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Abstract. We study a stage-structured single species population model with
Allee effects. The asymptotic dynamics of the model depend on the maximal
growth rate of the population as well as on its initial population size. We
also investigate two models of host-parasitoid interaction with stage-structure
and Allee effects in the host. The parasitoid population may drive the host
population to extinction in both models even if the initial host population is
beyond the Allee threshold.

1. Introduction. It has long been recognized that individuals in the population
can be released from the constraints of intraspecific competition when a population
is small or at low density. When population size is larger, negative density depen-
dence takes place due to competition between individuals for resources and space.
Therefore, the per-capita growth rate of the population decreases with increasing
population size in most of the population models.

However, individuals of many species cooperate. They use cooperative strategies
to hunt or to avoid predators. There are many other incidences in which populations
would benefit from a larger population size, such as mating, etc [3]. When there
are too few of individuals in a population, it may be that they will each benefit
from more resources, but in many cases individuals will also suffer from a lack of
conspecifics. The fitness of the population may then be reduced, the lower the
population size, the lower the fitness. Such an effect is called an Allee effect, which
was first proposed by W.C. Allee in the 1930s [1].

Allee effects occur when there is a positive relationship between a component of
fitness and population size or density. The overall of individual fitness is positively
related to population size or density. As a result, the per-capita growth rate of
the population increases as population size increases, at least initially. It follows
from mathematical models of Allee effects that there always exists a population
threshold, the Allee threshold, such that the population will become extinct if initial
population size is below the threshold. As a consequence, Allee effects play a crucial
role in resource management and conservation. In addition, Allee effects have also
been observed in the context of biological control, both to the introduction of the
control agent and also to the extirpation of the pest requiring control [8]. Recently
there is also a surge of interest and need on investigating Allee effects for epidemic
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models [7, 9, 16]. See [2, 4, 5, 6, 7, 10, 11, 12, 13, 15, 17, 18] and references cited
therein for population models of Allee effects.

In this study, we propose a simple stage-structured model of a host species to
study the impact of Allee effects in the population level. We also investigate two
models of host-parasitoid interaction with age structure and Allee effects in the
host. In the first model of host-parasitoid interaction it is assumed that para-
sitism occurs before density dependence. The second model assumes that density
dependence occurs prior to parasitism. The single-species model and the first host-
parasitoid model are generalizations of the previous models studied in [12] where
specific function forms were adopted. We show that there exists a host population
threshold below which both host and parasitoid populations will go extinct. If the
host population size is initially greater than the threshold, then the presence of the
parasitoid may also drive the host population to extinction. The parasiotid may
overexploit the host population below the Allee threshold so that both populations
cannot persist. This result is independent of whether density dependence occurs
before or after parasitism.

In the following section, a single species model is studied. Sections 3 and 4
present models of host-parasitoid interaction and their analysis. We use numerical
examples and simulations to study these systems in Section 5. The final section
provides a brief discussion.

2. Allee effects in a single species population model. Let x1(t) and x2(t)
be the juvenile and adult populations of a host species at time t, respectively,
for t = 0, 1, 2, . . .. It is assumed that only adult population can reproduce with
birth rate g depending only on the adult population size. Moreover, the survival
probability s1, 0 < s1 < 1, from juvenile to adult over one unit of time is assumed
to be independent of time and population size. Under these biological assumptions,
the single species population model is given by







x1(t + 1) = g(x2(t))x2(t)
x2(t + 1) = s1x1(t)
x1(0), x2(0) ≥ 0.

(1)

We assume that the Allee effect is concentrated in the birth rate and make the
following assumptions on the fertility rate g:

(H1) g ∈ C1[0,∞), g(0) = 0, there exists m > 0 such that g′(x) > 0 for 0 ≤ x < m
and g′(x) < 0 for x > m, s1g(∞) < 1, and g(x) > 0, d

dx
(xg(x)) > 0 for x > 0.

System (1) always has a trivial steady state E0 = (0, 0). The x2 component of
an interior steady state must satisfy

1 = s1g(x2). (2)

Therefore (2) has no positive solution if s1g(m) < 1, has a unique positive solution
m if s1g(m) = 1, and has two positive solutions x̄21 and x̄22 with x̄21 < m < x̄22

if s1g(m) > 1. It follows that (1) has no interior equilibrium if s1g(m) < 1, has
a unique interior equilibrium E1 = (m/s1, m) if s1g(m) = 1, and has two interior
equilibria E1i = (x̄2i/s1, x̄2i), i = 1, 2, if s1g(m) > 1. The Jacobin matrix of system
(1) is given by

J =

(

0 g(x2) + g′(x2)x2

s1 0

)

. (3)
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A second iteration of (1) yields the following un-coupled system

x1(t + 2) = s1g(s1x1(t))x1(t)

x2(t + 2) = s1g(x2(t))x2(t).

Therefore 2-cycles of (1) are fixed points of
{

y1(t + 1) = s1g(s1y1(t))y1(t)
y2(t + 1) = s1g(y2(t))y2(t).

(4)

Let F and G be defined by

F (x) = s1g(s1x)x and G(x) = s1g(x)x, (5)

respectively. If s1g(m) < 1 then F and G have no nontrivial fixed points and
consequently (1) has no 2-cycles. Moreover, the population will go extinct as shown
below.

Theorem 2.1. If s1g(m) < 1, then steady state E0 = (0, 0) is globally asymptoti-
cally stable in R

2
+.

Proof. Let (x1(t), x2(t)) be a solution of (1). Since x2(t + 2) ≤ s1g(m)x2(t) for all
t ≥ 0 and s1g(m) < 1, lim

t→∞

x2(t) = 0 and thus lim
t→∞

x1(t) = 0 and E0 is globally

attracting in R
2
+. Moreover, E0 is locally asymptotically stable since the Jacobian

matrix J at E0 is

(

0 0
s1 0

)

. Therefore, E0 is globally asymptotically stable.

Observe that s1g(m) can be regarded as the maximal growth rate of the host
population. The population will become extinct if this maximal growth rate is less
than one. Suppose now s1g(m) = 1. Then (1) has a unique interior steady state

E1 = (m/s1, m) with Jacobian matrix at E1 given by

(

0 g(m)
s1 0

)

. Hence, E1

is non-hyperbolic. The steady states of system (4) are: (0, 0), (m/s1, 0), (0, m) and
(m/s1, m). As a result, system (1) has no interior 2-cycles and there exists a unique
2-cycle on the boundary:

C1 = {(m/s1, 0), (0, m)}. (6)

Moreover, F and G satisfy:

F (x) ≤ x for x ≥ 0, F (x) = x if and only if x = 0, x = m/s1, (7)

and

G(x) ≤ x for x ≥ 0, G(x) = x if and only if x = 0, x = m. (8)

The asymptotic dynamics of (1) restricted on the boundary of R
2
+ when s1g(m) = 1

are given below.

Theorem 2.2. Let s1g(m) = 1 and (x1(t), x2(t)) be a solution of (1) with either
x1(0) > 0, x2(0) = 0 or x1(0) = 0, x2(0) > 0.

(a) Let x2(0) = 0. If 0 < x1(0) < m/s1, then the solution converges to E0 = (0, 0).
If x1(0) ≥ m/s1, then the solution has the 2-cycle C1 as its ω-limit set.

(b) Let x1(0) = 0. If 0 < x2(0) < m, then the solution converges to E0. If
x2(0) ≥ m, then the solution has ω-limit set C1.
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Proof. We only prove (a). Observe that x1(2t + 1) = x2(2t) = 0 and x1(2t) >
0, x2(2t + 1) > 0 for t = 0, 1, . . .. Let 0 < x1(0) < m/s1. It can be easily shown,
using finite mathematical induction, that x1(2t) < m/s1 and x2(2t + 1) < m for
t ≥ 0. Therefore, it follows from (7) and (8), we have for t ≥ 0

x1(2t + 2) = F (x1(2t)) < x1(2t)

and

x2(2t + 3) = G(x2(2t + 1)) < x2(2t + 1).

As a result,

lim
t→∞

x1(2t) = x∗

1 < m/s1 and lim
t→∞

x2(2t + 1) = x∗

2 < m.

System (1) implies

x∗

1 = s1g(x∗

2)x
∗

1.

If x∗

1 6= 0 then x∗

2 = m and we obtain a contradiction. Therefore x∗

1 = x∗

2 = 0 and
the solution converges to E0.

Suppose now x1(0) ≥ m/s1. If x1(0) = m/s1, then x2(1) = m and the result
follows. Assume x1(0) > m/s1. We claim that

x1(2t) > m/s1 and x2(2t + 1) > m for t ≥ 0.

The inequalities are clearly true if t = 0. For t = 1, x1(2) = g(x2(1))x2(1) >
g(m)m = m/s1 by (H1), and x2(3) > m, i.e., the statements hold for t = 1.
Suppose the inequalities are valid for t = k. Then using (H1) it can be shown that
the inequalities also hold for t = k + 1. As a result, we have for t ≥ 0 that

x1(2t + 2) = F (x1(2t)) < x1(2t) and x2(2t + 3) = G(x2(2t + 1)) < x2(2t + 1).

Therefore,

lim
t→∞

x1(2t) = x∗∗

1 ≥ m/s1 and lim
t→∞

x2(2t + 1) = x∗∗

2 ≥ m.

It follows from system (1) that

x∗∗

1 = s1g(x∗∗

2 )x∗∗

1 .

Since x∗∗

1 > 0 we must have x∗∗

1 = m/s1 and x∗∗

2 = m. Therefore, the 2-cycle C1 is
the ω-limit set of the solution.

The asymptotic dynamics of (1) in the interior of R
2
+ when s1g(m) = 1 are given

below.

Theorem 2.3. Let s1g(m) = 1 and (x1(t), x2(t)) be a solution of (1) with x1(0) > 0,
x2(0) > 0.

(a) Let x2(0) < m. If x1(0) < m/s1, then the solution converges to (0, 0). If
x1(0) ≥ m/s1, then the solution has ω-limit set equal the 2-cycle C1.

(b) Let x2(0) ≥ m. If x1(0) < m/s1 then the solution has ω-limit set equal the
boundary 2-cycle C1. If x1(0) ≥ m/s1, then the solution converges to the
interior steady state E1 = (m/s1, m).

Proof. Notice xi(t) > 0 for i = 1, 2 and t = 0, 1, 2, . . .. To prove (a), first assume
x1(0) < m/s1. Then x1(1) = g(x2(0))x2(0) < g(m)m = m/s1 and x2(1) < m.
Suppose x1(k) < m/s1 and x2(k) < m for some k > 1. Then x1(k + 1) =
g(x2(k))x2(k) < g(m)m = m/s1 and x2(k + 1) < m, i.e.,

x1(t) < m/s1 and x2(t) < m for all t ≥ 0.
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It follows that x1(t + 2) = F (x1(t)) < x1(t) and x2(t + 2) = G(x2(t)) < x2(t) for
t ≥ 0. Therefore

lim
t→∞

x1(2t) = x∗

1, lim
t→∞

x1(2t + 1) = x∗∗

1 ,

lim
t→∞

x2(2t) = x∗

2, lim
t→∞

x2(2t + 1) = x∗∗

2

exist with

x∗

1, x
∗∗

1 < m/s1 and x∗

2, x
∗∗

2 < m.

Since x∗∗

1 = s1g(x∗

2)x
∗∗

1 , we must have x∗∗

1 = 0 = x∗

2. Similarly, from x∗

1 =
s1g(x∗∗

2 )x∗

1 we have x∗

1 = x∗∗

2 = 0 and the solution converges to E0.
Suppose x1(0) = m/s1. Then it can be shown that x1(2t) = m/s1, x2(2t + 1) =

m, x1(2t + 1) < m/s1 and x2(2t) < m for t ≥ 0. Since x1(t + 2) = F (x1(t)) ≤ x1(t)
and x2(t + 2) = G(x2(t)) ≤ x2(t) for t ≥ 0, we have

lim
t→∞

x1(2t + 1) = x̂1 < m/s1 and lim
t→∞

x2(2t) = x̂2 < m.

Since x̂1 = s1g(x̂2)x̂1 holds, we must have x̂1 = 0 = x̂2 and the solution has the
boundary 2-cycle C1 as its ω-limit set.

If x1(0) > m/s1, then it can be shown that x1(2t) > m/s1, x2(2t) < m, x1(2t +
1) < m/s1 and x2(2t + 1) > m for all t ≥ 0. Therefore,

lim
t→∞

x1(2t) = x̃1 ≥ m/s1, lim
t→∞

x1(2t + 1) = x̂1 < m/s1,

and

lim
t→∞

x2(2t) = x̃2 < m, lim
t→∞

x2(2t + 1) = x̂2 ≥ m.

Furthermore, since x̃1 = s1g(x̂2)x̃1 and x̃1 > 0, we have x̂2 = m and x̃1 = m/s1.
Similarly, since x̂1 = s1g(x̃2)x̂1 and x̃2 < m, we must have x̂1 = 0 = x̃2 and the
boundary 2-cycle C1 is the ω-limit set of the solution.

To prove (b), first assume x2(0) = m and x1(0) < m/s1. Then x2(2t) =
m, x1(2t) < m/s1, x2(2t + 1) < m and x1(2t + 1) = m/s1 for t ≥ 0. Hence (7)
and (8) imply x1(t + 2) ≤ x1(t) and x2(t + 2) ≤ x2(t) for t ≥ 0. It follows that the
following limits exist

lim
t→∞

x1(2t) = x∗

1 and lim
t→∞

x2(2t + 1) = x∗

2

with

x∗

1 < m/s1 and x∗

2 < m.

We then have x∗

1 = 0 = x∗

2 and the solution has the boundary 2-cycle as its ω-limit
set. Suppose x2(0) > m and x1(0) < m/s1. Then we have x2(2t) > m, x1(2t) <
m/s1, x2(2t + 1) < m and x1(2t + 1) > m/s1 for t ≥ 0. Also, x1(t + 2) < x1(t) and
x2(t + 2) < x2(t) hold for t ≥ 0. Therefore,

lim
t→∞

x1(2t) = x∗

1, lim
t→∞

x1(2t + 1) = x̂1,

lim
t→∞

x2(2t) = x∗

2, lim
t→∞

x2(2t + 1) = x̂2

with

x∗

1 < m/s1, x̂1 ≥ m/s1, x
∗

2 ≥ m and x̂2 < m.

It then follows that x∗

2 = m, x̂1 = m/s1, and x∗

1 = 0 = x̂2. Therefore the solution
also has the boundary 2-cycle C1 as its ω-limit set. Similarly, it can be shown that
the solution converges to E1 if x1(0) ≥ m/s1 and x2(0) ≥ m and the proof is
complete.
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Suppose now s1g(m) > 1. Then system (1) has two interior steady states E11 =
(x̄21/s1, x̄21) and E12 = (x̄22/s1, x̄22), where x̄2i satisfies (2) for i = 1, 2 with
x̄21 < m < x̄22. Let functions F (x) and G(x) be defined in (5). A simple calculation
yields

F (x) < x if x ∈ (0, x̄21/s1) ∪ (x̄22/s1,∞)

F (x) > x if x ∈ (x̄21/s1, x̄22/s1)

and

F (x) = x if x = 0 or x = x̄2i/s1, i = 1, 2.

The same is true for G(x):

G(x) < x if x ∈ (0, x̄21) ∪ (x̄22,∞)

G(x) > x if x ∈ (x̄21, x̄22)

and

G(x) = x if x = 0 or x = x̄2i, i = 1, 2.

Moreover, any 2-cycles of system (1) are fixed points of system (4). It can be
easily seen that (4) has fixed points: (0, 0), (x̄21/s1, x̄22), (x̄22/s1, x̄21), and E1i,
(x̄2i/s1, 0), (0, x̄2i) for i = 1, 2. As a result, (1) has two boundary 2-cycles

C1i = {(x̄2i/s1, 0), (0, x̄2i)}, i = 1, 2 (9)

and a unique interior 2-cycle

C∗ = {(x̄21/s1, x̄22), (x̄22/s1, x̄21)}. (10)

The stability of these interior steady states and the 2-cycles can be easily obtained
using the associated Jacobian matrix. Indeed, the stability of the 2-cycles are
determined by the Jacobian matrix of system (4) evaluated at the components of
the cycle, where the Jacobian matrix of (4) is given by

Ĵ =

(

s1g(s1y1) + s2
1g

′(s1y1)y1 0
0 s1g(y2) + s1g

′(y2)y2

)

. (11)

In particular, at (0, x̄2i) we have Ĵ =

(

0 0
0 1 + s1g

′(x̄2i)x̄2i

)

. Notice that g′(x̄21)>

0, we see that the boundary 2-cycle C11 is unstable. On the other hand, g′(x̄22) <
0 and (H1) implies 0 < 1 + s1x̄22g

′(x̄22) < 1. Therefore, the other boundary

2-cycle C12 is stable. Similarly, Ĵ evaluated at (x̄21/s1, x̄22) is given by
(

1 + s1g
′(x̄21)x̄21 0
0 1 + s1g

′(x̄22)x̄22

)

. It follows that the interior 2-cycle C∗ is

unstable. Furthermore, from the Jacobian matrix J of system (1) evaluated at the
interior steady state E1i we can conclude that E11 is unstable while E12 is locally
asymptotically stable.

Using these observation, the asymptotic dynamics of system (1) restricted on
the boundary of R

2
+ when s1g(m) > 1 can be summarized below. The proofs are

similar to the proofs of previous theorems and are therefore omitted.

Theorem 2.4. Let s1g(m) > 1 and (x1(t), x2(t)) be a solution of (1) with either
x1(0) = 0, x2(0) > 0 or x1(0) > 0, x2(0) = 0.

(a) Let x2(0) = 0. If 0 < x1(0) < x̄21/s1, then the solution converges to E0 =
(0, 0). If x1(0) = x̄21/s1, then the solution is the 2-cycle C11. If x1(0) >
x̄21/s1, then the solution has ω-limit set equal the boundary 2-cycle C12.
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(b) Let x1(0) = 0. If 0 < x2(0) < x̄21, then the solution converges to E0 = (0, 0).
If x2(0) = x̄21, then the solution is the 2-cycle C11. If x2(0) > x̄21, then the
solution has C12 as its ω-limit set.

Similarly, asymptotic dynamics of system (1) restricted to the interior of R
2
+

when s1g(m) > 1 are summarized below without proof.

Theorem 2.5. Let s1g(m) > 1 and (x1(t), x2(t)) be a solution of (1) with x1(0) > 0,
x2(0) > 0. Then the following statements are true.

(a) Let x2(0) < x̄21. If x1(0) < x̄21/s1 then the solution converges to E0 = (0, 0).
If x1(0) = x̄21/s1, then the solution has C11 as its ω-limit set. If x1(0) >
x̄21/s1, then the solution has ω-limit set C12.

(b) Let x2(0) = x̄21. If x1(0) < x̄21/s1, then the solution has ω-limit set C11. If
x1(0) = x̄21/s1, then the solution is E11. If x1(0) > x̄21/s1, then the solution
has the interior 2-cycle C∗ as its ω-limit set.

(c) Let x2(0) > x̄21. If x1(0) < x̄21/s1, then the solution has ω-limit set C12. If
x1(0) = x̄21/s1, then the solution has the interior 2-cycle C∗ as its ω-limit set.
If x1(0) > x̄21/s1, then the solution converges to the interior steady state E12.

3. A host-parasitoid model with Allee effects in the host. In this section
we shall study a model of host-parasitoid interaction. Let p(t) denote the parasitoid
population at time t. An individual parasitoid must find a host to reproduce. Since
the host population is stage-structured, we classify eggs and larvae as juveniles and
pupae and matured host as adults as in [12]. The parasitism is usually assumed to
occur during the pupae stage as discussed in [14] so that individuals of the adult
class in the model may get parasitized. Moreover, it is assumed in this model that
parasitism occurs before density dependence.

Let β be the average number of survived parasitoid that an individual parasitized
adult host can reproduce. Building upon system (1), the interaction between host
and parasitoid is governed by the following system of difference equations:















x1(t + 1) = x2(t)g(x2(t))f(p(t))
x2(t + 1) = s1x1(t)
p(t + 1) = βx2(t)(1 − f(p(t)))
x1(0), x2(0), p(0) ≥ 0,

(12)

where g satisfies the assumptions given in (H1) and f satisfies the following condi-
tions:

(H2) f ∈ C2[0,∞), f(0) = 1, f ′(x) < 0, f ′′(x) ≥ 0 for x ≥ 0, and f(∞) = 0.

Let (x1(t), x2(t), p(t)) be a solution of (12). If p(0) = 0 then p(t) = 0 for t ≥ 1
and (12) reduces to (1). Therefore we assume p(0) > 0 for the reminder of the
discussion. Since x1(t+1) ≤ x2(t)g(x2(t)) holds for t ≥ 0, we consider the following
system







z1(t + 1) = g(z2(t))z2(t)
z2(t + 1) = s1z1(t)
z1(0) = x1(0), z2(0) = x2(0),

(13)

i.e., system (1). Then x1(1) ≤ z2(0)g(z2(0)) = z1(1), x2(1) = z2(1), x1(2) ≤
z2(1)g(z2(1)) = z1(2) and x2(2) ≤ z2(2). Since xg(x) is strictly increasing by (H1),
inductively one can show that

xi(t) ≤ zi(t) for t ≥ 1 and i = 1, 2. (14)
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Inequalities (14) will aid us in understanding the asymptotic dynamics of system
(12). Furthermore, a similar argument shows that

x1(t + 2) ≤ F (x1(t)) and x2(t + 2) ≤ G(x2(t)) (15)

hold for t ≥ 0, where F and G are given in (5).
The Jacobian matrix of (12) is given by





0 (g(x2) + g′(x2)x2)f(p) x2g(x2)f
′(p)

s1 0 0
0 β(1 − f(p)) −βx2f

′(p)



 . (16)

The extinction steady state E0 = (0, 0, 0) always exists for (12). The Jacobian

matrix evaluated at E0 is





0 0 0
s1 0 0
0 0 0



 which implies that E0 is always locally

asymptotically stable. The dynamics of system (12) are discussed separately below
for s1g(m) < 1, s1g(m) = 1 and s1g(m) > 1. When s1g(m) < 1, since (0, 0) is
globally asymptotically stable for (1), it can be easily shown that E0 = (0, 0, 0) is
globally asymptotically stable for (12).

Theorem 3.1. If s1g(m) < 1, then E0 = (0, 0, 0) is globally asymptotically stable
for (12) in R

3
+.

Proof. It follows from (14) and Theorem 2.1 that limt→∞ xi(t) = 0, i = 1, 2, for
any solution (x1(t), x2(t), p(t)) of (12). Hence limt→∞ p(t) = 0, and E0 is glob-
ally attracting. Therefore E0 is globally asymptotically stable since it is locally
asymptotically stable.

Suppose now s1g(m) = 1. Then in addition to E0, (12) has another boundary
steady state E1 = (m/s1, m, 0), where E1 is non-hyperbolic by the Jacobian matrix
given in (16) evaluated at E1. Moreover, (12) has a unique boundary 2-cycle

S1 = {(m/s1, 0, 0), (0, m, 0)} (17)

and there are neither interior steady states nor interior 2-cycles. The boundary 2-
cycle S1 is also non-hyperbolic. By Theorems 2.2 and 2.3, solutions of system (13)
satisfy lim sup

t→∞
z1(t) ≤ m/s1 and lim sup

t→∞
z2(t) ≤ m. As a result, solutions

of (12) satisfy

lim sup
t→∞

x1(t) ≤ m/s1, lim sup
t→∞

x2(t) ≤ m, and lim sup
t→∞

p(t) ≤ βm. (18)

Theorem 3.2. Let s1g(m) = 1 and (x1(t), x2(t), p(t)) be a solution of (12) with
p(0) > 0.

(a) Inequalities (18) hold. Moreover, if −βmf ′(0) < 1 then limt→∞ p(t) = 0.
(b) Let x1(0) = 0. If 0 < x2(0) ≤ m, then the solution converges to E0. If

x2(0) > m, then limt→∞ x1(2t) = limt→∞ x2(2t + 1) = limt→∞ p(t) = 0 and
the solution will either converge to E0 or has the 2-cycle S1 as its ω-limit set.
Let x2(0) = 0. If 0 < x1(0) ≤ m/s1, then the solution converges to E0. If
x1(0) > m/s1, then limt→∞ x1(2t + 1) = limt→∞ x2(2t) = limt→∞ p(t) = 0
and the solution either converges to E0 or has ω-limit set S1.

(c) Let 0 < x1(0) < m/s1. Then limt→∞ x1(2t) = limt→∞ x2(2t + 1)
= limt→∞ p(t) = 0. If 0 < x2(0) ≤ m or if x2(0) > m and p(0) >

f−1

(

m

s1x2(0)g(x2(0))

)

, then the solution converges to E0. Let x1(0) = m/s1.
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If 0 < x2(0) ≤ m then the solution converges to E0. If x2(0) > m, then
limt→∞ x1(2t) = limt→∞ x2(2t+1) = limt→∞ p(t) = 0 and the solution either
converges to E0 or has the 2-cycle S1 as its ω-limit set.

(d) Let x1(0) > m/s1. If either 0 < x2(0) ≤ m, or if x2(0) > m and p(0) >

f−1

(

m

s1x2(0)g(x2(0))

)

, then limt→∞ x1(2t + 1) = limt→∞ x2(2t)

= limt→∞ p(t) = 0 and the solution either converges to E0 or has the 2-cycle
S1 as its ω-limit set.

Proof. (a) It is enough to prove only the second statement. By (18) and the as-
sumption, there exist positive constants ǫ and t0 such that −β(m+ ǫ)f ′(0) < 1 and
x2(t) < m + ǫ for all t ≥ t0. It follows that for t ≥ t0 there exists η > 0 depending
on t such that

p(t + 1) = −βx2(t)f
′(η)p(t) < −β(m + ǫ)f ′(0)p(t),

by (H2). Therefore, limt→∞ p(t) = 0 is shown. The statements in (b) can be shown
similarly as in Theorem 2.2 since there exists a finite t1 > 0 such that p(t) = 0 for
t ≥ t1.

To prove (c), let 0 < x1(0) < m/s1. Then inductively one has x1(2t) < m/s1 and
x2(2t+1) < m for t ≥ 0. Using (15), we see that x1(2t) and x2(2t+1) monotonically
decrease to 0. Therefore, limt→∞ p(2t) = 0 and thus limt→∞ p(2t + 1) = 0, i.e.,
limt→∞ p(t) = 0. It is clear that the solution converges to E0 if 0 < x2(0) ≤ m.
Suppose x2(0) > m. Setting x1(1) = x2(0)g(x2(0))f(p(0)) < m/s1 and solving for
p(0), yields

p(0) > f−1

(

m

s1x2(0)g(x2(0))

)

,

where
m

s1x2(0)g(x2(0))
∈ (0, 1). It follows that x1(t) < m/s1 and x2(t + 1) < m for

all t > 0 and the solution also converges to E0. The remainder of the statements
can be proved similarly as in Theorem 2.3.

Suppose now s1g(m) > 1. The second iteration of system (12) yields the following
system







x1(t + 2) = s1x1(t)g(s1x1(t))f(βx2(t)(1 − f(p(t))))
x2(t + 2) = s1x2(t)g(x2(t))f(p(t))
p(t + 2) = βs1x1(t)(1 − f(βx2(t)(1 − f(p(t))))).

(19)

In addition to E0 = (0, 0, 0), system (12) has two more boundary steady states:

E1i = (x̄2i/s1, x̄2i, 0), i = 1, 2

where x̄21 < m < x̄22 satisfy (2), and three boundary 2-cycles:

S1i = {(x̄2i/s1, 0, 0), (0, x̄2i, 0)}, i = 1, 2 (20)

and

S2 = {(x̄21/s1, x̄22, 0), (x̄22/s1, x̄21, 0)}. (21)

The Jacobian matrix of system (19) evaluated at (x̄2i/s1, 0, 0), a component of
S1i, is given by





1 + s2
1x̄2ig

′(x̄2i) 0 0
0 0 0
0 0 0



 .
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It follows that S11 is unstable and S12 is stable. Similarly, the Jacobian matrix of
(19) evaluated at (x̄21/s1, x̄22, 0), a component of S2, is given by





1 + s1x̄21g
′(x̄21) 0 ∗

0 1 + s1x̄22g
′(x̄22) ∗

0 0 β2x̄21x̄22(f
′(0))2



 ,

where ∗’s denote some unimportant expressions. Therefore S2 is unstable. Since
solutions of (13) satisfy

lim sup
t→∞

z1(t) ≤ x̄22/s1 and lim sup
t→∞

z2(t) ≤ x̄22,

solutions of (12) satisfy

lim sup
t→∞

x1(t) ≤ x̄22/s1, lim sup
t→∞

x2(t) ≤ x̄22 and lim sup
t→∞

p(t) ≤ βx̄22. (22)

The asymptotic dynamics of system (12) when s1g(m) > 1 are described below.
The proof is similar to the previous proofs and is omitted.

Theorem 3.3. Let s1g(m) > 1 and (x1(t), x2(t), p(t)) be a solution of (12) with
p(0) > 0. Then the following are true.

(a) Solutions of (12) satisfy (22). Moreover, if −βx̄22f
′(0) < 1 then limt→∞ p(t) =

0.
(b) Let x1(0) = 0. If 0 < x2(0) ≤ x̄21, then the solution converges to E0 =

(0, 0, 0). If x2(0) > x̄21, then limt→∞ x1(2t) = limt→∞ x2(2t + 1)
= limt→∞ p(t) = 0 and the solution either converges to E0 or has a boundary
2-cycle S1i as its ω-limit set. Let x2(0) = 0. If 0 < x1(0) ≤ x̄21/s1, then
the solution converges to E0. If x1(0) > x̄21/s1, then limt→∞ x1(2t + 1) =
limt→∞ x2(2t) = limt→∞ p(t) = 0 and the solution either converges to E0 or
has a boundary 2-cycle S1i as its ω-limit set.

(c) Let 0 < x1(0) ≤ x̄21/s1. Then limt→∞ x1(2t) = limt→∞ x2(2t + 1)
= limt→∞ p(t) = 0. If either 0 < x2(0) ≤ x̄21 or if x2(0) > x̄21 and

p(0) > f−1

(

x̄21

s1x2(0)g(x2(0))

)

, then the solution converges to E0.

(d) Let x1(0) > x̄21/s1. If either 0 < x2(0) ≤ x̄21 or if x2(0) > x̄21 and

p(0) > f−1

(

x̄21

s1x2(0)g(x2(0))

)

, then solutions satisfy limt→∞ x1(2t + 1) =

limt→∞ x2(2t) = lim
t→∞

p(t) = 0 and the solution either converges to E0 or has

a boundary 2-cycle S1i as its ω-limit set.

4. A host-parasitoid model where density dependence occurs before par-

asitism. In this section we consider a similar host-parasitoid interaction with Allee
effects and age structure in the host. Since it is often difficult to determine when
density dependence really occurs, in contrast to the earlier model (12), we study
the situation when density dependence of the host occurs prior to parasitism. The
model then becomes















x1(t + 1) = x2(t)g(x2(t))f(p(t))
x2(t + 1) = s1x1(t)
p(t + 1) = βx2(t)g(x2(t))(1 − f(p(t)))
x1(0), x2(0), p(0) ≥ 0,

(23)

where g satisfies (H1) and f satisfies (H2).
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It is clear that solutions of (23) also satisfy inequalities (14) and (15), and system
(23) always has the extinction steady state E0 = (0, 0, 0), where both populations
cannot survive. We also assume p(0) > 0 for the remainder discussion since (23)
reduces to (1) if p(0) = 0. It is straightforward to show that both populations will
go extinct if the maximal growth rate of the host population, s1g(m), is less than
one.

Theorem 4.1. If s1g(m) < 1, then E0 = (0, 0, 0) is globally asymptotically stable
for system (23).

When s1g(m) = 1, then system (23) has another boundary steady state E1 =
(m/s1, m, 0) and one boundary 2-cycle S1 given in (17), where the parasitoid pop-
ulation is absent. In this case, solutions of (23) satisfy

lim sup
t→∞

x1(t) ≤ m/s1, lim sup
t→∞

x2(t) ≤ m, and lim sup
t→∞

p(t) ≤ βm/s1. (24)

We have the following asymptotic behavior for (23) which are similar to that of
system (12) when s1g(m) = 1.

Theorem 4.2. Let s1g(m) = 1 and (x1(t), x2(t), p(t)) be a solution of (23) with
p(0) > 0.

(a) Solutions of (23) satisfy (24). Moreover, if −βmg(m)f ′(0) < 1 then
limt→∞ p(t) = 0.

(b) Assume either x1(0) = 0 or x2(0) = 0. If x1(0) = 0 and 0 < x2(0) ≤ m
or x2(0) = 0 and 0 < x1(0) ≤ m/s1, then the solution converges to E0.
Otherwise, limt→∞ p(t) = 0 and the solution either converge to E0 or has the
boundary 2-cycle S1 as its ω-limit set.

(c) Let 0 < x1(0) ≤ m/s1. Then limt→∞ x1(2t) = limt→∞ x2(2t + 1)
= limt→∞ p(t) = 0. In particular, if either 0 < x2(0) ≤ m or if x2(0) > m and

p(0) > f−1

(

m

s1x2(0)g(x2(0))

)

, then the solution converges to E0. Otherwise,

the solution either converges to E0 or has S1 as its ω-limit set.
(d) Let x1(0) > m/s1. If either 0 < x2(0) ≤ m or if x2(0) > m and p(0) >

f−1

(

m

s1x2(0)g(x2(0))

)

, then limt→∞ x1(2t + 1) = limt→∞ x2(2t)

= limt→∞ p(t) = 0 and the solution either converges to E0 or has S1 as
its ω-limit set.

When s1g(m) > 1, then in addition to E0, system (23) has two other boundary
states E1i = (x̄2i/s1, x̄2i, 0), i = 1, 2, and three boundary 2-cycles S1i (i = 1, 2)
and S2 given by (20) and (21), respectively. Local stability analysis of these steady
states and 2-cycles yields that E0 is locally asymptotically stable, E11 is unstable,
E12 is locally asymptotically stable if −βx̄22g(x̄22)f

′(0) < 1 and unstable if the
inequality is reversed, S11 is unstable, S12 is stable, and S2 is unstable. Moreover,
solutions of (23) also satisfy

lim sup
t→∞

x1(t) ≤ x̄22/s1, lim sup
t→∞

x2(t) ≤ x̄22, lim sup
t→∞

p(t) ≤ βx̄22/s1. (25)

The asymptotic dynamics of (23) are similar to system (12) when s1g(m) > 1.
We also omit the proof of the following theorem.

Theorem 4.3. Let s1g(m) > 1 and (x1(t), x2(t), p(t)) be a solution of (23) with
p(0) > 0. Then the following are true.
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(a) Solutions of (23) satisfy (25). Moreover, if −βx̄22g(x̄22)f
′(0) < 1 then

limt→∞ p(t) = 0.
(b) Let x1(0) = 0. If 0 < x2(0) ≤ x̄21, then the solution converges to E0. If

x2(0) > x̄21, then limt→∞ x1(2t) = limt→∞ x2(2t + 1) = limt→∞ p(t) = 0 and
the solution either converges to E0 or has a boundary 2-cycle S1i as its ω-limit
set. Let x2(0) = 0. If 0 < x1(0) ≤ x̄21/s1, then the solution converges to E0.
If x1(0) > x̄21/s1, then limt→∞ x1(2t+1) = limt→∞ x2(2t) = limt→∞ p(t) = 0
and the solution either converges to E0 or has a boundary 2-cycle S1i as its
ω-limit set.

(c) Let 0 < x1(0) ≤ x̄21/s1. Then limt→∞ x1(2t) = limt→∞ x2(2t + 1)
= limt→∞ p(t) = 0. If either 0 < x2(0) ≤ x̄21 or if x2(0) > x̄21 and

p(0) > f−1

(

x̄21

s1x2(0)g(x2(0))

)

, then the solution converges to E0. Other-

wise, the solution will either converge to E0 or has a boundary 2-cycle S1i as
its ω-limit set.

(d) Let x1(0) > x̄21/s1. If either 0 < x2(0) ≤ x̄21 or if x2(0) > x̄21 and

p(0) > f−1

(

x̄21

s1x2(0)g(x2(0))

)

, then solutions satisfy limt→∞ x1(2t + 1) =

limt→∞ x2(2t) = lim
t→∞

p(t) = 0 and the solution either converges to E0 or has

a boundary 2-cycle S1i as its ω-limit set.

5. Numerical simulations. In this section we briefly use numerical examples and
simulations to study models (12) and (23). Let

g(x) =
3x

1 + x2
. (26)

Then g satisfies (H1) with m = 1. A well known example of f follows that of
Poisson distribution as was considered by May et al. [14]:

f(x) = e−cx, (27)

where c > 0. Here we use c = 1 for our simulations.
We first let s1 = 2/3 and β = 1.5. Then s1g(m) = 1 and −βmf ′(0) = 1.5 > 1.

System (12) has two steady states E0 = (0, 0, 0) and E1 = (1.5, 1, 0) and a unique
2-cycle S1 = {(1.5, 0, 0), (0, 1, 0)}. We choose initial condition (x1(0), x2(0), p(0)) =
(5, 2, 0). Then since x1(0) > m/s1 and x2(0) > m, Theorem 2.3 implies that the
solution converges to the steady state E1 = (1.5, 1, 0). The time evolution of the so-

lution is plotted in Figure 1(a). A simple calculation yields f−1(
m

s1x2(0)g(x2(0))
) =

0.47. We then use initial condition (x1(0), x2(0), p(0)) = (5, 2, 1), where the para-
sitoid population has initial population size larger than 0.47. According to Theorem
3.2(c), the solution will either converge to E0 or S1. Numerical simulations suggest
that the parasitoid population drives the host population to extinction as shown in
Figure 1(b) and as a result the parasitoid population also cannot survive, i.e., the
solution converges to E0 = (0, 0, 0).

When we let s1 = 3/4, then s1g(m) > 1, x̄21 = 0.6096 and x̄22 = 1.6404. Con-
sequently, system (12) has steady states E0 = (0, 0, 0), E11 = (0.8128, 0.6096, 0),
E12 = (2.1872, 1.6404, 0) and boundary 2-cycles S11 = {(0.8128, 0, 0), (0, 0.6096, 0)},
S12 = {(2.1872, 0, 0), (0, 1.6404, 0)} and S2, where S2 = {(0.8128, 1.6404, 0),
(2.1872, 0.6096, 0)}. We choose initial condition (x1(0), x2(0), p(0)) = (1, 2, 0). The
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solution converges to the steady state E12 = (2.1872, 1.6404, 0) according to Theo-
rem 2.5(c). This simulation is shown in Figure 1(c). Moreover,

f−1(
x̄21

s1x2(0)g(x2(0))
) = 0.6127. As we increase p(0) to 0.2, i.e., we use the ini-

tial condition (1, 2, 0.2), then the solution converges to the boundary 2-cycle S12 =
{(0, 1.6404, 0), (2.1872, 0, 0)} as given in Figure 1(d). When we increase p(0) to 2,
then Theorem 3.3(c) implies that the solution will either converge to E0 or has a
boundary 2-cycle S1i as its ω-limit set. Our numerical simulations demonstrate that
both populations become extinct. The same conclusion remains as we vary x1(0),
x2(0) and keep p(0) = 2. These plots are not presented here. We also simulate sys-
tem (23) using the above function forms and parameter values. Similar conclusions
are obtained and the simulations are not presented in the manuscript.
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Figure 1. (a) and (b) plot solutions of system (12) when s1g(m) =
1 with initial condition (5, 2, 0) for (a) and (5, 2, 1) for (b). We
see that the presence of parasitoid population can drive the host
population to extinction. (c) and (d) plot solutions of (12) when
s1g(m) > 1 with initial condition (1, 2, 0) for (c) and (1, 2, 0.2) for
(d). Although the parasitoid does not drive the host to extinction,
the presence of parasitoid population can reduce the host popu-
lation from an equilibrium state to an oscillating state. Here “o”
denotes x1, “.” denotes x2, and “*” denotes the p population.
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6. Discussion. Allee effects can occur in natural populations because of mating
limitation or lack of cooperative individuals to explore resources efficiently when
population densities are low. See [3] for various biological examples of Allee effects.
Population models without stage structure implicitly assume that individuals within
the population are identical. However, it has been observed that the vital rates of an
individual, such as survival and fertility rates, depend on the stage of an individual.
In this manuscript we proposed and studied a two-stage single species population
model with Allee effects and two models of host-parasitoid interaction with Allee
effects and age structure in the host. The single species model (1) and the first two
species model (12) extend those models considered in an earlier work by the author
[12]. In addition, we also investigated a model of host-parasitoid interaction, system
(23), in which density dependence of the host occurs prior to parasitism.

For the single species two-stage population model, global analysis of its dynami-
cal behavior are obtained. The analysis is given in terms of the threshold, s1g(m),
which can be regarded as the maximal growth rate of the host population. It is the
maximum number of offsprings that an individual host can reproduce during its life
time. The host population cannot survive if s1g(m) < 1 as illustrated in Theorems
2.1, 3.1 and 4.1. When s1g(m) = 1 and there is no parasitoid present initially, the
host population can survive if its initial population size is beyond the Allee thresh-
old. See results of Theorems 2.2 and 2.3. Our numerical simulations illustrate this
analytical finding. See Figure 1(a). When there is parasitoid population initially,
then the parasitoid population may drive the host population to extinction as given
in Theorems 3.2 and 4.2. Our numerical example presented in Figure 1(b) confirms
this mathematical result. When s1g(m) > 1 and there is no parasitoid population
present, the host population also can persist if its initial population size is beyond
the threshold as presented in Theorems 2.4 and 2.5 and given in Figure 1(c). How-
ever, if parasitoid population is present initially, then the parasitoid population
may overexploit the host population to extinction even if the initial host population
size is large. See Theorems 3.3 and 4.3. Our numerical simulations although not
presented in this manuscript do demonstrate this possibility.

It is usually very difficult if not impossible to determine when intra-specific com-
petition within a population really occurs. For this reason, we also proposed and
studied a model of host-parasitoid interaction in which density dependence oc-
curs prior to parasitism. However, we conclude from this study that such a host-
parasitoid interaction also has the same qualitative behavior as the model when
parasitism occurs before intra-specific competition.

Since Allee effects act primarily in small or sparse populations, they are partic-
ularly vital for the survival of rare, declining, endangered, or fragmented popula-
tions. Therefore, Allee effects play a crucial role in conservation and management
of natural resources. They affect how we can manage populations for suitable ex-
ploitation such as fishing, hunting and harvesting. Our present study suggests that
there is a serious consequence of overexploit our natural resources. The populations
may become extinct due to over-exploitation of the populations to below the Allee
thresholds.
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