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ABSTRACT. A mathematical model for PCR (Polymerase Chain Reaction) is
developed using the law of mass action and simplifying assumptions regarding
the structure of the reactions. Differential equations are written from the chem-
ical equations, preserving the detail of the complementary DNA single strand
being extended one base pair at a time. The equations for the annealing stage
are solved analytically. The method of multiple scales is used to approximate
solutions for the extension stage, and a map is developed from the solutions to
simulate PCR. The map recreates observed PCR well, and gives us the ability
to optimize the PCR process. Our results suggest that dynamically optimiz-
ing the extension and annealing stages of individual samples may significantly
reduce the total time for a PCR run. Moreover, we present a nearly optimal
design that functions almost as well and does not depend on the specifics of a
single reaction, and so would work for multi sample and multiplex applications.

1. Introduction. The Polymerase Chain Reaction (PCR) is a technique for en-
zymatic amplification of specific segments of DNA. Since its inception [11], it has
revolutionized research involving genomic material. Pathogen detection, disease di-
agnosis, human genetics and developmental biology are just a few of the research
areas impacted by PCR [12].

PCR is performed by repeating three temperature-induced stages: dissociation,
annealing, and extension. In dissociation a sample containing the target DNA is
first heated to approximately 95°C to separate the DNA into single strands. The
mixture is then cooled to allow primers to anneal to the template DNA. Primers are
short single strands of DNA specifically designed to target and bracket the sequence
of DNA in the sample to be duplicated (the amplicon). The temperature of this
stage is primer-specific, ranging from 37°C to 72°C. The solution is then heated to
74°C for extension. During this phase the thermostable enzyme Taq Polymerase
synthesizes a new DNA strand, completing the complimentary sequence started by
the primer. These three stages are repeated 30 to 45 times yielding millions of copies
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of the target DNA [12]. In real world PCR, annealing and extension often overlap,
so that extension of a strand begins immediately after it is primed. Therefore, in
practice, only two temperatures may be used. To simplify modeling we consider
the annealing and extension stages as two distinct and separate reactions; we will
show below that this simplification maintains fidelity with real PCR.

Real-time PCR uses fluorescent probes to monitor the amplification of DNA
throughout the reaction. The speed at which the fluorescent signal reaches a thresh-
old level correlates with the amount of target DNA in the initial sample. Real-time
PCR is used to precisely distinguish and measure concentrations of specific DNA
sequences even if there is only a very small quantity present in the original sam-
ple [14]. This technology has many applications, including those that benefit from
rapidity. Identification of microbes or parasites in commercial food and munici-
pal water supplies, pathogen detection, and forensic applications are just a few.
Portable, rapid, real-time PCR machines can determine the presence of a pathogen,
such as anthrax, in as little as 30 minutes. However, 30 minutes can be a long time
on a battlefield, in the event of a biological terror attack, or for a patient in the
emergency room. Using mathematics to optimize the process to reduce this time is
therefore a valuable exercise.

Idaho Technology Inc. of Salt Lake City UT develops and produces fast, high
quality PCR machines for pathogen identification and DNA analysis. Beginning
in the early 1990’s in a corner of an agricultural business in Idaho Falls ID, they
are now industry leaders in real-time PCR technology. They have funded research
collaborations with the Department of Mathematics and Statistics at Utah State
University for many years, aimed at process improvement. The research presented
here is a response to their challenge to mathematically model the dynamics of
Taq extending the DNA template one nucleotide base pair at a time, and evaluate
possible process controls using that model.

PCR has been mathematically modeled in several different ways. Early models
assumed growth per cycle proportional to the amplicon density. However, assuming
exponential growth of template copies greatly oversimplifies the process and models
the growth only for the first few cycles. In reality, limiting factors cause the pro-
cess to slow and eventually stop. These factors may include exhaustion of primer
molecules and raw base pairs or a decrease in the effectiveness of Taq [7].

In consideration of this limiting behavior, several mathematical models in the lit-
erature predict the efficiency of the PCR process. Liu and Saint [7] used a sigmoidal
mathematical model to fit real time PCR data, and demonstrated that amplification
efficiency can change from cycle to cycle. A linear regression approach to calculat-
ing PCR efficiency was given by Ramakers et al. [9], and Rutledge [10] proposed
a simplified method for absolute quantification. Gevertz et al. [2] considered the
efficiency of the reaction as a function of the cycle number. They considered an
equilibrium model as well as a kinetic model by deriving differential equations di-
rectly from the chemical equations for the annealing and extension phases. Aach
and Church [1] also derived mathematical equations from the chemical reactions,
but for diffusion-constrained PCR reactions.

Stochastic and probabilistic models are also used to describe PCR. Velikanov and
Kapral [15] treated the extension step as a microscopic Markov process in which
the nucleotides bind onto the primed single strand of DNA one at a time. Sun et
al. [13] used the theory of branching processes to develop a model for distributions
of mutations and estimation of mutation rates during PCR. Weiss and Von Hessler
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[16] treated the accumulation of new molecules during PCR as a random bifurcation
tree to estimate overall error rates for the reaction. More recently, Jagers, et al.
[4] used Galton-Watson branching processes to arrive at a linear growth phase
following the initial exponential phase. Lalam [6] based another model on a Galton-
Watson branching process description of PCR to estimate the reaction efficiency. A
drawback of many of these models, particularly from the standpoint of optimization,
is their complexity, which requires numerical integration and obscures dynamical
understanding of the process.

The model we present uses the chemical reactions of PCR to derive a system
of differential equations, mimicking the physical behavior of the single-stranded
DNA (ssDNA) copy being extended one nucleotide base pair at a time. Addition of
individual nucleotides occurs very rapidly, and the amount of Taq is small relative
to both primer and base pair concentration. This provides leverage to apply an
asymptotic solution strategy. There are two main objectives for the solution strategy
for this mathematical model. First, the approximate solutions found by a multiple
time scale approach can be put into a map to simulate the PCR process. Second, the
solutions and the map can be used to optimize the time spent in each stage in order
to obtain the most amplification in the shortest possible time. Our results indicate
that dynamic optimizing of the extension and annealing phases may significantly
decrease the time required for the entire PCR process. Moreover, we present a nearly
optimal design that functions just as well and does not depend on the specifics of a
single reaction.

2. The chemical reactions of PCR.

2.1. Dissociation. Dissociation occurs when the sample containing the double-
stranded DNA (dsDNA) is heated to separate the dsDNA into single strands. The
chemical equation can be written

D — 285,

where D is dsDNA and S is single-stranded DNA (ssDNA). Experimentation has
shown that dsDNA held at temperatures above 94°C for more that five seconds is
completely denatured [2]. This justifies the assumption that dissociation is com-
plete. Using lower case letters to indicate concentrations (s = [S],d = [D]), we
represent this stage mathematically by s = 2d.

2.2. Annealing. After the dsDNA is denatured, two complementary ssDNA tem-
plates are formed. A primer is designed to anneal at the end of the target DNA
template for each of the two complementary strands. We simplify the reaction by
including only one chemical equation for this, assuming that the priming for each
of the complementary strands occurs at the same rate. The chemical equation for
annealing describes the primer, P, attaching to the ssDNA, S, to form a molecule
of primed ssDNA, S’, and is written
S+piEs g

The constant k; is the rate the reaction moves forward, creating primed ssDNA.
A constant k_; is included to model the reverse reaction of primers falling off of
previously primed ssDNA. Reaction temperatures are chosen so that k1 >> k_1,
allowing the reaction to proceed rapidly.

Other reactions can occur during annealing. The two complementary template
strands can reanneal and primers can anneal to each other instead of to the ssDNA.
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Since the length of the strand is generally greater than 100 base pairs, reannealing
of the complementary templates is unlikely and we choose to neglect it. We also
neglect the scenario of primer to primer annealing, since tremendous effort is exerted
in primer design to prevent this.

2.3. Extension. In the extension stage, Taq polymerase, @), binds with primed
ssDNA, S’, to form a complex, C, at the rate \p,

S+Q%C.
Taq facilitates the addition of base pairs in order from the primer to the end of
the strand. We write a separate equation for each base pair added; C; denotes the
complex with j base pairs (j = 1,...,n). The number, n, denotes the number of
nucleotide base pairs needed to complete the complementary strand and R repre-
sents the resources containing all 4 types of individual base pairs for extension. We
assume that all base pairs add on to the template at the same rate, Ao, and that
all are present and needed in equal proportions. This assumption turns out to be
less important than that the concentration of single nucleotide base pairs is overall
quite high, as will be seen below.
The equations for this process are as follows:

C+R% 0,
L+ R0y,

Ch-1+R X n-
The Taq separates from the dsDNA as the template copy is completed at the rate
A3,
C. 2 D+Q.
At the reaction temperatures used for PCR, Taq is quite efficient at synthesizing

the complementary strands. Therefore, we consider any back reactions in this stage
to be negligible. Descriptions of the reactants and constants are shown in Table 1.

3. Model development.

3.1. Annealing. The law of mass action is invoked to write a system of differen-
tial equations for the annealing stage of a single cycle of PCR. This approach is
particularly well-justified in the case of quantitative PCR where reactions occur in
small, well-mixed containers.

d
d_j = —kisp+k_ 15, (1)
d
d_lt) = —kisp+k_15, (2)
and 4
s
o =kysp—k_15". (3)

Equation (1) represents the change in the concentration of ssDNA as a function
of the concentrations of ssDNA s, primer,p, and primed ssDNA, s’, scaled by the
forward and backward reaction rates, k1 and k_;. Likewise, equations (2) and
(3) describe the change in concentration of primer and primed ssDNA. The initial
conditions are s'(0) = 0 (since no primed ssDNA survives denaturing), s(0) = § (the
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Symbols | Description
D,d double stranded DNA (dsDNA), d = [D] (concentration)
S, s single stranded DNA (ssDNA), s = [5]
Pp primer, p = [P)]
S’y s primed ssDNA, s’ = [9']
Q. q Taq polymerase, ¢ = [Q]
C,c complex of primed ssDNA with Taq, ¢ = [C]
Cj,cj complex with j base pairs added, j = 1,2,...,n,¢; = [C}]
R,r resources containing nucleotides for extension, r = [R]
ki, k1 forward and backward reaction rates for annealing
A1, A2, A3 | forward reaction rates for extension stage
$ initial amount of ssDNA for a single cycle
D initial amount of primer for a single cycle
g initial amount of primed ssDNA for a single cycle
q
7

initial amount of Taq for a single cycle

initial amount of resources containing the individual base pairs
T rescaled time for extension stage (A\a7't)

S, q, etc. | rescaled reactants for extension stage

€ %, rate of Taq attachment relative to rate of extension

2P
Aot

%, rate of Taq detachment relative to rate of extension, O(1)

TABLE 1. List of variables and constants used in PCR model.

amount of ssDNA after dissociation), and p(0) = p (the amount of primer at the
S

.. . . d s’ _
beginning of this stage). It can be observed from equations (1)-(3) that 57 +%- =0
and % + dd—st = 0. This gives rise to two conserved quantities:

s+ =K; =s(0)+5(0) =s(0) = 8,
and
p+s =Ky =p(0)+5(0) =p(0) =p
Using these quantities the system can be reduced to a single equation,
ds’

=k - )G —s) ks, )

and solved analytically, using separation of variables. The solution is
aya (1 —elo-—ad)t)
a_—aq)t (5)
ay — 0476( +)

s'(t) =

where

- ki +Fkip+kist \/(k_l + kip + k1§)2 — 4k%]5§ (6)
B 2k1 '
The sigmoidal solution (5) increases to a limiting quantity determined by the initial
amounts of ssDNA and primer.

The solutions for primer and single-stranded DNA come from the conserved
quantities and are:

a+

s(t)=8—5'(1) (7)
and
p(t) =p—s'(t). (8)
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FiGURE 1. The graphs of the exact solutions for the annealing
stage of a single cycle of PCR with p = .5 and § = .002. The rate
constants used are k1 = 0.205 and k_; = 0.01025. The solution
curve for primed ssDNA levels off when all of the ssDNA strands
have been primed.

A graph of this solution is shown in Figure 1.

3.2. Extension. The law of mass action is again applied to write differential equa-
tions (9)-(16) that describe the change in concentration of each of the reactants as
Taq extends the template copy. The constants, A1,\2, and A3 are forward reaction
rates for this stage. The change in the concentration of primed ssDNA is propor-
tional to the product of the concentrations of primed ssDNA, s, and unattached
Taq, g, as shown in the equation,

— = -\15q. (9)

The change in the concentration of unattached Taq is also a function of s’ and
q as well as the concentration of the complex with all the base pairs added, c,.
This models Taq binding with the primed ssDNA at the beginning of extension and
detaching after the template strand is completed, giving

d

4 _ —A\15'q + Azcy,. (10)

dt
The change in the concentration of the complex, ¢, is a function of s, ¢, ¢, and the
concentration of resources, 7,

dc

7 A\1s'q — darc. (11)
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The next n— 1 equations, represented by (12) and (13), exhibit a distinct pattern as
they model addition of base pairs to the template strand. The pattern models the
creation of the complex, C; as the jth base pair is added to the previous complex,
Cj_1, and its subsequent disappearance when the next base pair is added. The
change in the concentration for a particular complex with j base pairs added is a
function of the concentration of that complex, c¢;, r, and the concentration of the
previously formed complex, ¢;_i.

dc

d_tl = \orc — AarCy (12)
de,,—

dt ! = )\QT‘Cn_g — )\QTCn_l. (13)

The equation for the change in the concentration of the complex with n base
pairs differs from (12)-(13) and is written,

dey,
E = )\an_lT‘ — )\3Cn. (14)

It is a function of the concentrations of the previous complex, ¢,_1, , and itself,
Cn, but it includes A3, the rate at which Taq detaches from the completed complex,
C,, forming dsDNA. The change in the concentration of resources is affected by the
concentrations of all the complexes up to ¢, 1 as shown in the equation,

dr n—1

a = —AQTZ Cj. (15)
7j=1

The change in the concentration of dsDNA is proportional to the concentration of

the complex with all of the base pairs added, c¢j:

dt /\36 ( 6)

The equation for double-stranded DNA, (16), is coupled only to (14) and can be
solved by direct integration after (9)-(15) are solved. The initial conditions are:
§'(0) = & (the amount of primed ssDNA present at the end of the previous annealing
stage), ¢(0) = ¢ (the initial amount of Taq), ¢(0) = ¢;(0) = d(0) = 0 (since
dissociation peels off any partially competed amplicon), and r(0) = 7 (the amount
of resources remaining after the previous extension stage).

An inherent small quantity in this stage of the PCR process is the proportion
of the initial amount of Taq to the initial amount of resources, %, due to the fact
that nucleotide base pairs are relatively easier to obtain and used in much larger
quantities than Taq, which is relatively rare and expensive. Therefore we choose a
time scale and concentration scales to form a dimensionless system in a way that
lets us take advantage of this small quantity. This amounts to assuming that Taq is
the rate-limiting quantity. The time is non-dimensionalized using 7 = A\o7t, and the

. . . - (- — — Cj _
concentrations are normalized using: § = %, §=%,¢=%,¢; = <, and , 7 = £.
P q q q 7
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Using dot notation for £ (4 = &', etc.), the equations (9)-(15) become:
X Aq
=y 17
J=-Mg, a7)
. AP, As
= - 18
LW W (18)
c= M?s'q—?é, (19)
)\27”
¢, = ¢ —Téy, (20)
Cn1 =TCpg = TCn_1, (21)
. A3
Cn =TCn—1 — ~=Cn, 22
Cp, = FCp—1 )\27“0 (22)
and
(j n—1
T (23)
7j=1
with rescaled initial conditions §(0) = % =1, q(0) = g =1,7(0) =% =1l,and

(0) = ¢5(0) = 0.
The quantity % in (17), contains the small quantity, Z. Since the rate constants,

A1 and Ao are of the same order, € = % is small. We define two other dimensionless
parameters, v = %, and u = % for simplification. The system (17)-(23) becomes:
§ = —€s'q, (24)

= —V5q+ pé,, (25)

¢=vsq—re, (26)

= Tc—Tc (27)

Cn—1 = TCn—2 — TCn—1, (28)
én = TCp—1 — UCn, (29)
and
)\2 n—1
F=—e—=F Ci. 30
" g j (30)

3.3. Multiple time scale analysis. The presence of a small parameter, €, allows
the application of the method of multiple time scales. A more detailed description
of this method is found in Holmes [3]. This small parameter, calculated using
parameters derived from the literature [5], [17], is of order 10~%. The details of
the parameter derivations are found in the multi-cycle map section. Assigning
t1 = 7 to be the fast time scale and t2 = e7 to be the slow time scale, % becomes
6%1 + e% = Oy, + €0;,. We substitute this new time derivative into equations
(24)-(30), along with a power series expansion of the form

yZyo(tl,tg)+6y1(t1,t2)+..., (31)
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Symbol | Units Value

D pmol pl=1 0.5

q pmol pl =t 0.01

r pmol pl =1 20

k1 ul pmol ' sec™! | 0.205

k_1 sec! 0

A1 pl pmol =t sec™t | 9

A2 pl pmol =t sec™t | 10

A3 sec™! 100

TABLE 2. Parameters in PCR model and their values used in sim-
ulations. Parameter estimates are based on published data and/or
experimental protocol corresponding to the graph of PCR data
shown in Figure 3. These parameters generate ¢ = 4.5 x 1074
Concentrations are in micromoles per microliter (umol pl=1) and

time is in seconds.

for each concentration variable. For example, (24) becomes

(O, + €04,) (50 + €57 +...) = —€(5) + €8] + ...)(qo + €q1 + ...).

Collecting the order €? terms gives the leading order equations:

—/
atl SO = 0,

at1 q_o -

_ 7 — _
0y, €0 = V5,qo — ToCo,

—/ - _
—V8uqo + HCny,

O, €1, = ToCo — ToC1y,

0y, €2, = T0C1, — T0C2y,

01, Cn—1y = T0Cn—2y — T0Cn—1¢s

8151577,0 - 7:0671710 - ,U/Eno;

and

By, 7 = 0.

371

(40)

The initial conditions become: 3,(t; = ta = 0) =7, Go(t1 =t2 = 0) = Fo(t; = t2 =
O) = 1, and Eo(tl = tQ = O) = Ejo(tl = t2 = 0) =0.

Equations (33) and (40) imply that 7y and 5}, are constant on the fast time scale.
This means that the system of equations(34)-(39), is linear and can be written in

vector form as

ilt/(tl) = Aw(tl),

where A is the coefficient matrix. The sum of the rows of A equals zero, and it is
easy to show that A has one zero eigenvalue and n + 1 eigenvalues less than zero.

Therefore the solution for this linear system takes the form,

n
x(t1) = vo + Zefjtlvj,

j=1
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where v is an eigenvector associated with the zero eigenvalue, and the ¢;’s are
eigenvalues with negative real parts, with their associated eigenvectors, v;. Con-
sequently, x(t;) — vy exponentially fast on the fast time scale. Ignoring these
transients, the leading order solution becomes x(t1) = vy.

With the above in mind, we determine v using the conserved quantity obtained
by adding together the right sides of (34)-(39),

n—1 n—1
Go+co+ Gy =K =q(0)+c(0) + > &,(0) = 1. (41)
j=1 j=1

K =1 is determined using the initial conditions. Solving gy + ¢ + Z?;ll Cj, =1
for qy yields,

n—1
Go=1-¢c— Y . (42)
j=1
Setting the right hand sides of (35)-(39) to zero and solving yields:

_ Vs, _
Cng = 70(107 (43)
Co = V5,0, (44)
and
Co=Cly =y = = Cn_1,- (45)
Using (43)-(45), the equation for gy, (42), becomes
=t (46)

A+ npvsh +vs)’
where n, the number of base pairs added, acts as a shape parameter.
The order €' equation for 3 is

1,81 = =800 — 01, 8- (47)
Solving this equation yields:
51 = — (5000 + 01, 50)t1, (48)

since 5 and gy are functions only of t3. To eliminate the secular term in (48), we
require

o/
0=08,5 +5d =0.5+—H0 ____y 49
t250+50q0 t250+ﬂ+nﬂy<§6+y§6 ) ( )

using the expression for gy in (46). We solve (49) using separation of variables.
Separating and integrating gives

pln s, + (np+ 1)vs) = —puts + K, (50)

where K is an integration constant. The initial condition 5j(t2 = 0) = v gives
K =plny + (np+ Lvy.
The implicit solution for 5j, (50), becomes
pln sl + (np+ 1)vs, = —pta + plny + (np + 1)vy,

which can be solved for to,
_ plnsy — (np+ vsg + plny + (np + 1)vy

1w

to (51)
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FIGURE 2. Comparison of asymptotic (solid lines) and numerical
(dashed lines) solutions for dsDNA in the extension stage for var-
ious values of € with a target strand length of n = 200. A Runge-
Kutta method was used to generate the numerical solutions. As
€ tends towards zero, the asymptotic and numerical solutions con-

verge.

Returning to the original scale, equations (51) and (43)-(46) become:

lni: v(nu +1)(s' — s
L vt ) )

b= 6)\272 ,U,E/\QTA‘ﬁ
= 1gp
wp +nuvs' +vs'’
B vgs'
= wp + nuvs' +vs'’
C=C =Cy="""=Cp—1 = UCp.

The solution to our original equation for double-stranded DNA is

tend
d= M3
0

/ en()dt.

The units used in the original scale are shown in Table 2.

Figure 2 shows a comparison between the asymptotic and numerical solutions for
the concentration of dsDNA in the extension stage. A Runge Kutta method was
used for the numerical solution. The asymptotic and numerical solutions converge
as € tends towards zero.

373

(56)
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4. Multi-cycle map. A map from one cycle of PCR to the next can be constructed
from the solutions for the annealing and extension stages and their initial conditions.
This is done by cascading the results of a previous cycle into the initial conditions
for the next cycle. Let the concentration of primed ssDNA be represented by s'4
for the annealing stage and by s’ for the extension phase. Also, let the final times
for the annealing and extension stages be fixed at t4 and tg respectively.

PCR runs with 50ng initial DNA amount

701

60

50

40

fluoresence

30

20

10 Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45

cycle number

FI1GURE 3. The fluorescence data from a dilution series with a 50ng
initial DNA sample and a 107 base pair product provided by Idaho
Technology Inc.

The first cycle begins with initial amounts of resources, primer and Taq, and a
sample containing the dsDNA to be duplicated. For our simulations we used initial
amounts for resources, primer and Taq provided by Idaho Technology Inc. for a
typical rapid PCR. The amounts for resources and primer are listed in Table 2. Taq
was given in terms of a unit, defined as the amount of enzyme that incorporates
10 nanomoles of nucleotide base pairs into acid-precipitable material in 30 minutes
at 74°C [5]. To convert a unit into micromoles per microliter, we consider the
relationship,

q>\2tEN = bptotala
where ¢ is the number of Taq molecules, N is the number of cycles, and bpsota;
number of base pairs. If we require this to equal the limiting value, p(0) x n, where
n is the number of base pairs per amplicon, we can solve for the amount of Taq.
The amount of resources, 7, is considered as essentially constant in the map; the
amount of resource used is too small to have an appreciable effect.

Assuming that dissociation is complete, the initial amount of ssDNA for the
annealing stage of the first cycle is s1(0) = 2d;. The other initial conditions for
the annealing stage of the first cycle are p1(0) = p (the amount of primer at the
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PCR runs and map with 50ng initial DNA amount
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FIGURE 4. A comparison of the fluorescence data with the map,
using similar initial amounts and dissociation and extension times.
The fluorescence level has been scaled according to a linear rela-
tionship with the concentration of dsDNA produced.

beginning of the PCR run) and s/*(0) = 0. For all other cycles dissociation not only
denatures the dsDNA created in the extension phase, it also denatures any primed
ssDNA and any complexes that remain after extension. Thus, for the annealing
stage of the ith cycle, the initial amount of ssDNA, s;(0), includes not only twice
the amount of dsDNA from the previous cycle, but also the amount of ssDNA,
the amounts of primed ssDNA, and the amount of all of the complexes from the
previous cycle. This can be written as

$i(0) = 2d;—1(tp) + si—1(ta) + 8%, (tg) + ci—1(tp)
+ Cli—l(tE) +...+ Cnflifl(tE) + Cni—l(tE)-

Likewise, the initial amount of primer for the ith cycle is the sum of the amount of
primer from the previous cycle plus the primers gained from denaturing the primed
ssDNA and the complex of Taq and primed ssDNA from the previous cycle, written
as

pi(0) = pi—1(ta) + s, (tp) + ci1(tp).
The initial condition for primed ssDNA is s/4(0) = 0, because dissociation is as-
sumed to be complete. This model does not keep track of any incomplete product
accumulating from cycle to cycle.
Then using solutions (5)-(8), the map for the annealing stage of the ith cycle is:

ayo_ (1 —elo-—a4)ta)

a; — a_elo——ap)ta

S;A (tA) = ’
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FIGURE 5. The PCR map for various lengths of target DNA. The
longer the target strand, the longer it takes the solution to reach a
limiting value. Thus, n acts as a shape parameter.

where
+ 2% )
si(ta) = si(0) — i (ta),
and

pi(ta) = pi(0) = si(ta).
The values for the rate constants, k1 and k_; used in our simulations are given in
Table 2. They were fit to data provided by Idaho Technology Inc. during a previous
research project [8].

The amount of primed ssDNA at the beginning of extension stage for the ith cycle
is the amount at the end of the annealing stage of that same cycle, s/7(0) = s/ (t4).
The initial amount of Taq is the beginning amount for the first cycle, g1 = ¢ and
the amount from the previous cycle for the rest of the cycles, ¢;(0) = ¢;—1(tg). The
initial conditions for dsDNA and all the complexes for the extension stage of the
ith cycle are: ¢;(0) = ¢1;(0) = ¢2;(0) = -+ = ¢,;(0) = 0 and d;(0) = 0, because
dissociation is assumed to be complete.

A map for the extension stage can be derived from the solutions (51)-(55). The

value for s/ (tp) is extracted numerically from the implicit relationship
5:7(0)

5ty | v(np+1)(s17(0) — 57 (1)
6)\2f‘ /LE)\Qf‘pi(O) '

tp =
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The concentrations for the rest of the reactants are given by:

G = 1q:(0)p:(0)
Y upi(0) + nuwsiE(tp) + vsiF(te)’
o V(05 L)
" upi(0) + nuvsiE (tg) +vsiE(tg)’
ci(tp) = c1i(tp) = c2i(tp) = -+ = cn—1,(t) = peni(te),
and
tp
dl(tE) = //\3Cni(8)d8.

0

The equation for d;(tg) is solved numerically, using trapezoidal quadrature.

At 72°C Taq Polymerase has an extension rate of 35-100 nucleotides per second
[17]. Using an extension rate of 40 nucleotides per second, we estimated the value
of the rate constant As,
40bp/sec
4uM/pl
The rate constants A\; and A3 were then chosen in relationship to Ay. A1 was chosen
assuming a similar rate for adding Taq to the primed ssDNA as adding base pairs.
A3 was chosen so that the proportion )\A;R is O(1).

Ag ~ 10.

0.25r
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FIGURE 6. An illustration of the idea of optimization. The solid
curved graph represents the solution for the extension stage for n =
200. The negative part of the time axis represents the time spent in
the preceding dissociation and annealing stages. The tangent line
touches the solid curve at the point of the optimal time to run the
extension phase.
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The behavior of the solutions can be explored by using this map to simulate the
PCR process. The fluorescence data from a dilution series with a 50ng initial DNA
sample and a 107 base pair product provided by Idaho Technology Inc. is shown in
Figure 3. A comparison of this data with the map, using similar initial amounts and
dissociation and extension times, is shown in Figure 4. In order for the fluorescence
data to be compared with the map, a linear relationship between the concentration
of DNA and the fluorescence level was assumed. The measured fluorescence was
scaled to have a maximum value equal to the initial primer amount since the initial
primer amount limits the amount of dsDNA produced. The background fluores-
cence, which is not modeled by the map, was removed. Figure 5 shows graphs of
the map with varying lengths of target DNA.

5. Optimization. This model and its approximate map may be used to optimize
the process in order to produce the most DNA copies in the shortest amount of time
possible. Since we don’t know the concentration of dsSDNA during the reaction, and
in fact the amount will vary from sample to sample, we choose to optimize time
independent of the initial dSDNA concentration at the beginning of each cycle. Let
dtota; be the total dsDNA produced by a PCR in N cycles and t. be the time
required per cycle. Then by the following relationship,

Nte qq Y Ad(i
diotar = d(N) — d(0) = / —dt~ ) (”,
0 .

maximizing the change in dsDNA concentration per time for each individual cycle
maximizes the total amount of dsDNA produced in the shortest amount of time.
For an example of how this might be done, we consider optimizing the time spent in
the extension stage of a cycle. Let tp and ¢4 be the fixed times for the dissociation
and annealing stages, respectively. Let ¢ be the variable representing the time
spent in the extension stage. Then the total time to complete one cycle of PCR is
te =tp+ta—+t. Let d(t) be the total amount of dSDNA produced in a PCR cycle.

Then the t such that
d ( d(t) )
——Z ) =0,
dt \tp +ta+t

is the optimal time for the extension stage for one cycle, corresponding to maximiz-
ing the rate amplicon is produced during this cycle in the context of the iterated
map. Thus the optimal extension time is expected to change from cycle to cycle as
the capacity to produce amplicon changes. Differentiating,

d d(t) d'(t) d(t)
el = — 5 (57)
dt \tp+ta+t) tp+tat+t (tp+ta+t)
Setting the right hand side of (57) equal to zero gives us
d(t)
d(t) = —————. 58
W= e (58)

Graphically this can be viewed as finding the point on the graph of d(¢) at which
the rate of production(the left hand side of (58)) is equal to the slope of a secant line
(right hand side of (58)) connecting the graph and the point d =0, t = —(tp +ta),
as illustrated in Figure 6. Then using the right sides of equations (16) and (56) for
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d'(t) and d(t), (58) becomes
¢
(tp +ta+t)Ascn = A3 /cn(s)ds. (59)
0
After simplification we have
t
(tp +ta+t)e, = /cn(s)ds. (60)
0
The ¢ that makes (60) true is found numerically by using the solutions for the
extension stage. In order to produce the most dsDNA over the shortest amount of
time for an entire PCR run, we include the optimization for the extension stage in

the map. The optimal time is calculated and used for each iteration of the extension
stage. A set time is used for all the iterations of the annealing stage.

0.5
''''''' non optimized
045 | ' == optimized extension
= = = optimized annealing
0.4+ both optimized
0.35F
0.3F
2
a 0.25r
]
2]
0.2+
0.15F
0.1F
0.05
0 . gl Yl ‘-m\\“; J
0 5 10 15 20

Time in minutes

FIGURE 7. A comparison of optimized runs to a run with a fixed
annealing and extension stage times of 20 and 30 seconds. Each
run has simulation amplicon length of n = 200. Parameters were
chosen based on published data and Idaho Technology experimental
protocols cited in the text and summarized in Table 2.

A similar optimization can be performed for the annealing stage to obtain the
most primed ssDNA in the shortest time possible. A comparison of optimizing the
extension stage only, optimizing the annealing stage only, and optimizing both to
using fixed annealing and extension times, 20 and 30 seconds, respectively, is shown
in Figure 7. This graph shows the amplification profile for a target strand length
of n = 200. These results show that optimizing the annealing stage may reduce
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FIGURE 8. The time spent in the annealing and extension stages
for each cycle for a run with both stages optimized. The opti-
mal time changes dynamically with the amount of product being
produced. Notice that before and after the spike around the 25th
cycle, the optimal time settles to a constant base value.

the time for a PCR run more than just optimizing the extension stage. The time
spent in the annealing and extension stages for each cycle for a run with both stages
optimized is shown in Figure 8.

The graph on the right in Figure 8 shows the times for the optimized extension
times, allowing a longer extension time in the middle of the PCR process when more
product is being produced. It is quite noticeable that there exists a base optimal
time for extension on either side of the peak for the early and ending cycles of
the process. If this base optimal time could be predicted analytically, it would be
"almost optimal’ and much simpler to implement. We observe that the amount of
primed ssDNA is small in the early and ending cycles of a PCR. Assuming a small
s’ allows us to neglect the second term in (52), and neglect terms involving s in
the denominators of (53) and (54), leaving

In S—j
b= e)\;f’ (61)
q= % =g, (62)
and
¢, = VI (63)

Hp
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Ficure 9. The data points represent the base extension stage
times for various initial amounts of Taq, using the fully optimized
extension stage map. The curve shows the relationship between
initial amounts of Taq and the almost optimal extension time as
calculated by (68).

Solving for s in (61) gives
S/ _ §/efe)\2it' (64)
Substituting (64) into (63) yields

~al ,—€eXaTt
cn =2 (65)

Hp

This expression for ¢, can be substituted into (60) giving

(tp +ta+1t) —
Hp

. t N
ng/e—ekgrt ng/e—e)\grs
— = | ————ds.

Hp

0

Integrating and simplifying yields a relationship that the optimal base extension

time satisfies,
1— e—ekgf‘t

_ ee)\gft' (66)
tp+ta+t
Using the definition, € = g,
eXaf = A\i§ (67)
and (66) becomes
— e Mgt .
L-e Mt (68)

tp+ta+t
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The optimal base extension time depends on the initial amount of Taq, ¢, and
the rate that Taq binds to the primed ssDNA, \;. The relationship between the
initial amount of Taq and the optimal base extension time is shown in Figure 9.
This relationship closely follows the base optimal extension time computed by the
PCR map with optimal extension. Figure 10 compares a non-optimized PCR run
with a set extension time of 30 seconds with a run with optimized extension and
a non-optimized PCR run using the optimal base extension time. Using the base
extension time shortens the time required to achieve of a 90% of maximum yield
similarly to using the map with optimized extension.

0.5 T ‘
base optimal extension time
045 | 1 =1 = optimized extension

''''''' not optimized

041

0.35

0.3

0.25

ssDNA

0.2

0.15f

0.1

0.05f

0 5 10
Time in minutes

20

FIGURE 10. A comparison of a run with optimized extension stage
to a non-optimized run with a fixed annealing and extension stage
times of 20 and 30 seconds, respectively and a non-optimized run
using the optimal base time for extension. Each run has a target
strand length of n = 200. Parameters were chosen based on pub-
lished data and Idaho Technology experimental protocols cited in
the text and summarized in Table 2.

6. Discussion and conclusion. In this paper, we have described PCR, discussed
existing models, and developed a model from the chemical equations using the law
of mass action. This model of PCR is sensitive to the length of the target DNA
strand and models the effect of strand length on the solution shape. We found
a simple solution for the dissociation stage, analytical solutions for the annealing
stage, and asymptotic approximations for the extension stage using the method
of multiple scales. These solutions were put into a multi-cycle map to simulate
PCR. The solutions and the map were then used to optimize the time spent in the
extension and annealing stages of each cycle. The asymptotic solutions were also
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used to find an almost optimal base extension time by its relationship with ¢ and
A1. This research suggests a way to calculate optimal extension times to potentially
reduce the overall time for a PCR run.

This represents a potential breakthrough for real time application of PCR in
time-critical circumstances. A limitation of the direct optimization described in
this paper is that every sample undergoing amplification would require constant
monitoring and individualized treatment. Since the individual treatment required
would be differential exposure to temperatures in extension and annealing phases
it is hard to imagine, practically, how this would be accomplished for large number
of samples. Conversely, fully optimized treatment of single samples might have
limited application for individual pathogen monitoring in on-site circumstances. A
wide variety of interesting and useful rapid-PCR applications would be neglected,
including multiplexed reactions (those amplifying more than one segment of DNA
at a time) and multiple samples from differing sites/patients amplifying the same
segments but at varying initial concentrations.

The beauty of the nearly optimal protocol is that its parameters depends solely
on parameters which can easily be held constant across samples and within a multi-
plexed reaction: concentration of Taq, single nucleotide base pairs, and the rate at
which Taq inserts new base pairs. The benefit of the asymptotic multi-scale anal-
ysis, based on the assumption that the reaction is generally saturated with single
nucleotide base pairs and limited by availability of the (relatively expensive) Taq
enzyme, is demonstrating that this near-optimization is in fact so universal. Prac-
tically speaking this is probably why PCR has worked as well as it has and why
intuitive optimization of the reaction by practical chemical engineers has developed
parameters very close to what we estimate here.
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