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ABSTRACT. Previously, by assuming a viscous dominated flow in the boundary
layer and an inertia dominated flow in the vessel core, a velocity profile function
for a 1D-wave propagation model was derived. Because the time dependent
shape of the velocity profile in this boundary layer model depends on the size of
the inviscid core and the boundary layer, and thus on the Womersley number,
it differs along the arterial tree. In this study we evaluated a lumped model for
a vessel segment in which the element configuration is based on physical phe-
nomena described by the boundary layer model and for which all parameters
have a physically based quantitative value dependent on the Womersley num-
ber. The proposed electrical analog consists of a Womersley number dependent
resistor and an inductor arranged in parallel, representing the flow impedance
in respectively the vessel core and the boundary layer, in series with a second
resistor. After incorporating a capacitor representing the vessel compliance in
this rigid tube model, the element configuration resembles the configuration
of the four-element windkessel model. For arbitrary Womersley numbers the
relative impedance of Womersley theory is approximated with high accuracy.
In the limits for small and large Womersley numbers the relative impedances
of the proposed lumped model correspond exactly to Womersley theory.

1. Introduction. Windkessel [3, 14, 15, 17] as well as lumped parameter models
[4,5,6,7, 11,12, 13, 16] are used to simulate pressure and blood flow in the arterial
system. The first windkessel model was introduced by Frank et al. [3]. This model
consists of a capacitor representing the aortic compliance and a constant resistor
representing the peripheral resistance. Westerhof et al. [17] extended this model
with an extra resistor, which is thought to be the aortic characteristic impedance.
As a result, a better representation of the medium- to high-frequency behavior of
the systemic input impedance is obtained. Stergiopulos et al. [15] concluded that
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the four-element Windkessel model with an inertial term in parallel with the char-
acteristic impedance, is even superior to the three-element Windkessel model in
describing the behavior of the entire systemic tree or as a model for parameter esti-
mation of vascular properties. Stergiopulos et al. concluded that the inertial term
represents the total inertia of the blood. In addition, they stated that for the aorta
the configuration of an inertial term in parallel with a characteristic impedance
seems correct because for high frequencies the aorta behaves like a reflectionless
tube and for low frequencies the local properties of the aorta (i.e., the characteristic
impedance) are negligible. However, a quantitative physical origin for a parallel
configuration was not given.

Windkessel models fail to explain the phenomena of pulse wave propagation
throughout the arterial tree, as the inherent property of the windkessel model as-
sumes an infinite wave velocity. To study the wave phenomenon, therefore, arterial
tree models based on transmission line theory have been developed [9, 16]. For these
models the vascular system is divided (lumped) into segments that represent the
local blood (density p, kinematic viscosity v) and vessel wall (radius a, compliance
C)) properties. All segments are connected based on the anatomical configuration
to obtain a transmission line. These lumped parameter models include the multi-
branched configuration of the arterial system and a description of the distributed
nature of arterial properties. In Noordergraaf’s model [9] a passive electrical analog
was chosen, which was based on a comparison between equations describing prop-
agation along a transmission line (the two telegraph equations) on the one hand
and a simplified equation of motion of the blood and the equation of continuity
for fluid flow in a short arterial segment on the other hand. The lumped segments
consisted of an inductor L in series with a resistor R that represent respectively the
blood inertia and the viscous blood resistance (Fig. 1). In addition, the compliance
C' of the vessel wall was modeled with a capacitor. In large arteries (Womersley
number o = a\/% > 1), like the aorta, the wave phenomena are inertia domi-
nated and a good approximation of the parameters of the lumped model (values
for R and L) can be derived from the vessel geometry and mechanical properties
using a flat velocity profile. In small vessels (o < 1), i.e. arteries with a diameter
smaller than 2 mm, viscous forces are dominant and approximate values for R and
L can be derived using a quasi-static Poiseuille profile. In Noordergraaf’s model
a flat velocity profile is assumed in the calculation for the inertial term whereas a
parabolic velocity profile is assumed for the viscous term, so the two limiting cases
were combined in each of the single vessels independent of the size and frequency
of the pressure and flow pulsations. Because of the pulsatile nature of the blood
flow a phase difference will be present between the velocity in the core of the vessel
and the velocity in the boundary layer close to the vessel wall. However, this will
lead to frequency dependent values for the inductor L and resistor R. To take the
balance between viscous and inertial forces into account, Jager et al. derived an
extended electrical network [6], that consisted of several frequency independent in-
ductors and resistors for every segment (Fig. 1). At higher Womersley numbers, a
higher number of extra resistors and inductors were needed to accurately describe
the longitudinal impedance [6]. Given the radii of the arteries and the harmonic
that contains most wave energy, it is possible to derive an electrical transmission
line of the total arterial tree that incorporates the balance between inertia and vis-
cous forces. Such a model was made by Westerhof et al. [16], however, the network
configuration is complex and totally based on a mathematical derivation in which
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the physical origin of the pressure and flow waves is not apparent.

Olufsen et al. [10] derived lumped models starting with the one-dimensional ax-
isymmetric Navier-Stokes equation for time-dependent blood flow in rigid tubes and
by applying Laplace transformation and inversion via residue theory. For tubes with
a radius between 5 and 15 mm (i.e. Womersley numbers between approximately 5
and 15) Olufsen et al. found a lumped model which has the same configuration as
the four-element windkessel model. This model configuration is less complex than
Jager’s network. However, the values of the resistor and inductor did not depend
on the Womersley number, but were assumed to be constant for a range of radii.
In this study, we aim to derive a lumped model for a vessel in which the element
configuration is based on physical phenomena and for which all parameters have a
physically based quantitative value dependent on the Womersley number. In the
limiting cases for small and large Womersley numbers, the impedance of the derived
lumped model should correspond to Womersley theory.

We based this study on a wave propagation model with a time and frequency de-
pendent approximate velocity profile function derived by Bessems et al. [2]. They
developed a one-dimensional model of blood flow in arteries without a priori as-
suming a shape for the velocity profile. The resulting approximate velocity profile
consists of an inertia dominated flow in the core of the vessel and a viscous domi-
nated flow near the vessel wall. The size of the inviscid core and the boundary layer
depend on the Womersley number. Therefore in this model the various velocity
profile shapes along the arterial tree differ and form a good approximation of the
velocity profiles obtained from Womersley theory [18] with respect to the nonlinear
term [ v2dQ and the friction term n [ Z2=dI" [2)].

To capture this in an electrical analog, intuitively, an inductor in parallel with a
resistor is expected, representing the flow impedance in respectively the core of the
vessel and near the vessel wall. Because for steady flow the total vessel impedance in
the electrical analog should converge to a Poiseuille resistance, a Poiseuille resistor
is added in series with the parallel arrangement of the inductor and resistor. In this
paper, in Section 2, the approximate velocity profile function given by Bessems et
al. is briefly described. In addition, mathematical expressions for the parameters
in the proposed lumped model are derived. Thereafter, in Section 3, the relative
impedance of the proposed lumped model normalized to the Poiseuille resistance is
compared with the relative impedance derived from the approximate velocity profile
function to motivate our choices. Next, the relative impedance is compared with
Womersley theory to show the difference between Womersley theory and our model.
In addition, the limiting cases for the relative impedances of the proposed lumped
model and Womersley theory are compared. This is done for large (o > 1) and
small (o < 1) Womersley numbers, representing respectively a flat and a parabolic
velocity profile. Furthermore, simplified models are derived in case of Womersley
numbers o < V2 and @ > V2. These v/2-limits stem from the derivation of the
approximate velocity profile. Finally, the proposed lumped model is discussed in
Section 4 and our findings are compared with literature.

2. Methods: Derivation of the lumped model. The lumped model proposed
in this article is based on the wave propagation model with an approximate velocity
profile function that was derived by Bessems et al. [2] and is further referred to
as boundary layer model. In the first subsection the approximate velocity profile
function will be described shortly. For a detailed derivation we refer to Bessems et
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FIGURE 1. The electrical analog of the longitudinal impedance
of a) the proposed electrical analog based on the boundary layer
model, b) Noordergraat’s model and c) Jager’s model. The capac-
itor C' can be added to obtain a compliant tube model.

al. [2]. An experimental validation of the model can be found in Bessems et al. [1].
The derivation of our electrical analog is described in the second subsection.

2.1. The approximate velocity profile function. To derive the approximate
velocity profile function, Bessems et al. [2] considered the Navier-Stokes equation
for fully developed flow in straight tubes driven by a given pressure gradient:

Do gt 00 (1)

z ror: Or

in which v, is the axial velocity, % the pressure gradient, n the dynamic viscosity
and r the radial coordinate.

In the boundary layer close to the vessel wall the viscous forces are dominant whereas
in the center of the vessel the inertial forces are dominant. Between the viscous
boundary layer and the vessel core there is then a transition layer in which a balance
between viscous and inertial forces exists, as described by (1). Bessems et al. [2]
assume the transition layer to become infinitely small. In addition, it is assumed
that there is a balance between the inertial forces and the viscous forces at the
transition from the boundary layer to the central core and that at the transition
in the axial direction the velocity in the boundary layer equals the velocity in the

p
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central core. Under these assumptions it can be derived that the relation between
the size of the central core and the Womersley number « can be given by:

Qe \/5

— =max[0,1 — — 2

= max[0, 1 - ¥ )
in which a.(«) is the Womersley number dependent radius of the central core and a
is the vessel radius. The velocity profile function given by Bessems et al. is related

to (. = (%0)2 according to the following equation:

B lnf qg a? 1 A Op
vz__1—CCZ_E[l_<+§(cc+1)lnd_$ (3)

in which ¢ is the flow, A the cross-sectional area, and { = max[(£)?, ¢]. The shapes
of the velocity profiles along the arterial tree computed with this boundary layer
model are a good approximation of the velocity profiles obtained from Womersley
theory with respect to the nonlinear term [v2dQ and the friction term 7 [ 2= dI’
[2]. The advantage of the boundary layer model is that it can be applied in the

time domain.

2.2. Derivation of the lumped model. To derive a lumped model we use the
same assumptions as Bessems et al. in the derivation of its approximate velocity
profile function. Intuitively, the lumped model consists then of a parallel arrange-
ment of a resistor per segment length R; and an inertance per segment length L
that represent respectively the viscous resistance in the boundary layer and the in-
ertia dominated impedance in the central core. To let the electrical model converge
to a Poiseuille resistance for steady flow a second resistor Rs is introduced in series
with the parallelly arranged Ry and Ly (Fig. 1). The derivation is restricted to rigid
tubes, but can easily be extended with a capacitor to model the storage capacity of
the vessel without changing the derived model parameters.

In this subsection the derivation of mathematical expressions for the resistors
Ry and for the inertance L from the boundary layer model proposed by Bessems
et al. [2] is described. A mathematical expression for the resistor Ry follows di-
rectly from the definition of a Poiseuille resistance. The other two parameters are
derived by comparing the longitudinal impedance of the proposed electrical analog
with the longitudinal impedance in the boundary layer model. The longitudinal
impedances are complex numbers and because the longitudinal impedances of both
models should be the same, the real and imaginary parts are compared separately.
In this way two equations with two unknowns (R; and L;) are obtained. From
those two equations, the mathematical expressions for Ry and L, are derived.

In Bessems’ boundary layer model, by neglecting the external forces —the nonlinear
term and the diffusion term, the 1D-momentum equation for flow through a rigid
vessel is given by [2]:

|1 (4)

in which p is the pressure, z is the longitudinal direction, R, is the Poiseuille
resistance per segment length (%), and L is the inertia per segment length (-£3).
The functions ¢, and ¢, are dependent on the squared radius of the vessel core (.
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and thus on the Womersley number « according to [2]:
1

cp = l—l—%(l—cc) and Cq = 2(1—@)71. (5)

For Womersley numbers smaller than o < v/2 the central core disappears, see (2),
resulting in Poiseuille flow. By using (5), ¢, and ¢, for o < V2 are given by:
cp =3/2, cg =1/2. (6)

For large Womersley numbers (o > v/2) ¢, and ¢, depend on the core radius. After
substitution of (2) in (5) ¢, and ¢, are given by [2]:

Vi 3 o VI,

=14+ —(1-— =—(1-— 7
Cp + Oé( 204)7 cq 4\/5( 204) ()
By introducing the harmonics
dp _Op jwt
S v 8
9. 0z ()
and
q=ge’t (9)
the longitudinal impedance of the rigid vessel, Zlb7 can be derived to be:
dp
_%p (92—
Zp =0z — % ( C“]Rv + jwL] | + Ry (10)

2—¢p —cp
The longitudinal impedance for the electrical analog Z} in Figure 1 is given by:
Ze — j (.«)R%Ll W2L%R1
PRI 422 R2 4 WL
Because the total vessel impedance should converge to a Poiseuille resistance for
steady flow in the electrical analog, Rs equals a Poiseuille resistance. By comparing

the real and imaginary parts of (10) and (11) the mathematical expressions derived
for the model parameters per segment length are derived:

Ry = f(a)R, (12)
Ly =g(a)L (13)
Ry = R, (14)
with ( ) ,
cg—(2—¢p o
O = T e —a) )
and
cg—(2—1c,))?
g(a) = [64( q(2 _(2%)0:;)) + 2_1%]. (16)

As can be seen in Figure 2, the function f(a) is a smooth curve that goes to
infinity for both large and small Womersley numbers. Function g(«) monotonically
decreases to 1 for & > /2 and has a constant value 2 for o < v/2. The limiting
cases are discussed in the next section where the derived lumped model is compared
with Womersley theory and the boundary layer model described by Bessems [2].

3. Results: Comparison between the lumped model, boundary layer
model and Womersley theory.
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FIGURE 2. The functions f(a) (top) and g(«) (bottom) as a func-
tion of the Womersley number. The function f(a) converges to
infinity for both & — oo and @ — 0.

3.1. Relative impedance. In this section, the relative impedance of the proposed
electrical analog, the Womersley theory and Bessems’ boundary layer model are
compared. The relative impedance I is defined as the longitudinal impedance (Z;)
normalized with the Poiseuille resistance R,,. From the definition of the Womersley

number it can be derived that:
wlL a?

= (17)

R, 8
After substitution of (12), (13), (14) and (17) in (11) the relative impedance for the
electrical analog is given by:

'Ot2
e A J%9()

B 145 5

+1. (18)

The relative impedance for the boundary layer model is:

b 2
:ﬁ_ Cq ot 1

I’ = — 19
Re 2-¢, 782 ¢ (19)
while the relative impedance for Womersley reads [18]:
zZpY a? 1
="t - — 20
RU J 8 1—F10(a) ( )

in which F}g is the Womersley function.
As areference, the relative impedance is also given for an electrical analog consisting
of an inductor and resistor in series (Fig. 1) as introduced by Noordergraaf [9]:

=2 — i 41 (21)
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In Figure 3 the relative impedance of the lumped model is compared with both
boundary layer model and Womersley theory. As expected, a perfect match is
found for the impedances for the lumped model and the boundary layer model. For
both models differences with Womersley theory are very small, i.e., much smaller
than for Noordergraaf’s model, and only visible in the phase angle for Womersley
numbers between 1 and 6.

35 T 1.6
o Proposed electrical analog
+ Boundary layer theory
Noordergraaf’s model ;
Womersley theory

301
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FIGURE 3. The modulus (left) and phase angle (right) of the
relative impedance from the lumped model (circles), the bound-
ary layer model (points), Noordergraaf’s model (dotted line), and

Womersley theory (solid line) as a function of the Womersley num-
ber.

3.2. Limiting cases. To investigate if the limiting behavior of the relative
impedances of the proposed electrical analog and Womersley theory are consis-

tent, the limiting cases for a parabolic (a« < 1) and a flat (o > 1) velocity profile
are examined.

The relative impedance for large Womersley numbers (a > 1)
For a > v/2 in the boundary layer model ¢q and ¢, are defined by (7). The relative

impedance of our proposed electrical analog yields after substitution of (7), (15)
and (16) in (18):

at a®

°= +i (22)
4203 — 1202 + 820 — 4 803 — 8v2a2 + 8«
which can be approximated by
2
« «

[~ — +j— for a > 1. 23
442 ar (23)
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The relative impedance based on Womersley theory is given by (see appendix)

« ,012

AV REEE
The approximate longitudinal impedances for the electrical analog and for Wom-
ersley theory can per definition be obtained by multiplying respectively (23) and
(24) with the Poiseuille resistance R,. By substituting (17) in (23) and (24), the
longitudinal impedances for a > 1 for both the electrical analog and Womersley
theory are after neglecting the real part represented by the longitudinal impedance
of an inertance, i.e., a flat velocity profile results.

A for a > 1. (24)

The relative impedance for small Womersley numbers (o < 1)
For o < v/2 in the boundary layer model cq and ¢, are defined as constants and
respectively % and % For g(«) this gives:

gla<V2) =2 (25)

As the denominator of f(a) is 0 for all Womersley numbers smaller than /2, the
reciprocal of f(a) for a < v/2 is determined by

L (eg(a) = (2= ¢p(@)))(2 = cp(a))64 _ 0

fla)  6dleg(a) = 2 —ep(a))? +at ol
After substitution of the equations (25) and (26) in (18), the relative impedance on
the domain o € (0,+/2] is given by

(26)

2

16:1+j%. (27)

For o < 3 the relative impedance based on Womersley theory is (see appendix)

2
I zl—i—j%. (28)

The approximate longitudinal impedances for both the electrical analog and Wom-
ersley theory can per definition be obtained by multiplying respectively (27) and
(28) with the Poiseuille resistance R,. By using (27) and (28), the longitudinal
impedances for o < 1 for both the electrical analog and Womersley theory are
after neglecting the imaginary part represented by the longitudinal impedance of a
Poiseuille resistor, i.e. a parabolic velocity profile results.

3.3. Simplified models. The resistor R; and the inertia L; in Figure 1 are only
dependent on the Womersley number as is derived in equation (12) and (13). It is
thus possible to derive simplified lumped models that can be solved in the time-
domain by assuming a characteristic Womersley number. In this section we derive
simplified lumped models for Womersley numbers smaller than v/2, as in this case
only Poiseuille flow remains in the boundary layer model, and for Womersley num-
bers larger than \/5)

Womersley number o < V2
As was shown in Section 3.2 the function f(«) for Womersley numbers smaller than
V2 is infinitely large and thus flow through resistor R; is blocked. A simplified
model then consists of an inertance of 2L in series with a Poiseuille resistance. If
the Womersley number decreases to zero, the relative impedance in (27) decreases
to 1. a < v/2 the modulus of the relative impedance in (27) differs less than 12%
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from 1 and because we consider this as not significant, the longitudinal impedance
Z; can be approximated by R,. The simplified electrical analog then consists of
only a resistor R,,.

Womersley number o > /2

Functions f(a) and g(«) are plotted in Figure 2 for Womersley numbers between
0 < o < 15. It can be seen from this figure and equation (12) that the resistance
R, of the boundary layer increases with increasing Womersley number. This can be
explained from the fact that the boundary layer becomes thinner with increasing
Womersley number, whereas the central core thickens. The latter can be seen in
Figure 2 from a decreasing g(a). To come to simplified models for v > /2 the ratio
between the impedances of R; and L; needs to be studied more thoroughly. By
using (17) this ratio is given by:

ZR1 o va(a) _ Sf(a)
Zo,  juLg(@)  jalg(a) (29)

The modulus and argument of equation (29) are given in Figure 4. The phase
difference is § radians which is expected as the impedance Zr, is purely imaginary
while the impedance of the resistor Zg, is real. The modulus remains larger than one
for all Womersley numbers and Zg, is at least eleven times higher than Zr,. Based
on this observation the resistor R; can be omitted from the proposed electrical
analog because the vast majority of the flow will go through the inertance. A
simplified electrical analog with an inertance in series with a Poiseuille resistance is
then obtained.
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FIGURE 4. The modulus (left) and phase angle (right) of the
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impedance ratio lel as a function of the Womersley number.
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4. Discussion. In this study we aimed to derive a simple lumped model for a
vessel segment in which the element configuration is based on physical phenomena
described by a boundary layer model and for which all parameters have a physically
based quantitative value dependent on the Womersley number.

An electrical analog was derived based on the boundary layer model that was

derived by Bessems et al. [2]. They assumed viscous dominated flow in the bound-
ary layer and inertia dominated flow in the vessel core. Therefore, after neglecting
the external forces, the nonlinear term and the diffusion term in the 1D-momentum
equation, mathematical expressions were derived for an electrical analog that con-
sists of a parallel arrangement of a resistor and an inertance per segment length that
represent respectively the viscous resistance in the boundary layer and the inertia
dominated impedance in the central core. In series with those parallelly arranged
elements a Poiseuille resistance was introduced so that for steady (o = 0) viscous
flow a Poiseuille resistance is obtained in the electrical analog. The inertia of the
core and the resistance of the boundary layer are fully described by fluid density,
fluid viscosity, vessel diameter, and Womersley number. The difference between
the relative impedances of the proposed lumped model and Womersley theory was
very small, i.e. much smaller than for Noordergraaf’s model, and only visible in the
phase angle for Womersley numbers between 1 and 6. For both large (« > 1) and
small (o < 1) Womersley numbers, the relative impedance of the proposed model
was consistent with Womersley theory.
The model configuration proposed in this study was also found by Olufsen et al.
[10] for vessels with a radius between 5 and 15 mm. The parameters for their model
were L1 ~ %L, Ry ~ 4%Rv and Ry = R,. In our analysis we find a L that varies
between L and 2L depending on the Womersley number; for a = 5 holds L1 = %L.
The resistor R; in our analysis is significantly higher (at least a factor 8 for o = 3)
than in the lumped model proposed by Olufsen et al. for all Womersley numbers.
A high R; is in accordance with the findings of Westerhof et al. as a network of
segments consisting of a resistor and inductor in series suffices to model the whole
vascular bed [16].

If a capacitor is added to our proposed electrical analog (Fig. 1), the model con-
sists of the same elements as the four-element windkessel model proposed by Ster-
giopulos et al. [15]. It thus provides some justification for positioning the additional
inertial term in the four-element windkessel model in parallel to the first resistor.
Our lumped model suggests that the inertial term represents the inertia-dominated
flow in the central core of the vessels, which is supported by Stergiopulos’ conclusion
that the inductor in the windkessel model represents the total blood inertance of
the system. However, the four-element windkessel model is used to represent the
cardiovascular system as a whole, whereas the lumped model in this study is derived
by considering flow in a single segment.

By assuming the characteristic frequency (i.e., the harmonic that contains most
of the wave energy) and using the mathematical expressions derived in this study, it
is possible to derive expressions for segments that can be used to model a rigid tube
model in the time-domain. A compliant tube model can be obtained after introduc-
ing a capacitor to each of the vessel segments (Fig. 1). By adding the compliant
tube models together in series, it would also be possible to develop a transmission
line model of the total arterial tree. However, only a slight improvement of the total
vascular impedance is expected compared to a network built from segments only
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containing a resistor and inductor in series and a capacitor. This because a compar-
ison of the impedance moduli Zr, and Zg, showed that Zg, is at least one order
higher and thus can be omitted from the lumped model. This is supported by the
findings of Westerhof et al. [16], who incorporated the extra network introduced by
Jager [6] in his transmission line model [16], and found that the extra network only
slightly improved the input impedance of the systemic arterial tree compared to a
network built from segments only containing a resistor and inductor in series and
a capacitor. Although the improvements of the input impedance of the transmis-
sion line that consists of tube segments proposed in this article are expected to be
small, all the electrical elements in such a line will be related to physical phenomena.

5. Conclusion. We were able to derive a simple lumped model for which all pa-
rameters have a physically based quantitative value dependent on the Womersley
number and in which the element configuration is based on physical phenomena de-
scribed by a wave propagation model with an approximate velocity profile function.
After incorporating a capacitor representing the vessel compliance in this rigid tube
model, the element configuration resembles the configuration of the four-element
windkessel model. For arbitrary Womersley numbers the relative impedance of
Womersley theory is approximated with high accuracy. In the limits for small and
large Womersley numbers the relative impedances of the proposed lumped model
correspond exactly to Womersley theory.

Appendix: The relative impedance for Womersley theory for small and
large Womersley parameters. The relative impedance I is defined as the lon-
gitudinal impedance (Z;) normalized with the Poiseuille resistance R,. From the
definition of the Womersley number it can be derived that:

wL a?
wh o7 30
R'U 8 ( )
After substitution of (30) the relative impedance for Womersley reads [18]:
zY a? 1
=" = ——— 31
RU J 8 1-— Flo(O[) ( )
in which Fjg is the Womersley function.
The Womersley function Fyg is defined as [18]:
2J1 (5% a)
Py =—7—"—5— 32
0 PRady(3a) (32

in which Jy and J; are respectively the zero and first-order Bessel functions of the
first kind with a complex argument. In the following we will consider the limiting
cases of equation (31) for small and large values of the Womersley number.

Small Womersley numbers. To derive the relative impedance I for small
Womersley numbers, the Bessel functions in equation (32) are approximated by their
power series. Following the power series defined in McLachlan [8] the Womersley
function can be approximated by
‘3/206 (14 . (12 (16
2552(1 - §i5) +3(% — g1g) + O(@®)]
. Ot4 . a2 OtG N
33/204[(1 - ﬁ) +](T - 2304) + O(a8)]

FlO ~ (33)
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From equation (33) it can be derived that
OL4 ; OL2 OLG
1 (=) +i(F — 5m) +0(®)
- at a2 b :
1= Fio (=97) (% — 35m) + O(a®)
Next, for a* < 64 and thus a < 3, equation (34) can be written approximately as

(34)

2
1 1+59
~ . 35
1— Fyp 3%2 ( )
Substitution of (35) in (32) then gives the relative impedance I',(31), for o < 3:
2
=1+ j%. (36)

Large Womersley numbers. For large Womersley numbers the asymptotic ex-
pansions for the expressions J; (%/%a) and Jy(j%/2a) are used [8]. The Womersley
function then reads for a > 1 [8]:

2 rleos (B —F+5) +isin(% % +3)]
Fio ~ — - (37)
I2a eV? a T a T
27 [COS(W o §) +J Sln(7§ - §)]
Because j3/2 = /% and j71/2 = ¢ 7% = (1—\;5) the expression in (37) can be
simplified to
2 _a 1—-7)V2
Flo~ e 7% = % (38)
« !
Substituting (38) in (32) gives the relative impedance I, (31), for a > 1:
a? 1 at a® —v/2at
IV =j— : = +7 V2 . (39)
8 1 - 0=)v2 4203 — 1602 4+ 16v2a ~ 8a3 — 16v/202 + 32«

[e3
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