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ABsSTRACT. We study a stage-structured single species population model with
Allee effects. The asymptotic dynamics of the model depend on the maximal
growth rate of the population as well as on its initial population size. We
also investigate two models of host-parasitoid interaction with stage-structure
and Allee effects in the host. The parasitoid population may drive the host
population to extinction in both models even if the initial host population is
beyond the Allee threshold.

1. Introduction. It has long been recognized that individuals in the population
can be released from the constraints of intraspecific competition when a population
is small or at low density. When population size is larger, negative density depen-
dence takes place due to competition between individuals for resources and space.
Therefore, the per-capita growth rate of the population decreases with increasing
population size in most of the population models.

However, individuals of many species cooperate. They use cooperative strategies
to hunt or to avoid predators. There are many other incidences in which populations
would benefit from a larger population size, such as mating, etc [3]. When there
are too few of individuals in a population, it may be that they will each benefit
from more resources, but in many cases individuals will also suffer from a lack of
conspecifics. The fitness of the population may then be reduced, the lower the
population size, the lower the fitness. Such an effect is called an Allee effect, which
was first proposed by W.C. Allee in the 1930s [1].

Allee effects occur when there is a positive relationship between a component of
fitness and population size or density. The overall of individual fitness is positively
related to population size or density. As a result, the per-capita growth rate of
the population increases as population size increases, at least initially. It follows
from mathematical models of Allee effects that there always exists a population
threshold, the Allee threshold, such that the population will become extinct if initial
population size is below the threshold. As a consequence, Allee effects play a crucial
role in resource management and conservation. In addition, Allee effects have also
been observed in the context of biological control, both to the introduction of the
control agent and also to the extirpation of the pest requiring control [8]. Recently
there is also a surge of interest and need on investigating Allee effects for epidemic
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models [7, 9, 16]. See [2, 4, 5, 6, 7, 10, 11, 12, 13, 15, 17, 18] and references cited
therein for population models of Allee effects.

In this study, we propose a simple stage-structured model of a host species to
study the impact of Allee effects in the population level. We also investigate two
models of host-parasitoid interaction with age structure and Allee effects in the
host. In the first model of host-parasitoid interaction it is assumed that para-
sitism occurs before density dependence. The second model assumes that density
dependence occurs prior to parasitism. The single-species model and the first host-
parasitoid model are generalizations of the previous models studied in [12] where
specific function forms were adopted. We show that there exists a host population
threshold below which both host and parasitoid populations will go extinct. If the
host population size is initially greater than the threshold, then the presence of the
parasitoid may also drive the host population to extinction. The parasiotid may
overexploit the host population below the Allee threshold so that both populations
cannot persist. This result is independent of whether density dependence occurs
before or after parasitism.

In the following section, a single species model is studied. Sections 3 and 4
present models of host-parasitoid interaction and their analysis. We use numerical
examples and simulations to study these systems in Section 5. The final section
provides a brief discussion.

2. Allee effects in a single species population model. Let z(t) and 22(t)
be the juvenile and adult populations of a host species at time ¢, respectively,
for t = 0,1,2,.... It is assumed that only adult population can reproduce with
birth rate g depending only on the adult population size. Moreover, the survival
probability s1, 0 < s; < 1, from juvenile to adult over one unit of time is assumed
to be independent of time and population size. Under these biological assumptions,
the single species population model is given by

w1 (t+1) = g(wa(t))z2(t)
IQ(t + 1) = 5121 (t) (1)
I (0),%2(0) 2 0.

We assume that the Allee effect is concentrated in the birth rate and make the
following assumptions on the fertility rate g:

(H1) g € C*[0,00), g(0) = 0, there exists m > 0 such that ¢’(z) > 0 for 0 <z <m
and ¢'(z) < 0 for > m, s1g(c0) < 1, and g(z) > 0, L (zg(z)) > 0 for z > 0.

System (1) always has a trivial steady state Ey = (0,0). The x5 component of
an interior steady state must satisfy

1 =s19(x2). (2)

Therefore (2) has no positive solution if s;g(m) < 1, has a unique positive solution
m if s1g(m) = 1, and has two positive solutions To; and ZToo with ZTo; < m < Too
if s1g(m) > 1. Tt follows that (1) has no interior equilibrium if s;g(m) < 1, has
a unique interior equilibrium E; = (m/s1,m) if s;g(m) = 1, and has two interior
equilibria Fy; = (ZTo;/$1,%2:), ¢ = 1,2, if s19(m) > 1. The Jacobin matrix of system
(1) is given by

J— ( 501 g(@2) +09/(5172)$2 > (3)
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A second iteration of (1) yields the following un-coupled system
1 (t+2) = sig(sizi(t))zi(t)
za(t +2) s19(z2(t))z2(t).

Therefore 2-cycles of (1) are fixed points of

{ yi(t +1) = s1g(s1y1(t))ya(t) (4)
Y2 (t +1) = s19(y2(t))y2(t).

Let F and G be defined by
F(z) = s19(s1z)x and G(z) = s19(x)x, (5)

respectively. If s;g(m) < 1 then F and G have no nontrivial fixed points and
consequently (1) has no 2-cycles. Moreover, the population will go extinct as shown
below.

Theorem 2.1. If s1g(m) < 1, then steady state Ey = (0,0) is globally asymptoti-
cally stable in Ri.

Proof. Let (z1(t),z2(t)) be a solution of (1). Since z2(t + 2) < s1g(m)z2(t) for all
t > 0 and s1g(m) < 1, tlim x2(t) = 0 and thus tlim z1(t) = 0 and Ejy is globally

attracting in Ri. Moreover, Ey is locally asymptotically stable since the Jacobian
0

. . 0
matrix J at Ey is < s 0

) . Therefore, Ej is globally asymptotically stable. O

Observe that s1g(m) can be regarded as the maximal growth rate of the host
population. The population will become extinct if this maximal growth rate is less
than one. Suppose now syg(m) = 1. Then (1) has a unique interior steady state

0
is non-hyperbolic. The steady states of system (4) are: (0,0), (m/s1,0), (0,m) and
(m/s1,m). As aresult, system (1) has no interior 2-cycles and there exists a unique
2-cycle on the boundary:

E, = (m/s1,m) with Jacobian matrix at E; given by ( SO g(m) ) . Hence, E
1

G = {(m/sl,O),(O,m)}. (6)

Moreover, F' and G satisfy:

F(z) <z forxz>0,F(z) =z if and only if x = 0,2 = m/s1, (7)

and
G(z) <z for > 0,G(z) = z if and only if x = 0,2 = m. ()
The asymptotic dynamics of (1) restricted on the boundary of R? when s1g(m) = 1

are given below.

Theorem 2.2. Let sig(m) = 1 and (x1(t),x2(t)) be a solution of (1) with either
21(0) > 0,22(0 )—O or 1(0) =0, x2(0) > 0.

(a) Let x2(0) = 0. If0 < 21(0) < m/s1, then the solution converges to Ey = (0,0).

If 1(0) > /31, then the solution has the 2-cycle Ci as its w-limit set.
(b) Let x1(0) = 0. If 0 < x2(0) < m, then the solution converges to Ey. If
x2(0) > m, then the solution has w-limit set Cy.
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Proof. We only prove (a). Observe that x1(2t + 1) = 2z2(2t) = 0 and z1(2t) >
0,222t +1) >0 for t =0,1,.... Let 0 < 21(0) < m/s1. It can be easily shown,
using finite mathematical induction, that z1(2t) < m/s; and z2(2t + 1) < m for
t > 0. Therefore, it follows from (7) and (8), we have for t > 0

and
As a result,

tlim x1(2t) = 2] <m/s1 and tlim 22 (2t 4+ 1) = x5 < m.
System (1) implies
w7 = s19(73)27.
If 27 # 0 then 25 = m and we obtain a contradiction. Therefore z]7 = 235 = 0 and
the solution converges to Ej.
Suppose now x1(0) > m/sy. If 21(0) = m/s1, then 22(1) = m and the result
follows. Assume x1(0) > m/s1. We claim that

x1(2t) > m/s1 and x2(2t + 1) > m for t > 0.
The inequalities are clearly true if ¢ = 0. For ¢ = 1, 21(2) = g(z2(1))z2(1) >
glm)m = m/s; by (H1), and x2(3) > m, i.e., the statements hold for ¢t = 1.

Suppose the inequalities are valid for t = k. Then using (H1) it can be shown that
the inequalities also hold for t = k 4+ 1. As a result, we have for ¢ > 0 that

21(2t +2) = F(21(2t)) < 21(2t) and z2(2t + 3) = G(a2(2t + 1)) < z2(2t + 1).
Therefore,

lim x1(2t) = 27" > m/s; and tlim x2(2t +1) = a3" > m.

t—oo

It follows from system (1) that
a" = sig(a3 )y

Since z1* > 0 we must have z7* = m/s; and 25" = m. Therefore, the 2-cycle C; is
the w-limit set of the solution. O

The asymptotic dynamics of (1) in the interior of R2 when s;g(m) = 1 are given
below.

Theorem 2.3. Let s1g(m) =1 and (x1(t), z2(t)) be a solution of (1) with x1(0) > 0,
xg(O) > 0

(a) Let x2(0) < m. If 1(0) < m/s1, then the solution converges to (0,0). If
x1(0) > m/s1, then the solution has w-limit set equal the 2-cycle Cy.

(b) Let x2(0) > m. If ©1(0) < m/s1 then the solution has w-limit set equal the
boundary 2-cycle Cy. If x1(0) > m/s1, then the solution converges to the
interior steady state By = (m/s1,m).

Proof. Notice z;(t) > 0 for i = 1,2 and t = 0,1,2,.... To prove (a), first assume
21(0) < m/sy. Then z1(1) = g(x2(0))xz2(0) < g(m)m = m/s; and x2(1) < m.
Suppose z1(k) < m/s; and z2(k) < m for some k > 1. Then z1(k + 1) =
g(za(k))z2(k) < g(m)m =m/s1 and x2(k 4+ 1) < m, ie.,

z1(t) <m/s1 and z2(t) < m for all t > 0.
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It follows that z1(t + 2) = F(x1(t)) < x1(t) and x2(t + 2) = G(22(t)) < z2(t) for
t > 0. Therefore
lim 21 (2t) = 7, tlim x1(2t+ 1) = 277,

t—oo
lim 29(2t) = a3, lim xo(2t + 1) = 23"
t—o0 t—o0
exist with
xy, 27" < m/s; and x5, x5 < m.
Since z}* = sig(x})zi*, we must have z* = 0 = 25. Similarly, from z} =

s1g(x5™)xt we have zf = 23 = 0 and the solution converges to Ep.

Suppose x1(0) = m/s;. Then it can be shown that x1(2t) = m/s1, 22(2t+1) =
m, x1(2t 4+ 1) < m/s1 and 22(2t) < m for ¢ > 0. Since z1(t +2) = F(x1(t)) < z1(t)
and xo(t + 2) = G(z2(t)) < z2(t) for t > 0, we have

tlim x1(2t+1) =& <m/s; and tlim x2(2t) = &2 < m.

Since &1 = s1¢(Z2)&1 holds, we must have #; = 0 = &3 and the solution has the
boundary 2-cycle C; as its w-limit set.

If £1(0) > m/s1, then it can be shown that x1(2t) > m/s1, 2(2t) < m, x1(2t +
1) <m/s; and x2(2t + 1) > m for all ¢ > 0. Therefore,

tlim x1(2t) = T > m/sl,tlim x1(2t+1) =21 <m/s1,

and
tlim 29(2t) = T2 < m, tlim 222t + 1) = Ty > m.

Furthermore, since &; = s1¢(22)Z; and &; > 0, we have &2 = m and Z; = m/s;.
Similarly, since &1 = s19(Z2)Z1 and 2 < m, we must have ; = 0 = Z5 and the
boundary 2-cycle C; is the w-limit set of the solution.

To prove (b), first assume z2(0) = m and z1(0) < m/s;. Then x2(2t) =
m,x1(2t) < m/s1,x2(2t + 1) < m and z1(2t + 1) = m/s; for t > 0. Hence (7)
and (8) imply 21 (¢t 4+ 2) < 21(t) and z5(t + 2) < x5(¢) for ¢ > 0. It follows that the
following limits exist

lim x;(2t) = 27 and tlir})lo x2(2t + 1) = a3

t—o0
with
x] <m/sy and x5 < m.
We then have x7 = 0 = 25 and the solution has the boundary 2-cycle as its w-limit
set. Suppose x2(0) > m and z1(0) < m/s;. Then we have x2(2t) > m,x1(2t) <
m/s1,22(2t +1) < m and x1(2t 4+ 1) > m/sy for t > 0. Also, z1(t +2) < x1(t) and
x2(t + 2) < x2(t) hold for ¢ > 0. Therefore,
lim x(2t) = 27, tlim x1(2t + 1) = @4,

t—o0

lim 25(2t) = x5, lim x2(2t + 1) = 3o

t—oo t—oo
with

x] <m/s1,&1 > m/s1, x5 > m and &g < m.

It then follows that 3 = m, &1 = m/s1, and xf = 0 = &3. Therefore the solution
also has the boundary 2-cycle C; as its w-limit set. Similarly, it can be shown that
the solution converges to Ep if x1(0) > m/s; and z2(0) > m and the proof is
complete. O
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Suppose now s1g(m) > 1. Then system (1) has two interior steady states Fy; =
(@21/81,{?21) and Fi9 = (fzg/sl,fgg), where Zo; satisfies (2) for ¢ = 1,2 with
To1 < m < Tag. Let functions F(z) and G(x) be defined in (5). A simple calculation
yields

F(,T) <zifze (0,@21/81) @] (fzg/sl,()o)
F(,T) >zxifx e (:621/81,5622/81)
and
Fl)=zifz=0o0r & =Tg9;/s1,i =1,2.
The same is true for G(x):
G(z) <z if z € (0,Z21) U (Ta2, 0)

G(x) >xifece (le,.foQ)
and
Gx)=zifz=0o0r x = Tg;,i=1,2.
Moreover, any 2-cycles of system (1) are fixed points of system (4). It can be
easily seen that (4) has fixed points: (0,0), (T21/81,ZT22), (T22/51,%21), and Ey,,
(Z2i/81,0), (0,Tq;) for i =1,2. As a result, (1) has two boundary 2-cycles

Cii = {(Z2i/51,0),(0,Z2:) },i = 1,2 9)
and a unique interior 2-cycle
C* = {(Z21/s1, Z22), (T22/51,Z21) }. (10)

The stability of these interior steady states and the 2-cycles can be easily obtained
using the associated Jacobian matrix. Indeed, the stability of the 2-cycles are
determined by the Jacobian matrix of system (4) evaluated at the components of
the cycle, where the Jacobian matrix of (4) is given by

j= ( s19(s1y1) + s1g'(s1y1)m 0 ) ' (11)
0 519(y2) + 519" (y2)y2

0 0

0 14819 (22:)%2

0, we see that the boundary 2-cycle Cq7 is unstable. On the other hand, ¢'(Z22) <

0 and (H1) implies 0 < 1 + $1T22¢'(Ta2) < 1. Therefore, the other boundary

2-cycle Cio is stable.  Similarly, J evaluated at (ZT21/81,T22) is given by

( 1 =+ Slg/(a_?21)1_721 O

In particular, at (0, Zo;) we have J = < > . Notice that ¢'(Z21)>

0 1+ 519" (T22)Zo2
unstable. Furthermore, from the Jacobian matrix J of system (1) evaluated at the
interior steady state E1; we can conclude that Fy; is unstable while E15 is locally
asymptotically stable.

Using these observation, the asymptotic dynamics of system (1) restricted on
the boundary of RZ when s1g(m) > 1 can be summarized below. The proofs are
similar to the proofs of previous theorems and are therefore omitted.

) . It follows that the interior 2-cycle C* is

Theorem 2.4. Let s1g(m) > 1 and (z1(t),x2(t)) be a solution of (1) with either
21(0) =0, 22(0) > 0 or x1(0) > 0,22(0) = 0.
(a) Let x2(0) = 0. If 0 < 21(0) < ZTa1/s1, then the solution converges to Ey =
(0,0). If 1(0) = Zo1/s1, then the solution is the 2-cycle C11. If x1(0) >
To1/s1, then the solution has w-limit set equal the boundary 2-cycle Cys.
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(b) Let 21(0) = 0. If 0 < x2(0) < Ty, then the solution converges to Ey = (0,0).
If 25(0) = Ty, then the solution is the 2-cycle C11. If x2(0) > Za1, then the
solution has C12 as its w-limit set.

Similarly, asymptotic dynamics of system (1) restricted to the interior of Ri
when s;g(m) > 1 are summarized below without proof.

Theorem 2.5. Let s1g(m) > 1 and (x1(t), x2(t)) be a solution of (1) with z1(0) > 0,
22(0) > 0. Then the following statements are true.

(a) Let x2(0) < To1. If 21(0) < Ta1/s1 then the solution converges to EO = (0,0
If 1(0) = Za1/s1, then the solution has Ci1 as its w-limit set. x1(0)
To1/s1, then the solution has w-limit set Cya.

(b) Let x2(0) = To1. If 21(0) < Ta1/s1, then the solution has w-limit set Cyy. If
x1(0) = Za1/s1, then the solution is Eyy. If £1(0) > Ta1/s1, then the solution
has the interior 2-cycle C* as its w-limit set.

(¢) Let x2(0) > Toy. If 1(0) < To1/s1, then the solution has w-limit set C1o. If
x1(0) = Ta1/s1, then the solution has the interior 2-cycle C* as its w-limit set.
If £1(0) > Ta1/s1, then the solution converges to the interior steady state Eis.

).
>

3. A host-parasitoid model with Allee effects in the host. In this section
we shall study a model of host-parasitoid interaction. Let p(¢) denote the parasitoid
population at time ¢. An individual parasitoid must find a host to reproduce. Since
the host population is stage-structured, we classify eggs and larvae as juveniles and
pupae and matured host as adults as in [12]. The parasitism is usually assumed to
occur during the pupae stage as discussed in [14] so that individuals of the adult
class in the model may get parasitized. Moreover, it is assumed in this model that
parasitism occurs before density dependence.

Let 3 be the average number of survived parasitoid that an individual parasitized
adult host can reproduce. Building upon system (1), the interaction between host
and parasitoid is governed by the following system of difference equations:

2 (t+ 1) = z2(t)g(22(t)) f (p(t))
l‘g(f + 1) = $121 (t)
p(t+1) = Baa(t)(1 = f(p(t)))
21(0),22(0), p(0) = 0,
where g satisfies the assumptions given in (H1) and f satisfies the following condi-
tions:

(H2) f € C?[0,00), f(0)=1, f'(z) <0, f’(x) >0 for x > 0, and f(c0) = 0.

Let (x1(t), z2(t), p(t)) be a solution of (12). If p(0) = 0 then p(t) =0 for ¢t > 1
and (12) reduces to (1). Therefore we assume p(0) > 0 for the reminder of the
discussion. Since x1(t+1) < x2(t)g(x2(t)) holds for ¢ > 0, we consider the following

system
21(t +1) = g(22(t)) 22(t)
Q(t 1) = slzl(t)
21(0) = 21(0), 22(0) = 2
ie., system (1). Then z1(1) < 22(0)g(22(0)) = z)

(12)

(13)
(0),
1(1), 22(1) = 2(1), 11(2) <

is strictly increasing by (H1),

29(1)g(22(1)) = 21(2) and x2(2) < 22(2). Since xg(
inductively one can show that

x;(t) < zi(t) for t > 1T and i =1, 2. (14)
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Inequalities (14) will aid us in understanding the asymptotic dynamics of system
(12). Furthermore, a similar argument shows that

z1(t+2) < F(z1(t)) and z2(t + 2) < G(xa(t)) (15)

hold for ¢ > 0, where F' and G are given in (5).
The Jacobian matrix of (12) is given by

0 (g9(w2) +g'(z2)r2) f(p) w29(22)f (D)

S1 0 0 . (16)
0 AL = f(p)) —B2f'(p)
The extinction steady state Ep = (0,0,0) always exists for (12). The Jacobian
0 0 0
matrix evaluated at FEj is s1 0 0 which implies that Ey is always locally
0 0 0

asymptotically stable. The dynamics of system (12) are discussed separately below
for s19(m) < 1, s1g(m) = 1 and syg(m) > 1. When s;g(m) < 1, since (0,0) is
globally asymptotically stable for (1), it can be easily shown that Ey = (0,0,0) is
globally asymptotically stable for (12).

Theorem 3.1. If syg(m) < 1, then Ey = (0,0,0) is globally asymptotically stable
for (12) in R3..

Proof. Tt follows from (14) and Theorem 2.1 that lim; . z;(¢t) = 0, i = 1,2, for
any solution (x1(t),x2(t),p(t)) of (12). Hence lim;—, o p(t) = 0, and Ey is glob-
ally attracting. Therefore Ey is globally asymptotically stable since it is locally
asymptotically stable. O

Suppose now s1g(m) = 1. Then in addition to Ey, (12) has another boundary
steady state Ey; = (m/s1,m,0), where E; is non-hyperbolic by the Jacobian matrix
given in (16) evaluated at E;. Moreover, (12) has a unique boundary 2-cycle

S = {(m/sl,0,0),(O,m,O)} (17)

and there are neither interior steady states nor interior 2-cycles. The boundary 2-
cycle 8 is also non-hyperbolic. By Theorems 2.2 and 2.3, solutions of system (13)
satisfy limsup,_, . z1(t) < m/s; and limsup,_, . 22(t) < m. As a result, solutions
of (12) satisfy

limsup z1(t) < m/sq, limsup z2(t) < m, and limsupp(t) < Sm. (18)

t—oo t—oo t—o0

Theorem 3.2. Let s1g(m) = 1 and (x1(t),z2(t),p(t)) be a solution of (12) with
p(0) > 0.

(a) Inequalities (18) hold. Moreover, if —Bmf'(0) < 1 then lim;_.o p(t) = 0.

(b) Let x1(0) = 0. If 0 < x2(0) < m, then the solution converges to Ey. If
x2(0) > m, then lim; o x1(2t) = limy—00 22(2t + 1) = limy_, o p(¢t) = 0 and
the solution will either converge to Ey or has the 2-cycle 81 as its w-limit set.
Let 22(0) = 0. If 0 < x1(0) < m/s1, then the solution converges to Ey. If
x21(0) > m/s1, then limy_,o0 21 (2t + 1) = limy_,o0 22(2t) = limy_,0o p(t) = 0
and the solution either converges to Ey or has w-limit set S;.

(¢) Let 0 < z1(0) < m/si. Then limy_oz1(2t) = lmy_ oo z2(2t + 1)
= limy_op(t) = 0. If 0 < 22(0) < m or if z2(0) > m and p(0) >

m

s122(0)g(72(0))

-1 , then the solution converges to Ey. Let x1(0) = m/s;.
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If 0 < 22(0) < m then the solution converges to Ey. If x2(0) > m, then
limy o0 21(2t) = limy o0 22(26+ 1) = limy—, o0 p(t) = 0 and the solution either
converges to Ey or has the 2-cycle S1 as its w-limit set.
(d) Let x1(0) > m/s1. If either 0 < x2(0) < m, or if £2(0) > m and p(0) >
m
s122(0)g(22(0)) )’
= limy_.o0 p(t) = 0 and the solution either converges to Ey or has the 2-cycle
S1 as its w-limit set.

-1 then limy_ooz1(2t + 1) = limg_co x2(2t)

Proof. (a) It is enough to prove only the second statement. By (18) and the as-
sumption, there exist positive constants e and ¢y such that —g(m+¢)f’(0) < 1 and
xo(t) < m+ e for all t > ty. It follows that for ¢t > ¢y there exists 7 > 0 depending
on t such that

p(t+1) = =Baz(t) ' (n)p(t) < =B(m + ) f'(0)p(t),

by (H2). Therefore, lim; .o p(t) = 0 is shown. The statements in (b) can be shown
similarly as in Theorem 2.2 since there exists a finite ¢; > 0 such that p(t) = 0 for
t>t.

To prove (c), let 0 < 21(0) < m/s;. Then inductively one has z1(2t) < m/s1 and
x2(2t+1) < mfort > 0. Using (15), we see that 21 (2¢) and x2(2¢t+1) monotonically
decrease to 0. Therefore, lim;—.o p(2t) = 0 and thus lim;_., p(2t + 1) = 0, ie.,
lim; oo p(t) = 0. Tt is clear that the solution converges to Ep if 0 < 22(0) < m.
Suppose x2(0) > m. Setting x1(1) = 22(0)g(x2(0))f(p(0)) < m/s; and solving for

p(0), yields
p(0) > [~ <m) ’

m

where —— € (0,1). It follows that x1(t) < m/sy and xo(t + 1) < m for
a0 - 0 < mfoy o 22l )

all ¢ > 0 and the solution also converges to Fy. The remainder of the statements

can be proved similarly as in Theorem 2.3. O

Suppose now s1g(m) > 1. The second iteration of system (12) yields the following
system

21 (t +2) = s1z(t)g(s1e1 (b)) f (Bra () (1 = f(p(1))))
za(t +2) = s1w2(t)g(x2(t)) f (p(t)) (19)
p(t+2) = sz (8)(1 = f(Br2(t)(1 = f(p(1)))))-

In addition to Ey = (0,0,0), system (12) has two more boundary steady states:
By = (T2i/s1,72:,0), i =1,2
where To; < m < Tog satisfy (2), and three boundary 2-cycles:
Sii = {('f?i/slaovo)a(Ovaivo)}a 1=1,2 (20)
and
So = {(Z21/51, T22,0), (T22/51, T21,0) }. (21)
The Jacobian matrix of system (19) evaluated at (Z2;/s1,0,0), a component of
S14, is given by
1+ S%fzigl(fm) 00
0 00
0 00
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It follows that Sp; is unstable and Sy is stable. Similarly, the Jacobian matrix of
(19) evaluated at (T21/s1,Ta2,0), a component of Sa, is given by

1+ 51Z219"(T21) 0 *
0 14 51Z229"(T22) * )
0 0 B2Zo1Ta2(f'(0))?

where *’s denote some unimportant expressions. Therefore Sy is unstable. Since
solutions of (13) satisfy

limsup 21 (t) < Zaa/s1 and limsup 29(t) < &

t—o00 t—o0

solutions of (12) satisfy
lim sup 21 (¢) < Taa/s1,limsup zs(t) < Taz and limsup p(t) < BTas. (22)

t—o0 t—o0 t—oo

The asymptotic dynamics of system (12) when s1g(m) > 1 are described below.
The proof is similar to the previous proofs and is omitted.

Theorem 3.3. Let s1g(m) > 1 and (z1(t), x2(t), p(t)) be a solution of (12) with
p(0) > 0. Then the following are true.
(a) Solutions of (12) satisfy (22). Moreover, if —BZTas f'(0) < 1 thenlimy_, o p(t) =

0.
(b) Let 1(0) = 0. If 0 < 22(0) < Zo1, then the solution converges to Ey =
(0,0,0). If 22(0) > ZTo1, then lims oo x1(2t) = limyoox2(2t + 1)

= limy .o p(t) = 0 and the solution either converges to Ey or has a boundary
2-cycle S1; as its w-limit set. Let x2(0) = 0. If 0 < 21(0) < ZTg1/s1, then
the solution converges to Fo. If x1(0) > To1/s1, then limy_ o x1(2t + 1) =
limy o0 2(2t) = lim; . p(t) = 0 and the solution either converges to Ey or
has a boundary 2-cycle S1; as its w-limit set.

(¢c) Let 0 < x1(0) < ZTo1/s1. Then limy oo 21(2t) = limg,o0 22(2t 4+ 1)
= limy_oo p(t) = If either 0 < x2(0) < o1 or if x2(0) > To1 and

p(0) > £ (ﬁ)

s122(0
(d) Let z1(0) > To1/s1. If either 0 < x2(0) < a1 or if x2(0) > Tor and

_ T21 . . .
0) > 1 (—), then solutions satisfy lim; .o z1(2t + 1) =

limy oo x2(2t) = tlirgo p(t) = 0 and the solution either converges to FEo or has

then the solution converges to Ejy.

)—A\/R|.O

a boundary 2-cycle S1; as its w-limit set.

4. A host-parasitoid model where density dependence occurs before par-
asitism. In this section we consider a similar host-parasitoid interaction with Allee
effects and age structure in the host. Since it is often difficult to determine when
density dependence really occurs, in contrast to the earlier model (12), we study
the situation when density dependence of the host occurs prior to parasitism. The
model then becomes

z1(t+1) = 22(t)g(22(1)) f (p(t))

xg(t + 1) = slxl(t)

p(t+ 1) 5%2(09(%2( N = f(p(t)))

where g satisfies (H1) and f satisfies (H2)

(23)
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It is clear that solutions of (23) also satisfy inequalities (14) and (15), and system
(23) always has the extinction steady state Fy = (0,0,0), where both populations
cannot survive. We also assume p(0) > 0 for the remainder discussion since (23)
reduces to (1) if p(0) = 0. It is straightforward to show that both populations will
go extinct if the maximal growth rate of the host population, s1¢g(m), is less than
one.

Theorem 4.1. If s1g(m) < 1, then Ey = (0,0,0) is globally asymptotically stable
for system (23).

When s;g(m) = 1, then system (23) has another boundary steady state Ey =
(m/s1,m,0) and one boundary 2-cycle S; given in (17), where the parasitoid pop-
ulation is absent. In this case, solutions of (23) satisfy

limsup z1(¢) < m/sy, limsupz2(t) < m, and limsupp(t) < fm/s;. (24)
t—o00 t—o0 t—o0
We have the following asymptotic behavior for (23) which are similar to that of
system (12) when s;g(m) = 1.

Theorem 4.2. Let s1g(m) = 1 and (x1(t),z2(t),p(t)) be a solution of (23) with
p(0) > 0.

(a) Solutions of (23) satisfy (24). Moreover, if —fmg(m)f'(0) < 1 then
lim; , p(t) = 0.

(b) Assume either x1(0) = 0 or z2(0) = 0. If 21(0) = 0 and 0 < z2(0) < m
or 22(0) = 0 and 0 < x1(0) < m/s1, then the solution converges to Ejy.
Otherwise, limy_,o, p(t) = 0 and the solution either converge to Ey or has the
boundary 2-cycle 81 as its w-limit set.

(¢) Let 0 < 21(0) < m/s;. Then limi_ o 21(2t) = limp oo 22(2t + 1)
= limy_,00 p(t) = 0. In particular, if either 0 < x2(0) < m or if £2(0) > m and

. m
p0)> 1 (o)

the solution either converges to Ey or has 81 as its w-limit set.
(d) Let x1(0) > m/s1. If either 0 < x2(0) < m or if x2(0) > m and p(0) >

>, then the solution converges to Ey. Otherwise,

_1 m . .
—————— ), then lim;_.z1(2t + 1 = limy_ oo 22(2t
51220)g(@(0)) et e 2 (21)

= lim;0o p(t) = 0 and the solution either converges to Ey or has S as

its w-limit set.

When s1g(m) > 1, then in addition to Ey, system (23) has two other boundary
states Ey1; = (Z2i/s1,T2i,0), i = 1,2, and three boundary 2-cycles Sy; (i = 1,2)
and Sy given by (20) and (21), respectively. Local stability analysis of these steady
states and 2-cycles yields that Ej is locally asymptotically stable, E;; is unstable,
E15 is locally asymptotically stable if —BT22g(T22)f'(0) < 1 and unstable if the
inequality is reversed, S11 is unstable, S is stable, and Sy is unstable. Moreover,
solutions of (23) also satisfy

lim sup 21 (¢) < Taa/s1, limsup zo(t) < Tag, limsup p(t) < BTa2/s1. (25)
t—oo t—oo t—oo
The asymptotic dynamics of (23) are similar to system (12) when s;g(m) > 1.
We also omit the proof of the following theorem.

Theorem 4.3. Let s1g(m) > 1 and (z1(t), x2(t), p(t)) be a solution of (23) with
p(0) > 0. Then the following are true.
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(a) Solutions of (23) satisfy (25). Moreover, if —B%229(ZT22)f(0) < 1 then
lim; o p(t) = 0.

(b) Let x1(0) = 0. If 0 < x2(0) < Ta1, then the solution converges to Ey. If
x2(0) > To1, then limy_, oo 21(2t) = limy— 00 22 (2t + 1) = limy—,00 p(t) = 0 and
the solution either converges to Egy or has a boundary 2-cycle Sy; as its w-limit
set. Let x2(0) = 0. If 0 < 21(0) < T91/s1, then the solution converges to Ey.
If £1(0) > To1/s1, then limy_, oo 21 (264+1) = limy— o0 22(2t) = limy—, o, p(t) = 0
and the solution either converges to Eqy or has a boundary 2-cycle S1; as its
w-limat set.

(c) Let 0 < 21(0) < ZTo1/s1. Then limy oo x1(2t) = limy_o0 22(2t + 1)
= limy_oop(t) = 0. If either 0 < x2(0) < Zoy or if x2(0) > Toy and

-1 Z21
PO > 5 (rmeme

wise, the solution will either converge to Ey or has a boundary 2-cycle Sy; as
its w-limit set.
(d) Let x1(0) > Zo1/s1. If either 0 < x2(0) < Toy or if x2(0) > To1 and
_ Z21 ‘ ‘ .
0) > ! (—), then solutions satisfy lim; .o x1(2t + 1) =

limy oo w2(2t) = tlirgo p(t) = 0 and the solution either converges to o or has

, then the solution converges to FEy. Other-

a boundary 2-cycle Sy; as its w-limit set.

5. Numerical simulations. In this section we briefly use numerical examples and
simulations to study models (12) and (23). Let

3
1422

Then g satisfies (H1) with m = 1. A well known example of f follows that of
Poisson distribution as was considered by May et al. [14]:

flx) = e, (27)

where ¢ > 0. Here we use ¢ = 1 for our simulations.

We first let s; = 2/3 and § = 1.5. Then s19(m) =1 and —fmf’(0) = 1.5 > 1.
System (12) has two steady states Ey = (0,0,0) and E; = (1.5,1,0) and a unique
2-cycle §; = {(1.5,0,0),(0,1,0)}. We choose initial condition (x1(0),z2(0),p(0)) =
(5,2,0). Then since z1(0) > m/s; and x2(0) > m, Theorem 2.3 implies that the
solution converges to the steady state £y = (1.5,1,0). The time evolution of the so-

m

a2 (0)g(a20)))
0.47. We then use initial condition (z1(0),z2(0),p(0)) = (5,2,1), where the para-
sitoid population has initial population size larger than 0.47. According to Theorem
3.2(c), the solution will either converge to Ey or S;. Numerical simulations suggest
that the parasitoid population drives the host population to extinction as shown in
Figure 1(b) and as a result the parasitoid population also cannot survive, i.e., the
solution converges to Fy = (0,0, 0).

When we let s1 = 3/4, then s1g(m) > 1, Zo1 = 0.6096 and Zao = 1.6404. Con-
sequently, system (12) has steady states Ey = (0,0,0), E1; = (0.8128,0.6096,0),
Eq9 = (2.1872,1.6404, 0) and boundary 2-cycles 811 = {(0.8128,0,0), (0,0.6096,0)},
S12 = {(2.1872,0,0),(0,1.6404,0)} and Sz, where S; = {(0.8128,1.6404,0),
(2.1872,0.6096,0)}. We choose initial condition (z1(0),22(0), p(0)) = (1,2,0). The

g9(z) (26)

lution is plotted in Figure 1(a). A simple calculation yields f~1(
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solution converges to the steady state F1o = (2.1872,1.6404,0) according to Theo-

rem  2.5(c). This simulation is shown in Figure 1(c). Moreover,

1 €21 . . -

————— ) = 0.6127. As we increase p(0) to 0.2, i.e., we use the ini-
o)) o

tial condition (1,2,0.2), then the solution converges to the boundary 2-cycle S1o =
{(0,1.6404,0), (2.1872,0,0)} as given in Figure 1(d). When we increase p(0) to 2,
then Theorem 3.3(c) implies that the solution will either converge to Ey or has a
boundary 2-cycle Sy; as its w-limit set. Our numerical simulations demonstrate that
both populations become extinct. The same conclusion remains as we vary x1(0),
22(0) and keep p(0) = 2. These plots are not presented here. We also simulate sys-
tem (23) using the above function forms and parameter values. Similar conclusions
are obtained and the simulations are not presented in the manuscript.
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FIGURE 1. (a) and (b) plot solutions of system (12) when s;g(m) =
1 with initial condition (5,2,0) for (a) and (5,2,1) for (b). We
see that the presence of parasitoid population can drive the host
population to extinction. (c) and (d) plot solutions of (12) when
s1g(m) > 1 with initial condition (1,2,0) for (¢) and (1,2,0.2) for
(d). Although the parasitoid does not drive the host to extinction,
the presence of parasitoid population can reduce the host popu-
lation from an equilibrium state to an oscillating state. Here “0”
denotes x1, “.” denotes xa, and “*” denotes the p population.



80 SOPHIA R.-J. JANG

6. Discussion. Allee effects can occur in natural populations because of mating
limitation or lack of cooperative individuals to explore resources efficiently when
population densities are low. See [3] for various biological examples of Allee effects.
Population models without stage structure implicitly assume that individuals within
the population are identical. However, it has been observed that the vital rates of an
individual, such as survival and fertility rates, depend on the stage of an individual.
In this manuscript we proposed and studied a two-stage single species population
model with Allee effects and two models of host-parasitoid interaction with Allee
effects and age structure in the host. The single species model (1) and the first two
species model (12) extend those models considered in an earlier work by the author
[12]. In addition, we also investigated a model of host-parasitoid interaction, system
(23), in which density dependence of the host occurs prior to parasitism.

For the single species two-stage population model, global analysis of its dynami-
cal behavior are obtained. The analysis is given in terms of the threshold, s1g9(m),
which can be regarded as the maximal growth rate of the host population. It is the
maximum number of offsprings that an individual host can reproduce during its life
time. The host population cannot survive if s;g(m) < 1 as illustrated in Theorems
2.1, 3.1 and 4.1. When s1g(m) = 1 and there is no parasitoid present initially, the
host population can survive if its initial population size is beyond the Allee thresh-
old. See results of Theorems 2.2 and 2.3. Our numerical simulations illustrate this
analytical finding. See Figure 1(a). When there is parasitoid population initially,
then the parasitoid population may drive the host population to extinction as given
in Theorems 3.2 and 4.2. Our numerical example presented in Figure 1(b) confirms
this mathematical result. When s;g(m) > 1 and there is no parasitoid population
present, the host population also can persist if its initial population size is beyond
the threshold as presented in Theorems 2.4 and 2.5 and given in Figure 1(c). How-
ever, if parasitoid population is present initially, then the parasitoid population
may overexploit the host population to extinction even if the initial host population
size is large. See Theorems 3.3 and 4.3. Our numerical simulations although not
presented in this manuscript do demonstrate this possibility.

It is usually very difficult if not impossible to determine when intra-specific com-
petition within a population really occurs. For this reason, we also proposed and
studied a model of host-parasitoid interaction in which density dependence oc-
curs prior to parasitism. However, we conclude from this study that such a host-
parasitoid interaction also has the same qualitative behavior as the model when
parasitism occurs before intra-specific competition.

Since Allee effects act primarily in small or sparse populations, they are partic-
ularly vital for the survival of rare, declining, endangered, or fragmented popula-
tions. Therefore, Allee effects play a crucial role in conservation and management
of natural resources. They affect how we can manage populations for suitable ex-
ploitation such as fishing, hunting and harvesting. Our present study suggests that
there is a serious consequence of overexploit our natural resources. The populations
may become extinct due to over-exploitation of the populations to below the Allee
thresholds.
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