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Abstract. In a turning process modeled using delay differential equations
(DDEs), we investigate the stability of the regenerative machine tool chatter
problem. An approach using the matrix Lambert W function for the analytical
solution to systems of delay differential equations is applied to this problem
and compared with the result obtained using a bifurcation analysis. The Lam-
bert W function, known to be useful for solving scalar first-order DDEs, has
recently been extended to a matrix Lambert W function approach to solve sys-
tems of DDEs. The essential advantages of the matrix Lambert W approach
are not only the similarity to the concept of the state transition matrix in lin-
ear ordinary differential equations, enabling its use for general classes of linear
delay differential equations, but also the observation that we need only the
principal branch among an infinite number of roots to determine the stability
of a system of DDEs. The bifurcation method combined with Sturm sequences
provides an algorithm for determining the stability of DDEs without restric-
tive geometric analysis. With this approach, one can obtain the critical values
of delay, which determine the stability of a system and hence the preferred op-
erating spindle speed without chatter. We apply both the matrix Lambert W
function and the bifurcation analysis approach to the problem of chatter stabil-
ity in turning, and compare the results obtained to existing methods. The two
new approaches show excellent accuracy and certain other advantages, when
compared to traditional graphical, computational and approximate methods.

1. Introduction. Machine tool chatter, which can be modeled as a time-delayed
system, is one of the major constraints that limit the productivity of the turning
process. Chatter is the self-excited vibration that is caused by the interaction be-
tween the machine structure and the cutting process dynamics. The interaction
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between the tool-workpiece structure and the cutting process dynamics can be de-
scribed as a closed-loop system. If this system becomes unstable, chatter occurs
and leads to deteriorated surface finish, dimensional inaccuracy in the machined
part, and unexpected damage to the machine tool, including breakage. Following
the introduction of the classical chatter theories introduced by Tobias [1] and Tlusty
[2] in the 1960s, various models were developed to predict the onset of chatter. To-
bias et al. [1] developed a graphical method and an algebraic method to determine
the onset of instability of a system with multiple degrees of freedom (DOF). Merit
presented a theory to calculate the stability boundary by plotting the harmonic
solutions of the system’s characteristic equation, assuming that there was no dy-
namics in the cutting process, and also proposed a simple asymptotic borderline
to assure chatter-free performance at all spindle speeds [3]. Opitz and Bernardi
[4] developed a general closed loop representation of the cutting system dynamics
for turning and milling processes. The machine structural dynamics was generally
expressed in terms of transfer matrices, while the cutting process was limited by
two assumptions: (1) direction of the dynamic cutting force is fixed during cutting,
and (2) the effects of feed and cutting speed are neglected. These assumptions
were later removed by Minis et al. [5], who described the system stability in terms
of a characteristic equation and then applied the Nyquist stability criterion to de-
termine the stability of the system. Chen et al. [6] introduced a computational
method that avoids lengthy algebraic (symbolic) manipulations in solving the char-
acteristic equation. In [6], the characteristic equation was numerically formulated
as an equation in a single unknown but well bounded variable. The stability criteria
for time-delay systems were analytically derived by Stépán et al. [7] [8], by Kuang
[9], and using the Hopf Bifurcation Theorem [10]-[12]. Recently, Olgac and Sipahi
developed the “Cluster Treatment of Characteristic Roots” examining one infinite
cluster of roots at a time for stability of delay systems has been developed to enable
the determination of the complete stability regions of delay [13], and also applied
to machining chatter [14]. In this paper, an approach to solve the chatter equation
using the matrix Lambert W function is presented. By applying the matrix Lam-
bert W function to the chatter equation, we can solve systems of DDEs in the time
domain and check the stability of the system. With this method one can obtain
ranges of preferred operating spindle speed that do not cause chatter. The form of
the solution obtained is analogous to the general solution form for ordinary differ-
ential equations (ODEs), and the concept of the state transition matrix in ODEs
can be generalized to DDEs with the presented method. The result is compared
with results obtained using a bifurcation analysis method with Sturm sequences.
This method provides a useful algorithm for determining the stability of systems
of DDEs without restrictive geometric analysis.

2. The chatter equation in the turning process. In the turning process, a
cylindrical workpiece rotates with constant angular velocity, and the tool generates
a surface as material is removed. Any vibration of the tool is reflected in this surface,
which means that the cutting force depends on the position of the tool edge for the
current revolution as well as the previous one. Delay differential equations, thus,
have been widely used as models for regenerative machine tool vibration. The
model of tool vibration, assuming a 1-DOF orthogonal cutting depicted in Figure
1, can be expressed as [11]
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Figure 1. 1 DOF orthogonal cutting model
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where x(t) is the general coordinate of tool edge position and the delay T = 2π/Ω is
the time period for one revolution, with ω being the angular velocity of the rotating
workpiece. The coefficient kc is the cutting coefficient derived from a stationary
cutting force model as an empirical function of the parameters such as the chip
width, the chip thickness f (nominally f0 at steady-state), and the cutting speed.
The natural angular frequency of the undamped free oscillating system ωn, and ζ
is the relative damping factor. Note that the zero value of the general coordinate
x(t) of the tool edge position is selected such that the x component of the cutting
force is in balance with the stiffness when the chip thickness f is at the nominal
value f0 [11].

To linearize (1), define x1 ≡ x and x2 ≡ ẋ, and rewrite the equation in first-order
form as

ẋ1 = x2(t),
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At equilibrium, the condition, ẋ1(t) = ẋ2(t) = 0, is satisfied; that is,
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Figure 2. Block diagram of chatter loop [3]. Two feedback paths
exist: a negative feedback of position (primary path) and a positive
feedback of delayed position (regenerative path). Chatter occurs
when this closed loop system becomes unstable.

and if no vibration from previous processing is left, then x1(t) = x1(t − T ) = 0.
Therefore, we can conclude that one of the equilibrium points is

x̄1(t) = x̄1(t− T ) = x̄2(t) = 0, (4)

which means that at this equilibrium point, the tool edge is in the zero position
as defined previously. Linearizing (2) using a Jacobian matrix evaluated at the
equilibrium point gives

{
ẋ1

ẋ2

}
=




0 1

−
(

ω2
n +

kc

m

)
−2ζωn




{
x1(t)
x2(t)

}
+

[
0 0
kc

m
0

] {
x1(t− T )
x2(t− T )

}
.

(5)
Equivalently, (5) can be written as

ẍ(t) + 2ζωnẋ(t) +
(

ω2
n +

kc

m

)
x(t)− kc

m
x(t− T ) = 0 (6)

or in the form, [6]

1
ω2

n

ẍ(t) +
2ζ

ωn
ẋ(t) + x(t) = − kc

km
(x(t)− x(t− T )) , (7)

where km is structural stiffness (N/m) and mω2
n ≡ km.

Figure 2 shows the block diagram of the chatter loop. In the diagram, two
feedback paths exist: a negative feedback of position (primary path) and a positive
feedback of delayed position (regenerative path). The u0(s) is the nominal depth of
cut initially set to zero [3]. Chatter occurs when this closed loop system becomes
unstable. The stability of the linearized model in (7) can be used to determine
the conditions for the onset of chatter; however, the linearized equations do not
capture the amplitude limiting nonlinearities associated with the chatter vibrations.
Although comparison with experimental data is not provided in this paper, similar
models have been extensively studied and validated in prior works [1]-[8].
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3. Solving DDEs using the Lambert W function. The linearized chatter
equation (7) can be expressed in state space form as

ẋ(t) + Ax(t) + Adx(t− T ) = 0. (8)

Defining x = {x ẋ}T , where T indicates transpose, equation (7) can be expressed
as

A = −



0 1

−
(

1 +
kc

km

)
ω2

n −2ζωn


 , Ad = −




0 0
kc

km
ω2

n 0


 . (9)

A and Ad are the linearized coefficient matrices of the process model and are
functions of the machine-tool and workpiece structural parameters such as natural
frequency, damping, and stiffness. The analytical method to solve scalar DDEs, and
systems of DDEs as in (8) using the matrix Lambert W function was introduced
by Asl and Ulsoy but is exact only in the case where the matrices A and Ad

commute [15]. In [16], the matrix Lambert W function approach is extended to
obtain the solution of general systems of DDEs in matrix-vector form. Here we
briefly summarize the results.

First we assume a solution form for (8) as

x(t) = eStx0, (10)

where S is n × n matrix. In the usual case, the characteristic equation for (8)
is obtained from the equation by looking for nontrivial solution of the form estC
where s is a scalar variable and C is constant [17]. However, such an approach can
neither lead to any interesting result nor help in deriving a solution to systems of
DDEs in (8). Alternatively, one could assume the form of (10) to derive the solution
to systems of DDEs in (8) using the matrix Lambert W function. Substitution it
into (8) yields

SeStx0 + AeStx0 + AdeS(t−T )x0 = 0, (11)
and using the property of the exponential

eS(t−T ) = eS(−T+t) = eS(−T )eSt (12)

we can rewrite as
SeStx0 + AeStx0 + Ade−ST eStx0

= (S + A + Ade−ST )eStx0

= 0.

(13)

Because the matrix S is a inherent characteristic of a system and independent of
initial condition, we can conclude that for equation (13) to be satisfied for any
arbitrary initial condition, x0, and every time, t, we must have

S + A + Ade−ST = 0. (14)

In the special case that Ad = 0, the delay term in (8) disappears, (8) becomes
ODE, and (14) is

S + A = 0 ⇐⇒ S = −A. (15)
Then, substitution into (10) yields

x(t) = e−Atx0 (16)

This is the typical solution to ODE in terms of the matrix exponential. Multiply
TeST eAT on both sides of (14) and rearrange to obtain,

T (S + A)eST eAT = −AdTeAT . (17)
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In the general case, when the matrices A and Ad don’t commute, neither do S and
A [16]; thus

T (S + A)eST eAT 6= T (S + A)e(S+A)T . (18)

Consequently, to adjust the inequality in (18) and to take advantage of the property
of the matrix Lambert W function defined by

W(H)eW(H) = H, (19)

we introduce an unknown matrix Q so that satisfies,

T (S + A)e(S+A)T = −AdTQ. (20)

Comparing (19) and (20) we note that,

(S + A)T = W(−AdTQ). (21)

Then from (21), solving for S gives

S =
1
T

W(−AdTQ)−A. (22)

Substituting (22) into (17) yields the following condition, which can be used to
solve for the unknown matrix Q:

W(−AdTQ)eW(−AdTQ)−AT = −AdT. (23)

In the many examples we have studied, (23) always has a unique solution Qk

for each branch, k. The solution is obtained numerically, for a variety of initial
conditions, using the ‘fsolve’ function in Matlab. The matrix Lambert W function
defined in (19) contains an infinite number of branches [18]. Corresponding to
each branch, k (= −∞, · · · ,−1, 0, 1, · · · ,∞), of the Lambert W function, for Hk =
−AdTQk, we compute the eigenvalues λ̂ki, i = 1, 2, of Hk and the corresponding
eigenvector matrix Vk. Hence, the matrix Lambert W function is

Wk(Hk) = Vk

[
Wk(λ̂k1) 0

0 Wk(λ̂k2)

]
V−1

k . (24)

Finally, Sk is computed corresponding to Wk from (22) and summated to be the
solution to the systems of DDEs (8) as

x(t) =
∞∑

k=−∞
eSktCk (25)

where the Ck is a 2×1 coefficient matrix computed from a given preshape function
x(t) = g(t), which is initial state of DDEs (8), for t ∈ [−T, 0] [16].

Each branch of the Lambert W function can be computed analytically as shown
in [18], and one of the merits of the matrix Lambert W function approach is that
one can compute all of the branches of the function using commands already em-
bedded in the various commercial software packages, such as Matlab, Maple, and
Mathematica.
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4. Stability by the Lambert W method. Here we apply the matrix Lambert
W function to the chatter problem introduced in section 2. Assume the unknown
Q in (23) as

Q =
[

q11 q12

q21 q22

]
. (26)

Then with (9) and (26), the argument of the Lambert W function, “−AdTQ” is

−AdTQ =




0 0

q11
kc

km
ω2

nT q12
kc

km
ω2

nT


 . (27)

Hence, the eigenvalue matrix and the eigenvector matrix for −AdTQ are

d =
[

λ1 0
0 λ2

]
=


 q12

kc

km
ω2

nT 0

0 0


 , V =

[
0 −q12

q11

1 1

]
. (28)

As seen in (28), one of the eigenvalues is zero. This point makes the chatter equation
unusual, because of the following property of the Lambert function [18]:

Wk(0) =
{

0 when k = 0
−∞ when k 6= 0 (29)

Because of this property, in contrast to the typical case where identical branches
(k1 = k2) are used in (24) [16], here it is necessary to use hybrid branches (k1 6= k2)
of the matrix Lambert W function defined as

Wk1,k2(−AdTQ) = V


 Wk1(q12

kc

km
ω2

nT ) 0

0 Wk2(0)


V−1. (30)

By setting k2 = 0 and varying only k1 from −∞ to ∞, we can solve (23) to get
Qk1,0; then using (22), we determine the transition matrices of the system (8). The
results for gain (kc/km) = 0.25, spindle speed (1/T ) = 50, ωn = 150(sec−2), and
ζ = 0.05, are in Table 1. As seen in Table 1, even though k1 varies, we observe
that the eigenvalues for k1 = k2 = 0 repeat, which is caused by the fact that one
of the branches (k2) is always zero. The eigenvalues in Table 1 are displayed in the
complex plane in Figure 3.

Figure 3 shows that the eigenvalues obtained using the principal branch (k1 =
k2 = 0) are closest to the imaginary axis and determine the stability of the system.
Therefore,

Re{eigenvalues for k1 = k2 = 0} ≥ Re{all other eigenvalues} (31)

For the scalar DDE case, it has been proven that the root obtained using the
principal branch always determines stability [19], and such a proof can readily be
extended to systems of DDEs where A and Ad commute. However, such a proof
is not available in the case of general matrix-vector DDEs. Nevertheless, we have
observed the same behavior in all the examples we have considered. That is, the
eigenvalues of S0,0, obtained using the principal branch for both of k1 and k2, are
closest to the imaginary axis, and their real parts are negative. Furthermore, using
additional branches to calculate the eigenvalues always yields eigenvalues whose
real parts are further to the left in the s-plane. Thus, we conclude that the system
is stable.

The responses, with the transition matrices in Table 1, are illustrated in Figure
4 and compared with the response using a numerical integration with nonlinear
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Table 1. Results of calculation for the chatter equation

Sk1,k2 Eigenvalues of Sk1,k2

k1 = k2 = 0
[

0 1

−33083 −0.24

] {
−0.12 + 181.88i

−0.12− 181.88i

k1 = −1 & k2 = 0
[

0 1

−77988 + 32093i −177− 247i

] {
−0.12 + 181.88i

−176.73− 428.66i[
0 1

−11− 1663i −92− 182i

] {
−91.61

−0.12− 181.88i

k1 = 1 & k2 = 0
[

0 1

−77988− 32093i −177 + 247i

] {
−0.12− 181.88i

−176.73 + 428.66i[
0 1

−11 + 1663i −92 + 182i

] {
−91.61

−0.12 + 181.88i

k1 = −2 & k2 = 0
[

0 1

−137360 + 42340i −230− 570i

] {
−0.12 + 181.88i

−233.30− 755.05i[
0 1

77945− 31297i −177− 611i

] {
−0.12− 181.88i

−176.73− 428.66i

k1 = 2 & k2 = 0
[

0 1

−137360− 42340i −230 + 570i

] {
−0.12− 181.88i

−233.30 + 755.05i[
0 1

77945 + 31297i −177 + 611i

] {
−0.12 + 181.88i

−176.73 + 428.66i
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Figure 3. Eigenvalues in Table 1 in the complex plane. The eigen-
values obtained using the principal branch (k = 0) are dominant
and determine the stability of the system.

equation (1) and linearized one (7). Note that this is for the linearized equation
given by (8). As seen in Figure 4, because there are infinite numbers of tran-
sition matrices for DDEs with varying branches, as more transition matrices are
utilized, the response approaches the numerically obtained response. If we observe
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Figure 5. Stability lobes for the chatter equation

the roots obtained using the principal branch, we can find the critical point when
the roots cross the imaginary axis. For example, when spindle speed (1/T ) = 50,
ωn = 150(sec−2) and ζ = 0.05, the critical ratio of gains (kc/km) is 0.2527. This
value agrees with the result obtained by the Lyapunov method [20], the Nyquist cri-
terion and the computational method of [6]. The stability lobes by this method are
depicted in Figure 5 with respect to the spindle speed (rps, revolution per second).
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In obtaining the result shown in the Figure 5, we note that the roots obtained us-
ing the principal branch always determine stability. One of the advantages of using
the matrix Lambert function over other methods appears to be the observation that
the stability of the system can be obtained from only the principal branch among
an infinite number of roots. The main advantage of this method is that solution
(25) in terms of the matrix Lambert function is similar to that of ODEs. Hence, the
concept of the state transition matrix in ODEs can be generalized to DDEs using
the matrix Lambert function. This suggests that some analyses used in systems of
ODEs, based upon the concept of the state transition matrix, can potentially be
extended to systems of DDEs. For example, the approach presented based on the
matrix Lambert function, may be useful in controller design via eigenvalue assign-
ment for systems of DDEs. Similarly, concepts of observability, controllability with
their Gramians, and state estimator design may be tractable and is being studied
by the authors. The analytical approach using the matrix Lambert function for
“time-varying” DDEs based on Floquet theory is also being currently investigated.

5. Bifurcation analysis [21]. Recently, Forde and Nelson [21] developed a bi-
furcation analysis combined with Sturm sequences, for determining the stability of
delay differential equations. The method simplifies the task of determining the nec-
essary and sufficient conditions for the roots of a quasi-polynomial to have negative
real parts, and was applied to a biological system [21]. For the chatter problem
considered here, the bifurcation analysis presented in [21] also provides a useful
algorithm for determining stability.

In the case that the rank of Ad in (8) is one, the characteristic equation of (7)
can be written in the form

P (λ, T ) ≡ P1(λ) + P2(λ)eλT (32)

where

P1(λ) = λ2 + 2ζωnλ + ω2
n

(
1 +

kc

km

)
, P2(λ) = −ω2

n

kc

km
. (33)

If we begin by looking for purely imaginary roots, iν, ν ∈ <, of (32),

P1(iν) + P2(iν)eiνT = 0 (34)

we can then separate the polynomial into its real and imaginary parts and write
the exponential in terms of trigonometric functions to get

R1(ν) + iQ1(ν) + (R2(ν) + iQ2(ν))(cos(νT )− i sin(νT )) = 0, (35)

where

R1 = ω2
n

(
1 +

kc

km

)
, Q1 = 2ζωn, R2 = −ω2

n

kc

km
, Q2 = 0. (36)

For (35) to hold, both the real and imaginary parts must be zero, so we get the
pair of equations

R1(ν) + R2(ν) cos(νT ) + Q2(ν) sin(νT ) = 0,
Q1(ν)−R2(ν) sin(νT ) + Q2(ν) cos(νT ) = 0.

(37)

Squaring each equation and summing the results yields

R1(ν)2 + Q1(ν)2 = R2(ν)2 + Q2(ν)2. (38)
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Note that (38) is a polynomial equation where the trigonometric terms have disap-
peared and the delay, T , has been eliminated. By defining a new variable µ = ν2,
(38) can be written in terms of µ as

σ(µ) = µ2 + 2ω2
n

{
2ζ2 − kc

km
− 1

}
µ + ω4

n

(
1 + 2

kc

km

)
= 0, (39)

where σ is a polynomial in µ. Note that we are only interested in ν ∈ <. Thus,
if all of the real roots of σ are negative, there can be no simultaneous solution
ν∗ of (37). Conversely, if there is a positive real root to (39), then there is a
delay T ∗ corresponding to ν∗ = ±√µ∗ which solves both equations in (37). There
are many approaches one might take to determine whether a polynomial has any
positive real roots. For second-order characteristic polynomials, there is always the
quadratic formula. For third- and fourth-order polynomials, there are also explicit
algorithms. One approach to showing that no bifurcation exists is to apply the
Routh-Hurwitz condition. If these conditions are satisfied, then all of the roots of
(39) have negative real parts, and thus none are positive and real. This condition
is not sharp, however, since there remains the possibility that the polynomial (39)
has a conjugate pair of roots with a positive real part and a nonzero imaginary
part. For example, consider the characteristic polynomial

λ2 + 3λ + 5 + λe−λT = 0. (40)

In the absence of delay, this becomes

λ2 + 4λ + 5 = 0, (41)

which clearly has only roots with negative real parts, and thus the steady state is
stable. Explicitly, the roots are λ1,2 = −2 ± i. The polynomial produced by the
process we have described from (34) to (39) is

µ2 − 2µ + 25 = 0, (42)

whose roots are 1 ± 2
√

6i. This polynomial has no positive real solution, and yet
fails the Routh-Hurwitz conditions. In other words, the Routh-Hurwitz conditions
can guarantee the absence of a bifurcation but cannot give conditions under which
a bifurcation does occur with increasing T . A simple approach to determining
whether a positive real root exists is Descartes’ Rule of Signs, whereby the number
of sign changes in the coefficients is equal to the number of positive real roots,
modulo 2. If the number of sign changes is odd, then a solution is guaranteed. If,
however, the number of sign changes is even, the rule cannot distinguish between,
for example, 2 roots and 0 roots.

A more general approach to this problem uses Sturm sequences [21]. Suppose
that a polynomial σ as in (39) has no repeated roots. Then σ0 is relatively prime.
Let σ = σ0 and σ′ = σ1. We obtain the following sequence of equations by the
division algorithm

σ0 = a0σ1 − σ2,
σ1 = a1σ2 − σ3,

...
σs−2 = as−2σs−1 −K,

(43)

where K is some constant. The sequence of Sturm functions, σ0, σ1, σ2,· · · , σs−1,
σs( = K) is called a Sturm chain. We may determine the number of real roots
of the polynomial in any interval in the following manner: Plug in each endpoint
of the interval and obtain a sequence of signs. The number of real roots in the
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interval is the difference between the number of sign changes in the sequence at
each endpoint. For a complete proof of the method of Sturm sequences, see [22].
For example, consider the polynomial

µ2 − µ− 2 = 0. (44)

Using σ = σ0, σ′ = σ1, and (43), the corresponding Sturm chain is

σ0 = µ2 − µ− 2, σ1 = 2µ− 1, σ2 =
9
4
. (45)

We evaluate these in the interval [−3, 3] and [0, 3], and construct a table of the
signs at these end points. Considering the difference in the number of sign changes

−3 3 0 3
σ0 + + − +
σ1 − + − +
σ2 + + + +

at each endpoint, we know that there must be two real roots in the interval [-3,
3], and one in [0, 3]. Given a specified parameter set, this method gives a simple,
implementable algorithm for determining whether a bifurcation occurs, without the
need to run the full simulation of the system of equations for various delays.

Equation (39) has a positive real root when gain (kc/km) = 0.2527, ωn =
150(sec−2), and ζ = 0.05, we can obtain two roots µ∗1 and µ∗2, and using µ∗ = ν∗2

we get
ν∗ = ±√µ1, ±√µ2 (46)

Substituting the roots in (46) into (37) yields the critical values of delay, T ∗, such
as,

T ∗ = · · · , 11.2364, 12.4700, 18.3490, 25.8137, 49.9977, · · · (47)

The results agree with previous results, as shown in the Figure 6, and provide an
analytical method to determine the exact values of T ∗ that cause bifurcation. Note
that the value of 1/T ∗ corresponds to the spindle speed.

The characteristic equation (32) has two roots in left-half plane (LHP) when the
gain (kc/km) is zero and in the region under the borderline no bifurcation occurs.
Therefore, the region under the borderline is a stable one, which means chatter
free. At the bifurcation point such as “A”, the root crosses the imaginary axis of
the complex plane (LHP to RHP (right-half plane) or RHP to LHP) if and only if
[21]

R1(ν∗)R′1(ν
∗) + Q1(ν∗)Q′1(ν

∗) 6= R2(ν∗)R′2(ν
∗) + Q2(ν∗)Q′2(ν

∗). (48)

The point “A” satisfies this condition; therefore, the right side is a stable region,
and the left side is an unstable region. By marking the values of critical delays,
T ∗, and varying the ratio, (kc/km), we can obtain exactly the same stability lobes
as in Figure 5. With this method it is possible to obtain the critical delayed time
T ∗ that determines the stability of a system without restrictive geometric analysis
(e.g., Nyquist method) and to predict analytically the preferred operating spindle
speed at which chatter does not occur. This method can also be used for less than
fourth-order characteristic equations to get analytical solutions, and is also suitable
for higher-order cases via numerical calculations [21].
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Figure 6. Comparison of the bifurcation analysis [21] with the
Lambert method shows excellent agreement

6. Concluding remarks. In this paper, two new approaches for the stability
analysis of machining tool chatter problems, which can be expressed as systems of
linear delay differential equations, have been presented using the matrix Lambert
function and a bifurcation analysis. The main advantage of the analytical approach
based on the matrix Lambert function lies in the fact that one can obtain the
solution to systems of linear DDEs in the time domain, and the solution has a form
analogous to the state transition matrix in systems of linear ordinary differential
equations. It can be applied to systems of linear DDEs of arbitrary order, and thus
can be used in chatter models that include multiple structural vibration modes.
Though the solution is in the form of an infinite series of modes computed with
different branches, we observe that the principal branch always determines the
stability of a system. Therefore, it appears that one has only to check the solution
using the principal branch to determine the stability of the system. The results show
excellent agreement with those obtained using traditional methods, e.g., Lyapunov
[20], Nyquist, and the numerical method used in [6]. The method not only yields
stability results but also can be used to obtain the free and forced response of the
linearized machine tool dynamics. The results obtained with the Lambert method
also are compared with those obtained using the bifurcation analysis with Sturm
sequences. Compared with the Nyquist or Lyapunov methods, using the bifurcation
analysis method we can determine the critical values of delay at the stability limit
of the system with relatively simple calculations, avoiding restrictive geometric
analysis. The bifurcation analysis method is well suited for the stability analysis
of 1-DOF (second order) machining dynamics problems. With this approach, the
higher DOF systems can also be analyzed in a similar way using Sturm sequences.

The matrix Lambert W function and Sturm sequence methods demonstrated
here for machine tool chatter are applicable to a wide variety of systems represented
by systems of linear delay differential equations. The authors are currently working
on application of these methods to HIV dynamics.
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