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ABSTRACT. Traditional functional responses for plant-herbivore interactions
do not take into account explicitly the effect of plant toxin. However, consid-
erable evidence suggests that toxins set upper limits on food intake for many
species of herbivorous vertebrates. In this paper, a mathematical model for
plant-herbivore interactions mediated by toxin-determined functional response
is studied. The model consists of three ordinary differential equations describ-
ing one herbivore population and two plant species with different toxicity levels.
The effect of plant toxicity on herbivore’s intake rate is incorporated explicitly
in the model by assuming an increased handling time. The dynamical behav-
iors of the model are analyzed and the results are used to examine the influence
of toxin-determined intake in the community composition of plant species. The
bifurcation analysis presented in this paper suggests that the toxin-mediated
functional response may have dramatic effects on plant-herbivore interactions.

1. Introduction. Over the past two decades, ecologists have focused intensively
on chemically mediated plant-herbivore interactions [5, 10, 13, 18], and suggested
that plant toxins play an important role in regulating herbivore’s consumption of
the plant [11, 12, 17, 18, 19]. Specific examples and more detailed discussions about
the importance of plant toxins as determinants of herbivore functional response
can be found in [16]. Although the impact of toxins on herbivores’ diet has been
emphasized in a great deal of research, it is frequently ignored in plant-herbivore
models (e.g., [1, 8, 9, 15]). In [6], we constructed a toxin-determined functional
response model (referred to as TDRFM) that explicitly incorporates the effect of
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toxicity on herbivore browsing. More specifically, in the case of a single plant species
with density N, the toxin-determined functional response C'(N) has the form

_ af(N)
C(N) = FV) (1 - 22=2). &)
The function f(N) is the Holling Type 2 functional response given by
eN
F(N) = 1+ heN’ (2)

where e is the rate of encounter per unit of plant and & is the handling time per
unit of plant in the absence of toxin. G is the toxin-adjusted maximal amount of
plant an herbivore can ingest per unit time. It is assumed that G < 1/h as 1/h is
the maximum intake rate in the absence of toxins. The constraint 0 < C(N) < G
requires that « = 1/4 and 1/(4h) < G < 1/h. In the functional response C'(NNV), the
reduction of consumption due to toxins is modeled with the factor 1 — f(N)/(4G),
which is between 0 and 1. The quantity f(N)/(4G) represents a measure of how fast
the herbivore is taking up a toxicant compared to the maximal rate of uptake that
it can tolerate, which determines how much the maximal consumption is reduced
due to toxicity.

The model studied in [6] is a three-dimensional system of ordinary differential
equations with one herbivore population and two plant species, N1 and Ny. The
herbivore’s functional response to the density of plant species ¢ (i = 1,2) is de-
scribed by C;(Np, N3), which is an extension of C(N) given in (1). The system
exhibits much more complex dynamical behaviors than a similar system in which
the Holling type 2 response is used. For the model studied in [6], due to the high
nonlinearity introduced by the toxin-determined response C;(N7, N2), the results on
Hopf and period-doubling bifurcations are obtained numerically. A reduced system
with one herbivore and one plant species was considered in [2] and [7], in which
both analytical and numerical results are provided. In [3], we used data on primary
succession in the Alaska Bonanza Creek LTER to estimate model parameters and
illustrated that the TDFRM very accurately simulated changes in community com-
position, whereas the corresponding model with Holling type II response could not
be fit reasonably to the data.

In the functional response C'(N) given in (1), the effect of plant toxin on reducing
herbivore’s ingestion rate as the intake amount increases is modeled by using the
factor 1 — af(N)/G. To explore whether the new dynamics in the TDFRM are
dependent on the particular functional form used to incorporate plant toxins, we
consider in this paper an alternative form of the toxin-mediated functional response.
In the new response, the effect of toxins is modeled as a direct increase in the
handling time. We investigate how the different assumptions may affect model
outcomes. As in [6], the model considered in this paper is a three-dimensional
system with one herbivore population and two plant species that have different levels
of toxicity. Stability and bifurcation of the system will be studied both analytically
and numerically, and the results will be used to examine the role of toxin-determined
functional response in plant-herbivore dynamics.

The paper is organized as the follows: in Section 2, we introduce the new toxin-
determined functional response and the corresponding model, Sections 3 and 4
consider the boundary and interior equilibria, respectively, and stability and bifur-
cation analysis are presented with threshold conditions formulated using biologically
relevant parameters. The results are discussed in Section 5.
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2. The model. The toxin-determined functional response defined in (1) implies
that the effect of plant toxins on an herbivore is a reduced growth rate when the
ingested toxins exceeds the maximum tolerable amount. This is reflected by the
factor 1 — f(N)/4G which is a part of the herbivore’s growth rate. A more specific
effect of the toxicant can be viewed as purely a slowdown in feeding rate. Studies
have shown that toxins control herbivory by satiating the herbivory’s detoxification
system. When fed with plants containing toxins, the herbivore has to detoxify food
in order to avoid harm from toxins, so the rate of digestion may be slower and more
handling time is needed as a consequence.

Let h,e,G, and N be as defined in the previous section. Assume that in the
presence of plant toxins, the toxin-adjusted handling time, denoted by iL, is an
increasing function of the plant amount encountered per unit of time, eN, and
tends to infinity when eN approaches a maximal value determined by G. Under
this assumption, the effective consumption rate becomes zero when the maximum
amount of toxin allowed to ingest is reached. More specifically, the toxin-adjusted
handling time A (N) is defined by

h
. ———, aeN <G;
h(N)={ 1-aeN/G (3)
o0, aeN > G,
where the constant « is a scaling parameter (to be chosen so that the corresponding

functional response has the appropriate maximum).
The toxin-determined functional response g(N) is:

eN
g(N) = —————.
14+ h(N)eN
Replacing h(N) by the expression in (3) we can rewrite g(N) as
eN(G — aeN)
, N < G;
g(N) = G — aeN + heNG e (4)
0, aeN > G.

Clearly, the function g(N) is a modification of the Holling Type 2 response f(N)
(see (2)) with the constant handling time h replaced by the density dependent
handling time fL(N ). However, the two functions have very different properties.
For example, f(N) is an increasing function of N whereas g(NN) first increases to a
maximum at

G
Np = ————r, 5

e(VahG + a) (5)
and then decreases to and remains at zero (see Fig. 1). Fig. 1 shows the case of
N,, < K, in which the maximum value of the response function is

G
9(Nm) = ————.
(Va+vhG)

In order for g(N) to have G as its maximum value, i.e., g(Ny,) = G, we need to
choose a to be

a=(1-VhG)>. (6)
In the case when N, > K, g(N) is a monotone increasing function for N in the
biologically feasible range, 0 < N < K. A more biologically reasonable scenario
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is when K is much larger than N,,. Thus, in the remainder of this paper, we will
focus on the case of N, < K.

The functional response given in (4) can be extended to the case of two plant
species. Let N; denote the densities of plant species i (i = 1,2). Let h;,e;, Gi,
denote the corresponding parameters for species ¢ (i = 1,2). Then the per-capita
consumption rate of herbivores on plant 7 is

eiNi
9i(N1, N2) = 1+ h1(N1)er Ny 4 ha(Ng)eaNo

0, otherwise,

, if aieN; < Gy i=1,2

(7)
where hi(Ny) and h2(N3) have the similar form as A(N) in (3) and are given by

hi
hi(N;) = { 1 —uieiNi/Gi’
O, if ozl-el-Ni Z Gi, 1= 1,2,

if a;e;N; < Gi;

and «; has the similar form as « in (6)

Q; = (1 -V hlGl)2 (8)

Let N = (N, N2) denote the vector of the plant densities. The model with the
functional response given in (7) reads

dN N1+ N-
R (e R Ie)
dNy Ny + B21NV;

— e e ) 9
7 T2N2(1 e ) Pga(N) (9)
dP
T = P(BionN)+ Bago(N) - D).

P = P(t) denotes the density of herbivore at time ¢; r; and K; denote the intrinsic
per capita growth rate and the carrying capacity of plant species i, respectively; 3;;
represents the competition intensity of plant species j on plant species i; B; is the
conversion coeflicient of consumed plant species i to the biomass of the herbivore;
and D denotes the per capita death rate of herbivores. it is clear that if the initial
plant density N;(0) < Kj, then N;(t) < K; for all 0 < ¢ < co and i = 1,2. Thus,
we will restrict our attention to the region in which N; < K; for i = 1, 2.

We remark that the system (9) has the same structure as the model studied
in [6], with the only difference being that the response function C;(N) is replaced
by ¢;(N) (i = 1,2). Gleeson and Wilson studied a system of one consumer and
two resources with the standard Holling type II functional response and the Lotka-
Volterra competition (see [4]). They show that an interior equilibrium (coexistence
both plants and herbivore) exists, and it can be either stable or unstable. Similar to
the case of one plant and one herbivore, when the interior equilibrium is unstable, a
stable periodic solution may exist. More results on other consumer-resource models
involving one herbivore and two plant species are discussed in [14]. However, none
of these models consider explicitly the effect of toxin. It has been shown for the
case of one herbivore and one plant species that systems with the Holling type II
response and the toxin-determined functional response (1) can have very different
dynamics (see [2, 7]).
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3. Boundary equilibria. In this section, we derive conditions for the existence
and stability of boundary equilibria of the system (9).

3.1. Existence of boundary equilibria. The system (9) has eight possible bound-
ary equilibria. The first type of boundary equilibria are those at which herbivore is
absent, i.e., P = 0, with either one or two plant species being present. There are
four boundary equilibria of this type:

Eo = (0,0,0), FE;=(K;,0,0), E;=(0,K5,0), E=(Ni,Ns,0), (10)
where
Ky —BioKs o Ko — K

1 —B12f1 2T 1 Buafar
The properties of these equilibria (existence and stability) are very similar to those
of the Lotka-Volterra system, except that some of conditions may depend on pa-
rameters related to the herbivore.
Ey, E1, and E, always exist. F exists if and only if

Ny =

B21K1 B2 Ko

Pl qgnq 2282 11

K M TR S (11)
o B K oK.
21431 12432

1 and 1. 12

K M TR (12)

The second type of boundary equilibria are those at which P > 0, with only one
plant species being present. Note that in the model the herbivore cannot survive if
there is no plant. There are also four equilibria of this type:

B* = (N£,0,P%), B5 = (0,N,", P), (13)
with
Ni B 3161 + D(a1 — hlel) + \/[3161 + D(a1 — hlel)]2 — 4Blela1D
! o 231616L1 ’
_ . N\ By
PE = rN(1-=—L )=
1 1( Kl ) D )
(14)
N + B Bgez + D(GQ — hgeg) + \/[3262 + D(GQ — hgeg)P — 4Bg€2a2D
2 o 2BQ€26L2 ’
At
3 5 Ny \ By
Pt = rNo(1-— =
r2 2( KQ ) D7
where
a; = aiei/Gi. (15)

The existence conditions of these equilibria can be formulated using the biologi-
cally meaningful quantities

w; = BZGl — D7 1= 1, 2, (16)
and
WK1 :Blgl(Kl,O)—D, WEK?2 :BQQQ(O,KQ)—D,
(17)
w = B1g1(N1, N2) + Baga(N1, Na) — D.
Notice that B;G; represents the maximum energy gain (or the density of new her-
bivore) per unit of time when only plant species ¢ is present, and D is the energy
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loss per unit of time of the herbivore. Thus, w; = B;G; — D represents the mazi-
mum fitness of herbivore when only plant species i is present (¢ = 1,2). Similarly,
B1g1(K1,0) is herbivore’s energy gain per unit of time when plant species 1 is at
its maximum density K7 while plant 2 is absent; and thus, wg represents the
herbivore’s fitness when (N1, No) = (K7,0). Moreover, wgo is the herbivore’s
fitness when (N1, N2) = (0, K3), and @ represents the herbivore’s fitness when
(N1, No) = (N1, Na).

Note that the functions g1 (N1, 0) and g2(0, N2) achieve their respective maximum
values at N; = N,,,, with

N, :ﬁ i=1,2, (18)
and
Jimaz = 91(N1m,0) = G1,  g2maz = 92(0, Namm) = Ga. (19)
Since ¢1(K1,0) < Gy and g2(0, K2) < Ga, we have
Wi < w;. (20)

The existence results below suggest that for the herbivore to be able to survive on
only plant species 4, its maximum fitness w; must be positive.

Theorem 3.1. Let w; and wk; be as defined in (16) and (17).

(i) E does not exist if wy < 0 (i.e., the herbivore’s mazimum fitness when only
species 1 is present is negative). E does not exist if wa < 0 (i.e., the herbivore’s
mazximum fitness when only species 2 is present is negative).

(ii) Both E* and E~ exist when wir < 0 < wq, with EY = E~ if wy = 0. If
wgy > 0, then E~ exists but ET does not.

(#i) Both Et and E= exist when wis < 0 < wo, with BT = E~ if wy = 0. If
wgo > 0, then E~ emists but Et does not.

Proof. We provide the proof only for the existence of E. The proof for E follows
the same argument. The components of E = (Ny,0, P) can be calculated by solving

the equations:
B191(N1,0) = Du

N- 21
TlNl(l—Fi) :Pgl(Nl,O). ( )

The first equation in (21) suggests that N; can be determined graphically by the
intersection point(s) of the two curves y = Byg(N1,0) and y = D (see Fig. 2). P
can be obtained easily from the second equation in (21) for a given Ni > 0.

For Part (i), it is clear from Fig. 2 that, there is no intersection if D > B1G1,
which is equivalent to w; < 0 (see Fig. 2 (a)). Thus, E does not exist in this case.

For Part (ii), notice that if Gy and By are fixed, as D decreases (so w; increases),
the line y = D intersects the curve y = Bjgi(N1,0) at one point (N; = N;°)
when D = B;G; (or w; = 0, see Fig. 2 (b)), and two points (N, < N;) when
Bi1g1(K1,0) < D < B1G; (or wgy < 0 < wy, see Fig. 2 (c)). Thus, there is a
unique F when wy = 0 and two equilibria E* when wr1 < 0 < wy. As D continues
to decrease such that D < Byg1(K71,0) (or w1 > 0), Nfr increases and exceeds K

(see Fig. 2 (d)). Thus, E~ exists but E* does not.
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Similar arguments can be used to prove Part (iii) for the existence of E*, which
is omitted here. This completes the proof of the theorem. O

3.2. Stability of boundary equilibria. We first consider the stability of the four
equilibria listed in (10). Results for these equilibria are summarized in the following
theorem.

Theorem 3.2. Let wy; be as defined in (17). Then
(a) Ey is always unstable;

(b) Ey is locally asymptotically stable (l.a.s.) if
Pr2 K.

(¢) Es is l.a.s. zf% > 1 and wio < 0;
1

(d) E is la.s. if the conditions in (11) hold and w < 0.

Bo1 K
Ky

> 1 and wiy < 0;

This theorem can be easily proved by looking at the eigenvalues of the cor-
responding Jacobian matrices. We remark that the stability conditions are very
similar to those of Lotka-Volterra system for two competing species (in the absence
of herbivore). The additional condition, wg; < 0, implies that the herbivore will
go extinct due to the negative fitness. The condition 5;;K;/K; > 1(< 1) implies
a strong (weak) competition pressure from plant species j on ¢. Thus, the results
suggest that in the absence of herbivore, a plant species will go extinct if there is
a strong competition from the other species. As will be shown in the next section,
these results may change in the presence of herbivore and when the influence of
plant toxicity is sufficiently high.

To formulate the stability conditions for the second set of boundary equilibria
listed in (13), besides w; and wg;, we will also use the plant growth rate r; to
describe the threshold conditions for stability. For ease of presentation, we assume
throughout this section that the following conditions hold

G; < hi, Nim < K;, e, K; < Gi, 1 =1,2. (22)
Recall that the first condition implies that the maximum intake rate G; of plant
i is lower than 1/h; which is the maximum intake rate in the absence of toxins
(i = 1,2). The second condition implies that the plant density N;, at which
the herbivore achieves the maximum intake rate (G;) is to the left of Kj, so that
the curves g1(N1,0) and g2(0, N2) are not monotone on the intervals (0, K;) and
(0, K3) respectively (see Section 5 for a discussion about the case Nj,, > K;). The
third condition implies the toxin-adjusted handling time ﬁi(Ni) is finite for all plant
density N; < K;, which in turn implies that g1(N7,0) > 0 and g2(0, N2) > 0 for
all N; < K;, i =1,2 (see (7)). The stability results of the equilibria E* are given
below.
Theorem 3.3. Let

B21 K1 1

1 d G —. 23
i, <l, an 1<4h1 (23)

(a) The equilibrium E% is always unstable;

~ r
(b) There exist constants o1. > 0 and wy. > 0, such that E~ is l.a.s. if N O1c
T2

wy >0,

o 1
and wy > wie, and unstable if either — < o1, or wy < Wie;
T2
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r
(¢c) When LIS 01¢, a Hopf bifurcation occurs at wy = wi., and stabile periodic
T2

solutions exist for wy near wi. and w; < wie.

Proof. The Jacobian matrix at the equilibrium point E* is

i 0 by =
JE=(by by x|,
0 0 bf
where
bt = P, 20 (N o)
! ON, L
bg: = _gl(Nlivo)a
2Ni ~ 891 ~
[ 1— =L ) - pE=(NF 0
3 T1< K1> (9N1( 1 )7
5211\71jE ~i392 <t
b = 1-=L1 ) - pE_Z=(N
4 TQ( Ko 8N2( 1)0)7

and the other two entries have no effect on the stability of the equilibrium, which

Wy

are denoted by an “x”.
The matrix J* has one eigenvalue bff and two other eigenvalues are the same as

that of the matrix
~ 0 bt
+ 1
= ot):

Thus, B is La.s. if
biby <0, by <0, and b <O. (24)

N N Y
Notice that P > 0, g1(N;",0) > 0, and %(NT,O) < 0, we have
1

. . Oar  ~
bib} = _P+Blgl(N1+,o)a—]%11(Nl+,0) > 0.
This shows that ET is always unstable, and part (a) is proved.

Next, we consider the stability of £~. The Jacobian matrix J~ has one eigen-
value by , which may correspond to one set of condition, and two other eigenvalues
determined by the matrix M ~, which will correspond to another set of conditions.
Substitution of

_ - Ny 1
P rlNl( - _1> L (25)
K1 ) g1(N7,0)

in by yields

- 6211\71_ ries Nl_
by =12 (1 o 1 i) (26)
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Let

Olc =

(27)

where N, is given in (14) and is independent of 7; and 7. Then from (26) and

(27),

by <0 <= :—: > o1 (28)

Since ﬁgle/Kg < f21K1/Ks < 1 (assumption) and N{ < K;, we know that
o1 > 0.

For the product by by, because P~ >0, gl(Nf,O) > 0, and g—ifll(Nf,O) > 0,
then we have

. . da1  ~
byby = —P~ Bigi(N;,0)=2 (N}, 0) < 0. (29)
0Ny
We now examine the sign of b; . Substituting the expression in (25) for P~ in
by we get

by = b5 (Ny) = (N, )F(Ny), (30)
where Ny is given in (14), and the functions ) and F are given by
r1 N ai — hie;
Np) = ,
P(N1) I—aN )2+ heN(l—aNy) K, (31)
h161K1 -1

F(N{) = —a;N? + 2N .
(N1) = —a1 N{ + 2N, + o e

From (8), (15), and the assumption G; < 1/(4h;) we have
a1 — hiep = e—l(al — hlGl) = i(1 -2 hlGl) >0, (32)
G1 CTYI
and from (15) and (22) we know that for N3 < Ny, < K7,
1
l—aNi>1—a1 Ky = G_(Gl_alelKl) > 0. (33)
1

The inequalities (32) and (33) imply that ¢(N1) > 0 for Ny < Ny,,. Thus, from
(30) we know that the two functions by (N; ) and F(N; ) have the same sign and
same zeros.

We now examine the possibility that F(N;) has a zero for some N; = N, . Since
a1 —hie; > 0and hie1 K3 —1 < a1 K3 — 1 <0 (see (32) and (33)), we have

hlelKl -1
F(0)= p—— < 0.

As ay > 0, the curve of F(Ny) is a parabola with its maximum at Nip = 1/a;.
Note that aje; N1y, < Gy, ie, Ny < Gl/alel = 1/&1. Thus, N1, < Nig, which
implies that F'(N7) increases monotonically for Ny € (0, Ni,,) (see Fig. 3). Using
the expression in (18) for Ny, we get

h161K1 1 2N1m
ayp — h161 Kl '

From hier < a; and a1 K7 < 1 (see (32) and (33)), we have

F(Nyp) =
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2 1
- @ @@ > N
a1 + Vhieiay ai

It follows that F(Ni,,) > 0. Therefore, there exists a unique Ny € (0, Ni,,) such
that

2N1y = > K;.

F(N7) =0, and ngF >0 for Ny € (0, N1,,) (34)
1

(see Fig. 3). In fact, Ni can be solved explicitly:

« 1 1 hlel(l —alKl)
Ni" = — ——4 [—— -7 35
! a1 ay (&1 - h1€1) ( )

It remains to show that Ny is a solution of the equation
Blgl(Nla O) =D (36)

(so that it is the component of E’_) corresponding to a critical value wi.. Recall
that w; = B1G1 — D is the herbivore’s maximum fitness and has been chosen to be
the bifurcation parameter (assuming that By and G; are fixed so that w; varies as
D varies).

In order to use the above identified N to define a threshold value wi., we first
show that N, is a monotonically decreasing function of w;. Notice that N, is
the intersection point of the curves y = B1¢1(IN1,0) and y = D on the left of Ny,
(see Fig. 3), and that Bygi(N1,0) is a monotone function of Ny on (0, Ny,,). It is
clear from Fig. 3 that for each D € (0, B;G1), a unique N; can be solved from the
equation (36), which will define a monotone increasing function N;” = Ny (D). The
monotonicity also implies that there exist a D* € (0, ByG1) such that N; (D*) =
N*. Since D = D(wy) = B1G1 — w; is a strictly decreasing function of w; on
(0, B1G1), we know that

Ny (w1) = Ny (D(w1)) (37)
defines a monotone decreasing function of w; on (0, ByG;) with range (0, Ni,,).
As N € (0,Nyy,), from the Intermediate Value Theorem, there exists a wi. €
(0, B1G1) such that

Ny (wie) = Ny (38)
Moreover,
ON[

s <0 for 0 <w; < B1Gy. (39)

Since by (N; (w1)) and F(N; (w1)) have the same sign and same zeros, from (34)
and (37)—(39) we know that

<0 for wy > wie,
by =4 =0 forw =wi, (40)
>0 for w; < wie.

It follows that E~ is La.s. if ri/ra > o1, and w; > wi., and unstable if either
r1/re < o1 Or wy < wie. It is easy to check that wi. > 0 as

we1 = B1G1 — D* = B1G1 — B1g1(Ny,0) = B1(G1 — g1(N7,0))
and g1(Ny,0) < G1. This completes the proof of part (b).
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For Part (c), notice that the Jacobian matrix J~ at F~ has one negative eigen-
value b, and two other eigenvalues given by

by £/ (b3 )% +4b] by
A= :
2
From (29) we have b7b; < 0. Notice from (40) that by (wi.) = 0. Thus, as a
function of wy, A(wy) is pure imaginary at wy = wy.. That is,
by (wic)
2

Since N (wie) = N (see (38)) and F(N7) = 0 (see (34)), using these facts and
the expression for by = b3 (N (w1)) (see (30)) we have

(41)

R(A(wie)) = =0, S(A(wi) = £/ ~bby #0.

OR ob; ONT
811(:) W]=W1e¢ - %(8]%31 N;:N*) ( (9]1\1]}11 ’wlzwlc)
1 OF ON-~ “2)
_ 5Huv;v(W N;:N*)( o)

where .
ay — hie; 1Ny

Kl (1—@1N1*)2+h1€1N1*(1—alNl*)'
From (32) and (33) we have H(N*) > 0. Since F(N;) increases with N, and Ny
decreases with wq, we know that

H(NY) =

oF ON_
T’ 3 >0, <0.
ONy INy =N~ owy lwi=wi.
OR(N)
It follows from (42) that ——= < 0. Thus, as w1 decreases and passes w1,
W1 lwi=wic

the equilibrium E- changes from stable to unstable, and stable periodic solutions
exist for w; < wi. and near wi.. Therefore, there exists a Hopf bifurcation at the
point w; = wy,, and stable periodic solutions exist for wy near wj, with w; < wy,.

This completes the proof. O

The stability of E’{E are stated in the following Theorem, which can be proved in
a similar way as for E*.

B2 Ko 1
1 d G S
K, o amebrs e

(a) The equilibrium E* is always unstable;

Theorem 3.4. Let wy > 0,

~ r
(b) There exist constants oac > 0 and wae > 0, such that E~ is La.s. if 2 O2¢
1

o T2
and wy > wae, and unstable if either — < g9, or wy < Wae;
1

(¢) When :—2 > 09c, a supercritical Hopf bifurcation occurs at wg = wac.
1
We remark that the sets of stability conditions (see, for example, (23)) identified
in this section are sufficient but not necessary. There are other scenarios in which
the equilibria £~ and E- may be stable. Nonetheless, these results provide useful
insights into the role of plant toxicity in the composition of plant community. For
example, the condition B2;K;/Ks < 1 in (23) implies that plant species 1 is a
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weaker competitor and cannot excluded plant species 2 in the absence of herbivore
(independent of their growth rates). However, Theorem 3.3 suggests that in the
presence of herbivore, if plant 1 has a relatively high growth rate (r1/r2 > 01.) and
higher toxicity (smaller G value, see (23)), then it is possible for plant 1 to exclude
plant 2 (as £~ is La.s.).

4. Interior equilibrium. Due to the non-linearity of g;(N1, N2) (i = 1,2), it is
not easy to analyze the existence and stability of interior equilibria under general
conditions. In this section, we identify specific regions in the parameter space
in which an interior equilibrium exists. Most of the conditions are motivated by
biological consideration. We provide analytical results for the existence of an interior
equilibrium and use numerical simulations to explore possible stability scenarios and
bifurcations.

4.1. Existence of an interior equilibrium. Let E* = (P*, Ny, N;) denote an
interior equilibrium of the system (9), i.e., all components of E* are positive. Then
N7 and N3 satisfy the equations:

hie; N hoes N
BlelNl+BzegN2—D(1+ 1e1Vy 2€2/N2 ) _—

1—G1N1 1—@2N2

7‘_1<1_N1 +512N2> _Q(l_Nz-i-ﬁle) _o. (43)

el Ky €2 Ky

It is clear that N/ is a solution of a cubic equation. Thus, it is very difficult to
obtain a general existence condition. In the following result, we consider a specific
set of conditions under which an interior equilibrium exists.
As coexistence is more likely when boundary equilibria are unstable, we assume
that
wg; >0, 1=1,2, (44)

in this case £ and Fy are both unstable (see Theorem 3.2), and that the conditions
in (11) and (12) do not hold, in which case E is unstable. One of the possibilities

for this is
P21 K1 <1 and P12 Ko
Ky K,
The conditions in (45) also implies that plant species 1 is a weaker competitor than
species 2. To balance this we choose other parameters so that plant species 1 has
certain advantages over species 2. One example of this is the following:

> 1. (45)

r e
152 (46)
T2 €9
i.e., the ratio of plant growth rates of species 1 to 2 is higher than the ratio of
encounter rates (by the herbivore) of species 1 to 2. We point out that the partic-
ular choices of these assumptions are for the purpose of illustration. Many other

conditions can also lead to the existence of an interior equilibrium.

Let
ME-2) | e(E-g
N<> — P €2 NO — T2 €2 ) 47
! ri €1 fPaKy’ 2 r Pr2Ky el (47)

ro  ex Ky ro Ky €2
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From (45) and (46) we have
0< Ny <K;, i=12. (48)

Then the existence condition for E* can be determined by using the following
quantities

wy = B1g1(Ny,0) — D and w$ = Baga(0, NS) — D, (49)
which represent the herbivore’s fitness when the plant densities (only one plant
species is present) are Ny and N5, respectively.

Theorem 4.1. Suppose that conditions (44), (45), and (46) hold. System (9) has
an interior equilibrium E* = (P*, N{, N3) if
wiws < 0. (50)

Proof. Note that all components of E* are positive and satisfy the following equa-

tions:
B1g1(N1, N2) + Baga(N1, N2) — D = 0,

N1+ B12No g1(N1, N2)
1- .y =0
Tl( K ) Ny ’ (51)
Ny + (21N g2(N1, Na)
1— — P =0.
T2< K > Ny
Using the last two equations in (51) we get
( Ny + 512N2)
pp (1 ST
K1 6_1
. 1_N2+521N1 e’
2 Tk
from which we can solve for Ny as a function of Ni:
N
Ny = N§(1 - N—i) = (1), (52)
1

where Ny and N3 are given in (47). Substituting ¢(N7) for N in the first equation
in (51) we arrive at the following equation for Ni:
Q(N1) := B1g1(N1,6(N1)) + Bag2(N1,¢(N1)) — D = 0. (53)
From (52) we have ¢(0) = NS, ¢(Ny) =0, and from (49),
91(0,6(0)) =0, g1(N?,(N?)) = w?,

92(05¢(0)) = w<2>7 gQ(Nfa¢(Nf)) =0.
Thus,
Q(0)=ws and Q(NY) =wf.

The condition in (50) implies that Q(0) and Q(N7) have opposite signs. Thus,
there exists an N with 0 < N < Ny < K7, such that Q(Ny) = 0. This gives the
N; component of E*.

The N2 component of E* is obtained from (52), i.e., N3 = ¢(N7) < N3. Since
0 < N5 < Ko (see (48)), 0 < NJ < Ko.

For the P component of E*, we can use the second equation in (51) to get
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N5 N N5
(- A g
g1(

K N{, N3)

It remains to show that P* is positive. Clearly, ¢1(N7,N3) > 0 as 0 < N < K;
(i = 1,2). Thus, we only need to show that

_ Ny +612N2* -

1 0.
K
Replacing N3 by ¢(Ny) we have
Ni + PraN3 e1/ez K, Ny
1— 1 2 _ K Ny - | -
K, Ki (11 fi2Ks  er [512 Ky + Kz( B12521) (54)
K2 T9 Kl €s

From (45) and (46) we know that the first factor in (54) is positive as

r1 BoKe  er _ T er
nbeke _a n_a,,

ro Ky ea T2 e

K
For the second factor in (54), if 812021 < 1 then it is clearly positive as f12— ?1 >0
2

(fI‘OHl (46)) If 612621 > 1, then from Nf < Ky and 621K1/K2 <1 (see (46)) we
have

Ky Ny K, Ky B21 K1
el 1- S = (1——) 0.
B2 e + Kg( Bi2021) > P2 e + KQ( Bi2021) = P2 X )~
Thus, the second factor in (54) is also positive. It follows that P* > 0. Therefore,
E* is an interior equilibrium of the system (9). O

4.2. Stability of E* and bifurcations. Results in this section are obtained from
numerical simulations of the system (9). The analytic results obtained in Section
4.1 for the existence of E* may provide a guidance for the selection of parameter
values used in the numerical studies in this section. In addition, for comparison
purposes, parameters are also chosen in the similar regions as those in [6].

As was done in [6], we used the computer program AUTO to generate a bifur-
cation diagram near the interior equilibrium E*. Recall that most of our analytic
results in the previous sections are formulated based on a quantity that measures
the herbivore’s fitness when plant densities are N1 and Ns:

WN; :Bigi(Nl,NQ)—D, 121,2

(e.g., w; = BiGi—D, 1= 1, 2, WK1 = Blgl (Kl, 0)—D, WK = ngg(Kg, O)—D, etc.).
It is possible to use these quantities to conduct numerical simulations. However, as
one of the main purposes of this paper is to compare the new functional response
gi(N1, N2) with the previous functional response C;(N1, N2) used in [6] in terms of
their influence in the model behaviors, we use 312 as the bifurcation parameter in
the simulations (as was done in [6]). The reason to very (12 was to look at how the
coefficient of competitive effect of plant species 2 on 1 may affect the plant-herbivore
dynamics.

Fig. 4 shows a bifurcation diagram calculated using AUTO. We observe that,
for smaller values of 315 there is a stable interior equilibrium (thick solid curves).
As (12 increases, a bifurcation (HB) occurs at some critical point, after which the
interior equilibrium becomes unstable and a stable periodic solutions exists (the
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maximum values of these solutions are indicated by A , e, ¢ ). As (12 contin-
ues to increase, period-doubling (PD) solutions appears (maximum of these solu-
tions are indicated by 4, o, o). Similar bifurcations also occur as 12 decreases
from the right end. This is very similar to the case when the functional response
C(N1, Na) is used (see Fig. 5 in [6]). The labels for values of (12 on the z-
axis are 12 x 10°. Other parameter values used are similar to those used in [6]:
r1=0.00167, r,=0.0028, K;=50000, K2=150000, ($21=2.5, ¢1=0.0001, e2=0.0005,
h1=1/16, ho=1/200, G1=8, G2=100,B;=0.00001, B2=0.000056, D=0.000114.

Fig. 5 presents time plots for various values of $12. In Fig. 4 (a), f12 x 10° = 0.3
is chosen from the interval in which E* is la.s. and the figure shows that the
solution converges to an interior equilibrium. In Fig. 4 (b), 812 x 10° = 1.5 belongs
to the region in which a stable periodic solution exists, and the figure illustrates
a stable period solution. In Fig. 4 (c), f12 x 10° = 5 is in the region in which a
stable period-doubling solution exists, which is shown in the figure. In Fig. 4 (d),
B12 x 10° = 8, at which a stable interior equilibrium exists. All parameter values
are the same as in Fig. 4.

5. Discussion. In this paper, we considered an alternative toxin-determined func-
tional response, g(N) (see (4)), which is based on the traditional Holling Type 2
functional response (see f(NN) given in (2)) with a modified handling time due to
plant toxins (see A(N) given in (3)). The new toxin-determined functional response
g(N) is not a monotone function of plant density N. This makes it possible for
the plant-herbivore system to have multiple interior equilibria, and exhibit more
complex dynamics than that of models with Holling Type 2 response. We have
previously studied in [6] another toxin-determined functional response (see C(N)
in (1)), which uses a different functional form to incorporate the reduction in her-
bivore’s intake due to toxins. Our results suggest that models with the two toxin-
determined functional responses, C(N) and g(NN), have similar qualitative behaviors
as discussed below.

The model studied in this paper is a 3-dimensional system including one herbivore
population and two plant species (see (9)). Our analysis has focused on the case
when ¢1(N1,0) and g2(0, N3) first increase to their maximum values (G; and G2)
at Ny, and Nay,, respectively, with N, < K; (i = 1,2), and then decrease for
N; > Njp,. Thus, both functions are not monotone. Consequently, the system has
up to eight boundary equilibria and possible multiple interior equilibria. We derived
threshold conditions for the existence and stability of all boundary equilibria, with
the conditions expressed using biological relevant quantities (e.g., herbivore’s fitness
w;, Wi, © = 1,2, etc.). We also identified a set of sufficient conditions for an interior
(coexistence) equilibrium to exist. Numerical studies indicate that the system has
a stable interior equilibrium for parameter values in a certain range, and that the
stability switches at some critical points at which Hopf bifurcations occur. Period-
doubling bifurcations may also be possible.

The model considered in [6] has the same structure as (9) except that it uses a dif-
ferent functional response (C(N)). Numerical simulations in [6] also identified Hopf
bifurcations (from an interior equilibrium) and period-doubling bifurcations when
the same bifurcation parameter is used. In this sense, the two toxin-determined
functional responses generate similar bifurcation behaviors in the models for plant-
herbivore interactions. We have also conducted numerical simulations for the sys-
tem (9) in the case when g;(N1,0) and ¢2(0, N2) are both monotone (i.e., when



164 YA LI AND ZHILAN FENG

Nim > K;, i = 1,2). Some of the outcomes are illustrated in Fig. 6 and 7. We
observe from Fig. 6 that, while the Hopf bifurcations are still present, there is no
period-doubling bifurcation.

We need to point out that the functional response C'(N) can also be unimodal
when the plant toxicity is high (i.e., when the value of G is small), in which case
C(N) increases to its maximum value G at some plant density N, < K, and then
becomes decreasing for N > N,,. In this case, the 3-D system is very difficult to
analyze. We have also studied a reduced 2-D system with one-herbivore and one-
plant species, in which case more analytical results are possible to obtain including
the threshold conditions for Hopf and homoclinic bifurcations (see [2] and [7]). It is
possible to extend the stable periodic solution in the 2-D system to the 3-D system

by applying some tools in dynamical systems theory. These results will be published
elsewhere.
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FIGURE 1. The toxin-determined functional response g(NV).
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FIGURE 3. Plots of F(N;p) (top, see (31) for the definition of
F(Ny1)) and Byg1(N1,0) (bottom). The top figure shows that

1
F0) < 0, F(N1sn) > 0, and Ny, < o which suggests that

F(N;) is a monotone increasing function 1for Ny € (0, N1,,) and
that there exists a unique N; € (0, Ny,,) such that F(N7) = 0.
In the bottom figure, the (smaller) intersection point of the curves
y = B1g1(N1,0) and y = D gives the value of 1\71_ (the N7 com-
ponent of the equilibrium E‘) Particularly, for the value Ny
with F(N7) = 0, there exists a unique D* € (0, B1G7) such that
Ny (D*) = Ny.
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FIGURE 4. A bifurcation diagram calculated using AUTO. It shows
that a stable interior equilibrium exists for either small or large (312
(solid lines). It identifies two Hopf bifurcation points (HB) and two
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FIGURE 6. Similar to Fig. 4 except that this is for the case of
K; < Nip, i = 1,2 (so that the functional response g;(N1, No) is
monotone for 0 < N; < K, i = 1,2). All parameter values are
the same as those in Fig. 4 except that r1=0.0167, K;=10000,
K5=100000, and (2;=1.1. It shows two Hopf bifurcation points
(HB) but no period-doubling bifurcation.
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FIGURE 7. Similar to Fig. 5 except that the various values of (2
are chosen according to the diagram in Fig. 6. The (12 values for
Fig. 7 (a) and (c) are chosen from intervals in which the interior
equilibrium is stable, while the (12 value for Fig. 7 (b) is in the
interval in which a stable periodic solution exists. The parameter
values used are the same as those in Fig. 6.
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