

REMARK ON THE PAPER BY RAO AND KAKEHASHI (2005)

SARALEES NADARAJAH

Department of Statistics, University of Nebraska, Lincoln, Nebraska 68583

(Communicated by Patrick Nelson)

The paper by Rao and Kakehashi [1] uses the Weibull distribution (given by equation (3) in the paper) and a truncated version of it (given by equations (4) and (5)) to model HIV/AIDS data in India. After a careful reading, I have found that all of the results presented in the appendix are incorrect (starting with equation (11) itself). Instead of pointing out all of the specific errors, I have chosen to give the *correct* formulas (and a brief outline of their derivation) for the r th moment of the truncated Weibull distribution.

The probability density function (pdf) of the truncated Weibull distribution is given by

$$f(y) = \begin{cases} \frac{\beta}{\alpha} \left(\frac{y}{\alpha}\right)^{\beta-1} \exp\left\{-\left(\frac{y}{\alpha}\right)^\beta\right\}, & \text{if } 0 < y < t, \\ \frac{\beta}{\alpha} \exp\left\{-\frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1} (t-y) - \left(\frac{y}{\alpha}\right)^\beta\right\} \left\{\left(\frac{t}{\alpha}\right)^{\beta-1} + \left(\frac{y}{\alpha}\right)^{\beta-1}\right\}, & \text{if } y \geq t \end{cases} \quad (1)$$

for $\alpha > 0$, $\beta > 0$ and $t > 0$ (see equation (5) in the paper by Rao and Kakehashi [1]). The corresponding r th moment can be expressed as

$$\begin{aligned} T_r &= \int_0^t y^r \frac{\beta}{\alpha} \left(\frac{y}{\alpha}\right)^{\beta-1} \exp\left\{-\left(\frac{y}{\alpha}\right)^\beta\right\} dy \\ &\quad + \int_t^\infty y^r \frac{\beta}{\alpha} \exp\left\{-\frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1} (t-y) - \left(\frac{y}{\alpha}\right)^\beta\right\} \left(\frac{t}{\alpha}\right)^{\beta-1} dy \\ &\quad + \int_t^\infty y^r \frac{\beta}{\alpha} \exp\left\{-\frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1} (t-y) - \left(\frac{y}{\alpha}\right)^\beta\right\} \left(\frac{y}{\alpha}\right)^{\beta-1} dy \\ &= I_1 + I_2 + I_3, \end{aligned} \quad (2)$$

where I_1 , I_2 and I_3 denote the three integrals. Using the substitution $z = (y/\alpha)^\beta$ and the incomplete gamma function defined by

$$\gamma(a, x) = \int_0^x t^{a-1} \exp(-t) dt,$$

2000 *Mathematics Subject Classification.* 92A15, 62A10.

Key words and phrases. Incubation time distribution, Moments, Truncated Weibull distribution.

one can calculate I_1 as

$$I_1 = \alpha^r \gamma \left(\frac{r}{\beta} + 1, \left(\frac{t}{\alpha} \right)^\beta \right). \quad (3)$$

Note that (3) holds for any $\beta > 0$. However, such general expressions for I_2 and I_3 are difficult to find but one derive closed forms for the special cases $\beta = 1$ and $\beta = 2$ (as correctly pointed out by Rao and Kakehashi [1]). If $\beta = 1$, using the substitution $z = 2y/\alpha$ and the complementary incomplete gamma function defined by

$$\Gamma(a, x) = \int_x^\infty t^{a-1} \exp(-t) dt,$$

one can calculate I_2 and I_3 as

$$I_2 = \alpha^r 2^{-r-1} \exp \left(\frac{t}{\alpha} \right) \Gamma \left(r + 1, \frac{2t}{\alpha} \right) \quad (4)$$

and

$$I_3 = \alpha^r 2^{-r-1} \exp \left(\frac{t}{\alpha} \right) \Gamma \left(r + 1, \frac{2t}{\alpha} \right). \quad (5)$$

If $\beta = 2$, one can write

$$\begin{aligned} I_2 &= \frac{2t}{\alpha^2} \exp \left(\frac{2t^2}{\alpha^2} \right) \int_t^\infty y^r \exp \left(-\frac{2ty}{\alpha^2} - \frac{y^2}{\alpha^2} \right) dy \\ &= \frac{2t}{\alpha^2} \exp \left(\frac{2t^2}{\alpha^2} \right) \int_t^\infty (y - t + t)^r \exp \left(-\frac{2ty}{\alpha^2} - \frac{y^2}{\alpha^2} \right) dy \\ &= \frac{2t}{\alpha^2} \exp \left(\frac{2t^2}{\alpha^2} \right) \sum_{k=0}^r \binom{r}{k} t^{r-k} \int_t^\infty (y - t)^k \exp \left(-\frac{2ty}{\alpha^2} - \frac{y^2}{\alpha^2} \right) dy \\ &= tr! \exp \left(\frac{t^2}{\alpha^2} \right) \sum_{k=0}^r \frac{t^{r-k} \alpha^{k-1}}{2^{(k-1)/2} (r-k)!} D_{-k-1} \left(\frac{2\sqrt{2}t}{\alpha} \right), \end{aligned} \quad (6)$$

where we have assumed that r is a positive integer (as usually the case). The last step of the above argument follows from equation (2.3.15.1) in Prudnikov et al. [2] and $D_p(\cdot)$ denotes the parabolic cylinder function defined by

$$D_p(x) = \frac{\exp(-x^2/4)}{\Gamma(-p)} \int_0^\infty \exp\{- (tx + t^2/2)\} t^{-(p+1)} dt.$$

A similar argument shows that

$$I_3 = (r+1)! \exp \left(\frac{t^2}{\alpha^2} \right) \sum_{k=0}^{r+1} \frac{t^{r+1-k} \alpha^{k-1}}{2^{(k-1)/2} (r+1-k)!} D_{-k-1} \left(\frac{2\sqrt{2}t}{\alpha} \right). \quad (7)$$

Now, substituting (3), (4) and (5) into (2), the r th moment of the truncated Weibull distribution for $\beta = 1$ takes the form

$$T_r = \alpha^r \gamma \left(r + 1, \frac{t}{\alpha} \right) + 2\alpha^r 2^{-r-1} \exp \left(\frac{t}{\alpha} \right) \Gamma \left(r + 1, \frac{2t}{\alpha} \right).$$

Substituting (3), (6) and (7) into (2), the r th moment for $\beta = 2$ becomes

$$\begin{aligned} T_r &= \alpha^r \gamma \left(\frac{r}{2} + 1, \frac{t^2}{\alpha^2} \right) + tr! \exp \left(\frac{t^2}{\alpha^2} \right) \sum_{k=0}^r \frac{t^{r-k} \alpha^{k-1}}{2^{(k-1)/2} (r-k)!} D_{-k-1} \left(\frac{2\sqrt{2}t}{\alpha} \right) \\ &\quad + (r+1)! \exp \left(\frac{t^2}{\alpha^2} \right) \sum_{k=0}^{r+1} \frac{t^{r+1-k} \alpha^{k-1}}{2^{(k-1)/2} (r+1-k)!} D_{-k-1} \left(\frac{2\sqrt{2}t}{\alpha} \right). \end{aligned}$$

REFERENCES

- [1] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, *INTEGRALS AND SERIES* (volume 1). Gordon and Breach Science Publishers, Amsterdam, 1986.
- [2] A. S. R. S. Rao and M. Kakehashi, INCUBATION-TIME DISTRIBUTION IN BACK-CALCULATION APPLIED TO HIV/AIDS DATA IN INDIA. *Mathematical Biosciences and Engineering* 2 (2005) 263–277.

Received on January 6, 2006. Accepted on January 17, 2006.

E-mail address: snadaraj@unlserve.unl.edu