker type on all patches. Infective populations depicted.
PVS parameters on patch 1: t1,1 = 2, p1 = 0.9, T1 = 0.0322. PVS
parameters on patch 2: t1,2 = 3.5, p2 = 0.88, T2 = 0.0111. PVS
parameters on patch 3: t1,3 = 5, p3 = 0.85, T3 = 0.0158.

bounds may not be extremely tight. Simulating a larger number of patches involves
working with a larger number of such bounds, the accumulated effect of which may
be to make the conditions of theorem 4.3 more restricted relative to the weakest
vaccination strategies that succeed. Repeating the simulation of figure 7 with the
inter-pulse times changed to T1 = T2 = T3 = 1.65, we have found that eradication
does not occur.

Finally, in figure 8 we plot the number of infectives on three patches, using
the same initial data, model parameters, and Allee-type birth functions as those
used in figure 2(b). Pulse vaccination strategies are carried out on each of the
patches - see figure 8 for the PVS parameter values. We calculated the inter-
pulse times (T1, T2, T3) by the same technique as that used to find the inter-pulse
times in figure 5(a). Simulations (not included) have suggested to us that, when
T1 = T2 = T3 = 1.65 (approximately 64 to 144 times larger than the values for T1,
T2, T3 used in figure 8), then disease eradication still occurs, but eradication does
not occur when T1 = T2 = T3 = 1.7.

8. Discussion. Inter-city, inter-regional, and international travel has increased sig-
nificantly in the last few decades, promoting the spread of infectious diseases and
motivating independent health authorities to co-ordinate their disease-control ini-
tiatives. The spread of SARS (Severe Acute Respiratory Syndrome) across aviation
routes in 2003 is a well-studied example [28]. Despite co-ordinated control efforts,
independent health authorities are likely to retain at least some autonomy in their
decisions. In particular, autonomy may be retained in choosing the precise details
of a pulse vaccination strategy (PVS).



PVS IN A METAPOPULATION SIR MODEL 475

0 1 2 3 4 5 6 7 8
0

10

20

30

 

 

0 1 2 3 4 5 6 7 8
0

10

20

 

 

0 1 2 3 4 5 6 7 8
0

5

10

15

time t

 

 

 I
1
(t)

 I
2
(t)

 I
3
(t)

Figure 8. Disease eradication on three patches. The birth func-
tion is of Allee type on all patches. Infective populations depicted.
PVS parameters on patch 1: t1,1 = 3, p1 = 0.9, T1 = 0.0259. PVS
parameters on patch 2: t1,2 = 4.5, p2 = 0.88, T2 = 0.0115. PVS
parameters on patch 3: t1,3 = 6, p3 = 0.85, T3 = 0.0164.

Such considerations led us to examine an SIR model on n ≥ 2 patches between
any pair of which migration was permitted in either direction. Having seen by
simulation that the disease can remain endemic on the different patches, we asked
if it could be eradicated on all patches simultaneously if an independent PVS were
carried out on each patch. We discovered that, if each PVS were sufficiently strong,
then such eradication would occur. We also discovered that a PVS may not be
needed on every patch for the disease to be eradicated from every patch. Our
analytical results were corroborated by simulations for two-patch and three-patch
models but other simulations showed that vaccination strategies weaker than those
required by our analytical results can also succeed.

There is often a delay of up two weeks between vaccination and actual protec-
tion for some infectious diseases such as influenza and multiple doses are sometimes
required for full protection. There can also be an incubation period between con-
traction of an infection and becoming infectious. Future research could involve
incorporating such ideas into our model in an effort to seek greater realism. Other
future work could involve rigorously proving for our model that the disease can re-
main endemic in the absence of vaccinations. Finally it would be of practical value
to construct the weakest pulse vaccination strategies that still succeed - weakest in
terms of frequency of pulses. A sensible place to begin would be the establishment
of local stability conditions of the disease-free steady state using stroboscopic maps,
and then seeking to understand if local stability implies global stability.
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