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Abstract. To study the impact of releasing transgenic mosquitoes on malaria
transmission, we formulate discrete-time models for interacting wild and trans-
genic mosquitoes populations, based on systems of difference equations. We
start with models including all homozygous and heterozygous mosquitoes.
We then consider either dominant or recessive transgenes to reduce the 3-
dimensional model systems to 2-dimensional systems. We include density-
dependent vital rates and incorporate Allee effects in the functional mating
rates. Dynamics of these models are explored by investigating the existence
and stability of boundary and positive fixed points. Numerical simulations are
provided and brief discussions are given.

1. Introduction. Mosquito-borne diseases, such as malaria, transmitted between
humans by blood-feeding mosquitoes, have been big concerns for the public health
in the United States and in the world. Each year 350-500 million cases of malaria
occur worldwide, and over one million people die, most of them young children
in sub-Saharan Africa. There were 109 countries that were endemic for malaria
in 2008, 45 within the WHO African region. There were 1,337 cases of malaria,
including 8 deaths, reported for 2002 in the United States, even though malaria
has been eradicated in this country since the early 1950’s. Malaria is by far the
world’s most important tropical parasitic disease. It kills more people than any
other infectious disease except tuberculosis [25, 31, 26].

The transmission of malaria is not directly from a human to a human, but through
infected mosquitoes. It is due to infection by one of 4 Plasmodium species. The
infection in humans begins when sporozoites are injected into the blood of a hu-
man host by an infected female mosquito of the genus Anopheles. The sporozoites
migrate to the liver where they enter liver cells and develop schizonts, which give
rise, via asexual reproduction, to the form of the merozoites that invade the blood
cells. In the blood, some merozoites differentiate into sexual erythrocytic stages
(gametocytes), and the gametocytes are ingested by a mosquito when it ingests
human blood. Within the mosquito the gametocytes develop into microgametes
and macrogametes (the male and female gametes) that fuse to form a zygote. This
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becomes a motile ookinete form which bores through the gut wall of the vector
and forms an oocyst from which large numbers of sporozoites are released. These
sporozoites then invade the salivary glands of the mosquito from which they are
injected into a human host when the vector feeds. Such a life cycle of the Plas-
modium species causes the transmission of malaria between infected humans and
mosquitoes [30, 2, 10].

No vaccines are available for malaria and other mosquito-borne diseases. An
effective way to prevent them is to control mosquitoes, which has been one of the
major intensive efforts in many years. Massive spraying of insecticides or eliminating
breeding sites has greatly limited malaria in some areas. However, the number of
malaria cases still continues to climb.

The development of genetically altered or transgenic mosquitoes, that are resis-
tant to malaria infection, may provide a new and effective weapon against malaria.
The new techniques use a peptide, termed SM1 that binds to mosquitoes’ gut and
salivary glands, to inject to or feed mosquitoes. The peptide blocks the receptor,
and stops the parasite from getting a hold on the epithelium of mosquitoes so that it
inhibits parasite invasion [3, 5, 7]. A transgenic mosquito that produces this peptide
in the gut or salivary glands then becomes inhospitable to the parasite [14, 16, 24].

While these developments are promising and exciting, many questions have to
be answered before the techniques can be implemented and transgenic mosquitoes
can be deployed in the field [12]. Such questions include the determination of gene
or genotype distributions of mosquitoes in the future generations after transgenic
mosquitoes are released, in particular, as density-dependent fitnesses are taken into
account [29].

To gain insight into such a complex process, we formulated simple discrete-
time mathematical models for interacting wild and transgenic mosquito populations
based on systems of difference or differential equations in [20, 22]. We assumed, in
those studies, that the transgene was dominant such that mosquitoes with either
one or two copies of the transgene were malaria resistant. We divided mosquitoes
into two groups, the malaria resistant and malaria unresistant groups. We included
the mixed heterozygous mosquitoes with only one copy of the transgene and the
pure homozygous mosquitoes with two copies of the transgene in the malaria re-
sistant group. We then assumed that the offspring produced by matings between
malaria resistant mosquitoes are all malaria resistant.

Mosquitoes, nevertheless, are diploid. Each individual mosquito carries two
copies of genes. Homozygously wild mosquitoes have two copies of the wild gene,
denoted by WW , and homozygously transgenic mosquitoes have two copies of
the transgene, denoted by AA. After the releasing of homozygously transgenic
mosquitoes into homozygously wild mosquito population, the two types of
mosquitoes are mixed up. After their matings, three different types of mosquitoes
are produced. In addition to those with either WW or AA, there are heterozygous
mosquitoes with one wild gene and one transgenic gene, denoted by WA. More-
over, the matings between heterozygous mosquitoes with genes WA can produce
offspring with WW , WA, and AA. Furthermore the heterozygous mosquitoes can
be either malaria resistant or unresistant, depending on whether the transgene is
dominant or recessive, which will significantly distinguish model structures. To fur-
ther investigate the impact of releasing transgenic mosquitoes, these possibilities
need to be more specifically considered.
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Because our focus is still on the impact of transgenic mosquitoes on the malaria
transmission, to simplify the model structure and hence the mathematical inves-
tigation, we formulate discrete-time models, again by dividing the mosquito pop-
ulation into two groups, the malaria resistant or unresistant individuals. We put
the heterozygous mosquitoes into either the malaria resistant or unresistant group,
depending on the dominance of the genes.

Furthermore, we consider two kinds of different mating rates. We first assume
the mating rates are constant, and then assume mating rates are of the Holling-II
functional form to incorporate the Allee effects, considering the situation where
the mating rates are low, when the mosquito population size is small due to possi-
ble mating difficulty, and are increased to approximately constants as the mosquito
population size becomes large. We focus on the genetic distributions in future gener-
ations and the asymptotic dynamics of the model systems, and hence we determine
the existence of all possible fixed points, including the boundary fixed points and
positive fixed points, and investigate the stability of those fixed points. We provide
numerical examples to verify our analytic results and to demonstrate the complex
dynamics of the models. We also give brief discussions on the biological implications
of our findings.

2. General model formulation. We let wn, hn, and gn be the numbers of ho-
mozygously wild, heterozygous, and homozygously transgenic mosquitoes at gener-
ation n, respectively. The dynamics of the interactive mosquitoes are described by
the following system

wn+1 = F11(wn, hn, Pn)s11(Pn)wn + F12(hn, Pn)s12(Pn)hn,

hn+1 = F21(wn, hn, gn, Pn)s21(Pn)hn + F22(gn, Pn)s22(Pn)wn

+ F23(wn, Pn)s23(Pn)gn,

gn+1 = F31(hn, Pn)s32(Pn)hn + F32(hn, gn, Pn)s31(Pn)gn,

(2.1)

where Fij , i, j = 1, 2, 3, are birth functions which are nonnegative for (wn, hn, gn) ≥
(0, 0, 0) and zero for (wn, hn, gn) = (0, 0, 0); sij ≥ 0, i, j = 1, 2, 3, are survival
functions; and Pn = wn + hn + gn, n ≥ 0, is the total population size of generation
n [21].

We focus on the impact of the transgenes on malaria transmission. If the trans-
gene is dominant; that is, the mosquitoes with either one or two copies of the
transgene are malaria resistant, we let the number of the wild mosquitoes, at gen-
eration n, be xn, include all heterozygous and homozygously transgenic mosquitoes
as one group, and denote the number of these mosquitoes, at generation n, by yn,
as shown in Figure 1.

The model dynamics for the dominant transgene is determined by

xn+1 =
(

f1(xn, yn)xn + g(yn)yn

)

s1(xn, yn),

yn+1 = f2(xn, yn)yns2(xn, yn).
(2.2)

If the transgene is recessive; that is, the mosquitoes with only one copy of the
transgene are malaria unresistant, we include the heterozygous and the homozy-
gously wild mosquitoes in one group, denoted by xn, at generation n, and denote
the group of the homozygously transgenic mosquitoes, with two copies of the trans-
gene, by yn, as shown in Figure 2.
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WW WA AA

⇓
{xn} = {wn}

⇓
{yn} = {hn} ∪ {gn}

Figure 1. In the case of dominant transgenes, we include all mosquitoes
with two copies of the wild gene in group xn, and include all mosquitoes with
one or two copies of the transgene in group yn.

WW WA AA

⇓
{xn} = {wn} ∪ {hn}

⇓
{yn} = {gn}

Figure 2. In the case of recessive transgenes, we include all wild mosquitoes
and mosquitoes with only one copy of the transgene in group xn, and all
mosquitoes with two copies of the transgene in group yn.

The model dynamics for the recessive transgene is determined by

xn+1 = F1(xn, yn)xns1(xn, yn),

yn+1 =
(

G(xn)xn + F2(xn, yn)yn

)

s2(xn, yn).
(2.3)

Following the line of the homogeneous population models in [20, 22], we assume
harmonic means for the matings in the birth functions [4, 18], such that the fraction
of matings with wild or transgenic mosquitoes is xn/Nn or yn/Nn, respectively,
where Nn = xn + yn. We let C(Pn), be the numbers of matings per mosquito per
generation, where we assume that the transgenes do not change mosquitoes’ mating
behavior [16, 28, 20, 19].

We use the Ricker-type nonlinearity [8]

si = e−di−ki(xn+yn),

where di are the intrinsic (density-independent) death rates, and ki are the carrying
capacity parameters, for the survival probability for all mosquitoes. We further
assume that the transgene does not impose a fitness load to the mosquitoes; that is,
the transgenes do not affect mosquitoes’ longevity and egg productions [16, 28, 20,
19], such that di := d and ki := k. Then the dynamics of the interacting mosquitoes
for the dominant transgene are described by the system

xn+1 = c(Nn)
a1x

2
n + a2xnyn + a3y

2
n

xn + yn

e−d−k(xn+yn),

yn+1 = c(Nn)
(b1xn + b2yn) yn

xn + yn

e−d−k(xn+yn),

(D)
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for xn ≥ 0, yn ≥ 0, and (xn, yn) 6= (0, 0), for all n ≥ 1, where a1, a2, and a3 are
the numbers of wild offspring produced by a mating between two wild, a wild and a
transgenic, and two transgenic mosquitos; b1 and b2 are the numbers of transgenic
offspring produced through a mating between a wild and a transgenic, and two
transgenic mosquitoes, respectively.

Similarly, the dynamics of the interacting mosquitoes for the recessive transgene
are described by the system

xn+1 = c(Nn)
(α1xn + α2yn)xn

xn + yn

e−d−k(xn+yn),

yn+1 = c(Nn)
β1x

2
n + β2xnyn + β3y

2
n

xn + yn

e−d−k(xn+yn),

(R)

for xn ≥ 0, yn ≥ 0, and (xn, yn) 6= (0, 0), for all n ≥ 1, where αi and βj have similar
meanings.

3. Constant mating rate. The mating rate C(Nn) is density-dependent, in gen-
eral. However, contacts for anophelines are usually associated with swarming in rel-
ative open areas in Africa [6], and with sufficiently large population sizes, mosquitoes
can easily find their mating partners. Then we assume the matings are saturated
so that the mating rate is constant, denoted by c(Nn) := c, for all Nn. We merge
ce−d into the coefficients and use the same ai, i = 1, 2, 3, bi, i = 1, 2, αi, i = 1, 2, βi,
i = 1, 2, 3, for the parameters without confusion. Then the model equations with
the dominant transgene become

xn+1 =
a1x

2
n + a2xnyn + a3y

2
n

xn + yn

e−k(xn+yn),

yn+1 =
(b1xn + b2yn) yn

xn + yn

e−k(xn+yn),

(D1)

for xn ≥ 0, yn ≥ 0, and (xn, yn) 6= (0, 0), for all n ≥ 1, and those for the recessive
transgene become

xn+1 =
(α1xn + α2yn) xn

xn + yn

e−k(xn+yn),

yn+1 =
β1x

2
n + β2xnyn + β3y

2
n

xn + yn

e−k(xn+yn),

(R1)

for xn ≥ 0, yn ≥ 0, and (xn, yn) 6= (0, 0), for all n ≥ 1.
For system (D1), the equation for the wild mosquitoes is

xn+1 = a1xne−kxn , (3.1)

in the absence of interaction. The trivial solution, xn ≡ 0, of (3.1) is unstable if
a1 > 1.

Similarly, for system (R1), the trivial solution, yn ≡ 0, of the equation for the
transgenic mosquitoes in the absence of interaction is unstable if β3 > 1. Because
the main goal of this study is to investigate the gene distributions of the mosquitoes
in future generations, we assume hereafter

a1 > 1, (3.2)

and

β3 > 1, (3.3)
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respectively, so that the solutions of systems (D1) and (R1) do not approach the
origin with any nonzero initial values.

3.1. Boundary fixed points. For system (D1), a boundary fixed point satisfies
the equations

(x + y)x =
(

a1x
2 + a2xy + a3y

2
)

e−k(x+y), (F1)

(x + y)y = (b1x + b2y) ye−k(x+y). (F2)

It follows from (F2) that if x = 0, then y = 0. Hence there exists no boundary
fixed point with x = 0 and y > 0.

Setting y = 0 in (F1), and then solving (3.1) for a positive solution x, we obtain
a unique boundary fixed of system (D1)

E1 :=

(

ln a1

k
, 0

)

. (3.5)

Similarly, we obtain a unique boundary fixed of system (R1)

E2 :=

(

0,
lnβ3

k

)

. (3.6)

Therefore, the boundary fixed point E1, or E2, exists if and only if condition (3.2),
or condition (3.3), is satisfied.

We now investigate the stability of the two boundary fixed points. Linearizing
system (D1) about the boundary fixed E1 yields the Jacobian matrix

J(E1) =

[

−1 − kx + 2a1e
−kx ·

0 b1e
−kx

]

=





1 − ln a1 ·
0

b1

a1



 .

Then E1 is locally asymptotically stable if |1−lna1| < 1 and b1 < a1 [11, 13, 17, 27].
The investigation for E2 is similar. These results are summarized as follows.

Theorem 3.1. Boundary fixed point E1 exists, given in (3.5), and is locally asymp-

totically stable if

max{1, b1} < a1 < e2. (3.7)

Boundary fixed point E1 exists but is unstable if

either 1 < a1 < b1, or a1 > e2. (3.8)

Similarly, boundary fixed point E2 exists, given in (3.6), and is locally asymptot-

ically stable if

max{1, α2} < β3 < e2. (3.9)

Boundary fixed point E2 exists but is unstable if

either 1 < β3 < α2, or β3 > e2. (3.10)

Note that a1 is the total death-adjusted number of wild offspring with no trans-
genes produced per wild mosquito, per unit of time, through all homogeneous mat-
ings, that is, the matings with wild mosquitoes, and b1 is total death-adjusted num-
ber of transgenic offspring with one or two copies of the transgenes, per mosquito,
per unit of time, through all heterogeneous matings between the two types of
mosquitoes. Then the transgenic mosquitoes with one or two copies of transgenes
can survive if b1 > a1 which means the total death-adjusted number of offspring
with one or two copies of the transgenes through heterogeneous matings exceeding
the total death-adjusted number of offspring with no transgenes produced per wild
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mosquito. The transgenic mosquitoes with one or two copies of transgenes may also
survive if a1 > e2 which implies that there are too many wild offspring and they
cause oscillations with each component positive in the mosquito populations.

We also note that the homozygously transgenic and heterozygous mosquitoes can
be wiped out all together in the case of the dominant transgene because they are
bunched up as one group, whereas wild mosquitoes with no transgenes cannot be
wiped out because as long as the heterozygous mosquitoes exist, they produce wild
offspring, in addition to the wild offspring produced by the wild mosquitoes.

3.2. Positive fixed points. Systems (D1) and (R1) may have fixed points in
which the two components are both positive. We focus on the investigation of the
existence and stability of positive fixed points for system (D1) as follows.

To this end, we first let pn = xn/yn for n ≥ 0, and x0 > 0, y0 > 0. It follows
from equations (D1) that pn satisfies

pn+1 =
a1p

2
n + a2pn + a3

b1pn + b2
:= F (pn). (3.11)

Solving for nozero fixed points of (3.11), we have

p =
b2 − a2 ±

√

(a2 − b2)2 − 4a3(a1 − b1)

2(a1 − b1)
(3.12)

if a1 6= b1, and it then follows that there exists a positive fixed point only if

4a3(a1 − b1) ≤ (a2 − b2)
2. (3.13)

Suppose that condition (3.13) is satisfied. Then there exists a unique positive
fixed point if 4a3(a1−b1) = (a2−b2)

2 and a2 < b2, and there exist two positive fixed
points, p{1} < p{2}, given in (3.12), if a2 < b2 and 0 < 4a3(a1 − b1) < (a2 − b2)

2.
We next study the local stability of the fixed points of (3.11). We first establish

the following lemma.

Lemma 3.2. Consider function v = H(u), u > 0, satisfying H(u) > 0, for all u ≥
0, and limu→+∞ H(u) = +∞. Assume that there exist only two points 0 < u1 < u2,

such that H(ui) = ui, for i = 1, 2. Then H ′(u2) > 1.

The proof of Lemma 3.2 follows directly from the fact that if we define G(u) =
H(u) − u, then G(0) > 0, G(ui) = 0, and

G′(u1) < 0, G′(u2) > 0,

which implies

H ′(u2) > 1.

Applying Lemma 3.2 to the fixed points of (3.11), we have F ′ (p{2}
)

> 1, and

hence fixed point p{2} is unstable. The eigenvalue of the linearization of (3.11)

about p{1} is given by −1 +
2a1p

{1} + a2 + b2

b1p{1} + b2
. Then fixed point p{1} is locally

asymptotically stable if

2a1p
{1} + a2 + b2

b1p{1} + b2
< 2.

We summarize the results for the fixed points of (3.11) below.
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Theorem 3.3. Equation (3.11) has no positive fixed point if (a2 − b2)
2 < 4a3(a1 −

b1), or a1 > b1 and a2 ≥ b2, a unique positive fixed point

p∗ :=
b2 − a2

2(a1 − b1)
, (3.14)

if (a2 − b2)
2 = 4a3(a1 − b1) > 0 and a2 < b2, and two positive fixed points

p
{1}
∗ :=

b2 − a2 −
√

(a2 − b2)2 + 4a3(b1 − a1)

2(a1 − b1)
,

p
{2}
∗ :=

b2 − a2 +
√

(a2 − b2)2 + 4a3(b1 − a1)

2(a1 − b1)
,

(3.15)

if a2 < b2 and 0 < 4a3(a1 − b1) < (a2 − b2)
2.

Furthermore, p
{2}
∗ is always unstable, and p

{1}
∗ is locally asymptotically stable if

2a1p
{1}
∗ + a2 + b2

b1p
{1}
∗ + b2

< 2. (3.16)

We now turn our investigation to the positive fixed points of the following equiv-
alent system of (D1):

pn+1 =
a1p

2
n + a2pn + a3

b1pn + b2
, (3.17a)

yn+1 =
(b1pn + b2) yn

pn + 1
e−k(pn+1)yn . (3.17b)

Let p be a positive fixed point of (3.11). Substituting x = py into (F2) and
solving for y, we obtain

y =
1

k (1 + p)
ln

b1p + b2

1 + p
. (3.18)

Then y > 0 if and only if
b1p + b2

1 + p
> 1.

The study for system (R1) is similar where we define qn = yn/xn and consider
the equation

qn+1 =
β1q

2
n + β2qn + β3

α1qn + α2
. (3.19)

The details are skipped. In summary, we have the following existence results.

Theorem 3.4. System (D1) has

a) no positive fixed point if a1 > b1 and a2 > b2,

(a2 − b2)
2 < 4a3(a1 − b1), (3.20)

or

(b1 − 1)p ≤ 1 − b2, (3.21)

for any p given in (3.14) or (3.15);
b) a unique positive fixed point E∗

1 := (x∗, y∗) with

x∗ =
p∗

k (1 + p∗)
ln

b1p
∗ + b2

1 + p∗
. y∗ =

1

k (1 + p∗)
ln

b1p
∗ + b2

1 + p∗
,

where p∗ is given in (3.14), if a2 < b2, 4a3(a1 − b1) = (a2 − b2)
2, and

(b1 − 1)p∗ > 1 − b2; (3.22)
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c) two positive fixed points E
{i}
∗ :=

(

x
{i}
∗ , y

{i}
∗

)

, with

x
{i}
∗ =

p
{i}
∗

k
(

1 + p
{i}
∗

) ln
b1p

{i}
∗ + b2

1 + p
{i}
∗

. y
{i}
∗ =

1

k
(

1 + p
{i}
∗

) ln
b1p

{i}
∗ + b2

1 + p
{i}
∗

,

i = 1, 2, where p
{i}
∗ are given in (3.15), if

a2 < b2 and 0 < 4a3(a1 − b1) < (a2 − b2)
2, (3.23)

in addition to (3.22)being satisfied for both p
{i}
∗ .

Similarly, we define

q∗ :=
α1 − β2

2(β3 − α2)
, (3.24)

and

q
{1}
∗ =

α1 − β2 −
√

(β2 − α1)2 + 4β1(α2 − β3)

2(β3 − α2)
,

q
{2}
∗ =

α1 − β2 +
√

(β2 − α1)2 + 4β1(α2 − β3)

2(β3 − α2)
,

(3.25)

respectively. Then system (R1) has

α) no positive fixed point if β2 > α1 and β3 > α2,

(β2 − α1)
2 < 4β1(β3 − α2), (3.26)

or

(α2 − 1)q ≤ 1 − α1, (3.27)

for any q given in (3.24) or (3.25);
β) a unique positive fixed point E∗

2 := (x∗, y∗) with

x∗ =
1

k (1 + q∗)
ln

α1 + α2q
∗

1 + q∗
. y∗ =

q∗

k (1 + q∗)
ln

α1 + α2q
∗

1 + q∗
,

where q∗ is given in (3.24), if β2 < α1, 4β1(β2 − α1) = (β2 − α1)
2, and

(α2 − 1)q∗ > 1 − α1; (3.28)

γ) two positive fixed points E
{i}
2 :=

(

x
{i}
∗ , y

{i}
∗

)

, with

x
{i}
∗ =

1

k
(

1 + q
{i}
∗

) ln
α1 + α2q

{i}
∗

1 + q
{i}
∗

. y
{i}
∗ =

q
{i}
∗

k
(

1 + q
{i}
∗

) ln
α1 + α2q

{i}
∗

1 + q
{i}
∗

,

i = 1, 2, where q
{i}
∗ are given in (3.25), if

β2 < α1 and 0 < 4β1(β2 − α1) < (β2 − α1)
2, (3.29)

in addition to (3.28) being satisfied for both q
{i}
∗ .

We next investigate the local stability of the positive fixed points for system
(D1).

Notice that equation (3.17a) is uncoupled with equation (3.17b). Then we only
need to study the linearization of (3.17b) which has the following eigenvalue

1 − k(1 + p)y = 1 − ln
b1p + b2

1 + p
, (3.30)
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at a positive fixed point, (p, y), of system(3.17), and the eigenvalue is inside the
unit circle if

b1p + b2

1 + p
< e2. (3.31)

In summary, we have the following stability results.

Theorem 3.5. The positive fixed points of system (D1) with p
{2}
∗ and system (R1)

with q
{2}
∗ are unstable. The positive fixed point of system (D1) with p

{1}
∗ is locally

asymptotically stable if conditions (3.16) and (3.31) are satisfied, and the positive

fixed point of system (R1) with q
{1}
∗ is locally asymptotically stable if the conditions

2β3q
{1}
∗ + α1 + β2

α2q
{1}
∗ + α1

< 2 (3.32)

and

α2q
{1}
∗ + α1

1 + q
{1}
∗

< e2 (3.33)

are both satisfied.

3.3. Numerical examples. We now provide numerical examples to demonstrate
the dynamics of system (D1).

Example 1. In this example, we choose the parameters

a1 = 2, a2 = 3, a3 = 5, b1 = 1, b2 = 2, k = 0.2,

such that condition (3.7) is satisfied and hence the boundary fixed point E1 =
(3.4657, 0) exists and is locally asymptotically stable. Condition (3.20) is also sat-
isfied, and hence, there exist no positive fixed points. As we choose different initial
values, all of the solutions eventually approach E1 which seems globally asymptot-
ically stable even though we have not proved it. The numerical simulations are
shown in Figure 3.
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Figure 3. We use parameters k = 0.2, a1 = 2, a2 = 3, a3 = 5, b1 =
1, and b2 = 2. With this parameter setting, the fixed point E1 is locally
asymptotically stable, and there exist no positive fixed points. It seems that
all solutions approach E1.
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Example 2. With the set of parameters,

a1 = 8, a2 = 2, a3 = 2, b1 = 7.5, b2 = 5, k = 0.2,

condition (3.8) is satisfied such that the boundary fixed point E1 becomes unstable.
Conditions (3.15), (3.16), (3.22), (3.23), and (3.31) are all satisfied. There exist

two positive fixed points E
{1}
∗ = (3.9096, 5.1177), with p

{1}
∗ = 0.7639, and E

{2}
∗ =

(8.2284, 1.5715), with p
{2}
∗ = 5.2360. E

{1}
∗ is locally asymptotically stable and E

{2}
∗

is unstable. The numerical simulations are shown on the left in Figure 4.

Notice that the stability of E
{1}
∗ that we have shown is only local. With different

initial values, solutions can approach this positive fixed point or other stable sets,
such as a synchronous 2-cycle shown on the right in Figure 4.
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Figure 4. We use parameters k = 0.2, a1 = 8, a2 = 2, a3 = 2, b1 = 7.5,

and b2 = 5. Then boundary fixed point E1 does not exist, fixed point E
{2}
∗ =

(8.2284, 1.5715) exists but is unstable, and fixed point E
{1}
∗ = (3.9096, 5.1177)

exists and is locally asymptotically stable, as shown in the left figure. However,
the stability is only local. With different initial values, it seems that some of
other solutions approach a synchronous cycle where x → 0 eventually, as shown
in the right figure.

Example 3. In this example, we use the following set of parameters:

a1 = 2, a2 = 3, a3 = 5, b1 = 1, b2 = 9.7, k = 0.2.

Conditions (3.7), (3.15), (3.16), (3.22), (3.23), and (3.31) are all satisfied. Hence,

boundary fixed point E1 and two positive fixed points E
{i}
∗ all exist. The fixed points

E1 and E
{1}
∗ = (4.0078, 4.6847), with p

{1}
∗ = 0.8555, are locally asymptotically

stable, and the positive fixed point E
{2}
∗ = (3.5021, 0.5992), with p

{2}
∗ = 5.8445, is

unstable. The numerical simulations given in Figure 5 show the local stability of

fixed points E1 and E
{1}
∗ . Solutions with different initial values approach either E1

or E
{1}
∗ .

Example 4. The dynamics of systems (D1) and (R1) are complex. While we have
only shown the existence and stability of the boundary and positive fixed points,
other cycles and even chaos can appear. We demonstrate such dynamics in this
example by fixing the parameters

a1 = 2, a2 = 3, a3 = 5, b1 = 1, k = 0.2,
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Figure 5. We use parameters k = 0.2, a1 = 2, a2 = 3, a3 = 5, b1 = 1,

and b2 = 9.7. With this parameter setting, fixed points E1 and E
{1}
∗ are both

locally asymptotically stable. The dynamics of the system are determined by
initial values. As x0 = 6 and y0 = 1, the trajectories approach boundary
fixed point E1 where the y-component is zero, as shown in the left figure.
This implies the transgenic mosquitoes will be wiped out. However, if initially
x0 = 3 and y0 = 4, the trajectories approach the positive fixed point, as shown
in the right figure. Then the wild and transgenic mosquitoes coexist.

and initial value (x0, y0) = (12, 1), but varying parameter b2. As b2 changes from
10, 16, to 19, sequentially, a 2-cycle, a 4-cycle, and then an 8-cycle appear. When
b2 = 25, chaotic behavior occurs. See Figure 6.

4. Holling-II type mating rate – Allee effects. The mating rate C(Nn) plays
an important role in the population interactions. We have studied the case where
C is constant in Section 3. In a real situation, in particular, as the cost of engi-
neering transgenic mosquitoes is taken into account, the population of transgenic
mosquitoes is relatively small. Then there exists possible mating difficulty such that
the birth rate is approximately proportional to the total mosquitoes population, Nn,
in this case. On the other hand, as the population size increases to a certain level,
the number of matings can be saturated. Then, the mating rate is approximately
constant. Such a phenomenon has been observed in many circumstances and is
called an Allee affect [1, 9].

To incorporate the Allee effect into the population interactions, we use a rectan-
gular hyperbola, or a Holling-II type functional form, for the mating function such
that C(Nn) = c0Nn/(q + Nn), where c0 is the maximum mating rate and q is the
half-saturation constant for the two types of mosquitoes [9, 15].

In the case where the transgenes are dominant, system (D) has the following
form:















xn+1 = c0
a1x

2
n + a2xnyn + a3y

2
n

q + xn + yn

e−k(xn+yn),

yn+1 = c0

(

b1xn + b2yn

)

yn

q + xn + yn

e−k(xn+yn).
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Figure 6. We use the same set of parameters as in Figure 5, but vary b2.
We also fix initial value x0 = 12 and y0 = 1. As b2 = 10, 16, and 19, there
appear 2-, 4-, and 8-cycles, as shown in the upper left, upper right, and lower
left figures, respectively. When b2 = 25, chaotic behavior occurs as shown in
the lower right figure.

Normalizing the system but keep the same notations, without confusion, we
obtain the following system:















xn+1 =
a1x

2
n + a2xnyn + a3y

2
n

1 + xn + yn

e−k(xn+yn),

yn+1 =

(

b1xn + b2yn

)

yn

1 + xn + yn

e−k(xn+yn).

(D2)

Similarly, the normalized system for the recessive transgenes has the following
form:















xn+1 =
(α1xn + α2yn)xn

1 + xn + yn

e−k(xn+yn),

yn+1 =
β1x

2
n + β2xnyn + β3y

2
n

1 + xn + yn

e−k(xn+yn).
(R2)

4.1. Boundary fixed points. We focus on the investigation for system (D2). The
study for system (R2) is similar.

It is clear that there exist no boundary fixed points with x = 0 and y > 0, for
system (D2). We then seek boundary fixed points with x > 0 and y = 0, denoted
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again by E1 = (x, 0), where x satisfies

a1x

1 + x
= ekx. (4.1)

Similarly as in [23], defining function

H(x) := kx + ln(1 + x) − lnx − ln a1,

we have H ′′(x) > 0, and H ′(xc) = 0 for the unique positive real number

xc :=

√
k2 + 4k − k

2k
.

Then, whether there exists a positive solution to equation (4.1) depending on if
H(xc) is equal to zero. Hence we have the following existence results for boundary
fixed points.

Theorem 4.1. Define

P1(k) :=

√
k2 + 4k + k + 2

2
e

√
k2+4k−k

2 .

Then, system (D2) has no boundary fixed points with x = 0 and y > 0. It has no,

a unique, or two boundary fixed points, with y = 0 and x > 0, if , P1(k) > a1,

P1(k) = a1, or P1(k) < a1, respectively.

System (R2) has no boundary fixed points with x > 0 and y = 0. It has no,

a unique, or two boundary fixed points, with x = 0 and y > 0, if P1(k) > β3,

P1(k) = β3, or P1(k) < β3, respectively.

The linear stability analysis for the boundary fixed points can be performed
similarly as that in [23]. We briefly illustrate it for system (D2) as follows.

The eigenvalues of the Jacobian of system (D2), at a boundary fixed point,

E1 = (x, 0), are λ1 =
2 + x

1 + x
− kx and λ2 = b1/a1.

It then follows from (4.1) that −1 < λ1 < 1 if and only if

0 <
kx(1 + x) − 1

1 + x
< 2. (4.2)

Suppose there are two boundary fixed points E
{i}
1 :=

(

x{i}, 0
)

, i = 1, 2. Then it

follows from x{1} < xc < x{2} and

H ′
(

x{1}
)

< 0 = H ′ (xc) < H ′
(

x{2}
)

that
kx{1}(1 + x{1}) − 1

1 + x{1} = x{1}H ′
(

x{1}
)

< 0.

Hence, E
{1}
1 is unstable.

It follows from (4.2) that the fixed point E
{2}
1 is locally asymptotically stable if,

in addition to b1 < a1,

k
(

x{2}
)2

+ (k − 2)x{2} − 3 < 0. (4.3)

Define

s± :=
2 − k ±

√
k2 + 8k + 4

2k
.
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Then (4.3) is satisfied if and only if

s− < x{2} < s+.

Notice that s− < 0 and H is an increasing function for x > x{2}. Then if
H

(

x{2}) < H(s+), x{2} < s+. Hence (4.3) is satisfied if

a1 < eks+
1 + s+

s+
. (4.4)

In the case where there is only one boundary fixed point. It can be proved,
similarly as in [23], that it is unstable.

Substituting s+ into (4.4), we arrive at the following stability results.

Theorem 4.2. Define

P2(k) :=
2 + k +

√
k2 + 8k + 4

2 − k +
√

k2 + 8k + 4
e

2−k+

√
k2+8k+4

2

=
(k + 2)

√
k2 + 8k + 4 + k2 + 6k + 4√
k2 + 8k + 4 + 2k

e
2−k+

√
k2+8k+4

2 .

If there exists a unique boundary fixed point for system (D2) or (R2), the boundary

fixed point is unstable. If there are two boundary fixed points for (D2) or (R2),

the one with a smaller x component, E
{1}
1 =

(

x{1}, 0
)

for system (D2), or the one

with smaller y component, E
{1}
2 =

(

0, y{1}) for system (R2), is unstable, and the

boundary fixed point with a larger x or y component, E
{2}
1 =

(

x{2}, 0
)

or E
{2}
2 =

(

0, y{2}), is locally asymptotically stable, if b1 < a1 < P2(k), or α2 < β3 < P2(k).

Fixed point E
{2}
1 is unstable if a1 < b1, or P2(k) < a1; E

{2}
2 is unstable if β3 < α2,

or P2(k) < β3.

4.2. Positive fixed points. We next study the existence and stability of positive
fixed points for systems (D2) and (R2) but only show the details for system (D2).

Consider the following equivalent system for (D2):

pn+1 =
a1p

2
n + a2pn + a3

b1pn + b2
, (4.5a)

yn+1 =
(b1pn + b2) y2

n

1 + (1 + pn)yn

e−k(pn+1)yn . (4.5b)

The analysis for (4.5a) is same as that in Section 3. Then let p be a positive
fixed point of (4.5a) and substitute it into the equation

(b1p + b2)y

1 + (1 + p)y
e−k(p+1)y = 1. (4.6)

Define a function

H(y) = k(1 + p)y + ln(1 + (1 + p)y) − ln((b1p + b2)y),

for y > 0. The positive solutions of (4.6) correspond to the positive solutions of
H(y) = 0.

It is easy to check that

H ′(y) =
k(1 + p)y

(

1 + (1 + p)y
)

− 1

y
(

1 + (1 + p)y
) ,
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H ′′(y) = − 2(1 + p)y + 1

y2
(

1 + (1 + p)y
)2 > 0,

equation H ′(y) = 0 has a unique positive root

ȳ =

√
k2 + 4k − k

2k(1 + p)
,

and

H(ȳ) = ln
(1 + p)

(√
k2 + 4k + k

)

(b1p + b2)
(√

k2 + 4k − k
) +

1

2

(

√

k2 + 4k − k
)

= ln

(

1 + p

b1p + b2
P1(k)

)

.

Then it follows from lim
y→0+

H(y) = +∞ and lim
y→+∞

H(y) = +∞ that equation

H(y) = 0 can have no, one, or two positive solutions, depending on whether
1 + p

b1p + b2
P1(k) is greater than, equal to, or less than one.

In summary, we have the following existence results.

Theorem 4.3. System (4.5) has

a) no positive fixed points if a1 > b1 and a2 > b2, (a2 − b2)
2 < 4a3(a1 − b1), or

(1 + p)P1(k) > b1p + b2 for a given positive solution p in (3.14) or (3.15);
b) a unique positive fixed point if a2 < b2, (a2 − b2)

2 = 4a3(a1 − b1) > 0, and

(1 + p)P1(k) = b1p + b2 satisfied with p given by (3.14);
c) two positive fixed points if a1 < b1, (a2 − b2)

2 = 4a3(a1 − b1) > 0, and

(1 + p)P1(k) < b1p + b2 satisfied with p given in (3.14);
d) four positive fixed points if a2 < b2, (a2 − b2)

2 > 4a3(a1 − b1) > 0, and

(1 + p)P1(k) < b1p + b2 satisfied with both p{1} and p{2} given in (3.15).

The investigation of the local stability of the positive fixed points can also per-
formed similarly as in Section 3. That is, we only need to consider the linearization

of (4.5b) at the positive fixed point
(

p
{1}
∗ , y∗

)

. For convenience we write p∗ = p
{1}
∗ .

Then the linearization has a real eigenvalue

λ = 2 − k(1 + p∗)y∗ −
(1 + p∗)y∗

1 + (1 + p∗)y∗
= 1 − k(1 + p∗)y∗ +

1

1 + (1 + p∗)y∗
.

We consider λ = λ(y) as a function of y. Then it follows from dλ
dy

< 0 that λ(y)

is a decreasing function and hence

λ
(

y
{1}
∗

)

> λ (ȳ) > λ
(

y
{2}
∗

)

.

Simple calculation shows λ (ȳ) = 1. Hence fixed point with y
{1}
∗ is unstable,

and λ
(

y
{2}
∗

)

< 1. To obtain stability conditions for the positive fixed point with

component y
{2}
∗ , we need λ

(

y
{2}
∗

)

> −1. Define the function

G(y) := k(1 + p)2y2 + (k − 2)(1 + p)y − 3. (4.7)

Then λ(y) = −1 if and only if G(y) = 0.
Equation G(y) = 0 has a unique positive solution

ỹ =
2 − k +

√

(k − 2)2 + 12k

2k(1 + p)
=

2 − k +
√

k2 + 8k + 4

2k(1 + p)
.
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Then, again since λ(y) is a decreasing function, if y
{2}
∗ < ỹ, λ

(

y
{2}
∗

)

> −1, and if

y
{2}
∗ > ỹ, λ

(

y
{2}
∗

)

< −1.

Moreover, note that H(y) is increasing for y > ȳ, and that ỹ > ȳ. Then it follows

from H
(

y
{2}
∗

)

= 0 that if H(ỹ) > 0, y
{2}
∗ < ỹ, and if H(ỹ) < 0, ỹ < y

{2}
∗ .

It is easy to check that

H(ỹ) =

√
k2 + 8k + 4 + 2 − k

2
+ ln

(1 + p)
(√

k2 + 8k + 4 + 2 + k
)

(b1p + b2)
(√

k2 + 8k + 4 + 2 − k
)

= lnP2(k) − ln
b1p + b2

1 + p
.

Then H(ỹ) > 0 is equivalent to

b1p + b2

1 + p
< P2(k). (4.8)

Hence λ
(

y
{2}
∗

)

> −1, if condition (4.8) is satisfied. Note that if there exists only

one or two positive fixed points, they are all associated with the unique p∗. Hence
they are unstable. The stability results for all of the positive fixed points can be
summarized as follows.

Theorem 4.4. If system (D2) or (R2) has a unique or two positive fixed points,

they are all unstable. If system (D2), or (R2), has four positive fixed points, those

associated with p
{2}
∗ , q

{2}
∗ , p

{1}
∗ and y

{1}
∗ for system (D2), or q

{1}
∗ and x

{1}
∗ for

system (R2), are all unstable. The positive fixed point of system (D2) with p
{1}
∗ and

y
{2}
∗ is locally asymptotically stable if conditions (3.16) and (4.8), where p = p

{1}
∗ ,

are satisfied, and the positive fixed point of system (R1) with q
{1}
∗ and x

{2}
∗ is locally

asymptotically stable if

α2q
{1}
∗ + α1

1 + q
{1}
∗

< P2(k), (4.9)

in addition to condition (3.32) being satisfied.

4.3. Numerical examples. The dynamics of systems (D2) and (R2) seem more
complex than those of system (D1) and (R1). The origin is a trivial solution for
the systems and is always locally asymptotically stable. This is due to the fact
of mating difficulty if the mosquito population size is small. While there possibly
exist more than one boundary or positive fixed points, only one could be locally
stable. Nevertheless, other cycles can early appear. We provide numerical examples
to demonstrate the dynamics of system (D2) as follows.

Example 5. With the following parameters

a1 = 8, a2 = 3, a3 = 5, b1 = 1.1, b2 = 9.7, k = 0.2,

we have
P1(k) = 2.2296, P2(k) = 8.8368.

Since (a2− b2)
2 < 4a3(a1− b1), there exists no positive fixed points. It follows from

P1(k) < a1 and b1 < a1 < P2(k) that there exist two boundary boundary fixed
points

E
{1}
1 = (0.1478, 0), E

{2}
1 = (9.9168, 0),

where E
{1}
1 is unstable, and E

{2}
1 is asymptotically stable, as shown in Figure 7.
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Figure 7. With the parameter k = 0.2, a1 = 8, a2 = 3, a3 = 5, b1 = 1.1,
and b2 = 9.7, there exist no positive fixed points. Two boundary fixed points

E
{1}
1 = (0.1478, 0) and E

{2}
1 = (9.9168, 0) exist. E

{1}
1 is unstable, and E

{2}
1

is asymptotically stable.

Example 6. Using the parameters

a1 = 8, a2 = 3, a3 = 5, b1 = 7, b2 = 9.7, k = 0.2,

we have the same Pi(k), i = 1, 2, as in Example 5. It follows again from P1(k) < a1

and b1 < a1 < P2(k) that there exist two boundary fixed points E
{1}
1 = (0.1478, 0)

and E
{2}
1 = (9.9168, 0), where only E

{2}
1 is asymptotically stable. Conditions (3.15),

(3.16), (4.8), and those in Theorem 4.3 d), are all satisfied. Hence there exist two
positive

p
{1}
∗ = 0.8555, p

{2}
∗ = 5.8445,

and four positive fixed points, two associated with p
{1}
∗ , denoted by E

{i}
∗p1, and two

associated with p
{2}
∗ , denoted by E

{i}
∗p2, i = 1, 2:

E
{1}
∗p1 = (0.0639, 0.0747), E

{2}
∗p1 = (4.7059, 5.5007),

E
{1}
∗p2 = (0.1385, 0.0237), E

{2}
∗p2 = (8.1145, 1.3884),

where E
{2}
∗p1 is the only stable positive fixed point. Solution with different initial

values approach either E
{2}
1 or E

{2}
∗p1 as shown in Figure 8.

Example 7. Using the following parameters

a1 = 12, a2 = 3, a3 = 5, b1 = 10, b2 = 9.7, k = 0.2,

we have the same Pi(k), i = 1, 2, as in Example 5. It follows again from P1(k) < a1

and b1 < a1 < P2(k) that there exist two boundary fixed points, but because of
a1 > P2(k), both boundary fixed points are unstable. Conditions in Theorem 4.3
d) are satisfied so that there exist four positive fixed points. However, it follows
from

b1p
{1}
∗ + b2

1 + p
{1}
∗

= 9.8586 > P2(k) = 8.8368

that no positive fixed point is stable. With different initial values, solutions either
approach a “boundary” 2-cycle where, asymptotically, the x-component is 2-cycle
and the y component is zero as shown in the left figure, or approach a positive
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Figure 8. We use parameters k = 0.2, a1 = 8, a2 = 3, a3 = 5, b1 = 7, and
b2 = 9.7. There exist two boundary fixed points and four positive fixed points.

However, only the boundary fixed point E
{2}
1 = (9.9168, 0) and the positive

fixed point E∗{2} = (4, 7059, 5.5007) are asymptotically stable. The stability

is local. With different initial values, solutions approach E
{2}
1 as shown on the

left, or E
{2}
∗ as shown on the right.

2-cycle where both x and y components are 2-cycles, as shown in the right figure,
in Figure 9.
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Figure 9. We use parameters k = 0.2, a1 = 12, a2 = 3, a3 = 5, b1 = 10, and
b2 = 9.7. There exist two boundary fixed points and four positive fixed points.
However, all of these fixed points are unstable. Solutions either approach a
“boundary” 2-cycle where the x-component is a 2-cycle and the y component
is zero as shown in the left figure, or approach a positive 2-cycle where both x

and y components are positive 2-cycles, as shown in the right figure.

Example 8. System (D2) with Allee effects exhibit similar period-doubling bifurca-
tion features as system (D1) with constant mating rates. We use the parameters

a1 = 2, a2 = 3, a3 = 5, b1 = 1, k = 0.2,
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Figure 10. We use the parameters k = 0.2, a1 = 2, a2 = 3, a3 = 5, b1 = 1,
and vary b2. We also fix initial value x0 = 1 and y0 = 5. As b2 = 12, 15,
20, and 20.5, there appear 1-, 2-, 4-, and 8-cycles, as shown in the upper four
figures, respectively. When b2 = 24, chaotic behavior occurs as shown in the
lower figure.

and fix the initial value (x0, y0) = (1, 5). We then vary parameter b2, from 12, 15,
20, 20.5, to 24, sequentially. 1-cycle, 2-cycle, 4-cycle, 8-cycle, and chaotic behavior
occur, respectively, as shown in Figure 10.

5. Concluding remarks. To study the impact of releasing transgenic mosquitoes
on malaria transmissions, we formulate discrete-time models, based on difference
equations. We first include all homozygously wild, heterozygous, and homozygously
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transgenic mosquitoes to formulate a three dimensional system of difference equa-
tions (2.1), which is similar to the system in [21] but with a more general setting.
Our goal is to focus on the study of the impact on malaria transmissions. Then
we consider the cases where the transgenes are either dominant or recessive such
that heterozygous mosquitoes with one copy of a transgene is either resistant or
unresistant to the malaria transmission. We divide the total mosquito population
into two groups such that one group consists of only homozygously wild mosquitoes
and one group consists of heterozygous and homozygously transgenic mosquitoes
if the transgenes are dominant, and one group consists of homozygously wild and
heterozygous mosquitoes and one group consists of only homozygously transgenic
mosquitoes if the transgenes are recessive. The model system (2.1) is reduced to
the two dimensional system (2.2) or (2.3). We then assume the mating rates to be
constant in Section 3. While the model systems are similar to that studied in [20],
we provide more details in the derivation and the model systems are more accurate
to count in all components, whereas it was assumed in [20] that the wild and trans-
genic mosquitoes were two independent groups acting symmetrically, and hence
there was no input term from the interaction between the transgenic mosquitoes
into the wild mosquitoes for the case of dominant transgenes, nor input term from
the interaction between the wild mosquitoes into the transgenic mosquitoes for the
case of the recessive transgenes. We also consider the mating rates of the Holling-II
type in this paper, to include the Allee effects in Section 4. We investigate the ex-
istence and stability of all fixed points for the models formulated in this paper, and
obtain conditions that determine whether the boundary fixed points, in which one
component is positive and the other is zero, and the positive fixed points, in which
both components are positive, exist. We also obtain conditions that determine
whether a boundary or positive fixed point, if it exists, is locally asymptotically
stable. We provide numerical simulations for the models with constant or Holling-
II type mating rates, in Sections 3.3 and 4.3, respectively, to verify our analytic
results.

Our results provide insight into the dynamics of interacting wild and transgenic
mosquitoes. In the case of dominant transgenes with either constant or Holling-II
type mating rates, there exist no boundary fixed points in which the component
for the wild mosquitoes is zero. This contrasts with the feature of the models
studies in [20] where such boundary fixed points exist. Nevertheless, similarly as in
[20], there exist boundary fixed points in which the component for the transgenic
mosquitoes is zero. The unstable conditions for such boundary fixed points show
that the transgenic mosquitoes with one or two copies of transgenes can survive
only if the total death-adjusted number of offspring with one or two copies of the
transgenes, through heterogeneous matings, exceeds the death-adjusted number of
offspring with no transgenes, produced per wild mosquito (b1 > a1), or there are too
many wild offspring so that they cause oscillations in the wild mosquito population
(a1 > e2 for model (D1) and a1 > P2(k) for model (D2)). On the other hand,
even if the transgenes are recessive, they can still eventually drive wild mosquitoes
to extinct and take over the mosquito population by wiping out the homozygously
wild and the heterozygous mosquitoes as shown in both models (R1) and (R2),
based on the results for the boundary fixed points. This seems to imply that the
dominance of the transgenes may not necessarily be the major factor in getting rid
of wild mosquitoes.
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Moreover, the stability results we obtain for all fixed points in all models are
only local. Meeting conditions for the desired asymptotic behavior of the desired
boundary fixed points may not be realistic in practice, and hence seeking coexistence
may be a more feasible way in controlling of wild mosquitoes. We note that even
there may exist two or four positive fixed points for the models with constant or
Holling-II type mating rates, there is at most one stable fixed point for each model.
The stability of the boundary or positive fixed point may be global if there exist
no other fixed points for the models with constant mating rates although we are
unable to prove it, whereas any fixed point cannot be globally stable for the models
with Holling-II type mating rates because of the local stability of the origin. The
models studied in this paper also exhibit other phenomena such as period-doubling
bifurcations, which are common in discrete-time population models.

We need to point out that the nonexistence of such boundary fixed points with
x = 0 and y > 0 for the dominant transgenes, and with x > 0 and y = 0 for the reces-
sive transgenes, seems to come from the way of grouping the mosquitoes in our model
formulations. As long as the heterozygous mosquitoes exist, they produce both ho-
mozygously wild and transgenic offspring. Then, to eliminate malaria unresistant
mosquitoes, it needs also to completely eliminate the heterozygous mosquitoes even
the transgenes are dominant such that the heterozygous mosquitoes are malaria
resistant. This seems unreasonable and, therefore, to have a better understanding
of the interactions between the two types of mosquitoes, we may need to go back
to fully study the original three dimensional model (2.1) even the mathematical
analysis is more difficult.
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