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Abstract. This paper utilizes a nonlinear reaction-diffusion-advection model
for describing the spatiotemporal evolution of bacterial growth. The traveling
wave solutions of the corresponding system of partial differential equations are
analyzed. Using two methods, we then find such solutions numerically. One of
the methods involves the traveling wave equations and solving an initial-value
problem, which leads to accurate computations of the wave profiles and speeds.
The second method is to construct time-dependent solutions by solving an
initial-moving boundary-value problem for the PDE system, showing another
approximation for such wave solutions.

1. Introduction. It is known from Experiments demonstrate that a number of
different types of bacterial colonies exhibit different spatial patterns. The nature of
these spatial structures depends on the growth medium and on the type of bacteria,
which often secrete some chemoattractant. Expansion and growth of the colony are
observed. The colony expands and grows, during which bacterial cells migrate
toward regions of fresh nutrients and the colony boundary may take on fascinating
shapes. Colony expansion is phenomenologically modeled in terms of reaction-
diffusion equations for nutrients and bacteria density. These equations may involve
cell multiplication and death, linear or nonlinear diffusion, and chemotactic response
to nutrients or to other chemicals secreted by the bacteria [5-11,16]. Such models
typically reproduce the motion of a wave front corresponding to the boundary of
the expanding bacterial colony.

Here we focus on the study of colony pattern exemplified by the growth of bacteria
of the type Paenibacillus dendritiforms on a thin layer of agar in a Petri dish.
These bacteria cannot move on a dry surface and produce a layer of lubricating
fluid in which they swim. In a uniform layer of liquid, bacterial swimming is a
random process by the bacteria’motion and diffusion, which cause the lubrication
fluid to flow. The availability of nutrients affects the reproduction of bacteria, the
production of lubricating fluid, and the withdrawal of bacteria into a pre-pore state.
The bacteria consume the nutrients. A continuum approach to the dynamics leads
to a model, namely, a reaction-diffusion-convection system for the bacteria density
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b(x, y, t) and the nutrient density n(x, y, t):

∂b

∂t
= ∇ (Db∇b − b∇n) + f(n, b), (1.1)

∂n

∂t
= Dn∇

2n − g(n, b), (1.2)

with Dn describing the diffusion constant of the nutrient, and

Db = D0nb, (1.3)

implying a density-dependent diffusion coefficient. The reaction term is given by

f(n, b) = g(n, b) = nb, (1.4)

which in chemical terms is like a bilinear autocatalytic reaction [2]. Then, by
replacing f(n, b) and g(n, b) by (1.4) and, for simplicity, taking Dn = 0, D0 = 1, we
obtain the following one-dimensional reaction-diffusion-convection system

∂b

∂t
=

∂

∂x

(

nb
∂b

∂x
− b

∂n

∂x

)

+ nb, (1.5)

∂n

∂t
= −nb, (1.6)

which extends the one system in [14] when chemotaxis term arises in the equation
for the bacteria density (1.5).

The main aim of this paper is to study the traveling wave fronts for (1.5)-(1.6) nu-
merically, determining the wave speed and the wave profile, as precisely as possible.
These are key issues from biological viewpoint.

The rest of the paper is organized as follows. Section 2 contains analytical results
of traveling waves as well as numerical computations. In Section 3 the numerical
time-dependent solutions of partial differential equation system are constructed.
Finally, Section 4 is devoted to conclusions.

2. Traveling waves. If we seek a permanent form traveling wave solution, b(x, t) =
b(y), n(x, t) = n(y), y = x − ct, c is the constant wave speed, we must solve

d

dy

(

nb
db

dy
− b

dn

dy

)

+ c
db

dy
+ nb = 0, (2.1)

c
dn

dy
= nb, (2.2)

subject to the following boundary conditions: far behind the wave

b → 1, n → 0, as y → −∞ (2.3)

and far ahead of the wave

b → 0, n → 1, as y → ∞ (2.4)

so that the wave is propagating into the nutrient region of the plate.
In order to find traveling wave solutions we use the standard method; namely,

we look for heteroclinic trajectories of the associated ordinary differential equation
system of ( 2.1)-(2.2). Adding equations ( 2.1)-(2.2) and integrating once gives

nb
db

dy
− b

dn

dy
+ c (b + n) = constant.
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The boundary conditions at ±∞ dictate that the constant of integration is equal
to c. Hence, we obtain the first order ODE system

nb
db

dy
= c (1 − n − b) +

b2n

c
, (2.5)

dn

dy
=

nb

c
. (2.6)

Introducing the variable z such that dyz = 1/bn (y) > 0 for all y as in [14], the
ODE system (2.5)-(2.6), in terms of z, becomes

db

dz
= c (1 − n − b) +

b2n

c
, (2.7)

dn

dz
=

(nb)2

c
. (2.8)

Given that 1/ (bn) > 0 for b, n > 0, the dynamics given by (2.5)-(2.6) and those
associated with (2.7)-(2.8) are the same. That is, namely, if every solution (b, n) to
(2.5)-(2.6) is nonzero everywhere, then (2.5)-(2.6) would be equivalent to (2.7)-(2.8).
If this is not the case, then there would a y∗ ∈ R such that

by(y∗) = 0.

This which implies that (b + n)(y∗) = 1. Hence, by assuming that b is monotone
decreasing and n is monotone increasing , we obtain b(y∗) = 0, n(y∗) = 1 and
b(y) = 0, n(y) = 1 for all ∞ > y ≥ y∗. Also from (2.1), for this case we obtain
db/dy(y∗) = −c. The conclusion is that the variables (b, n) approach their limits
values as y → ∞ and might reach these values in finite y value. This also will be
shown in next subsection.

2.1. Phase plane analysis. Note that the behavior of the system (2.7)-(2.8) is
entirely equivalent to that of the system (2.5)-(2.6). Then our problem reduces to
finding heteroclinic trajectories in the b − n plane between the two steady states
R = (b, n) = (1, 0) and S = (b, n) = (0, 1) of (2.7)-(2.8). This is also equivalent to
looking for trajectory solutions of the ODE

dn

db
=

(nb)
2

c2 (1 − b − n) + b2n
, (2.9)

in the form n = n (b) > 0. Hence, any traveling wave solution of (1.5)-(1.6) corre-
sponds to a solution trajectory of (2.7)-(2.8) or (2.9) connecting the two stationary
states R = (1, 0) and S = (0, 1).

At this point, we need to investigate the local behavior of such trajectories near
these stationary points by using (2.7)-(2.8) as well as (2.9). A linearization of (2.7)-
(2.8) about the stationary state R shows that R is a nonhyperbolic point. The
eigenvalues of the Jacobian matrix associated with the system (2.7)-(2.8) at R are
λ1 = 0, λ2 = −c. The corresponding eigenvectors are v1 =

(

1, c2/(1 − c2)
)

with
c > 1 and v2 = (1, 0) . It is clear that v2 points toward R so that the trajectory
leaving this steady state leave along the v1 direction and hence any traveling wave
solution must originate from R along the v1 direction. From the center manifold
theorem [9,10] and Taylor expansion of (2.9) around b = 1, one can obtain an
approximation of this trajectory locally around R, in the form

nT
1 (b) = −n1 (1 − b) + n2 (1 − b)2 + · · · , (2.10)

where n1 = c2/(1 − c2), and n2 = −n1/(1 − c2).
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Similarly, a linearization of (2.7)-(2.8) about the stationary state S shows that
S is a nonhyperbolic point and the eigenvalues of the Jacobian matrix associated
with (2.7)-(2.8) at S are λ3 = 0, λ4 = −c, with the corresponding eigenvectors
v3 = (1,−1) and v4 = (1, 0) . Hence, any traveling wave solutions must end at
S = (0, 1) . Both v3 and v4 point towards S. The center manifold theorem and
Taylor expansion of (2.9) around b = 0, give the approximation of the trajectory
locally around S, in the form

nT
0 (b) = 1 −

1

2c2
b2 + · · · (2.11)

or

nT
0 (b) = 1 − b +

2

c2
b2 + · · · (2.12)

Hence, in the case of (2.11) we get

db

dz
≈ −cb +

3b2

2c
−

b4

2c3
,

so that b → 0 as z → ∞, and then (2.5) gives, for (b, n) ≈ (0, 1),

db

dy
≈ −c +

3b

2c
−

b2

2c
+

b3

4c3
,

so that b gets to zero at a finite value of y, i.e. y∗ as mentioned above. For the case
of (2.12) we get, instead,

db

dz
≈ −

b2

c
−

b3

c
+

2b4

c3
,

and
db

dy
≈ −

b

c
−

2b2

c
+

4b3

c3
,

so that b → 0 as z → ∞ and y → ∞.
Now, both v3 and v4 point toward S, so that we have two possible ways to

enter S. If the traveling wave solution enters along v4, then the local form of the
trajectory is given by (2.11). In this case, for completeness, in similar way that in
[14], one can prove the unique existence of such trajectory between R and S which
gives the sharp type solution. If the traveling wave solution enters along v3, then
the decay is along the center manifold whose equation is given locally by (2.12).
This is the case of nonsharp waves, and no other type of waves exists.

2.2. Numerical computations. In order to determine speeds c, which induce
such trajectories, corresponding to traveling wave solutions, we solve the phase
trajectory equation (2.9) numerically using an adaptive step Runge-Kutta scheme
of order 4 [13] for initial conditions that have been estimated from (2.10). As
result, we have computed a unique trajectory from R to S for minimum speed
which corresponds to a sharp traveling wave solution, and trajectories corresponding
to non-sharp traveling wave solutions as the speed increases beyond the minimum
speed. The minimum speed can be computed by using the following iteration scheme

c = c − δ
(

n(b, c) − nT
0 (b, c)

)

,

where δ is the relaxation factor. The stopping criterion is as follows: choose δ and
iterate until |c−cmin| < ǫ, where ǫ is some tolerance value. With this, the minimum
speed was found to be cmin ≈ 1.16. In Figure 1, we show solution trajectories (a)
for different speeds (b) for minimum speed cmin with local forms given by (2.10)-
(2.11) (c) for speed c = 2 > cmin, with local forms given by (2.10)-(2.12).
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Figure 1. Sketch depicting phase plane trajectories. (a) For dif-
ferent speeds. Clearly for speeds below the minimum speed, there
are no trajectories connecting the two steady states. (b) For mini-
mum speed cmin with local forms given by equations (2.10)-(2.11)
and (c) for speed c > cmin, with the local form (2.10) and the center
manifold given by equation (2.12).

In Figure 2, we show a plot of the numerical solutions of (2.5)-(2.6) with minimum
speed. We have solved (2.5)-(2.6) for increasing y, using a fourth-order Runge-Kutte
method with step size control and initial values of b, n at some finite y, say y = 0,
have been estimated from (2.10). This figure clearly shows that the b wave front is
of sharp type. In Figure 3, we give a plot of numerical solution of (2.5)-(2.6) for
speed c = 2.0 > cmin, which shows non-sharp wave.

3. Numerical time-dependent solutions. In this section we construct the time-
dependent solutions of the partial differential equation system problem and show
an another numerical approximation for traveling wave solutions of the model equa-
tions, in particular, the sharp type wave solution propagating with minimum speed.
To do this, we solve (1.5)-(1.6) numerically. These equations (1.5)-(1.6) are all sym-
metric in x, that is, any spatial localized input of bacteria results in the formation of
symmetrically propagating structures, of non-zero bacterial density, to the left and
right directions simultaneously, so a symmetry centered at x = 0. Therefore, we
solve the problem on the semi-infinite spatial domain K = (x : 0 ≤ x ≤ ∞) . We in-
troduce a moving boundary problem, that is, a fixed symmetry boundary condition
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Figure 2. Plot of the numerical solutions of (2.5)-(2.6) with min-
imum speed. This figure shows that a sharp traveling wave front
exists whose speed is uniquely determined. Clearly the b profile is
of sharp type.
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Figure 3. Plot of the numerical solutions of (2.5)-(2.6) for speed
c = 2.0, showing faster, smooth traveling wave solutions.
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at x = 0 and a moving boundary condition at x = x∗ (t) , for the PDE system

∂b

∂t
=

∂

∂x

(

nb
∂b

∂x
− b

∂n

∂x

)

+ nb, (3.1)

∂n

∂t
= −nb, (3.2)

for 0 < x < x∗ (t) , t > 0 with the Dirichlet condition b = 1 at x = 0. The conditions
for the moving boundary x = x∗ (t), are b (t, x∗ (t)) = 0 and,

−
dx∗

dt
=

(

∂b

∂x
−

∂n

∂x

) ∣

∣

∣

∣

(t,x∗(t))

. (3.3)

Equations (3.1)-(3.2) with (3.3) can be solved numerically, as in [4], by mapping the
equations with a suitable choice of new space coordinates onto a fixed spatial domain
and using finite differences to construct approximate solutions of the transformed
equations. For this problem we introduce the transformation

ζ = x − x∗ (t) ≤ 0. (3.4)

Then using (3.4), (3.1)-(3.2) become

∂b

∂t
=

∂b

∂ζ

dx∗

dt
+

∂

∂ζ

(

nb
∂b

∂ζ
− b

∂n

∂ζ

)

+ nb, (3.5)

∂n

∂t
=

∂n

∂ζ

dx∗

dt
− nb, (3.6)

for ζ ≤ 0, t > 0. In order to solve (3.5)-(3.6) we discretize only the space derivatives
and integrate the resulting ordinary differential equations in time along constant ζ =
ζi line. Numerical solutions when the initial conditions are b (x, 0) = 0, n (x, 0) = 1
for all x > 0, are shown in Figure 4. In this figure we plotted b and n as functions
of space x at equal intervals of time, showing the time evolution of sharp traveling
wave. The computed value of the wave speed is found to be 1.1386, which is close
to the value of the minimum speed predicted in the previous section. We have
calculated this speed by computing the velocity of the front position defined by
the position of a selected level point on the wave front and the velocity of moving
boundary position, where we have found that both equal this approximate value.
Moreover, numerical simulations (results not shown) carried out on the PDE system
(1.5)-(1.6) for initial conditions have decay of the form b (x, 0) = exp (−αx) , show
nonsharp waves with speeds greater than the minimum speed. Notice that this form
of wave speed dependence of initial conditions is familiar from parabolic partial
differential equations [12, 15].

4. Conclusion. In this paper we have considered a nonlinear diffusion-advection
model for describing the spatiotemporal evolution of bacterial colony pattern. We
analyzed the traveling wave solution of the corresponding system of partial dif-
ferential equations. We then presented numerical results on the existence of such
traveling wave solutions using different methods. We have numerically solved the
traveling wave ODE system and computed a minimum wave speed giving a sharp
wave. Further, we have numerically constructed the time-dependent solutions of
the PDE system showing an approximation of such waves, in particular, sharp wave
with minimum speed. In comparison, the obtained solutions from the PDE system
are in good agreement with that obtained from phase plane method not only in the
wave speed, but also in the wave profile.
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Figure 4. Numerical results showing the sharp type solution. In
this figure b and n are plotted as functions of space x at equal inter-
vals of time. The arrow shows the direction of increasing time This
solution corresponds to a wave front of sharp type with minimum
speed.
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