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1. Introduction

In the field of semi-Riemannian geometry (SRM), the induced metric on a submanifold is not
always non-degenerate, which poses challenges when using traditional methods to study the geometric
properties of these submanifolds. A key difficulty in analyzing lightlike submanifolds (LS) arises from
the complex interplay between their tangent bundle and normal vector bundle. This interaction makes
the geometric study of LS within SRM a particularly intriguing area of research. Such studies have
important applications in mathematical physics, notably in general relativity.

Duggal and Bejancu [1] pioneered the concept of LS and later expanded it by introducing a non-
degenerate screen distribution. This approach helps establish a lightlike transversal (LT) vector bundle
that does not overlap with the tangent bundle. Their work was further detailed in a 2010 book by
Duggal and Sahin [2], which provides an in-depth exploration of LS differential geometry. The book
includes rigorous proofs, novel geometric findings, and discussions on their relevance to mathematical
physics. Numerous studies, such as those in [3-5], have also investigated the geometric features of
lightlike hypersurfaces and submanifolds.

The notion of generic submanifolds in Kaehler and Sasakian manifolds has evolved as an extension
of Cauchy-Riemannian (CR)-submanifolds, as seen in references [6—8]. Since CR-submanifolds
encompass both holomorphic and totally real submanifolds, generic submanifolds represent the
most comprehensive category. Furthermore, invariant and anti-invariant LS in indefinite Hermitian
manifolds can be viewed as special cases of screen Cauchy-Riemann lightlike (SCRL) submanifolds.
It was initially thought that SCRL submanifolds would fall under the broader category of general
LS in lightlike geometry. However, research in [9] revealed that generic LS do not fully include
SCRL submanifolds. As a result, Dogan et al. [10] introduced and analyzed the concept of screen
generic lightlike (SGL) submanifolds. Additionally, Sahin [3] proposed the idea of screen transversal
lightlike (STL) submanifolds in indefinite Kaehler manifolds to address the absence of true lightlike
curves in existing categories like CRL, SCRL, and GCRL submanifolds.

Separately, Crasareanu and Hretcanu [4] developed the concept of a golden structure, rooted in the
golden mean and treated as a polynomial structure [11]. They explored submanifolds in Riemannian
manifolds (RMs) with this golden structure. Over time, this structure has been extensively studied
in various contexts, as documented [12—16]. Building on this foundation, Spinadel [17] generalized
the golden mean into the metallic mean family, defined as positive solutions to equations of the form
* — pt — g = 0, where p and q are positive integers. The metallic mean, denoted o, is given by
Opg = s §2+4q, reducing to the golden mean when p = g = 1. Inspired by this, Crasmareanu
and Hretcanu [18] introduced metallic structures on Riemannian manifolds, with subsequent research
focusing on their properties, including hypersurfaces and submanifolds of LMR manifolds in [5, 19].
Jin and Lee [9] examined generic submanifolds and LS in Sasakian and indefinite Kaehler manifolds,
respectively, while Gupta and Sharfuddin [20] studied STL submanifolds in indefinite cosymplectic
manifolds. SGL submanifolds in golden SRM has also been explored in [10,21].

In this study, we concentrate on geodesic SGL submanifolds within locally metallic SRM, drawing
on these previous investigations. Section 2 lays out the basic concepts of LS, Section 3 examines the
integrability of distributions in SG submanifolds of metallic SRM, and Section 4 explores the properties
of totally geodesic SG submanifolds. The final section provides an example of an SG submanifold in
a metallic SRM.
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2. Preliminaries

Let (R g) be an SRM with (k+ j)-dimensions, which means that k, j > 1, and g is a semi-Riemannian
metric in N. We assume that N is not a Riemannian manifold (RM) and that g represents a constant
index of g.

Consider that N has a tensor field y of type (1, 1) s.t.

W' = py +ql, 2.1)

Here, T(YN) on I indicates the identity transformation. The structure ¢ is commonly known as a
metallic structure. A metric g is said to be y-compatible if

gWry, ) =8y, ¥, (2.2)
then (§, g, ¥) is called MRM. If ¢y is changed to y in (2.2), then from (2.1) we get

gWy,yl) = g(pyy, ) + g(qy, {) (2.3)

for any y,{ € F(‘I’gl. L
Given a MRM (RN, g, ¢) and y parallel to the LCC V on N,

Vy =0, (2.4)

then the SRM (8, g, ) is known to have local metallic characteristics.
The LCC is expected to be V on N, we have

Vy{ = —Aul + Vyh. (2.5)
Using projections, we get _
Vyg = V)’( + hl(% 5) + hs(% é/)’ (26)
V,8 = —Axy + VIR + (7, N), (2.7)
Vo =-Ay + V5 + 14, 0). 2.8)

We investigate the distribution of P, which is the projection of I'N on the screen.

V,P{ =V P{ + R (y, P)), (2.9)
V,£ = —Ay + Vg, (2.10)

where y, ¢ € T(UN), N € T(Itr(YR)), y € T(S(TNY)), & € T(Rad(TN)), h € T(tr(TR)).
3. SGL submanifolds
Definition 3.1. [10] Let N be a real submanifold of the metallic SRM N A submanifold N is classified

as an SGL submanifold if it meets the following condition:
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(i) The radical distribution Rad("('N) is invariant under the tensor field  meaning that

Y(Rad((N)) = Rad(TN). 3.1
(ii) A subbundle of S (‘YM), Ay, exists such that

A=y S(CM)NS(TM), (3.2)
where the non-degenerate distribution Ay is on N.

By considering the notion of a generic LS with respect to a screen, we may deduce that there is a
non-degenerate complementary distribution A’ — Ay in S (TN).

S(YNR) =200 A,

where (') ¢ S(TN) and Yy(2') € S(TNR). Sy, S, and Q stands for the projection on Ay, Rad(TN)
and A’, respectively.
Then we have, for VX € T'('I'N),

y=Soy+S1vy+Qy=Sy+ 0y, 3.3)
where A = 4y LRad((N), Ais invariant, and Py € ['A, Qy € I'A". From (3.3), we get

Yy = ¢y + wy, (3.4)
where (¢y) and (wy) are tangential and transversal parts of Yy, respectively.
Yy = fy+wy (3.5)

for vy, € T(CN), where fy = ¢Sy and wy = ¢ Qy.

Wi =B{+CL (3.6)
for any ¢ € I'(¢r(YN)), B € I'(YN) and C¢ € I'(¢r(CN)).
A metallic SRM’s proper SGL submanifold is defined as N such that 1; and A" are both non-zero.
Key properties of a proper SGL submanifolds include the following:

(1) (1) indicates that dim(Rad(T M)) = 2s > 2.

(2) (1) indicates that dim(Ay) = 2r > 2.

(3) dim(X) = 2p > 2. Thus, dim(N) > 6 and dim(8) > 10.
(4) Any proper 6-dimensional SG-LS must be 2-lightlike.
(5) (1) and metallic SRM N imply that index(g) > 2.

Proposition 3.1. [10] As an SGL submanifold, an SCRL submanifold has a distribution A’ that is
completely anti-invariant. In this case, the distribution A is in accordance with the equation S (YN*) =
wA’” @ u, where 1 is a non-degenerate invariant distribution.

Definition 3.2. [10] Assumed that N is a r-LS of N, a metallic SRM. Assuming that S ('TN) of N has a
screen distribution such that
Y(S(IRH) € S(IN),

where N is a generic r-LS.
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Proposition 3.2. [10] In terms of the screen, a generic r-LS is a LS with u = 0.

Theorem 3.1. Let N be an LS of a locally metallic SRM N. The components of h*(y, () and h*(y, )
in wA’ are zero if V is a metric connection. On the other hand, if h*(y,y{) and h’(y,{) have no
components in wA’, then the induced connection V is a metric connection.

Proof. Consider V as a metric connection. Based on Eq (2.4), we can express the following: Vy €
['(CN), and ¢ € T'(Rad(TN)),

_ 1 — _
Vi = 9T - L0 T0),
Using (2.6), we have

— 1
Vil = UV K p ) + )] - gw[w +H 3.0+ 3L O

Using (2.10), we get

V0 = éw[—A:m VUL + ROy + 1O g0
+§w[—Azy VI ARG, + RGO,
Using (3.4), (3.6) and taking tangential parts, we have
V.l = é[—fﬁAf},ﬂ Vo + B 000+ Lioay 4 Vi 4 B

Since Rad(r'X) must be parallel to V to be a metric connection, we can conclude that

1 1 1
2,0 U) = g(—=ALy + V'l + —B(y,u0) - Loy + Evic + Ly, 0, 0),
q q q q q q

1
VEU) = GBI + gBhw, 0. U).

Since g(Vx{,U) = 0, |
SO0 + ghf(y, 0H.U) =0,

Yy, € Radl'(YN) and U € ST(TN).
Hence, h*(y, ¥{) and h*(y, {) has no components in wA’. O

Theorem 3.2. Examine a locally metallic SGL submanifold N in the SRM N, if the following condition
is met, the distribution A is integrable.

g(h* (v, W) — W' (¢, yy), wN) = g(h'(y, O) — h'(, ), pyN).

Proof. Since, A is integrable iff for v, € T'Ay, [y, ] € A, i.e.,

gy, ¢l.m) = gy, L1, N) =0,
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where n € 'A” and N € ltr(TN).

1 _ _
g(ly.<¢lm) ;][g(wV{ = Vey,um) — g(VE = Vey, pym],

1 — _ _ _
gly.{ln = ;I[g(VW{ = Veapy,yn) — g(Vy L = Vv, pum)l.

Using (2.6) and (3.4), we have

1
gy, Ly = 5[g<vywé + W (v, p0) + B (v, ) = Vepy — B (L wry)

—h* (¢, yy), ¢ + wn) — g(V, ¢ + h(y, ) + I (,0)
~Voy =Wy, 0) = h* (£, y), pgn + wn)].

Using (2.9), we have

gVl = Voby, én) + g(Vy — Viy, pén)
= gy, ) = (v, ¥ ), wn) — g(h'(y,{) — h* (L, y), pwn).

Similarly, from (2.3), we have

1
g[y.{1.N) = a[g(Vyllff = Vepy, yN) - g(V,{ = Vey, pyN)L.
Using (2.6) and (2.9), we have

g (v, ) — (), yN) = gh'(y.0) — (. y), pyN).

Theorem 3.3. Let N be an LS of N, a metallic SRM. If the distribution " meets the following criteria,
it is integrable.

g('(n, ¢x) + D'(n, wy) — h'(x, ¢n) — D'(x, wn), YN)
= g((H'(, ¢x) + D', wy) — h'(x, ¢n) — D'(x, wn), pN).

Proof. Given that A’ is integrable, then for Vn,xy € A,y € ['lp and N € Tltr(CN), g([n. x1,v) =
g(n.x1,N) = 0.

gmxly) = —[gVuV =V yy) - s(Vux — Vm,, py)l.

1
q
Using (2.5) and (3.4), we have

g(Vydx = Vypn — Ayt + Aupx, ¥y) = 8(Vydx — Vb — Ayl + Aunx DY)
Similarly,

1 — _ _ _
g[n.x1,N) = 5[g(Vn¢'X = Vi, yN) — gV = V,ym, pN)1.

Using (2.5) and (3.4), we have

g('(n, ¢x) + D'(n, wy) — h'(x, ¢n) — D'(x, wn), YN)
= g((W'(, ¢x) + D', wy) — h'(x, ¢n) — D'(x, wn), pN).
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Theorem 3.4. Consider N to be an SGL submanifold of a metallic SRM N. The A distribution is
parallel if

g(h*(y, ¢n) + D' (y, wn), y0) + g(h*(y, ¢n) + D'(y, wn), p0) = 0.

Proof. If A 1s parallel distribution, then, for Vy,{ € Land n € X', i.e., g(gy{ ,m) =0,

sV, .om) = -8, V),

— 1 _ —
gV,l,m) = —5[g(w(Vyn),w§)+g(¢/(Vyn),p§)],
— 1 _ _
sVl = —g[g«vywn),wo+g«vywn>,p§>].

Using (2.6), (2.9), and (3.4), we have

g(h*(y, ¢n) + D' (y, wn), y0) + g(h*(y, ¢n) + D'(y, wn), p{) = 0.

Theorem 3.5. Consider N to be an LS of N a locally metallic SRM. A’ distribution is considered
parallel if

g(V;¢X - Aw)(n9 WN) = g(V;¢ - Aw)(n’ N), (37)
for every n and y in the set I'A’.

Proof. It A is parallel distribution, Vi, y € T'A', V,xy € TA’, y € T'Ag and N € T'ltr(TN), i.e., g(V,x,y) =
g(Vyx,N) = 0, and using (2.8), (2.9), and (3.4), we have

g(Vidx + W'(Z,¢x) — Ay + D', wx). ¥ X) = g(Vox. pUy).
Similarly, we get
fVN) = gV uN) — TNl
Using (2.8), (2.9), and (3.4), we have
g(Vidx — A UN) = g(Vig—A,n,N). (3.8)
4. GSG-lightlike submanifold

Proposition 4.1. The distribution A of an SGL submanifold N of Nisa totally geodesic foliation in N
if and only if N is A-geodesic and A is parallel with regard to V on N.

Proof. We assume that A specifies a completely geodesic foliation in N, that is, 67{ elAfory,leTlA,
then for V¢ € Rad(YN), n € T'A” and y € ['S(TN),

§(V,,,&) = gV, x) = g(V,{,m) = 0.
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Since

g(V,0,6) = g(W(y,0),6), H(y,0) = h*(y,0) = 0

— Nis a A-geodesic, and A is parallel with respect to V on .
Conversely, suppose that

hl(y’ () = hs(y’ g)’ V’)/, ( el

From (2.6), we have _ _
Vi=V,l = V,[elTN.

Since A is parallelon X = V,J € A O

Theorem 4.1. Let N be an SGL submanifold of a metallic SRM N. If the following condition applies,
then N is mixed geodesic.

g((Au)y = VoW, ¢x) = g(h'(y, ¢Z) + Vywl, wy),
Yy eTA £ €T A and y € TS (TNR).
Proof. If N is mixed geodesic, then using (2.6), we have
g(V,{,8) =0.

Since Rad((N) is invariant, then

gVl €) = 0.
Using (2.6), (2.8), and (3.4), we get

H(y,¢¢) = =D'(y, w).

Now,

gVl ) = 0,
using (2.6), (2.8), and (3.4), we get

8Au)y = VoWl dx) = g(h°(y, ¢2) + Viywl, wy),

Yy eTA, el A, and y € TS(YNS). ]

Proposition 4.2. Let N be a locally metallic SRM R, to which N is an SGL submanifold. Then, N is
mixed geodesic iff

WOV, dm) = Ay + C(H'(y, ¢m) + D'y, wm) + C(h*(y, ém) + Vywn)]
=Ll (y.¢m) = Vywn = D'(y, wn)] = 0.

Proof. Since

V)¢ = ~[W(V,u0) - pp(V,0)].

1
q
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Now, using (2.6), (2.8), (3.4), and (3.6), we get

hty,m) = V,n—-V,n,
1
h(y,n) = ;]w[vmn +h'(y, ¢n) + (v, ¢n) — Auyy + Viwn + D'(y, wn)]

—s[Vﬂm +h'(y, ¢n) + B’ (v, ¢n) — Auyy + Viwn + D'(y, wn)] = V1.

Taking transversal part, we get

1
h(y,m) = ;I[wQ(Vyaﬁn — Auyy) + C(H'(y, ¢m) + D'(y, wn)) + C(h*(y, ¢n) + Vywn)]
—g[h‘“(% ¢n) — Vywn — D'y, wn)].
Since h(y, ) = 0,

WOV, m = Auyy) + C(H(y, ¢m) + D'(y, wm) + C(B(y, ¢m) + Vywip)]
~L[n*(y, ¢m) = Vywn — D'y, wn)] = 0.

Proposition 4.3. Let N be an SGL submanifold of a metallic SRM N. Then, forVy € TAy,n € TA,
we have

1
Vi = 5[¢V7¢n — ¢Auyy + BR'(y, én) + BV wn] + §[¢V7n + B (y,n) — (v, m)].
Proof. Since
_ 1 — _
Using (2.6), (2.8), (3.4), and (3.6) and taking tangential part, we have
1 ~ 5 s
Vyn = 5[¢Vy¢77 — QALY + B (v, én) + BV wnl + §[¢V7n + Bh'(y,m) = I (y, m)].
5. Example

Example 5.1. Suppose N be a submanifold of R;* given by

v = (0,vscosa,—vs, —vg, vicosha, v,cosha, vy sinha — v,, vy + vy sinha, vssina,

VeSINQ, Sinv3sinvy, cosvycoshvy).
Examine i, a metallic structure described by

J(a)’l, 0y2, 0y3, 0ya, 0ys, s, 07, 0Ys, 0y, 0Y10, 0Y11, 0Y12)
= (00y1,00y,,00y3,00y4,00ys, 00Ys, —00y7, —00x3, —00Y9, TOY10, TOY11, —TOY12).

Then, Y'M is spanned by {r1, 172, 73, 114, N5, 76}, Where
m = 0ys+dy; +dys + dys, M2 = Oys — 0y; — Oyg + Oys,
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Oy + 0yi2, N4 = 0Oy — OO0Y12,
Oy2 + 0y + 0yo, ng = T0y3 — T0Y9,

3
s

where Rad((M) = {n,,n,} and Ay = {n3,n4}. We obtain that /tr("( M) is spanned by
1 1
Ny = 5{0)’5 +0y7}, Ny = 5{0'575 — odyq}.

Also, the ST bundle is spanned by

Wi
Wi = 0’}/3 + 8)/9, W, = 0'8)/3 - 0'8y9

=0y, + 0ys + Oyy, W) = 00>,

It is straightforward to show that u = sp{W3, Wy}.
Then, ' = S p{ns, 6} and M is a SGL submanifold of R}*. o

6. Discussion and conclusions

Several characterizations of SGL submanifolds within locally metallic SRM are investigated in this
work. We do a detailed analysis of the integrability of distributions associated with these submanifolds.
Moreover, a number of SG submanifold features are studied in detail, especially those that have the
characteristic of being completely geodesic. To illustrate the notion of SG submanifolds in the context
of metallic SRM, an example is given.

This research meticulously examines SGL submanifolds in the setting of locally metallic SRM,
emphasizing their defining traits and characteristics. An in-depth analysis of the integrability
conditions for related distributions provides valuable perspectives on their geometric framework.
Furthermore, we investigate distinct attributes of SG submanifolds, particularly those displaying
completely geodesic properties. To reinforce the conceptual foundation, a final example is presented,
clearly demonstrating the application of SG submanifolds within metallic SRM. This study advances
the comprehension of the geometric and algebraic aspects of these submanifolds in the realm of
sophisticated differential geometry.
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