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ABSTRACT. Type 1 diabetics must inject exogenous insulin or insulin analogues
one or more times daily. The timing and dosage of insulin administration have
been a critical research area since the invention of insulin analogues. Several
pharmacokinetical models have been proposed, and some are applied clinically
in modeling various insulin therapies. However, their plasma insulin concen-
tration must be computed separately from the models’ output. Furthermore,
minimal analytical study was performed in these existing models. We propose
two systemic and simplified ordinary differential equation models to model the
subcutaneous injection of rapid-acting insulin analogues and long-acting in-
sulin analogues, respectively. Our models explicitly model the plasma insulin
and hence have the advantage of computing the plasma insulin directly. The
profiles of plasma insulin concentrations obtained from these two models are
in good agreement with the experimental data. We also study the dynamics of
insulin analogues, plasma insulin concentrations, and, in particular, the shape
of the dynamics of plasma insulin concentrations.

1. Introduction. Since their inventions, insulin analogues have made a dramatic
evolution in diabetes management ([5], [12]). The diabetics’ lives are tremendously
improved with newly developed insulin regimes using insulin analogues. There
are approximately 20.8 million diabetics in the United States, accounting for 7% of
the total population (American Diabetes Association, http://www.diabetes.org).
The total worldwide diabetic population is estimated at 190 millions. The cause
of diabetes is still not fully understood. But it is confirmed that diabetes mel-
litus can induce many complications, for example, cardiovascular disease, blind-
ness (retinopathy), nerve damage (neuropathy), and kidney damage (nephropathy).
([9]). Many researchers have engaged in research in this area with the objectives
of understanding how the system works ([19], [21], [35], [37]), what leads to the
dysfunction of the system ([4], [38]), how to detect the onset of diabetes, how to
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TABLE 1. Pharmacokinetics of Available Insulin Products ([7]).
Insulin Onset Peak Duration
Lispro 5-15 minutes  30-90 minutes 3-5 hours
Aspart 10-20 minutes 1-3 hours 3-5 hours
Regular insulin 30-60 minutes 1-5 hours 6-10 hours
Buffered regular insulin  30-60 minutes 1-3 hours 8 hours
Lente 1-3 hours 6-14 hours 16-24 hours
NPH 1-2 hours 6-14 hours 16-24+ hours
Glargine 1.1 hours None 24 hours
Ultralente 4-6 hours 8-20 hours > 24 hours

prevent or postpone the onset ([3], [8], [20]), and ultimately providing more efficient,
effective, and economic insulin therapies ([24], [36], [41]).

The real cure for diabetes, at least for type 1 diabetes ([11]), would be the
transplantation of a pancreas or Langerhans islets in pancreas. However, due to
immunological issues, the implantation is usually not successful. Approaches for
[-cell neogenesis or cell differentiation from stem cells are still at the research stage
([11], [6]). So, the most widely used therapy is still the daily insulin subcuta-
neous injection. The purpose is simply to supply the need of insulin in one’s body
exogenously, which mimics the physiological insulin secretion occurring in normal
subjects. Normally, insulin is secreted from the pancreas in two time scales in an
oscillatory manner: pulsatile oscillations accounting for the basal insulin, and ultra-
dian oscillations controlled by plasma glucose concentration levels ([21], [25], [32],
[35], [37]). Table 1 lists part of the currently available insulin analogue products for
clinical uses.

To understand the dynamics of the insulin analogues from subcutaneous injection
to absorption, several mathematical models have been proposed ([2], [16], [16], [23],
[27], [31], [36], [39], [40]). A critical review of most of the models was given by [24],
which omits only the most recent work, for example, Tarin et al. [36]. The partial
differential equation (PDE) models proposed by Mosekilde et al. ([23]), which were
simplified by Trajanoski et al. ([39]) and Wach et al. ([40]), are implemented in
an internet-based decision support system, DiasNet, for patients and healthcare
professionals ([26]). The siblings ([39], [40]) of the model proposed in [23] and the
model in [36] quantitatively depict the dynamics of insulin analogues in different
molecular forms at injection depot, which agrees with experimental data ([18], [24],
[36]). The computations of plasma insulin concentrations fit the experimental data
as well.

However, no analytical and qualitative studies were performed in these models.
For example, under what conditions, does a positive and bounded solution of the
PDE models exist? How many peaks can the plasma insulin concentration have?
Apparently, the trivial solution is the unique homogeneous steady state of all these
PDE models. Is it stable? In addition, according to the experiment performed
in [39], the diameter of the boundary of the diffusion is about one half inch after
15 minutes, and about two inches after 24 hours (Figure 6 and Figure 7 in [39]).
Thus the diffusion effect at the injection depot is relatively negligible when con-
sidering the plasma insulin concentration in systemic circulation. In this paper,



MODELING THE DYNAMICS OF INSULIN ANALOGUES 43

to systemically model the behavior of the plasma insulin concentration, we incor-
porate the plasma insulin concentration as a variable and propose two ordinary
differential equation (ODE) models to model the dynamics of the administration
of rapid-acting insulin analogues and long-acting insulin analogues. We perform
rigorous qualitative analysis first, followed by numerical simulations. This provides
models that are more reasonable in physiology and molecular chemistry and sim-
pler for computation of plasma insulin concentration. The profiles of plasma insulin
concentrations produced from our models agree well with the experimental data.
Potentially, the models proposed in this paper, together with the glucose-insulin
regulation model proposed by [21] and [19], could form the foundation for artificial
pancreas if integrated with a glucose monitoring system.

We arrange this paper as follows. In the next section, we discuss the background
of insulin analogues; then in Section 3 we propose models of the exogenous injection
of insulin analogues. In Section 4, we analyze the dynamics of the models, followed
by numerical simulations of the models in Section 5. We will end this paper with a
discussion section.

2. Background. Diabetes is a disease in which [-cells in the pancreas do not
produce insulin or the cells in body do not utilize insulin properly. Insulin is a pan-
creatic hormone needed to convert glucose into energy needed for daily life. Glucose
is the basic fuel for cells in the body. After insulin binds the insulin receptors of
the cells (for example, adipose and muscle cells), the glucose transporter GLUT4
takes the glucose molecules from the plasma into the cells so that the glucose can
be metabolized.

Diabetes is classified into type 1 diabetes, type 2 diabetes, and gestational dia-
betes. Type 1 diabetes is usually diagnosed in children and young adults, and so
has also been called juvenile diabetes. In type 1 diabetes, B-cells in the pancreas
do not produce insulin. The majority of diabetics have type 2 diabetes. In type
2 diabetes, either the (-cells do not produce enough insulin or so-called insulin re-
sistance caused by the dysfunctional system prevents the cells to take up glucose
efficiently. Pregnant women who have never had diabetes but develop high plasma
glucose levels during pregnancy are said to have gestational diabetes. Glucose is
toxic when its concentration is high, a condition known as hyperglycemia. Hyper-
glycemia is often accompanied with that the body cells are starving for energy, and
over time, eyes, kidneys, nerves, or the heart can be hurt.

At the f-cell level, the propensity of insulin to self-associate into hexamers is
crucial for the hormones’ processing and storage. The additions of zinc ions and
phenolic compounds into human insulin can not only prevent undesirable chemi-
cal degradation and promote the hexamer conformation, but also prevent physical
denaturation. This property of insulin has been exploited in pharmaceutical for-
mulation to produce stable solution preparations and microcrystallines used for
diabetes treatment. (Refer to [1]).

During the late 1980s, biotechnology provided the laborious techniques needed in
chemical modifications or semisynthesis that results in the success of recombinant
DNA (rDNA) technologies for the creation of new insulin analogues ([5]). Conse-
quently, a new research area has been opened since then. Several different types
of insulin analogues have been created and put in clinical practices ([5], [12], [29],
[43]). In 1996, the first rapid-acting insulin analogue, lispro, was introduced into
clinical application. It is an evolutionary development of genetically engineered
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human insulin with a short duration of action because of its weakened propensity
to self-associate into dimers. The rapid-acting insulin analogue is designed and
developed in making the pharmocokinetic profile of injection to be similar to its
normal physiological counterpart to better help cells to utilize glucose postpran-
dially. Lispro exists in its respective formulations as hexamers that are stabilized
with zinc-ions and phenolic preservatives to assure two years of shelf life at 4°C.
But, structurally, lispro’s formulation differs from other insulin analogues because
its hexamer complex dissociates into monomeric subunits virtually instantaneously
after subcutaneous injection, resulting in a plasma absorption profile indistinguish-
able from that of a pure monomeric insulin ([5]). The effectiveness of rapid-acting
insulin analogues in controlling postprandial glycemia has been demonstrated. In
addition, thanks to the rapid action, the use of the rapid-acting insulin analogues
provides the convenience of injecting a few minutes before or after the meal in-
gestion. This prompt action has reduced frequency of both hyperglycemic and
hypoglycemic episodes using conventional short-acting insulin ([43]).

Beginning in 2002, glargine, a new long-lasting insulin analogue that has the
advantage of maintaining a twenty-four-hour effect with no peak, was put into
clinical use. Glargine is also developed by rDNA technology. Comparing to human
insulin, both A and B chains of the molecule contain amino acid changes. This
change leads to a shift of the isoelectric point towards a neutral pH, which results
in a molecule less soluble after injected. At the injection site, a molecule depot is
subcutaneously formed, from which insulin is slowly released. The absorption is so
slow that no peak of insulin concentration will occur during the long lasting twenty-
four-hour release-absorption duration. Thus the long-acting insulin analogues are
desirable to simulate the physiological pulsatile insulin secretion that occurs in
nondiabetic subjects. ([12], [29].)

To mimic the behavior of insulin secretion in normal subjects by using insulin
analogues, insulin pumps are designed to deliver rapid-acting or short-acting insulin
twenty-four hours a day through a catheter placed under the skin. The insulin doses
are separated into basal rates and bolus doses that simulate the insulin pulsatile
secretion and ultradian secretion in oscillatory fashion, respectively. The dosage
of basal insulin and bolus insulin delivery, however, can be adjusted manually ac-
cording to different daily activities. Automated programmable corrections based on
feedback information from glucose monitoring and more efficient and robust algo-
rithms would be more desirable. Furthermore, the effect would be even better with
the combined use of a rapid-acting insulin analogue to mimic the basal insulin and
a rapid-acting insulin analogue to mimic the bolus insulin.

3. Modeling the subcutaneous injection of insulin analogues. It is well
accepted that subcutaneous insulin absorption is a complex process that can be in-
fluenced by many factors, e.g., insulin’s hexameric, dimeric and monomeric states;
injection locations; volume; temperature; and blood flow near the injection site
([24]). Insulin analogue in its hexameric form is the predominant associated state
after the subcutaneous injection of the soluble insulin preparation. The progressive
dissociation of the hexamers into smaller units, dimers and monomers, is facilitated
by the diffusion of the liganded phenolic molecules and zinc ions in the subcutis,
which is caused by the diffusion in the intercellular dilution of the insulin concen-
tration. Then the insulin in dimeric form and monomeric form can penetrate the
capillary membrane and be absorbed into plasma ([1]). Figure 1 shows putative
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events occurring under the subcutis after the injection. The chemical molecular
reaction diagram is given as

H & 3D, (1)

pq

where H (U/ml) stands for hexamer and D (U/ml) for dimer, p (min~!) is the
transform rate from one hexameric molecule to three dimeric molecules, and pgq
(¢ has unit ml?/U?) is the transform rate from three dimeric molecules to one
hexameric molecule.
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FIGURE 1. Putative events occurring at subcutis after injection of
insulin analogues. The hexamer is too big to penetrate the capil-
lary membrane, while the dimer and monomer succeed, so that the
absorption into plasma occurs.

Mosekilde et al. ([23]) proposed a model with the hypotheses that only the
dimeric form of insulin can be absorbed into plasma and that the fraction of soluble
insulin dissociating into a monomeric form is negligible. This model was simplified
by Trajanoski et al. ([39]) under the assumption that the binding state in the model
proposed by [23] can be negligible due to its short-acting time. This is reasonable
for rapid-acting insulin analogues, and the resulting model contains the first and
second equation without the binding term. Wach et al. ([40]) further simplified the
model in [39]. To enable the computations of the models, a spherical depot centered
at subcutaneous injection site is assumed and fifteen or more shells are spatially dis-
cretized with homogeneous concentration, so that the plasma insulin concentration
can be calculated by integration of the concentration of dimers over the distribu-
tion volume. Based on the models in [23] and [39], Tarin et al. ([36]) reinforced the
imaginary bound state with diffusion and proposed a model to study the dynamics
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of long-acting insulin analogues such as glargine. A similar approach is applied
in computing the plasma insulin concentration by integrating the concentration of
dimers over the subcutaneous discretized depot volume.

Notice that the diffusion effect of both hexamers and dimers applies to a small
local scope of the injection site so the impact of the diffusion to the whole metabolic
system is negligible according to the experiment performed in [39] (Figure 6 and
Figure 7). Based on the molecular reaction diagram (1) and the law of mass action,
and in light of the existing models ([24], [23], [39], [40]), we propose following
model to simulate the dynamics of the rapid-acting insulin analogues of the whole
metabolic system:

D/(0) = plEE(0) ~ aD*() - {0 o)
I'(t) = % —d;I(t)

with H(0) = Hy > 0,D(0) = 0, and I(0) = Iy > 0, where H(¢t) (U/ml) stands for
concentration of insulin analogue in hexameric form, D(¢) (U/ml) for concentration
of insulin analogue in dimeric form, and I(¢) (U/ml) for plasma insulin concentration
at time ¢t > 0. As no experimental study is observed, to create a bridge between the
local injection of insulin analogue and plasma insulin concentration in the whole
body, we hypothesize that the rate of dimers penetrating the capillary is inversely
proportional to the plasma insulin concentration, which is depicted by the term
bD(t)/(1 4 I(t)) in the second equation and the term rbD(t)/(1 4 I(t)) in the third
equation of model (2), where b (U/min) is a constant parameter ([23], [40] and
[36]), and r < 1, as only fractional molecules can become plasma insulin ([36]). The
constant d; (min~!) in the third equation is the insulin degradation rate that has
been assumed as linear ([21], [35], [38]). We will analyze model (2) in Section 4.

While rapid-acting insulin analogues, when injected right before or after meal
ingestion, can simulate the physiological insulin secretion triggered by elevated
plasma glucose concentration, another type, so-called long-acting insulin analogue,
is needed to mimic the physiological pulsatile insulin secretion in normal subjects,
also known as basal insulin.

Since the depot releases insulin slowly, a continuous delay exists in the process of
transforming insulin analogue in hexameric form to dimeric form. As in [36], we use
an imaginary state, called bound state, to simulate the delay. The transformation
is inverse-proportional to the concentration of the hexamer, so the change rate of
the transformation can be determined by Cyaz/(1 + H(t)), where Cpya. (U/ml) is
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the maximum capacity of the transformation. Thus we obtain following model:

B0 = kBT
H'(t) = —p(H(t) — qD*(t)) + kB (t)%
bD(t) Y
D'(t) = p(H(t) — ¢D*(t)) — 14 I(t)
I'() =+ b+D 1((?) —diI (1)

with B(0) = By > 0,H(0) = 0,D(0) = 0, and I(0) = Iy > 0, where B(t) (U/ml)
stands for the concentration at the bound state for the insulin analogue in hexer-
meric form, H(t) (U/ml) for concentration of insulin analogue in hexameric form,
D(t) (U/ml) for concentration of insulin analogue in dimeric form, and I(¢) (U/ml)
for Insulin concentration at time ¢ > 0. The term kB(t)Cpas /(1 + H(t)) in the first
and second equations is due to that the insulin analogue in the depot formed near
the injection site is transformed into hexameric form gradually and the transform
is inversely proportional to the concentration of the insulin in hexameric form with
the maximum transformation capacity Ciaz ([23], [36]), where k& (min~1) is the
constant absorption rate. This avoids the situation in which the behavior of the
solutions are unpredictable even if H(t) > Cqz, which is an issue in the existing
models ([23], [36]). Other notations are the same as those in model (2).

Apparently model (2) is a special case of model (3) without the imaginary bound
state. We will analyze model (3) in the next section.

4. Analysis of the models. In this section, we state the analytical results without
proofs. The proofs of Proposition 1, Theorem 4.1, and Theorem 4.3 can be found in
the appendices. We skip the proofs of Proposition 2 and Theorem 4.2 as the proofs
can be carried out similarly. Results similar to that of Theorem 4.3 for model (3)
can be obtained without further effort, so we also skip the statement.

It is clear that both model (2) and model (3) have unique equilibriums (0,0, 0)
and (0,0,0,0), respectively. Furthermore, we have

Proposition 1. All solutions of model (2) with the initial condition H(0) = Hy >
0,D(0) =0, and I(0) = Iy > 0 are positive and bounded.

Theorem 4.1. The origin (0,0,0) of model (2) is a global attractor.

Proposition 2. All solutions of model (3) with the initial condition B(0) = 0, H(0) =
Hy > 0,D(0) =0, and I(0) = Iy > 0 are positive and bounded.

Theorem 4.2. The origin (0,0,0,0) of model (3) is a global attractor.

Below, we analyze the shapes of the solutions of model (2). Similar arguments
can be applied to analyzing the shapes of the solutions of model (3), and the same
results can be obtained.

Theorem 4.3. Let (H(t), D(t), I(t)) be a solution of model (2) with initial condition
H(0) = Hy > 0,D(0) =0 and I(0) = I > 0. Then
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FIGURE 2. Comparison of the simulated plasma insulin concen-

tration produced by model (2) and the measured data. The mea-
sured data of aspart and lispro are from [14].

(a) H'(t) <0.

Furthermore, if p > b(Ho + Io/r)r, then

(b) There exists a tp € (0,00) such that D(t) is monotonically increasing in
(0,tp) and decreasing in (tp,o0).

(c) If the initial condition I(0) = Iy > 0, I(t) either has a unique local mini-
mum in (0,tp) and a unique local mazimum in (tp,o0) or is monotonically
decreasing in (0,00). If the initial condition 1(0) =0, I(t) has a unique local
mazimum in (tp,o0).

Remark 1. According to Theorem 4.3, if both D(t) and I(t) assume their max-
imums, then D(t) attains its peak before I(¢) does. When the initial condition
I(0) > 0, which is clinically realistic ([29], [34]), I(t) decreases in a very short time
right after the insulin analogue is injected. This is due to that a short time is
needed for insulin analogue to dissolve into smaller molecules and then absorbed
into plasma. This case is not covered by previously existing models ([24], [27], [36],
[39], [40], [42]). When the initial condition I(0) = 0, I(¢) will assume a unique
maximum value in (0,00). This is in agreement with the numerical simulations in
existing models ([24], [27], [36], [39], [40], [42]).

Remark 2. The condition in Theorem 4.3 for (b) and (c) is satisfied in the simu-
lations of lispro and aspart in section 5 (Figure 5) according to the selection of the
parameters based on [14] and [18].

5. Numerical simulations. In this section we perform numerical simulations ac-
cording to model (2) and model (3). Then we compare the profiles obtained with
the measured data. The simulations are performed in Matlab, and the measured
data are from [5], [18], and [36]. The plasma insulin concentration I(¢) is a variable
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of the systems (2) and (3). So, no separate and additional effort is needed for cal-
culations. The dynamics of the insulin concentrations are well in agreement with
the measured data given in [5], [14], [18], and [36].

As observed by Trajanoski et al. ([39]), the changes of the parameter p in model
does not alter the results significantly. So, we have used the same values of p = 0.5
and ¢ = 0.13 as [39] and [40], and r = 0.2143. We choose r = 0.2143 because usually
only part of an insulin analogue can be absorbed into plasma ([36]). To simulate
insulin lispro, we choose the parameters b = 0.0068 and d; = 0.081 for simulating
insulin lispro, while choosing b = 0.0060 and d; = 0.0775 for simulating insulin
aspart. The values of d; and b are selected in view of the interquartile range of the
best model 10 and 9 proposed in [42] (Table ITI(a)). The initial value H(0) = Hy is
selected as follows: Hy = 9.4U/72.3kg45ml/kg = 0.0029U/ml = 2.9 x 103U /ml, as
9.4U /kg lispro or aspart was injected subcutaneously in the experiments performed
in [14] and the plasma volume is assumed to be 45 ml/kg by [36]. Iy = 6xU/ml
according to [14]. Tt is easy to verify the condition in Theorem 4.3 holds and thus
all conclusions are true. Figure 2 reveals that the profiles for insulin analogues
lispro and aspart produced from model (2) are very well in agreement with the
clinically measured data given in [14]. Figure 3 shows the simultaneous profiles
and overall relationships of each of the dynamic variables in the dynamical system.
The calculation is simply achieved by the solver ode23 in Matlab while solving the
ordinary differential equation system. This significantly simplified the computations
in existing models ([24], [39], [40] for examples.) Notice that the existing models
([24], [39], [40]) were proposed before the first rapid-acting insulin analogue lispro
was introduced (refer to the second section of this paper and [5]), and the models
proposed in [36] are for bolus and continuous subcutaneous insulin injection (CSII).
Model (2) proposed in this paper is for bolus injection only, and comparing with the
profiles produced by these models is not valid. Nevertheless, with slightly tuned
parameters ([39]), b = 0.0135,d; = 0.076 and r = 0.35, the profile in Figure 4
produced by model (2) is compatible with the simulation in Figure 4 in [39] for the
case of monomeric analogues.

Model (3) involves more parameters than model (2), because of the imaginary
bound state. We use the same p = 0.5 and r = 0.2143 as above when simulat-
ing rapid-acting insulin analogues by model (2). For other parameters, we choose
g =3.04,b=0.02 and C),4, = 15 asin [36]. We assume that d; = 0.0215, given that
the value is within the interquartile range shown in [42] (Table ITI(a)). The param-
eter k corresponds to the rate of disengagement of a hexamer from its bound state
k in [36]. Since we model the disengagement by the term —kB(t)Cyaq /(1 + H(t)),
k shall be significantly smaller than s in Tarin et al. (2005). Thus we choose
k = 2.35 x 1075, The initial value B(0) = By is selected as follows: By =
0.3U /kg/45ml/kg = 0.0067U/ml = 6.7 x 101U /ml as 0.3U/kg was injected subcu-
taneously in the experiments performed in [18] and the plasma volume is estimated
to be 45 ml/kg by [36]. Iy = 12pU/ml according to [18]. Figure 5 reveals that when
compared with the clinical measurement ([18]) of plasma insulin concentration of a
subject using insulin glargine, our simulated profile is in agreement with the mea-
sured data in [18] and shows significantly better fitting than the profile given by
Figure 3 in [36]. Figure 6 demonstrates the simultaneous profiles and overall rela-
tionships of each of the dynamic variables in the dynamical system. Similar to model
(2), the computation of the numerical solution of the plasma insulin concentration
is greatly simplified as obtaining I(t) is part of solving the ordinary differential
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FIGURE 3. Dynamics of hexamer, dimer and insulin concentra-

tions produced by model (2).

equation numerically. Involving a delay parameter in the model (3) to replace the
imaginary bound state may result in a more accurate model. Additionally, it is well
known that the delayed effect could cause oscillations, either damped or sustained.
The apparent discrepencies in the experimental result could be more accurately
modeled by a model involving an explicit delay. The apparent discrepencies of the
data and the solution might also be due to stochastic factors. Applying a bias to
the solution could improve the simulation ([28]). We will investigate this in a future
study.

6. Discussions. Type 1 diabetics do not produce insulin. To maintain lifestyle
close to normal, it is necessary to exogenously infuse insulin analogues and dynam-
ically adjust the injection timing and dose. Some insulin analogues, e.g., lispro
and aspart, take effect quickly. That is, after only a few minutes, the injected in-
sulin analogue has been absorbed and starts to help the body’s cells to metabolize
the glucose. Some insulin analogues, e.g., glargine and ultralente, take longer for
absorption and then function to help the cells to take up glucose.

Basically, there are two types of therapies to administrate the injection. In the
first, a diabetic takes one or two shots a day with long-acting insulin analogues.
The insulin gradually absorbed into the plasma supplies the whole day’s need of
the patient. The patient somehow must adjust his or her lifestyle to accommodate
the way the exogenous insulin infusion works. The more advanced method is using
a insulin pump. With an insulin pump, instead of adjusting his or her life style, the
patient can match insulin levels to his or her daily activities by adjusting the doses
and injection timing. All type 1 diabetics at all ages can use insulin pumps, and
more and more people with type 2 diabetes are starting to use insulin pumps too.
(refer to American Diabetes Association, http://www.diabetes.org). However,
because of the expense, not all diabetics choose to use insulin pumps.
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FIGURE 4. Comparison of profile produced by model (2)
(I(0) = 0, p = 0.5, ¢ = 0.13, b = 0.0135, d; = 0.076, r = 0.35)
(solid line) and the simulation in Figure 4 in [39] (dashed line,
adapted from [39]), illustrating the absorption of equimolar doses
of monomeric insulin analogues.

The regulation of glucose-insulin endocrine metabolism occurs in our daily life
continuously. To mimic the normal physiological insulin secretion in type 1 dia-
betes, at least theoretically, the best way is to use glargine as the basal insulin
for physiological pulsatile secretion, and apply lispro or aspart as the bolus insulin
for the physiological secretion stimulated by elevated plasma glucose concentra-
tion level. With feedback information of plasma glucose concentration monitored
periodically, dynamically adjusting the timing and doses of subcutaneous insulin
injection is desirable. To this end, a more advanced, dynamical, and efficient al-
gorithm for determining the timing and doses is needed. The two new systemic
models proposed in this paper can be used for this purpose. These two models, (2)
and (3), are systemic in pharmacology, simpler and reasonable in mathematics, and
significantly simplify the computing procedures in clinical practices; thus, model
(2), model (3) and the model proposed in [21] and [19] can form a foundation of an
artificial pancreas if integrated with a glucose monitoring system.

Schlotthauer et al. ([30]) integrated three submodels to create a closed-loop con-
trol model, called nonlinear model-based predictive control (NMPC), to mimic the
operation of normal pancreas. The three submodels include 1) a subcutaneous—
plasma insulin absorption model to compute the plasma insulin; 2) a glucose reg-
ulation model; and 3) a subcutaneous glucose sensing model. When selecting the
first sub-model, the authors evaluated the models proposed by [23], [39] and [40]
and found that it is difficult to integrate these models in NMPC, as these models
deal with single injections and it is hard to compute precise insulin concentration.
Thus the authors used an autoregressive model for a substitute. The second sub-
model simulates the plasma glucose concentration. As stated by the authors of
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FIGURE 5. Comparison of the simulated plasma insulin con-

centration (solid line) by model (3) (p = 0.5, ¢ = 3.04, r = 0.2143,
c=15,b=0.025, k = 2.35 x 107° and d; = 0.0215) with the mea-
sured data from [18] (circle o). The dashed line is the simulation
by the model in [36], which is adapted from [36] showing from 0
hour to 16 hours.

[30], NMPC lacks robustness and can have instability depending on the parame-
ters. Neither model (2) nor the model in [21] and [19] has such issues as analytical
analysis on both models assuring the desired dynamics. Apparently, it would be
better choices to choose model (2) as the first submodel and the model in [21] and
[19] as the second submodel.

Notice that the existing models ([24], [39], [40]) were proposed before the rapid-
acting insulin analogue was put into clinical usage (refer to the second section of
this paper and [5]), and the models proposed in [42] are for bolus and continuous
subcutaneous insulin injection (CSII). So model (2) proposed in this paper is, to
our knowledge, the first attempt for modeling bolus injection of rapid insulin ana-
logues. Nevertheless, with parameters I(0) = 0, p = 0.5, ¢ = 0.13, b = 0.0135,
d; = 0.076 and r = 0.35 (mostly from [39] but fine-tuned), model (2) produces a
compatible profile (Figure 4) to the simulation in Figure 4 in [39], which illustrates
the absorption of equimolar doses of monomeric analogues.

We should also notice that, at the small injection depot, the existing PDE models
with diffusion terms will be more accurate than the newly proposed models in this
paper. Thus the inverse relationship demonstrated by [39] between the absorption
and doses at the depot is not observed. However, the aims of the new ODE models
proposed in this paper are to analyze and simulate the dynamics of plasma insulin
concentration at the whole systemic level and to avoid unexpected behaviors not
being handled by the existing PDE models. Nevertheless, it might be plausible
that Michaelis-Menten kinetics is imposed on insulin absorption as in model (3)
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FIGURE 6. Dynamics of concentrations of hexamer (dotted

line), dimer (dashed line) and insulin (solid line) simulated by
model (3) when p = 0.5,¢q = 3.04,¢ = 15,7 = 0.2143,b = 0.025
and d; = 0.0215

and model (4) in [42], although the authors implied that these two models are not
the best choice in applications ([42]). We will study this in the future.

A hypothesis is made when considering the rate of dimers penetrating the capil-
lary membrane. Since the simulations are in agreement withwhile the experimental
data, it might be worth to perform new experiments to verify this new hypothesis.
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Appendix A. Proof of Proposition 1.

Proof of Proposition 1. Observe that model (2) is monotone, hence an argument
similar to the proof of Theorem 2.1 on page 81 of ([33]) can be applied to establish
the following: if H(t) or D(t) is not always positive for all t > 0, then there exists
to > 0 such that H(to) =0,D(tg) =0, and H(t) > 0,D(t) > 0 for 0 <t < to.

Now, assume that H(¢) or D(t) is not always positive for ¢ > 0. Then, there exists
to > 0 such that H(tg) = 0,D(tp) =0, and H(t) > 0 and D(t) > 0 for 0 < t < to.
So

H'(t) = —pH(t) + pgD3(t) > —pH (t) for 0 < t < ty.
Therefore,
H(t) > Hoe P! for 0 < t < tg.
By continuity,
H(to) Z Hoeipto > 0.

So H(t) > 0,D(t) > 0 for t > 0.

If there exists £ > 0 such that I(f) = 0 and I(t) > 0 for 0 < t < {, then
0 > I'(f) = rbD(t) > 0. This contradiction implies that I(t) > 0 for ¢ > 0.

Now we show that all solutions are bounded. Let

F(t)=rH(t)+rD(t) + I(t), for t > 0. 4)
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Then
F'(t) = —d;I(t) < 0.

So there exists a constant A > 0 such that

lim F(t) = A > 0.

t—o0

This implies that H(t), D(t) and I(¢) are uniformly bounded. O

Appendix B. Proof of Theorem 4.1. The following fluctuation lemma, which
is needed in the proof of Theorem 4.1, is elementary ([13]).

Lemma 6.1. Let f : R — R be a differentiable function. If | = liminf; . f(t) <
limsup, . f(t) = L, then there are sequences {tr} T 00, {si} T 0o such that for all
k, f/(tk) = f’(sk) =0,limg_, o0 f(tk) =L and limp_ o f(Sk) =1.

Proof of Theorem 4.1. Consider F(t) defined in (4). All we need to show is that
A=0. Let

G(t) = rH(t) + rD(t), t>0.
Then bD()

So limy_.o G(t) = B > 0 exists. Thus I(t) = F(t) — G(t) - A— B ast — co. So
for any sequence {t,} T 00, I(t,) = A— B as n — 0.
Denote
H= 11?1 sup H(t) and H = htniiong(t);

D = limsup D(t) and D = lign inf D(t).
t—o00 e
By the fluctuation lemma, there exists a sequence s,, — oo such that D’(s,) =0

for each n and lim,,_,o, D(s,) = D. Then from the second equation in system (2),
bD(sy)
- )

Let € > 0, then there exists T_> 0 such that H(t) < H + ¢ when t > T. Then, for
n sufficiently large, H(s,) < H + € and (5) becomes

0=D'(sn) = p(H(sp) — ¢D*(s))

— bD(sy)
0<pH —qD3(s,)) — ——2L_.
Letting n — oo,
_ —3 bD
< — S —
0<p(H+e—-qgD") T A-B
This is true for all € > 0, therefore
— =3 bD
0<p(H—qD
<pH —qD7) = ¢
or .
—3 bD —
D + H.
T+ A-B) "

Similarly, there exists a sequence s/, — oo such that H’(s!)) = 0 for each n and
lim,, o H(s],) = H. From the H equation in system (2),

0= H'(s;,) = —p(H(s},) = ¢D*(s},)).
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Let € > 0, then there exists 7" > 0 such that D(t) < D +eforallt>T'. Forall n
sufficiently large, D(s!,) < D + € and therefore

0 < —pH(s,) +pq(D +¢)*.
Letting n — oo and then ¢ — 0 gives

0< —pH +pgD’

or H < qﬁg. Therefore

D'+ o = B <D
Hence D = 0 and H = 0, so that, since D(t) > 0 and H(t) > 0, limy_o D(t) =

lim;_,oo H(t) = 0. From the asymptotically autonomous limiting form of the equa-
tion for I(t) in (2), it follows that lim; . I(¢) = 0. O

Appendix C. Proof of Theorem 4.3. We need following lemma to prove The-
orem 4.3.

Lemma 6.2. H(t) < Ho+1Iy/r,D(t) < Ho+1p/r, and I1(t) < rHo+1y for all t > 0.

Proof. Notice that rH'(t) + rD'(t) + I'(t) < 0. Thus rH(t) + rD(t) + I(t) <
rH(0) + 1(0). O
Proof of Theorem 4.3. Notice that H'(0) < 0. First we prove part (a). If there
exists tg > 0 such that H'(ty) = 0, without loss of generality, we have H'(t) <
0 for 0 < t < tg, and
bD(to)

(to) = qD"(to) 1 (to) 1+ 1(to)

Thus
H”(fo) = —pH/(tQ) + 3qu2(t0)D/(t0) = 3qu2(t0)D/(t0) < 0.

Therefore, for small 6 > 0, H'(t) > 0 when t € (tp — 0,t0). This is a contradiction.

Now we turn to proving part (b). Assume D'(tp) = 0,tp > 0. Notice that
D (t)(1 +I(1)) — DOI'(B)]

D"(t) = pH'(t) - 3paD*(1) D' (1) - 0P

Thus at tp,
i Y 1 / bD(tD)I/(tD)
D"(tp) = pH'(tp) + IES(OS)E

Clearly, if I'(tp) <0, D"(tp) < pH'(tp) < 0; otherwise, since p > b(Hy + Iy /7)r,
D//(t[)) < pH/(tD)-i-b(Ho-i-Io/T)I/(tD)

b(HQ + Io/T‘)(TH/(tD) + TDI(tD) + II(tD))

< 0.

IN

So, for any extreme point ¢ of D(t), we have D”(#) < 0. Therefore it is a local
maximum point. It is easy to see that ¢p is the unique maximum point and thus
the global maximum point since D(0) = 0 and lim; o, D(t) = 0. In fact, assume t/,
is another local maximum point of D(¢), without loss of generality, assume ¢p < t/,
and D(tp) > D(t). Thus D'(tp) = D'(t);) = 0, and D" (tp) < 0 and D" (t’;) < 0.
If D(tp) > D(t), there exists a ty € (tp,t)) such that D(ty) assumes a local
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minimum, which is a contradiction. If D(tp) = D(t},), similar argument shows
that there must be a local minimum point in (¢tp, ) if D(t) # D(tp) for some
t € (tp,ty). However, D(t) = D(tp) for t € (tp,t)) implies that D'(t) = D"(t) =0
for all t € (tp,t’n), which is a contradiction.

It follows that D’(t) # 0 in (0,¢p) and (tp,o0). Since 0 = D(0) < D(tp) and
D(tp) > 0 = limy_,o0 D(t), it is clear that D’(t) > 0 for ¢t € (0,¢p) and D’(t) < 0
for t € (tp,00). We complete the proof of part (b).

For part (c), notice that D'(t) > 0 for t € (0,tp), D'(t) < 0 for t € (tp,0),
D'(tp) =0, and

(t) = rbD'(t) [( rbD(t) 1 d]r. (6)

1+ I(t) 1+ 1I(t))
We first show that I(t) does not assume a local extreme value at tp. If I'(tp) = 0,
then I"”(tp) = 0 according to (6). Since I"'(tp) = rbD"(tp)/(1 + I(tp)) < 0,
there exists a § > 0 such that I”(t) > 0 for t € (tp — d,tp) and I"(t) < 0 for
t € (tp,tp +9). Since I'(tp) = 0, I'(t) < Ofort € (tp — 0,tp), and I'(t) <
0 for t € (tp,tp +6). Thus I(t) does not assume a local extreme value at ¢ = tp.

Suppose that I(t) assumes a local extreme value at to € (0,00), then I'(ty) = 0.
By (6), I"(to) = rbD’'(t)/(1 4+ I(t)) > 0 if ty € (0,tp), and I"(ty) = rbD'(t)/(1 +
I(t)) < 0if tg € (tp,00). Using a similar argument to the proof of part (b), if
I(t) assumes an extreme value in (0,tp), then it must be a local minimum thus
it is unique; if I(¢) assumes an extreme value in (¢tp,00), then it must be a local
maximum so it is unique. Furthermore, because of their uniqueness, if they exist,
they are the global minimum and global maximum.

When the initial condition 7(0) > 0, since D(0) = 0, we have I(t) < I(0) for
small ¢ > 0. Thus, either I(t) does not attain any extreme value in (0, c0), that is,
I(t) decreases to vanish in (0,00); or I(¢) has a local minimum point ¢; € (0,¢p)
first followed by a local maximum point ¢] € (tp,c0) since lim;_. I(¢) = 0. That
is, I(t) is monotonously decreasing for ¢ € (0,¢7), increasing for ¢ € (t7,t/), and
then decreasing to vanish in (¢7, 00).

When the initial condition I(t) = 0, since I(t) = 0, lim;_,o I(t) = 0 and I(t) >0
for ¢t € (0,00), I(t) must have a global maximum point ¢/ € (0,00) and tp < ¢7. If
I(t) has a local minimum point ¢} € (0,00), then t}; < ¢tp and thus I(¢) must have
a local maximum point between (0,¢}), which is a contradiction. That is, I(t) is
increasing for ¢t € (0,¢7) and decreasing to vanish in (¢7,00). We complete the proof
of Theorem 4.3. O
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