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The paper by Rao and Kakehashi [1] uses the Weibull distribution (given by
equation (3) in the paper) and a truncated version of it (given by equations (4) and
(5)) to model HIV/AIDS data in India. After a careful reading, I have found that
all of the results presented in the appendix are incorrect (starting with equation
(11) itself). Instead of pointing out all of the specific errors, I have chosen to give
the correct formulas (and a brief outline of their derivation) for the rth moment of
the truncated Weibull distribution.

The probability density function (pdf) of the truncated Weibull distribution is
given by
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for α > 0, β > 0 and t > 0 (see equation (5) in the paper by Rao and Kakehashi
[1]). The corresponding rth moment can be expressed as
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where I1, I2 and I3 denote the three integrals. Using the substitution z = (y/α)β

and the incomplete gamma function defined by

γ(a, x) =
∫ x

0

ta−1 exp (−t) dt,

2000 Mathematics Subject Classification. 92A15, 62A10.
Key words and phrases. Incubation time distribution, Moments, Truncated Weibull

distribution.

385



386 SARALEES NADARAJAH

one can calculate I1 as
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Note that (3) holds for any β > 0. However, such general expressions for I2 and
I3 are difficult to find but one derive closed forms for the special cases β = 1 and
β = 2 (as correctly pointed out by Rao and Kakehashi [1]). If β = 1, using the
substitution z = 2y/α and the complementary incomplete gamma function defined
by

Γ(a, x) =
∫ ∞
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ta−1 exp (−t) dt,

one can calculate I2 and I3 as
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If β = 2, one can write

I2 =
2t

α2
exp

(
2t2

α2

) ∫ ∞

t

yr exp
(
−2ty

α2
− y2

α2

)
dy

=
2t

α2
exp

(
2t2

α2

) ∫ ∞

t

(y − t + t)r exp
(
−2ty

α2
− y2

α2

)
dy

=
2t

α2
exp

(
2t2

α2

) r∑

k=0

(
r

k

)
tr−k

∫ ∞

t

(y − t)k exp
(
−2ty

α2
− y2

α2

)
dy

= tr! exp
(

t2

α2

) r∑

k=0

tr−kαk−1

2(k−1)/2(r − k)!
D−k−1

(
2
√

2t

α

)
, (6)

where we have assumed that r is a positive integer (as usually the case). The last
step of the above argument follows from equation (2.3.15.1) in Prudnikov et al. [2]
and Dp(·) denotes the parabolic cylinder function defined by
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A similar argument shows that
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Now, substituting (3), (4) and (5) into (2), the rth moment of the truncated Weibull
distribution for β = 1 takes the form
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Substituting (3), (6) and (7) into (2), the rth moment for β = 2 becomes
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