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Abstract. We present a low-order recursive solution to the Michaelis-Menten
equation using the decomposition method. This solution is algebraic in nature
and provides a simpler alternative to numerical approaches such as differen-
tial equation evaluation and root-solving techniques that are currently used to
compute substrate concentration in the Michaelis-Menten equation. A detailed
characterization of the errors in substrate concentrations computed from de-
composition, Runge-Kutta, and bisection methods over a wide range of s0:Km

values was made by comparing them with highly accurate solutions obtained
using the Lambert W function. Our results indicated that solutions obtained
from the decomposition method were usually more accurate than those from
the corresponding classical Runge-Kutta methods. Moreover, these solutions
required significantly fewer computations than the root-solving method. Specif-
ically, when the stepsize was 0.1% of the total time interval, the computed
substrate concentrations using the decomposition method were characterized
by accuracies on the order of 10−8 or better. The algebraic nature of the de-
composition solution and its relatively high accuracy make this approach an
attractive candidate for computing substrate concentration in the Michaelis-
Menten equation.

1. Introduction. The Michaelis-Menten equation [15] has been widely used to de-
scribe the kinetics of enzyme-catalyzed reactions. Evoking the pseudo-steady state
approximation, this expression reduces to a single first-order nonlinear ordinary
differential equation which describes the rate of depletion of the substrate of inter-
est [8]. While this equation can be readily integrated, the resulting expression is
implicit in the substrate concentration. As a result, root-solving techniques such
as the bisection and Newton-Raphson methods have often been used to compute
the substrate concentration in the integrated Michaelis-Menten equation [9]. Alter-
natively, substrate concentration can be estimated by numerically integrating the
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differential form of the Michaelis-Menten equation as shown in several studies [10,
11, 24].

An explicit closed-form solution to the Michaelis-Menten equation has been pro-
posed only recently [17]. This solution is based on the Lambert W function [7],
and the accuracy of this solution was independently verified to be on the order of
10−15 [13]. Moreover, this solution is valid for all values of substrate concentration
and kinetic parameters, unlike solutions from perturbation methods, which rely on
a parameter being large or small.

Having an accurate closed-form solution to the Michaelis-Menten equation opens
up the possibility of examining the utility of other non-conventional solution tech-
niques to solve the Michaelis-Menten equation. In the present study, we present
a solution to the Michaelis-Menten equation based on the decomposition method
[1]. This approach has been used in the past to obtain solutions to the Michaelis-
Menten equation under pseudo-steady state conditions [5] and also under transient
conditions [18-20]. However, a rigorous analysis of the errors associated with the
solution in both cases was not made, as a closed-form solution to the Michaelis-
Menten equation was not available. Moreover, the transient solution [18-20] was
accurate only in the neighborhood of the reference point and significant errors were
seen at points away from the reference point. While error was reduced through the
use of convergence acceleration techniques such as Padé approximants and Shanks
transformation, the narrow range over which this solution is valid precludes its use
for characterizing the complete profile of the substrate concentration as a function
of time.

In this study, we use the Lambert W function solution for the Michaelis-Menten
equation [13, 17] to present a systematic analysis of the error associated with the
solution from the decomposition method. Based on the results of this analysis, we
present an approach that provides a decomposition solution of any desired accuracy
for the Michaelis-Menten equation. A similar error analysis was also performed for
other commonly used solution methods including the Runge-Kutta and root-solving
methods. Our results indicate that solutions obtained through the decomposition
method were generally superior to those from the corresponding classical Runge-
Kutta methods. Moreover, these solutions required significantly fewer computations
than the root-solving method.

2. Theory. The Michaelis-Menten equation can be used to describe the dynamics
of substrate depletion in the differential form as

ds

dt
= −

Vms

Km + s
, (1)

where s is the substrate concentration, t is time, and Vm and Km are the limiting
rate and Michaelis constant, respectively. All solutions with positive initial datum
remain non-negative for all times > 0 and decay monotonically to zero as t → ∞.
Equation (1) can be readily integrated to obtain the integral form of the Michaelis-
Menten equation

Km ln
(s0
s

)

+ s0 − s = Vmt (2)

where s0 is the initial substrate concentration. Equation (2) is nonlinear and clearly
implicit with respect to the substrate concentration which explains the need for
numerical approaches such as the bisection and Newton-Raphson methods for its
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solution. However, as shown recently [13,17], Equation (2) may be written in a form
that is explicit in the substrate concentration

s = KmW

{

s0
Km

exp

[

s0 − Vmt

Km

]}

(3)

whereW is the Lambert omega function as described in [7]. Details of the derivation
of Equation (3) have been presented elsewhere [13]. In the following section, we will
illustrate the use of the decomposition method for solution of Equation (1). The
result is a simple algebraic expression that is explicit with respect to the substrate
concentration.

2.1. Decomposition method solution for the Michaelis-Menten equation.

The solution to the Michaelis-Menten equation (Equation 1) will be presented in
three sections. The first section introduces the decomposition method for a general
ordinary differential equation. The second section deals with application of the
decomposition method to the Michaelis-Menten equation while the last section deals
with error estimates for this approach.

2.1.1. Decomposition method applied to a general ordinary differential equation. We
will follow Adomian’s [1] development for the general one-dimensional (1-D) differ-
ential equation. Consider a 1-D differential equation

(F ) s (t) = g (t) , (4)

where F is a 1-D differential operator. This general operator may be expressed
as the sum of a linear invertible operator L, a residual linear operator R, and a
nonlinear operator N . The operator F may thus be replaced by the three operators
as

(L+ R+N) s = g, (5)

which can be rewritten as

(L)s = g − (R)s− (N)s, (6)

where the time dependence of s and g have not been shown explicitly. Since L is
an invertible linear operator, it has an inverse L−1. For concreteness, if L is an mth

order differential operator, then L−1 is an m-fold integration operator. Solutions
that differ by an arbitrary polynomial of degree m-1 cannot be distinguished and
are determined from the initial or boundary conditions. All of these terms may
be represented by a function, ψ. The application of the inverse operator L−1 to
Equation (6) results in

(

L−1
)

{(L)s} = (L−1)g −
(

L−1
)

{(R)s} −
(

L−1
)

{(N)s} (7)

or

s = ψ + (L−1)g −
(

L−1
)

{(R)s} −
(

L−1
)

{(N)s} . (8)

The function ψ along with (L−1)g, which together provide a priori information,
are usually grouped into a term s0, and the above equation reduces to

s = s0 −
(

L−1
)

{(R)s} −
(

L−1
)

{(N)s} . (9)
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Two key steps in the decomposition method consist of expressing the nonlin-
ear operation (N)s as a sum of polynomials, commonly referred to as Adomian
polynomials Ak

(N)s =
∞
∑

k=0

Ak (10)

and recursively generating higher-order terms of the solution. This recursive solu-
tion is based on a series solution for s, where a given order term is derived from the
lower-order terms, namely,

s = s0 +

∞
∑

k=1

sk = s0 −
(

L−1
)

{

(R)

∞
∑

k=0

sk

}

−
(

L−1
)

{

∞
∑

k=0

Ak

}

(11)

or for any k ≥ 0, the recursive relationship is given by

sk+1 =
(

L−1
)

{(R)sk} −
(

L−1
)

Ak. (12)

It should be noted that Ak is a function of s0, s1, . . . sk only. Hence the higher-
order terms are obtained recursively from the lower-order terms. The solution is
obtained as a partial sum, and for practical utility it is essential that the partial
sums of sk converge rapidly to a solution of acceptable accuracy.

2.1.2. Decomposition method applied to the Michaelis-Menten equation. The linear
operator L = d/dt in Equation (1) is easily invertible; hence there is no residual
linear operator R. Equation (1) can thus be expressed as

(L)s = −(N)s = −f (s (t)) = −
Vms

Km + s
. (13)

The inverse operator L−1, is given by

(L−1)s =

∫ t

0

s (x) dx. (14)

The initial condition is specified as s(0) = s0. There is no g(t) term and the
recursion reduces to

sk+1 = −(L−1)Ak; for all k ≥ 0. (15)

The problem of finding the higher-order solution terms reduces to finding Ak

and integrating them. The Adomian polynomials, Ak are defined as the terms of
a Taylor series of f(s(t)) about t = 0, s = s0. The function f(s(t)) is a composite
function, and its derivatives with respect to t can be expressed as a sum of the
product of the derivatives of f with respect to s and derivatives of s with respect to
t. Adomian [1] has shown that the polynomial Ak depends only on the derivatives
of f(s(t)) with respect to s to an order k and the previously determined values of
s, s0, s1, . . . sk.

Each term of the solution corresponds to a correction of a given order, and the
solution itself is a partial sum. As an illustration, let us look at the first four order
derived terms

s1 = −tf (s0) (16)
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s2 = −

(

t

2

)

f (1)s1 (17)

s3 = −

(

t

3

) (

f (2)s21
2

+ f (1)s2

)

(18)

s4 = −

(

t

4

) (

1

3!
f (3)s31 + f (2)s1s2 + f (1)s3

)

, (19)

where f (n) is the nth derivative of f(s). For any n > 0, it is given by

f (n) = − (VmKm) (n!)

(

−
1

Km + s0

)(n+1)

. (20)

2.1.3. Error computation for the decomposition solution. For a Taylor series, the
error from a partial sum is well established [6]. For a stepsize of h and a partial
sum of order n, it is given by

Q = −
hn+1

(n+ 1)!

d(n+1)s

dt(n+1)
(x) ; 0 < x < h. (21)

The decomposition method, like the Runge-Kutta method which is also based
on Taylor series approximation, exhibits the same order of accuracy. From an
implementation point of view, the choice of a stepsize and order of approximation
arise just as in the Runge-Kutta approach. The dependence of error on the stepsize
and order of approximation is analyzed in later sections.

3. Materials and methods.

3.1. Computational methods. For solutions to the Michaelis-Menten equation
based on the Lambert W function, W was evaluated using the approach described
in [7]. For the differential form of the Michaelis-Menten equation, substrate concen-
trations were estimated using the classical second-, third-, and fourth-order Runge-
Kutta solutions with a fixed stepsize [6, 16]. For the integral form of the Michaelis-
Menten equation, substrate concentrations were determined using a root-solving
algorithm that was based on golden section search and parabolic interpolation, de-
tails of which have been described by [12].

Although Equation (21) provides an error estimate for the decomposition solu-
tion, the time interval over which the decomposition method yields an acceptable
solution is not known. While the decomposition method provides highly accurate
estimates of substrate concentration in regions close to the reference point, the ac-
curacy decreases with increased distance from the reference point. Figure 1 shows
degradation of the solution as the computation point is moved away from the refer-
ence point (s0 = 10 mg/L in this case). Consequently, we divide the time interval
into several equally spaced subintervals, and the solution obtained at the end of
these subintervals serves as the starting solution for the next subinterval. This ap-
proach is identical to the stepsize concept used in the Runge-Kutta method and
also allows for a direct comparison of the performance between these two solution
methods.
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Figure 1. Calculation of substrate concentration in the Michaelis-
Menten equation using first-, second-, third-, and fourth-order
decomposition solutions (Equations 16-19). The reference point
for all substrate concentration calculations is s0. (s0=10 mg/L,
Vm=1.0 mg/L h and Km=1.0 mg/L).

3.2. Performance comparison of the various solution approaches. In order
to verify the accuracies of the solution methods described above, substrate depletion
curves were computed using the various algorithms from Equations (1)/(2) using
the initial conditions and kinetic parameters described in Table 1. Specifically, the
Km value was varied such that solutions were obtained for s0 : Km values ranging
from 0.1 to 100. The Lambert W function solution, which was accurate to double
precision [13], was used as the basis for determining accuracies of the other solution
methods. Comparisons were made between the W function solution and those from
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the decomposition, Runge-Kutta, and root-solving methods resulting in estimates
of the relative accuracies of these solution approaches.

Table 1. Initial conditions and kinetic parameters used for simu-
lating substrate concentration data in the Michaelis-Menten equa-
tion

Parameter Value
s0 10 mg/L
Vm 1.0 mg/L h
Km 0.1, 1, 10 and 100 mg/L

3.3. Generation of synthetic substrate depletion data. In order to illus-
trate applicability of the decomposition method solution for estimating Vm and
Km through progress curve analysis, synthetic substrate concentration data were
generated from Equation (3) using the initial concentrations and kinetic parameters
presented in Table 1. For the resulting error-free substrate depletion data to be rep-
resentative of experimental observations, noise of known type and magnitude was
introduced in the error-free substrate concentration data set. Normally distributed
error with a mean of zero and standard deviations ranging from 0.25 to 1% of the
magnitude of the initial substrate concentration (10 mg/L) was generated using a
pseudo-random number generator. This noise was added to the error-free substrate
concentration data obtained from Equation (3) and the resulting data set was used
for estimating Vm and Km using nonlinear least squares analysis.

3.4. Kinetic parameter estimation. The kinetic parameters Vm and Km were
estimated by minimizing the residual sum of squares error (RSSE) between synthetic
and calculated substrate concentration data

Minimize RSSE =

n
∑

i=1

{

(ssyn)
i
− (scal)i

}

, (22)

where (ssyn)
i

is the ith synthetic substrate concentration and (scal)i is the ith cal-
culated substrate concentration in a total of i observations. In the decomposition
approach, parameter estimation was initiated by computing substrate concentra-
tions from Equations (16)-(19) with appropriate initial estimates of the kinetic
parameters Vm and Km. In the differential equation solution approach, Equation
(1) was numerically integrated using the fourth-order Runge-Kutta method, while
Equation (2) along with appropriate initial Vm and Km estimates was used to com-
pute substrate concentrations in the root-solving approach. Subsequently, for all
three approaches a comparison was made between synthetic and calculated substrate
concentrations, and the RSSE was computed from Equation (22). The kinetic pa-
rameters were systematically updated using the Levenberg-Marquardt method [14]
until the RSSE in Equation (22) was minimized.
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4. Results.

4.1. Accuracy of the decomposition, Runge-Kutta, and root-solving meth-

ods. Substrate concentrations in the Michaelis-Menten equation were generated
from the decomposition, Runge-Kutta, and root-solving approaches using the ini-
tial conditions and kinetic parameters from Table 1. Four sets of substrate depletion
profiles were generated using Km values of 0.1, 1, 10, and 100 mg/L, which corre-
sponded to s0 : Km ratios of 100, 10, 1, and 0.1, respectively. The initial substrate
concentration, s0, and Vm values were held constant at 10 mg/L and 1.0 mg/L
h, respectively, for all four cases. As the accuracy of both the decomposition and
Runge-Kutta methods strongly depends on the stepsize over which they are applied,
three different time stepsizes corresponding to 10, 1, and 0.1% of the entire time
interval were chosen for investigation.

In order to evaluate the influence of higher-order terms on the decomposition
solution, three separate solution sets were generated where the highest-order terms
in the series solution were second-, third-, and fourth-order, respectively. For each
of these cases, a corresponding solution was obtained using the classical second-
, third-, and fourth-order Runge-Kutta method. A comparison was then made
between solutions from the decomposition and Runge-Kutta methods with those
from the W function solution, which helped determine the error associated with
the decomposition and Runge-Kutta solutions. The magnitude of this error was
subsequently used as the termination point for solutions obtained from the root-
solving technique. It is important to note that while the decomposition and Runge-
Kutta methods are characterized by an order of approximation, the root-solving
approach requires an external specification of the desired error level.

Table 2. Comparison of errors in second-order decomposition,
second-order Runge-Kutta, and root-solving approaches for calcu-
lating substrate concentration in the Michaelis-Menten equation

s0 : Km Solution Maximum of Absolute Error
h = 10% h = 1% h = 0.1%

DM-2 – 2.30 x 10−3 2.22 x 10−5

s0 : Km = 100 RK-2 – 3.20 x 10−3 2.00 x 10−5

Root – 3.70 x 10−3 0.38 x 10−5

DM-2 6.54 x 10−2 5.95 x 10−4 5.92 x 10−6

s0 : Km = 10 RK-2 1.31 x 10−1 5.76 x 10−4 5.36 x 10−6

Root 3.71 x 10−2 2.95 x 10−4 9.92 x 10−7

DM-2 4.71 x 10−2 3.68 x 10−4 3.59 x 10−6

s0 : Km = 1 RK-2 8.66 x 10−2 6.64 x 10−4 6.47 x 10−6

Root 2.29 x 10−2 8.60 x 10−4 9.97 x 10−6

DM-2 1.48 x 10−1 1.13 x 10−3 1.10 x 10−5

s0 : Km = 0.1 RK-2 1.66 x 10−1 1.24 x 10−3 1.21 x 10−5

Root 3.72 x 10−1 4.79 x 10−3 1.00 x 10−5

Table 2 shows a comparison of errors in the second-order decomposition, second-
order Runge-Kutta method, and the root-solving methods. For each value of the
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s0 : Km ratio, three different stepsizes that corresponded to 10%, 1%, and 0.1% of
the time interval were used to obtain substrate concentration estimates. Based on
the magnitudes of errors from these solutions, termination criteria were specified
in the root-solving approach and the resulting errors from the root-solving method
are also shown in Table 2.

Table 3. Comparison of errors in fourth-order decomposition,
fourth-order Runge-Kutta, and root-solving approaches for calcu-
lating substrate concentration in the Michaelis-Menten equation

s0 : Km Solution Maximum of Absolute Error
h = 10% h = 1% h = 0.1%

DM-2 – 7.66 x 10−5 6.20 x 10−9

s0 : Km = 100 RK-2 – 2.14 x 10−4 1.26 x 10−8

Root – 9.90 x 10−6 9.97 x 10−9

DM-2 8.54 x 10−3 4.85 x 10−7 4.73 x 10−11

s0 : Km = 10 RK-2 2.90 x 10−2 1.02 x 10−6 9.19 x 10−11

Root 7.77 x 10−3 2.17 x 10−6 6.67 x 10−11

DM-2 7.42 x 10−4 5.99 x 10−8 5.88 x 10−12

s0 : Km = 1 RK-2 2.00 x 10−3 1.39 x 10−7 1.34 x 10−11

Root 4.29 x 10−3 9.05 x 10−7 5.12 x 10−11

DM-2 6.09 x 10−4 3.45 x 10−8 3.24 x 10−12

s0 : Km = 0.1 RK-2 2.08 x 10−3 1.51 x 10−7 1.46 x 10−11

Root 8.71 x 10−4 8.38 x 10−8 1.36 x 10−13

Similar results are shown in Table 3 for the fourth-order solution. For the s0 :
Km ratio of 100 and a stepsize of 10%, both the decomposition and Runge-Kutta
solutions grossly misrepresented substrate concentrations at low values of s. Thus
error values for these cases are not presented in Tables 2 and 3. This is primarily
because of the rapid switching of the substrate depletion curve from a zero-order
curve to that of a first-order curve at low values of s. This rapid change in s
values could not be accurately predicted by either the decomposition or the Runge-
Kutta solutions over a stepsize that was 10% of the time interval. However, when
the stepsize was lowered to 1% and 0.1%, accurate predictions of the substrate
concentrations were possible using these methods. Several unifying themes emerge
from the results shown in Tables 2 and 3 and are presented below.

4.1.1. Comparison of error between decomposition and Runge-Kutta solutions at a

fixed stepsize and solution order. At a given s0 : Km ratio and stepsize (h) value,
the errors in the decomposition and Runge-Kutta methods are usually of the same
order of magnitude for all the solution orders examined in this study. This is evident
from the data presented in Tables 2 and 3 for the second- and fourth-order solutions,
respectively.

4.1.2. Dependence of decomposition and Runge-Kutta solution error on stepsize.

Another common observation from Tables 2 and 3 is the significant reduction in error
with decreasing stepsize for both the decomposition and Runge-Kutta solutions.
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For example, at a s0 : Km ratio of 10, the maximum values of the absolute error
decreases from 6.54 x 10−2 at h = 10% to 5.95 x 10−4 at h = 1% and to 5.92 x 10−6

at h = 0.1% (Table 2). Similar decreases in error were seen for the second-order
Runge-Kutta solutions also (Table 2). This trend is also seen in Table 3 for the
fourth-order decomposition and Runge-Kutta methods.

4.1.3. Dependence of decomposition and Runge-Kutta solution error on solution

order. The data in Tables 2 and 3 also suggest that higher-order solutions are
significantly more accurate than lower-order solutions under similar conditions of
s0 : Km ratio and stepsize. For instance, when s0 : Km = 10 and h = 1%, the
maximum errors from the second- and fourth-order decomposition solutions are
5.95 x 10−4 and 4.85 x 10−7, respectively, a trend that is also reflected in the
respective Runge-Kutta solutions.

4.1.4. Dependence of decomposition and Runge-Kutta solution error on the number

of computations. A comparison of the floating point operations revealed that both
the decomposition and Runge-Kutta solutions were characterized by a very simi-
lar number of computations for almost all values of s0 : Km and at all stepsizes
(data not shown). However, when the root-solving technique was used to obtain
estimates of substrate concentrations that had errors comparable to those obtained
from the decomposition and Runge-Kutta methods, a significantly higher number
of computations were needed. Specifically, the number of floating operations was
an order of magnitude higher for the root-solving approach.

5. Discussion. It follows from the data in the previous section that the decom-
position method provides estimates of substrate concentration in the Michaelis-
Menten equation that are in most cases more accurate than those obtained from
the corresponding classical Runge-Kutta methods while requiring a similar num-
ber of computations to arrive at the solution. However, the primary advantage of
the decomposition method over both the Runge-Kutta and root-solving methods
is that it provides an algebraic expression as the solution of the Michaelis-Menten
equation (Eqs. 16-19). This makes it very easy to implement the solution on a wide
variety of computing platforms including the spreadsheet computing environment,
the preferred method of many experimentalists.

5.1. Application of convergence acceleration techniques. The decomposi-
tion method produces a sequence of approximations that converge to the solution.
An obvious improvement to the approximation is through the use of convergence
acceleration transformations that can enhance convergence to the solution. A cer-
tain degree of success has been reported in the literature for the Michaelis–Menten
equation when applied to an expansion about a reference [18-20]. Decreased com-
putation times were observed when the Shanks transformation was applied to the
fourth-order decomposition solution [5]. These improvements appear to be applica-
ble to selected cases with one large step or a few of them.

In order to test the efficacy of convergence acceleration techniques, we eval-
uated solution accuracies for small stepsizes over a range of parameters. Three
commonly used convergence acceleration transformations, namely- Aitken’s iter-
ated delta squared process [2], Wynn’s epsilon algorithm [22,23] and Brezenski’s
theta algorithm [4], were applied to the five terms of a fourth-order decomposition
solution. Over the range of parameters studied, no consistent increase in solution
accuracy, was observed (Table 4) for any of the four algorithms. The only case
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Table 4. Comparison of errors in the fourth-order decomposition
solution with those from the application of various convergence
acceleration algorithms

s0 : Km Solution Maximum of Absolute Error
h = 10% h = 1% h = 0.1%

DM-4 – 7.66 x 10−5 6.20 x 10−9

Aitken – 1.94 x 10−4 3.47 x 10−8

s0 : Km = 100 Iterated Aitken – 2.14 x 10−4 3.69 x 10−8

Epsilon – 9.50 x 10−5 1.00 x 10−8

Theta – 8.30 x 10−4 8.72 x 10−8

DM-4 8.54 x 10−3 4.85 x 10−7 4.73 x 10−11

Aitken 1.59 x 10−2 2.00 x 10−6 2.29 x 10−9

s0 : Km = 10 Iterated Aitken 1.76 x 10−2 2.17 x 10−6 2.34 x 10−9

Epsilon 8.43 x 10−3 7.70 x 10−7 7.75 x 10−11

Theta 1.96 x 10−2 1.31 x 10−6 1.02 x 10−9

DM-4 7.42 x 10−4 5.99 x 10−8 5.88 x 10−12

Aitken 3.03 x 10−2 6.38 x 10−7 6.21 x 10−11

s0 : Km = 1 Iterated Aitken 1.46 x 10−2 6.61 x 10−7 6.48 x 10−11

Epsilon 1.02 x 10−3 1.05 x 10−7 1.05 x 10−11

Theta 1.23 x 10−2 8.44 x 10−7 3.80 x 10−10

DM-4 6.09 x 10−4 3.45 x 10−8 3.24 x 10−12

Aitken 8.86 x 10−4 6.76 x 10−8 6.60 x 10−12

s0 : Km = 0.1 Iterated Aitken 8.14 x 10−5 7.05 x 10−9 7.00 x 10−13

Epsilon 3.84 x 10−4 3.68 x 10−8 3.66 x 10−12

Theta 4.82 x 10−4 2.86 x 10−8 2.69 x 10−12

where convergence acceleration seems to have made a predictable difference is the
s0 : Km = 0.1 case. Both the iterated Aitken and theta algorithms increased so-
lution accuracy for the three stepsizes used in this study. This improvement is
in agreement with the conclusions reached by [21]. Both the iterated Aitken and
theta algorithm perform better than other acceleration techniques like the epsilon
algorithm when sequence convergence is slower than linear.

The other complicating factor here arises from progression in time with errors in
starting values at each step. The original decomposition solution typically shows a
sinusoidal error behavior (Fig. 3), suggestive of error compensation. When this is
combined with the error introduced by the acceleration algorithms, the compound
error appears to be unpredictable. These relationships for various convergence
acceleration techniques will be presented in a separate manuscript. For the stepsizes
considered in this study, we conclude that commonly used convergence acceleration
techniques should be avoided as they do not provide consistent improvements in
the accuracy of the solutions.

5.2. Implications for practical implementation of the decomposition so-

lution. The decomposition solution presented in this study can be used both for
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Figure 2. Time course of error estimates for the first-, second-,
third-, and fourth-order decomposition method solutions (s0 = 10
mg/L, Vm = 1.0 mg/L h, and Km = 10 mg/L; h = 1%). Mean and
maximum values of absolute error are shown in Table 5.

simulation as well as for estimating the kinetic parameters Vm and Km from experi-
mental substrate depletion versus time data. Depending on the desired accuracy in
substrate concentrations, the decomposition method can be applied in several ways
to arrive at the solution. Our data clearly indicate that increased accuracies can be
obtained either by using higher-order solutions or by decreasing the stepsize. The
impact of higher-order terms on solution accuracy is presented in Figure 2 where
error profiles for first, second, third, and fourth-order decomposition solutions are
shown for s0 : Km = 1. Significant decreases in error are seen with increasing order
and the mean and maximum values of the absolute errors at varying solution orders
are shown in Table 5. There is approximately two orders of magnitude decrease
in the mean value of the errors for an increase in the order of the solution. This
reduction in the error by increasing the solution order comes at a price. The number
of terms required for computation of the solution grows very rapidly with increas-
ing order in accordance with the Hardy-Ramanujam-Rademacher formula [3]. In
addition, the elegance and simplicity of a low-order solution are lost as we move to
higher orders. Increasing accuracies can also be obtained by decreasing stepsizes
as shown in Figure 3 for s0 : Km = 1. Reduction in stepsize from 10% to 1% and
subsequently to 0.1% resulted in maximum absolute error values of 7.42 x10−4, 5.99
x 10−8, and 5.88 x 10−12, respectively. This is in agreement with the error estimate
provided by Equation (21).
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Figure 3. Time course of error estimates for the fourth-order de-
composition solutions at s0 : Km = 1 and stepsizes of 10%, 1%,
and 0.1%.

Table 5. Mean and maximum errors for different order decompo-
sition solutions

No. of Terms Absolute Mean Error Absolute Maximum Error
2 3.37 x 10−2 6.52 x 10−2

3 1.91 x 10−4 3.68 x 10−4

4 2.62 x 10−6 6.84 x 10−6

5 2.68 x 10−8 5.99 x 10−8

For all practical purposes, accuracies on the order of 10−5 are sufficient as ex-
perimental data are often characterized by significantly higher inaccuracies. If one
desires to use the second-order decomposition solution, a stepsize of 0.1% or lower
must be used to obtain the desired accuracy (Table 2), while a fourth-order solution
with a stepsize of 1% will result in solutions that have accuracies on the order of
10−6 or higher (Table 3). It is our recommendation that the fourth-order decom-
position solution with a stepsize of 0.1% be used for solving the Michaelis-Menten
equation at all s0 : Km ratios as it results in substrate concentration errors that are
less than 10−8.

5.3. Application of the decomposition solution for estimation of Vm and

Km from progress curve data. The applicability of the decomposition solution
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Figure 4. Synthetic substrate concentration data (points) along
with calculated values (solid lines) from the fourth-order decom-
position solution and the best fit kinetic parameters in Table 6.
Synthetic substrate concentration data were characterized by nor-
mally distributed noise with a mean value of zero and standard
deviations of 0.25, 0.5, 0.75, and 1.0% of the initial substrate con-
centration of 10 mg/L.

for nonlinear kinetic parameter estimation from progress curve data was verified
using synthetic substrate depletion data obtained from Equation (3) and s0 = 10
mg/L, Vm = 1 mg/L h, and Km = 1.0 mg/L. This resulting error-free substrate
depletion data set was superimposed with normally distributed noise of varying
magnitude to be representative of experimental data. Figure 4 shows synthetic
substrate concentration data along with calculated values from the fourth-order
decomposition solution (h = 0.1%) corresponding to the best fit kinetic param-
eters shown in Table 6. For the substrate concentration data sets characterized
by 0.25% and 0.5% noise, final estimates of Vm and Km were very close to the
actual values of 1.0 mg/L h and 1.0 mg/L, respectively. Higher deviation from
actual values was seen with increasing noise, especially for Km that had a final
estimate of 1.065 ± 0.064 mg/L at a noise level of 1%. Standard errors for both
Vm and Km increased with increasing noise levels, and the off-diagonal element of
the parameter correlation matrix was greater than 0.96 for all cases indicating some
parameter correlation. Identical kinetic parameter estimates were obtained when
the above substrate concentration data was analyzed using the differential equation
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solution and root-solving approaches (data not shown). This is to be expected as
the fourth-order decomposition solution with h = 0.1% approximates the substrate
concentration with an accuracy on the order of 10−8 (Table 3), while the synthetic
substrate depletion data were characterized by accuracies on the order of 10−3.

Table 6. Final kinetic parameter estimates obtained through non-
linear parameter estimation from synthetic substrate concentration
data

Error (% of s0) Vm (mg/L h) Km (mg/L) RMS Error Correlation
0.25% 0.999 ± 0.003 1.003 ± 0.016 0.7 x 10−3 0.968
0.50% 1.003 ± 0.006 1.011 ± 0.034 2.9 x 10−3 0.968
0.75% 1.003 ± 0.008 1.007 ± 0.050 6.4 x 10−3 0.968
1.00% 1.008 ± 0.011 1.065 ± 0.064 0.1 x 10−3 0.968

It should be noted that the above nonlinear parameter estimation exercise for
the Michaelis-Menten equation can be readily performed using the Lambert W
function as shown in [13]. However, application of the decomposition method to the
Michaelis-Menten equation provides a “proof of concept,” as the results can be easily
compared with the practically exact Lambert W solution. This allows for a clear
quantification of errors associated with the decomposition solution, something which
was not addressed in earlier studies of the same solution [5, 18-20]. For most other
kinetic expressions that do not reduce to a form analogous to the Michaelis-Menten
equation, closed-form solutions that are explicit in the substrate concentration are
not available. Simulation of substrate concentrations in these kinetic expressions
and nonlinear parameter estimation from experimental data will greatly benefit from
algebraic solutions such as those which can be obtained from the decomposition
method. This is currently being investigated and will be presented in subsequent
manuscripts.

6. Conclusions. We have presented a low-order recursive solution to the Michaelis-
Menten equation based on the decomposition method. The error characteristics of
this solution have been described in detail, and this solution is slightly more accurate
than a solution obtained from the corresponding fixed stepsize Runge-Kutta meth-
ods. Perhaps the most important feature of this decomposition solution is it replaces
numerical solutions of the integral and differential forms of the Michaelis-Menten
equation with the evaluation of a simple algebraic expression, a task that can be
readily accomplished on a spreadsheet. While results of any desired accuracy can be
obtained from the decomposition solution through an appropriate selection of solu-
tion order and stepsize, we recommend using the fourth-order solution (Equations
16-19) with a stepsize corresponding to 0.1% of the time interval. This will result
in estimates of substrate concentration that are characterized by accuracies on the
order of 10−8 or better, which should be adequate for most simulation and nonlinear
kinetic parameter estimation applications. This new solution, which is algebraic in
nature, simplifies computation of substrate concentration in the Michaelis-Menten
equation and should make progress curve analysis more attractive for estimating
Vm and Km through the nonlinear least squares approach.
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