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Abstract. Traditional functional responses for plant-herbivore interactions
do not take into account explicitly the effect of plant toxin. However, consid-
erable evidence suggests that toxins set upper limits on food intake for many
species of herbivorous vertebrates. In this paper, a mathematical model for
plant-herbivore interactions mediated by toxin-determined functional response
is studied. The model consists of three ordinary differential equations describ-
ing one herbivore population and two plant species with different toxicity levels.
The effect of plant toxicity on herbivore’s intake rate is incorporated explicitly

in the model by assuming an increased handling time. The dynamical behav-
iors of the model are analyzed and the results are used to examine the influence
of toxin-determined intake in the community composition of plant species. The
bifurcation analysis presented in this paper suggests that the toxin-mediated
functional response may have dramatic effects on plant-herbivore interactions.

1. Introduction. Over the past two decades, ecologists have focused intensively
on chemically mediated plant-herbivore interactions [5, 10, 13, 18], and suggested
that plant toxins play an important role in regulating herbivore’s consumption of
the plant [11, 12, 17, 18, 19]. Specific examples and more detailed discussions about
the importance of plant toxins as determinants of herbivore functional response
can be found in [16]. Although the impact of toxins on herbivores’ diet has been
emphasized in a great deal of research, it is frequently ignored in plant-herbivore
models (e.g., [1, 8, 9, 15]). In [6], we constructed a toxin-determined functional
response model (referred to as TDRFM) that explicitly incorporates the effect of
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toxicity on herbivore browsing. More specifically, in the case of a single plant species
with density N , the toxin-determined functional response C(N) has the form

C(N) = f(N)
(

1 − αf(N)

G

)

. (1)

The function f(N) is the Holling Type 2 functional response given by

f(N) =
eN

1 + heN
, (2)

where e is the rate of encounter per unit of plant and h is the handling time per
unit of plant in the absence of toxin. G is the toxin-adjusted maximal amount of
plant an herbivore can ingest per unit time. It is assumed that G < 1/h as 1/h is
the maximum intake rate in the absence of toxins. The constraint 0 ≤ C(N) ≤ G
requires that α = 1/4 and 1/(4h) ≤ G ≤ 1/h. In the functional response C(N), the
reduction of consumption due to toxins is modeled with the factor 1 − f(N)/(4G),
which is between 0 and 1. The quantity f(N)/(4G) represents a measure of how fast
the herbivore is taking up a toxicant compared to the maximal rate of uptake that
it can tolerate, which determines how much the maximal consumption is reduced
due to toxicity.

The model studied in [6] is a three-dimensional system of ordinary differential
equations with one herbivore population and two plant species, N1 and N2. The
herbivore’s functional response to the density of plant species i (i = 1, 2) is de-
scribed by Ci(N1, N2), which is an extension of C(N) given in (1). The system
exhibits much more complex dynamical behaviors than a similar system in which
the Holling type 2 response is used. For the model studied in [6], due to the high
nonlinearity introduced by the toxin-determined response Ci(N1, N2), the results on
Hopf and period-doubling bifurcations are obtained numerically. A reduced system
with one herbivore and one plant species was considered in [2] and [7], in which
both analytical and numerical results are provided. In [3], we used data on primary
succession in the Alaska Bonanza Creek LTER to estimate model parameters and
illustrated that the TDFRM very accurately simulated changes in community com-
position, whereas the corresponding model with Holling type II response could not
be fit reasonably to the data.

In the functional response C(N) given in (1), the effect of plant toxin on reducing
herbivore’s ingestion rate as the intake amount increases is modeled by using the
factor 1 − αf(N)/G. To explore whether the new dynamics in the TDFRM are
dependent on the particular functional form used to incorporate plant toxins, we
consider in this paper an alternative form of the toxin-mediated functional response.
In the new response, the effect of toxins is modeled as a direct increase in the
handling time. We investigate how the different assumptions may affect model
outcomes. As in [6], the model considered in this paper is a three-dimensional
system with one herbivore population and two plant species that have different levels
of toxicity. Stability and bifurcation of the system will be studied both analytically
and numerically, and the results will be used to examine the role of toxin-determined
functional response in plant-herbivore dynamics.

The paper is organized as the follows: in Section 2, we introduce the new toxin-
determined functional response and the corresponding model, Sections 3 and 4
consider the boundary and interior equilibria, respectively, and stability and bifur-
cation analysis are presented with threshold conditions formulated using biologically
relevant parameters. The results are discussed in Section 5.
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2. The model. The toxin-determined functional response defined in (1) implies
that the effect of plant toxins on an herbivore is a reduced growth rate when the
ingested toxins exceeds the maximum tolerable amount. This is reflected by the
factor 1− f(N)/4G which is a part of the herbivore’s growth rate. A more specific
effect of the toxicant can be viewed as purely a slowdown in feeding rate. Studies
have shown that toxins control herbivory by satiating the herbivory’s detoxification
system. When fed with plants containing toxins, the herbivore has to detoxify food
in order to avoid harm from toxins, so the rate of digestion may be slower and more
handling time is needed as a consequence.

Let h, e,G, and N be as defined in the previous section. Assume that in the
presence of plant toxins, the toxin-adjusted handling time, denoted by h̃, is an
increasing function of the plant amount encountered per unit of time, eN , and
tends to infinity when eN approaches a maximal value determined by G. Under
this assumption, the effective consumption rate becomes zero when the maximum
amount of toxin allowed to ingest is reached. More specifically, the toxin-adjusted
handling time h̃(N) is defined by

h̃(N) =











h

1 − αeN/G
, αeN < G;

∞, αeN ≥ G,

(3)

where the constant α is a scaling parameter (to be chosen so that the corresponding
functional response has the appropriate maximum).

The toxin-determined functional response g(N) is:

g(N) =
eN

1 + h̃(N)eN
.

Replacing h̃(N) by the expression in (3) we can rewrite g(N) as

g(N) =











eN(G− αeN)

G− αeN + heNG
, αeN < G;

0, αeN ≥ G.

(4)

Clearly, the function g(N) is a modification of the Holling Type 2 response f(N)
(see (2)) with the constant handling time h replaced by the density dependent

handling time h̃(N). However, the two functions have very different properties.
For example, f(N) is an increasing function of N whereas g(N) first increases to a
maximum at

Nm =
G

e
(√
αhG+ α

) , (5)

and then decreases to and remains at zero (see Fig. 1). Fig. 1 shows the case of
Nm < K, in which the maximum value of the response function is

g(Nm) =
G

(√
α+

√
hG

)2 .

In order for g(N) to have G as its maximum value, i.e., g(Nm) = G, we need to
choose α to be

α =
(

1 −
√
hG

)2
. (6)

In the case when Nm ≥ K, g(N) is a monotone increasing function for N in the
biologically feasible range, 0 ≤ N ≤ K. A more biologically reasonable scenario
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is when K is much larger than Nm. Thus, in the remainder of this paper, we will
focus on the case of Nm < K.

The functional response given in (4) can be extended to the case of two plant
species. Let Ni denote the densities of plant species i (i = 1, 2). Let hi, ei, Gi, αi

denote the corresponding parameters for species i (i = 1, 2). Then the per-capita
consumption rate of herbivores on plant i is

gi(N1, N2) =











eiNi

1 + h̃1(N1)e1N1 + h̃2(N2)e2N2

, if αieiNi < Gi, i = 1, 2;

0, otherwise,
(7)

where h̃1(N1) and h̃2(N2) have the similar form as h(N) in (3) and are given by

h̃i(Ni) =











hi

1 − αieiNi/Gi

, if αieiNi < Gi;

0, if αieiNi ≥ Gi, i = 1, 2,

and αi has the similar form as α in (6)

αi =
(

1 −
√

hiGi

)2
. (8)

Let N = (N1, N2) denote the vector of the plant densities. The model with the
functional response given in (7) reads

dN1

dt
= r1N1

(

1 − N1 + β12N2

K1

)

− Pg1(N)

dN2

dt
= r2N2

(

1 − N2 + β21N1

K2

)

− Pg2(N)

dP

dt
= P

(

B1g1(N) +B2g2(N) −D
)

.

(9)

P = P (t) denotes the density of herbivore at time t; ri and Ki denote the intrinsic
per capita growth rate and the carrying capacity of plant species i, respectively; βij

represents the competition intensity of plant species j on plant species i; Bi is the
conversion coefficient of consumed plant species i to the biomass of the herbivore;
and D denotes the per capita death rate of herbivores. it is clear that if the initial
plant density Ni(0) < Ki, then Ni(t) < Ki for all 0 < t < ∞ and i = 1, 2. Thus,
we will restrict our attention to the region in which Ni ≤ Ki for i = 1, 2.

We remark that the system (9) has the same structure as the model studied
in [6], with the only difference being that the response function Ci(N) is replaced
by gi(N) (i = 1, 2). Gleeson and Wilson studied a system of one consumer and
two resources with the standard Holling type II functional response and the Lotka-
Volterra competition (see [4]). They show that an interior equilibrium (coexistence
both plants and herbivore) exists, and it can be either stable or unstable. Similar to
the case of one plant and one herbivore, when the interior equilibrium is unstable, a
stable periodic solution may exist. More results on other consumer-resource models
involving one herbivore and two plant species are discussed in [14]. However, none
of these models consider explicitly the effect of toxin. It has been shown for the
case of one herbivore and one plant species that systems with the Holling type II
response and the toxin-determined functional response (1) can have very different
dynamics (see [2, 7]).



DYNAMICS OF A PLANT-HERBIVORE MODEL 153

3. Boundary equilibria. In this section, we derive conditions for the existence
and stability of boundary equilibria of the system (9).

3.1. Existence of boundary equilibria. The system (9) has eight possible bound-
ary equilibria. The first type of boundary equilibria are those at which herbivore is
absent, i.e., P = 0, with either one or two plant species being present. There are
four boundary equilibria of this type:

E0 = (0, 0, 0), E1 = (K1, 0, 0), E2 = (0,K2, 0), Ē = (N̄1, N̄2, 0), (10)

where

N̄1 =
K1 − β12K2

1 − β12β21
, N̄2 =

K2 − β21K1

1 − β12β21
.

The properties of these equilibria (existence and stability) are very similar to those
of the Lotka-Volterra system, except that some of conditions may depend on pa-
rameters related to the herbivore.
E0, E1, and E2 always exist. Ē exists if and only if

β21K1

K2
< 1 and

β12K2

K1
< 1, (11)

or
β21K1

K2
> 1 and

β12K2

K1
> 1. (12)

The second type of boundary equilibria are those at which P > 0, with only one
plant species being present. Note that in the model the herbivore cannot survive if
there is no plant. There are also four equilibria of this type:

Ẽ± = (Ñ±

1 , 0, P̃
±), Ê± = (0, N̂2

±

, P̂±), (13)

with

Ñ±

1 =
B1e1 +D(a1 − h1e1) ±

√

[B1e1 +D(a1 − h1e1)]2 − 4B1e1a1D

2B1e1a1
,

P̃± = r1Ñ1

(

1 − Ñ±

1

K1

)

B1

D
,

N̂2
±

=
B2e2 +D(a2 − h2e2) ±

√

[B2e2 +D(a2 − h2e2)]2 − 4B2e2a2D

2B2e2a2
,

P̂± = r2N̂2

(

1 − N̂2
±

K2

)

B2

D
,

(14)

where

ai = αiei/Gi. (15)

The existence conditions of these equilibria can be formulated using the biologi-
cally meaningful quantities

wi = BiGi −D, i = 1, 2, (16)

and
wK1 = B1g1(K1, 0) −D, wK2 = B2g2(0,K2) −D,

w̄ = B1g1(N̄1, N̄2) +B2g2(N̄1, N̄2) −D.

(17)

Notice that BiGi represents the maximum energy gain (or the density of new her-
bivore) per unit of time when only plant species i is present, and D is the energy
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loss per unit of time of the herbivore. Thus, wi = BiGi −D represents the maxi-
mum fitness of herbivore when only plant species i is present (i = 1, 2). Similarly,
B1g1(K1, 0) is herbivore’s energy gain per unit of time when plant species 1 is at
its maximum density K1 while plant 2 is absent; and thus, wK1 represents the
herbivore’s fitness when (N1, N2) = (K1, 0). Moreover, wK2 is the herbivore’s
fitness when (N1, N2) = (0,K2), and w̄ represents the herbivore’s fitness when
(N1, N2) = (N̄1, N̄2).

Note that the functions g1(N1, 0) and g2(0, N2) achieve their respective maximum
values at Ni = Nim with

Nim =
1

ai +
√
hieiai

, i = 1, 2, (18)

and
g1max = g1(N1m, 0) = G1, g2max = g2(0, N2m) = G2. (19)

Since g1(K1, 0) < G1 and g2(0,K2) < G2, we have

wKi < wi. (20)

The existence results below suggest that for the herbivore to be able to survive on
only plant species i, its maximum fitness wi must be positive.

Theorem 3.1. Let wi and wKi be as defined in (16) and (17).

(i) Ẽ does not exist if w1 < 0 (i.e., the herbivore’s maximum fitness when only

species 1 is present is negative). Ê does not exist if w2 < 0 (i.e., the herbivore’s
maximum fitness when only species 2 is present is negative).

(ii) Both Ẽ+ and Ẽ− exist when wK1 < 0 ≤ w1, with Ẽ+ = Ẽ− if w1 = 0. If

wK1 > 0, then Ẽ− exists but Ẽ+ does not.
(iii) Both Ê+ and Ê− exist when wK2 < 0 ≤ w2, with Ê+ = Ê− if w2 = 0. If

wK2 > 0, then Ê− exists but Ê+ does not.

Proof. We provide the proof only for the existence of Ẽ. The proof for Ê follows
the same argument. The components of Ẽ = (Ñ1, 0, P̃ ) can be calculated by solving
the equations:

B1g1(N1, 0) = D,

r1N1

(

1 − N1

K1

)

= Pg1(N1, 0).
(21)

The first equation in (21) suggests that Ñ1 can be determined graphically by the

intersection point(s) of the two curves y = B1g1(N1, 0) and y = D (see Fig. 2). P̃

can be obtained easily from the second equation in (21) for a given Ñ1 > 0.
For Part (i), it is clear from Fig. 2 that, there is no intersection if D > B1G1,

which is equivalent to w1 < 0 (see Fig. 2 (a)). Thus, Ẽ does not exist in this case.
For Part (ii), notice that if G1 and B1 are fixed, as D decreases (so w1 increases),

the line y = D intersects the curve y = B1g1(N1, 0) at one point (Ñ−

1 = Ñ+
1 )

when D = B1G1 (or w1 = 0, see Fig. 2 (b)), and two points (Ñ−

1 < Ñ+
1 ) when

B1g1(K1, 0) < D < B1G1 (or wK1 < 0 < w1, see Fig. 2 (c)). Thus, there is a

unique Ẽ when w1 = 0 and two equilibria Ẽ± when wK1 < 0 < w1. As D continues
to decrease such that D < B1g1(K1, 0) (or wK1 > 0), Ñ+

1 increases and exceeds K1

(see Fig. 2 (d)). Thus, Ẽ− exists but Ẽ+ does not.
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Similar arguments can be used to prove Part (iii) for the existence of Ê±, which
is omitted here. This completes the proof of the theorem.

3.2. Stability of boundary equilibria. We first consider the stability of the four
equilibria listed in (10). Results for these equilibria are summarized in the following
theorem.

Theorem 3.2. Let wKi be as defined in (17). Then

(a) E0 is always unstable;

(b) E1 is locally asymptotically stable (l.a.s.) if
β21K1

K2
> 1 and wK1 < 0;

(c) E2 is l.a.s. if
β12K2

K1
> 1 and wK2 < 0;

(d) Ē is l.a.s. if the conditions in (11) hold and w̄ < 0.

This theorem can be easily proved by looking at the eigenvalues of the cor-
responding Jacobian matrices. We remark that the stability conditions are very
similar to those of Lotka-Volterra system for two competing species (in the absence
of herbivore). The additional condition, wKi < 0, implies that the herbivore will
go extinct due to the negative fitness. The condition βijKj/Ki > 1(< 1) implies
a strong (weak) competition pressure from plant species j on i. Thus, the results
suggest that in the absence of herbivore, a plant species will go extinct if there is
a strong competition from the other species. As will be shown in the next section,
these results may change in the presence of herbivore and when the influence of
plant toxicity is sufficiently high.

To formulate the stability conditions for the second set of boundary equilibria
listed in (13), besides wi and wKi, we will also use the plant growth rate ri to
describe the threshold conditions for stability. For ease of presentation, we assume
throughout this section that the following conditions hold

Gi <
1

hi

, Nim < Ki, αieiKi < Gi, i = 1, 2. (22)

Recall that the first condition implies that the maximum intake rate Gi of plant
i is lower than 1/hi which is the maximum intake rate in the absence of toxins
(i = 1, 2). The second condition implies that the plant density Nim at which
the herbivore achieves the maximum intake rate (Gi) is to the left of Ki, so that
the curves g1(N1, 0) and g2(0, N2) are not monotone on the intervals (0,K1) and
(0,K2) respectively (see Section 5 for a discussion about the case Nim > Ki). The

third condition implies the toxin-adjusted handling time h̃i(Ni) is finite for all plant
density Ni < Ki, which in turn implies that g1(N1, 0) > 0 and g2(0, N2) > 0 for

all Ni < Ki, i = 1, 2 (see (7)). The stability results of the equilibria Ẽ± are given
below.

Theorem 3.3. Let

w1 > 0,
β21K1

K2
< 1, and G1 <

1

4h1
. (23)

(a) The equilibrium Ẽ+ is always unstable;

(b) There exist constants σ1c > 0 and w1c > 0, such that Ẽ− is l.a.s. if
r1
r2
> σ1c

and w1 > w1c, and unstable if either
r1
r2
< σ1c or w1 < w1c;
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(c) When
r1
r2

> σ1c, a Hopf bifurcation occurs at w1 = w1c, and stabile periodic

solutions exist for w1 near w1c and w1 < w1c.

Proof. The Jacobian matrix at the equilibrium point Ẽ± is

J̃± =





0 b±1 ∗
b±2 b±3 ∗
0 0 b±4



 ,

where

b±1 = P̃±B1
∂g1
∂N1

(Ñ±

1 , 0),

b±2 = −g1(Ñ±

1 , 0),

b±3 = r1

(

1 − 2Ñ±

1

K1

)

− P̃±
∂g1
∂N1

(Ñ±

1 , 0),

b±4 = r2

(

1 − β21Ñ
±

1

K2

)

− P̃±
∂g2
∂N2

(Ñ±

1 , 0),

and the other two entries have no effect on the stability of the equilibrium, which
are denoted by an “∗”.

The matrix J̃± has one eigenvalue b±4 and two other eigenvalues are the same as
that of the matrix

M̃± =

(

0 b±1
b±2 b±3

)

.

Thus, Ẽ± is l.a.s. if

b±1 b
±

2 < 0, b±3 < 0, and b±4 < 0. (24)

Notice that P̃+ > 0, g1(Ñ
+
1 , 0) > 0, and

∂g1
∂N1

(Ñ+
1 , 0) < 0, we have

b+1 b
+
2 = −P̃+B1g1(Ñ

+
1 , 0)

∂g1
∂N1

(Ñ+
1 , 0) > 0.

This shows that Ẽ+ is always unstable, and part (a) is proved.

Next, we consider the stability of Ẽ−. The Jacobian matrix J̃− has one eigen-
value b−4 , which may correspond to one set of condition, and two other eigenvalues

determined by the matrix M̃−, which will correspond to another set of conditions.
Substitution of

P̃− = r1Ñ
−

1

(

1 − Ñ−

1

K1

)

1

g1(Ñ
−

1 , 0)
(25)

in b−4 yields

b−4 = r2

(

1 − β21Ñ
−

1

K2

)

− r1e2
e1

(

1 − Ñ−

1

K1

)

. (26)
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Let

σ1c =

e1

(

1 − β21Ñ
−

1

K2

)

e2

(

1 − Ñ−

1

K1

)
, (27)

where Ñ−

1 is given in (14) and is independent of r1 and r2. Then from (26) and
(27),

b−4 < 0 ⇐⇒ r1
r2
> σ1c. (28)

Since β21Ñ
−

1 /K2 < β21K1/K2 < 1 (assumption) and Ñ−

1 < K1, we know that
σ1c > 0.

For the product b−1 b
−

2 , because P̃− > 0, g1(Ñ
−

1 , 0) > 0, and
∂g1
∂N1

(Ñ−

1 , 0) > 0,

then we have

b−1 b
−

2 = −P̃−B1g1(Ñ
−

1 , 0)
∂g1
∂N1

(Ñ−

1 , 0) < 0. (29)

We now examine the sign of b−3 . Substituting the expression in (25) for P̃− in
b−3 we get

b−3 = b−3 (Ñ−

1 ) = ψ(Ñ−

1 )F (Ñ−

1 ), (30)

where Ñ−

1 is given in (14), and the functions ψ and F are given by

ψ(N1) =
r1N1

(1 − a1N1)2 + h1e1N1(1 − a1N1)

a1 − h1e1
K1

,

F (N1) = −a1N
2
1 + 2N1 +

h1e1K1 − 1

a1 − h1e1
.

(31)

From (8), (15), and the assumption G1 < 1/(4h1) we have

a1 − h1e1 =
e1
G1

(α1 − h1G1) =
e1
G1

(

1 − 2
√

h1G1

)

> 0, (32)

and from (15) and (22) we know that for N1 ≤ N1m < K1,

1 − a1N1 > 1 − a1K1 =
1

G1

(

G1 − α1e1K1

)

> 0. (33)

The inequalities (32) and (33) imply that ψ(N1) > 0 for N1 < N1m. Thus, from

(30) we know that the two functions b−3 (Ñ−

1 ) and F (Ñ−

1 ) have the same sign and
same zeros.

We now examine the possibility that F (N1) has a zero for some N1 = Ñ−

1 . Since
a1 − h1e1 > 0 and h1e1K1 − 1 < a1K1 − 1 < 0 (see (32) and (33)), we have

F (0) =
h1e1K1 − 1

a1 − h1e1
< 0.

As a1 > 0, the curve of F (N1) is a parabola with its maximum at N1F = 1/a1.
Note that α1e1N1m < G1, i.e., N1m < G1/α1e1 = 1/a1. Thus, N1m < N1F , which
implies that F (N1) increases monotonically for N1 ∈ (0, N1m) (see Fig. 3). Using
the expression in (18) for N1m we get

F (N1m) =
h1e1K1

a1 − h1e1

(

1 − 2N1m

K1

)

.

From h1e1 < a1 and a1K1 < 1 (see (32) and (33)), we have
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2N1m =
2

a1 +
√
h1e1a1

>
1

a1
> K1.

It follows that F (N1m) > 0. Therefore, there exists a unique N∗
1 ∈ (0, N1m) such

that

F (N∗

1 ) = 0, and
∂F

∂N1
> 0 for N∗

1 ∈ (0, N1m) (34)

(see Fig. 3). In fact, N∗
1 can be solved explicitly:

N1
∗ =

1

a1
− 1

a1

√

h1e1(1 − a1K1)

(a1 − h1e1)
. (35)

It remains to show that N∗
1 is a solution of the equation

B1g1(N1, 0) = D (36)

(so that it is the component of Ẽ−) corresponding to a critical value w1c. Recall
that w1 = B1G1 −D is the herbivore’s maximum fitness and has been chosen to be
the bifurcation parameter (assuming that B1 and G1 are fixed so that w1 varies as
D varies).

In order to use the above identified N∗
1 to define a threshold value w1c, we first

show that Ñ−

1 is a monotonically decreasing function of w1. Notice that Ñ−

1 is
the intersection point of the curves y = B1g1(N1, 0) and y = D on the left of N1m

(see Fig. 3), and that B1g1(N1, 0) is a monotone function of N1 on (0, N1m). It is

clear from Fig. 3 that for each D ∈ (0, B1G1), a unique Ñ−

1 can be solved from the

equation (36), which will define a monotone increasing function Ñ−

1 = Ñ−

1 (D). The

monotonicity also implies that there exist a D∗ ∈ (0, B1G1) such that Ñ−

1 (D∗) =
N∗. Since D = D(w1) = B1G1 − w1 is a strictly decreasing function of w1 on
(0, B1G1), we know that

Ñ−

1 (w1) = Ñ−

1 (D(w1)) (37)

defines a monotone decreasing function of w1 on (0, B1G1) with range (0, N1m).
As N∗

1 ∈ (0, N1m), from the Intermediate Value Theorem, there exists a w1c ∈
(0, B1G1) such that

Ñ−

1 (w1c) = N∗

1 . (38)

Moreover,

∂Ñ−

1

∂w1
< 0 for 0 < w1 < B1G1. (39)

Since b−3 (Ñ−

1 (w1)) and F (Ñ−

1 (w1)) have the same sign and same zeros, from (34)
and (37)–(39) we know that

b−3 =







< 0 for w1 > w1c,
= 0 for w1 = w1c,
> 0 for w1 < w1c.

(40)

It follows that Ẽ− is l.a.s. if r1/r2 > σ1c and w1 > w1c, and unstable if either
r1/r2 < σ1c or w1 < w1c. It is easy to check that w1c > 0 as

wc1 = B1G1 −D∗ = B1G1 −B1g1(N
∗

1 , 0) = B1

(

G1 − g1(N
∗

1 , 0)
)

and g1(N
∗
1 , 0) < G1. This completes the proof of part (b).
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For Part (c), notice that the Jacobian matrix J̃− at Ẽ− has one negative eigen-

value b̃−4 and two other eigenvalues given by

λ =
b−3 ±

√

(b−3 )2 + 4b−1 b
−

2

2
. (41)

From (29) we have b−1 b
−

2 < 0. Notice from (40) that b−3 (w1c) = 0. Thus, as a
function of w1, λ(w1) is pure imaginary at w1 = w1c. That is,

ℜ(λ(w1c)) =
b−3 (w1c)

2
= 0, ℑ(λ(w1c)) = ±

√

−b−1 b−2 6= 0.

Since Ñ−

1 (w1c) = N∗
1 (see (38)) and F (N∗

1 ) = 0 (see (34)), using these facts and

the expression for b−3 = b−3 (Ñ−

1 (w1)) (see (30)) we have

∂ℜ(λ)

∂w1

∣

∣

∣

w1=w1c

=
1

2

( ∂b−3
∂Ñ−

1

∣

∣

∣

Ñ
−

1
=N∗

)(∂Ñ−

1

∂w1

∣

∣

∣

w1=w1c

)

=
1

2
H(N∗

1 )
( ∂F

∂Ñ−

1

∣

∣

∣

Ñ
−

1
=N∗

)(∂Ñ−

1

∂w1

∣

∣

∣

w1=w1c

)

,

(42)

where

H(N∗

1 ) =
a1 − h1e1

K1

r1N1
∗

(1 − a1N1
∗)2 + h1e1N1

∗(1 − a1N1
∗)
.

From (32) and (33) we have H(N∗) > 0. Since F (N1) increases with N1 and Ñ−

1

decreases with w1, we know that

∂F

∂Ñ−

1

∣

∣

∣

Ñ
−

1
=N∗

> 0,
∂Ñ−

1

∂w1

∣

∣

∣

w1=w1c

< 0.

It follows from (42) that
∂ℜ(λ)

∂w1

∣

∣

∣

w1=w1c

< 0. Thus, as w1 decreases and passes w1c,

the equilibrium Ẽ− changes from stable to unstable, and stable periodic solutions
exist for w1 < w1c and near w1c. Therefore, there exists a Hopf bifurcation at the
point w1 = w−

1c, and stable periodic solutions exist for w1 near w−

1c with w1 < w−

1c.
This completes the proof.

The stability of Ê± are stated in the following Theorem, which can be proved in
a similar way as for Ẽ±.

Theorem 3.4. Let w2 > 0,
β12K2

K1
< 1, and G2 <

1

4h2
.

(a) The equilibrium Ê+ is always unstable;

(b) There exist constants σ2c > 0 and w2c > 0, such that Ê− is l.a.s. if
r2
r1
> σ2c

and w2 > w2c, and unstable if either
r2
r1
< σ2c or w2 < w2c;

(c) When
r2
r1
> σ2c, a supercritical Hopf bifurcation occurs at w2 = w2c.

We remark that the sets of stability conditions (see, for example, (23)) identified
in this section are sufficient but not necessary. There are other scenarios in which

the equilibria Ẽ− and Ê− may be stable. Nonetheless, these results provide useful
insights into the role of plant toxicity in the composition of plant community. For
example, the condition β21K1/K2 < 1 in (23) implies that plant species 1 is a
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weaker competitor and cannot excluded plant species 2 in the absence of herbivore
(independent of their growth rates). However, Theorem 3.3 suggests that in the
presence of herbivore, if plant 1 has a relatively high growth rate (r1/r2 > σ1c) and
higher toxicity (smaller G1 value, see (23)), then it is possible for plant 1 to exclude

plant 2 (as Ẽ− is l.a.s.).

4. Interior equilibrium. Due to the non-linearity of gi(N1, N2) (i = 1, 2), it is
not easy to analyze the existence and stability of interior equilibria under general
conditions. In this section, we identify specific regions in the parameter space
in which an interior equilibrium exists. Most of the conditions are motivated by
biological consideration. We provide analytical results for the existence of an interior
equilibrium and use numerical simulations to explore possible stability scenarios and
bifurcations.

4.1. Existence of an interior equilibrium. Let E∗ = (P ∗, N∗
1 , N

∗
2 ) denote an

interior equilibrium of the system (9), i.e., all components of E∗ are positive. Then
N∗

1 and N∗
2 satisfy the equations:

B1e1N1 +B2e2N2 −D

(

1 +
h1e1N1

1 − a1N1
+

h2e2N2

1 − a2N2

)

= 0,

r1
e1

(

1 − N1 + β12N2

K1

)

− r2
e2

(

1 − N2 + β21N1

K2

)

= 0.
(43)

It is clear that N∗
i is a solution of a cubic equation. Thus, it is very difficult to

obtain a general existence condition. In the following result, we consider a specific
set of conditions under which an interior equilibrium exists.

As coexistence is more likely when boundary equilibria are unstable, we assume
that

wKi > 0, i = 1, 2, (44)

in this case E1 and E2 are both unstable (see Theorem 3.2), and that the conditions
in (11) and (12) do not hold, in which case Ē is unstable. One of the possibilities
for this is

β21K1

K2
< 1 and

β12K2

K1
> 1. (45)

The conditions in (45) also implies that plant species 1 is a weaker competitor than
species 2. To balance this we choose other parameters so that plant species 1 has
certain advantages over species 2. One example of this is the following:

r1
r2
>
e1
e2
, (46)

i.e., the ratio of plant growth rates of species 1 to 2 is higher than the ratio of
encounter rates (by the herbivore) of species 1 to 2. We point out that the partic-
ular choices of these assumptions are for the purpose of illustration. Many other
conditions can also lead to the existence of an interior equilibrium.

Let

N⋄

1 =
K1

(r1
r2

− e1
e2

)

r1
r2

− e1
e2

β21K1

K2

, N⋄

2 =
K2

(r1
r2

− e1
e2

)

r1
r2

β12K2

K1
− e1
e2

. (47)
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From (45) and (46) we have

0 < N⋄

i < Ki, i = 1, 2. (48)

Then the existence condition for E∗ can be determined by using the following
quantities

w⋄

1 = B1g1(N
⋄

1 , 0) −D and w⋄

2 = B2g2(0, N
⋄

2 ) −D, (49)

which represent the herbivore’s fitness when the plant densities (only one plant
species is present) are N⋄

1 and N⋄
2 , respectively.

Theorem 4.1. Suppose that conditions (44), (45), and (46) hold. System (9) has
an interior equilibrium E∗ = (P ∗, N∗

1 , N
∗
2 ) if

w⋄

1w
⋄

2 < 0. (50)

Proof. Note that all components of E∗ are positive and satisfy the following equa-
tions:

B1g1(N1, N2) +B2g2(N1, N2) −D = 0,

r1

(

1 − N1 + β12N2

K1

)

− P
g1(N1, N2)

N1
= 0,

r2

(

1 − N2 + β21N1

K2

)

− P
g2(N1, N2)

N2
= 0.

(51)

Using the last two equations in (51) we get

r1

(

1 − N1 + β12N2

K1

)

r2

(

1 − N2 + β21N1

K2

) =
e1
e2
,

from which we can solve for N2 as a function of N1:

N2 = N⋄

2

(

1 − N1

N⋄
1

)

:= φ(N1), (52)

where N⋄
1 and N⋄

2 are given in (47). Substituting φ(N1) for N2 in the first equation
in (51) we arrive at the following equation for N1:

Q(N1) := B1g1
(

N1, φ(N1)
)

+B2g2
(

N1, φ(N1)
)

−D = 0. (53)

From (52) we have φ(0) = N⋄
2 , φ(N⋄

1 ) = 0, and from (49),

g1(0, φ(0)) = 0, g1(N
⋄
1 , φ(N⋄

1 )) = w⋄
1 ,

g2(0, φ(0)) = w⋄
2 , g2(N

⋄
1 , φ(N⋄

1 )) = 0.

Thus,

Q(0) = w⋄

2 and Q(N⋄

1 ) = w⋄

1 .

The condition in (50) implies that Q(0) and Q(N⋄
1 ) have opposite signs. Thus,

there exists an N∗
1 with 0 < N∗

1 < N⋄
1 < K1, such that Q(N∗

1 ) = 0. This gives the
N1 component of E∗.

The N2 component of E∗ is obtained from (52), i.e., N∗
2 = φ(N∗

1 ) < N⋄
2 . Since

0 < N⋄
2 < K2 (see (48)), 0 < N∗

2 < K2.
For the P component of E∗, we can use the second equation in (51) to get
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P ∗ = r1

(

1 − N∗
1 + β12N

∗
2

K1

)

N∗
1

g1(N∗
1 , N

∗
2 )
.

It remains to show that P ∗ is positive. Clearly, g1(N
∗
1 , N

∗
2 ) > 0 as 0 < N∗

i < Ki

(i = 1, 2). Thus, we only need to show that

1 − N∗
1 + β12N

∗
2

K1
> 0.

Replacing N∗
2 by φ(N∗

1 ) we have

1 − N∗
1 + β12N

∗
2

K1
=

e1/e2
K1

K2

(

r1
r2

β12K2

K1
− e1
e2

)

[

β12 −
K1

K2
+
N∗

1

K2
(1 − β12β21)

]

. (54)

From (45) and (46) we know that the first factor in (54) is positive as

r1
r2

β12K2

K1
− e1
e2

>
r1
r2

− e1
e2

> 0.

For the second factor in (54), if β12β21 ≤ 1 then it is clearly positive as β12−
K1

K2
> 0

(from (46)). If β12β21 > 1, then from N∗
1 < K1 and β21K1/K2 < 1 (see (46)) we

have

β12 −
K1

K2
+
N∗

1

K2
(1− β12β21) > β12 −

K1

K2
+
K1

K2
(1− β12β21) = β12

(

1− β21K1

K2

)

> 0.

Thus, the second factor in (54) is also positive. It follows that P ∗ > 0. Therefore,
E∗ is an interior equilibrium of the system (9).

4.2. Stability of E∗ and bifurcations. Results in this section are obtained from
numerical simulations of the system (9). The analytic results obtained in Section
4.1 for the existence of E∗ may provide a guidance for the selection of parameter
values used in the numerical studies in this section. In addition, for comparison
purposes, parameters are also chosen in the similar regions as those in [6].

As was done in [6], we used the computer program AUTO to generate a bifur-
cation diagram near the interior equilibrium E∗. Recall that most of our analytic
results in the previous sections are formulated based on a quantity that measures
the herbivore’s fitness when plant densities are N1 and N2:

wNi = Bigi(N1, N2) −D, i = 1, 2

(e.g., wi = BiGi−D, i = 1, 2, wK1 = B1g1(K1, 0)−D, wK2 = B2g2(K2, 0)−D, etc.).
It is possible to use these quantities to conduct numerical simulations. However, as
one of the main purposes of this paper is to compare the new functional response
gi(N1, N2) with the previous functional response Ci(N1, N2) used in [6] in terms of
their influence in the model behaviors, we use β12 as the bifurcation parameter in
the simulations (as was done in [6]). The reason to very β12 was to look at how the
coefficient of competitive effect of plant species 2 on 1 may affect the plant-herbivore
dynamics.

Fig. 4 shows a bifurcation diagram calculated using AUTO. We observe that,
for smaller values of β12 there is a stable interior equilibrium (thick solid curves).
As β12 increases, a bifurcation (HB) occurs at some critical point, after which the
interior equilibrium becomes unstable and a stable periodic solutions exists (the
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maximum values of these solutions are indicated by N , •, � ). As β12 contin-
ues to increase, period-doubling (PD) solutions appears (maximum of these solu-
tions are indicated by △, ◦, ♦). Similar bifurcations also occur as β12 decreases
from the right end. This is very similar to the case when the functional response
C(N1, N2) is used (see Fig. 5 in [6]). The labels for values of β12 on the x-
axis are β12 × 105. Other parameter values used are similar to those used in [6]:
r1=0.00167, r2=0.0028, K1=50000, K2=150000, β21=2.5, e1=0.0001, e2=0.0005,
h1=1/16, h2=1/200, G1=8, G2=100,B1=0.00001, B2=0.000056, D=0.000114.

Fig. 5 presents time plots for various values of β12. In Fig. 4 (a), β12 ×105 = 0.3
is chosen from the interval in which E∗ is l.a.s. and the figure shows that the
solution converges to an interior equilibrium. In Fig. 4 (b), β12 × 105 = 1.5 belongs
to the region in which a stable periodic solution exists, and the figure illustrates
a stable period solution. In Fig. 4 (c), β12 × 105 = 5 is in the region in which a
stable period-doubling solution exists, which is shown in the figure. In Fig. 4 (d),
β12 × 105 = 8, at which a stable interior equilibrium exists. All parameter values
are the same as in Fig. 4.

5. Discussion. In this paper, we considered an alternative toxin-determined func-
tional response, g(N) (see (4)), which is based on the traditional Holling Type 2
functional response (see f(N) given in (2)) with a modified handling time due to

plant toxins (see h̃(N) given in (3)). The new toxin-determined functional response
g(N) is not a monotone function of plant density N . This makes it possible for
the plant-herbivore system to have multiple interior equilibria, and exhibit more
complex dynamics than that of models with Holling Type 2 response. We have
previously studied in [6] another toxin-determined functional response (see C(N)
in (1)), which uses a different functional form to incorporate the reduction in her-
bivore’s intake due to toxins. Our results suggest that models with the two toxin-
determined functional responses, C(N) and g(N), have similar qualitative behaviors
as discussed below.

The model studied in this paper is a 3-dimensional system including one herbivore
population and two plant species (see (9)). Our analysis has focused on the case
when g1(N1, 0) and g2(0, N2) first increase to their maximum values (G1 and G2)
at N1m and N2m, respectively, with Nim < Ki (i = 1, 2), and then decrease for
Ni > Nim. Thus, both functions are not monotone. Consequently, the system has
up to eight boundary equilibria and possible multiple interior equilibria. We derived
threshold conditions for the existence and stability of all boundary equilibria, with
the conditions expressed using biological relevant quantities (e.g., herbivore’s fitness
wi, wKi, i = 1, 2, etc.). We also identified a set of sufficient conditions for an interior
(coexistence) equilibrium to exist. Numerical studies indicate that the system has
a stable interior equilibrium for parameter values in a certain range, and that the
stability switches at some critical points at which Hopf bifurcations occur. Period-
doubling bifurcations may also be possible.

The model considered in [6] has the same structure as (9) except that it uses a dif-
ferent functional response (C(N)). Numerical simulations in [6] also identified Hopf
bifurcations (from an interior equilibrium) and period-doubling bifurcations when
the same bifurcation parameter is used. In this sense, the two toxin-determined
functional responses generate similar bifurcation behaviors in the models for plant-
herbivore interactions. We have also conducted numerical simulations for the sys-
tem (9) in the case when g1(N1, 0) and g2(0, N2) are both monotone (i.e., when
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Nim > Ki, i = 1, 2). Some of the outcomes are illustrated in Fig. 6 and 7. We
observe from Fig. 6 that, while the Hopf bifurcations are still present, there is no
period-doubling bifurcation.

We need to point out that the functional response C(N) can also be unimodal
when the plant toxicity is high (i.e., when the value of G is small), in which case
C(N) increases to its maximum value G at some plant density Nm < K, and then
becomes decreasing for N > Nm. In this case, the 3-D system is very difficult to
analyze. We have also studied a reduced 2-D system with one-herbivore and one-
plant species, in which case more analytical results are possible to obtain including
the threshold conditions for Hopf and homoclinic bifurcations (see [2] and [7]). It is
possible to extend the stable periodic solution in the 2-D system to the 3-D system
by applying some tools in dynamical systems theory. These results will be published
elsewhere.

Acknowledgments. We would like to thank the referees very much for their valu-
able comments and suggestions.
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REFERENCES

[1] P. A. Abrams, Decreasing functional responses as a result of adaptive consumer behavior,
Evol. Eco. Res., 3 (1989), 95–114.

[2] Z. Feng, R. Liu and D. L. DeAngelis, Plant-herbivore interactions mediated by plant toxicity,
Theor. Popul. Biol., 73 (2008), 449–459.

[3] Z. Feng, R. Liu, D. L. DeAngelis, J. P. Bryant, K. Kielland, F. S. III Chapin and R. K.
Swihart, Plant Toxicity, adaptive herbivory, and plant community dynamics, Ecosystems,
DOI: 10.1007/s10021-009-9240-x(2009).

[4] S. K. Gleeson and D. S. Wilson, Equilibrium diet: Optimal foraging and prey coexistence,
Oikos, 46 (1986), 139–144.

[5] D. H. Janzen and G. A. Rosenthal, “Herbivores: Their Interaction with Plant Secondary
Metabolites,” Academic Press, New York, 1979.



DYNAMICS OF A PLANT-HERBIVORE MODEL 165

11
GB

),( 0
111

NgBy  

1
N

1
K

Dy  

mN
1

y

0

D

11
GB

),( 0
111

NgBy  

1
N

1
K

Dy  

mN
1

y

0

(a) B1G1 < D (or w1 < 0) (b) B1G1 = D (or w1 = 0)

11
GB

),( 0
111

NgBy  

1
N

1
K

Dy  

mN
1

y

0

D

),( 0
111

KgB

11
GB

),( 0
111

NgBy  

1
N

1
K

Dy  

mN
1

y

0

D

),( 0
111

KgB

(c) B1g1(K1, 0) < D < B1G1

(or wK1 < 0 < w1)
(d) B1g1(K1, 0) > D(or wK1 > 0)

Figure 2. Plots of y = B1g1(N1, 0) and y = D. Each intersection
of the two curves (with N1 < K1) corresponds to an equilibrium
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Figure 3. Plots of F (N1) (top, see (31) for the definition of
F (N1)) and B1g1(N1, 0) (bottom). The top figure shows that

F (0) < 0, F (N1m) > 0, and N1m <
1

a1
, which suggests that

F (N1) is a monotone increasing function for N1 ∈ (0, N1m) and
that there exists a unique N∗

1 ∈ (0, N1m) such that F (N∗
1 ) = 0.

In the bottom figure, the (smaller) intersection point of the curves

y = B1g1(N1, 0) and y = D gives the value of Ñ−

1 (the N1 com-

ponent of the equilibrium Ẽ−). Particularly, for the value N∗
1

with F (N∗
1 ) = 0, there exists a unique D∗ ∈ (0, B1G1) such that

Ñ−

1 (D∗) = N∗
1 .
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Figure 4. A bifurcation diagram calculated using AUTO. It shows
that a stable interior equilibrium exists for either small or large β12

(solid lines). It identifies two Hopf bifurcation points (HB) and two
period-doubling bifurcation points (PD). The symbols N , •, ¨ rep-
resent the maximum of the stable periodic solutions, while symbols
4, ◦, and ♦ represent the maximum of the stable period-doubling
solutions. The parameter values used are: r1=0.00167, r2=0.0028,

K1=50000, K2=150000, β21=2.5, e1=0.0001, e2=0.0005, h1=
1
16

,

h2=
1

200
, G1=8, G2=100, B1=0.00001, B2=0.000056, D=0.000114.
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(a) β12 × 105 = 0.3 (b) β12 × 105 = 6
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Figure 5. Time plots for various values of β12 chosen according
to the diagram in Fig. 4. The population densities of P , N1 and
N2 have been rescaled.

12

�
Figure 6. Similar to Fig. 4 except that this is for the case of
Ki < Nim, i = 1, 2 (so that the functional response gi(N1, N2) is
monotone for 0 < Ni < Ki, i = 1, 2). All parameter values are
the same as those in Fig. 4 except that r1=0.0167, K1=10000,
K2=100000, and β21=1.1. It shows two Hopf bifurcation points
(HB) but no period-doubling bifurcation.
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Figure 7. Similar to Fig. 5 except that the various values of β12

are chosen according to the diagram in Fig. 6. The β12 values for
Fig. 7 (a) and (c) are chosen from intervals in which the interior
equilibrium is stable, while the β12 value for Fig. 7 (b) is in the
interval in which a stable periodic solution exists. The parameter
values used are the same as those in Fig. 6.
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