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Abstract: Soft set theory, originally introduced by Molodtsov in 1999, offers a versatile and
flexible mathematical framework for handling uncertainties, vagueness, and incomplete information
in complex systems. Over the past two decades, it has found extensive applications in diverse domains
such as decision making, data analysis, engineering, and medical diagnosis. However, despite this
wide applicability, its potential in the field of time series analysis remains relatively unexplored and
underutilized. Time series data, which capture the evolution of phenomena over time, often involve
uncertainty, noise, and nonstationary pattern features that make it an ideal candidate for soft set based
modeling. Building on this, we propose two distinct approaches, amplitude threshold soft set and
time derivative threshold soft set for representing time series data within the soft set framework.
The effectiveness of the proposed methodology is demonstrated through two comprehensive real
world applications. First, 58 year temperature dataset from six Brazilian cities spanning from 1967
to 2019 is analyzed, demonstrating how the soft set framework can capture long-term climatological
patterns and facilitate analysis across different geographical regions. Second, we consider heart
sound classification using phonocardiogram (PCG) data, showing how soft set based time series
representation can effectively distinguish between normal and abnormal heart sounds with promising
classification performance with the help of a novel ratio based similarity measure specifically designed
for soft sets. The methodology’s effectiveness is demonstrated through medical signal processing
applications, where it achieved competitive performance on heart sound classification (challenge
score: 0.776). By integrating soft set theory with time series analysis, and applying the proposed
similarity measure in this context, the study bridges an existing gap between the two fields. This
approach offers a fresh perspective for pattern recognition, comparative analysis, and uncertainty
modeling in temporal data, opening new avenues for future research.
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1. Introduction

The mathematical foundations of soft set theory were established by Molodtsov [1], who introduced
this framework as a novel approach to handle uncertainty without the restrictions imposed by
traditional set theories. The fundamental advantage of soft sets lies in their ability to model vague
concepts without requiring precise membership functions or probability distributions. Building upon
Molodtsov’s pioneering work, Maji et al. [2] provided comprehensive theoretical developments and
operational definitions that became the cornerstone of subsequent research. The integration of soft sets
with fuzzy logic was later explored by Maji et al. [3], introducing fuzzy soft sets that combine the
flexibility of soft sets with the graduated membership characteristics of fuzzy sets.

The development of effective similarity measures has been crucial for the practical application of
soft sets. Tversky [4] laid the psychological and mathematical foundations for understanding similarity
through feature based approaches, which later influenced soft set similarity research. Majumdar
and Samanta [5] introduced the first formal similarity measure specifically designed for soft sets,
establishing key mathematical properties and operational frameworks. This was followed by Sulaiman
and Mohamad [6], who proposed a Jaccard based similarity measure, and Kharal [7], who developed
comprehensive distance and similarity measures for soft sets. Recent advances include specialized
similarity measures for extended soft set variants, such as the picture fuzzy soft sets similarity measure
by Salsabeela and John [8].

The versatility of soft set theory has led to numerous hybrid approaches that combine soft sets with
other mathematical frameworks. Yang et al. [9] explored the combination of interval valued fuzzy
sets with soft sets, while Feng et al. [10] investigated the integration of soft sets with both fuzzy and
rough sets. More sophisticated extensions include soft rough sets by Zhan et al. [11], and various
specialized variants such as ternary fuzzy soft sets [16], cluster soft sets [15], belief interval valued soft
sets [13], and confidence soft sets [12]. Hijriati et al. [14] contributed to the theoretical understanding
of constructing soft sets from fuzzy subsets, further enriching the theoretical landscape.

Soft set theory has demonstrated remarkable applicability across diverse domains. In healthcare,
Gifu [22] showcased innovative applications in healthcare claims analysis, while network analysis
applications were explored by Akgüller [21] for social media complexity analysis. Financial
applications include stock market analysis by Balcı et al. [19], and decision making frameworks have
been extensively developed [17, 18, 20, 26]. Recent innovations include cryptographic applications by
Bayram et al. [23] and comprehensive systematic reviews by Alcantud et al. [27], which highlight the
growing maturity of the field.

Although soft set applications have flourished in various domains, time series analysis presents
a significant research gap. Current approaches to handling uncertainty in temporal data mainly rely
on fuzzy logic variants. Johnpaul et al. [30] developed fuzzy representational structures for time
series clustering and classification, while Ye et al. [28] focused on global temperature modeling
and prediction. Advanced fuzzy approaches include the work by dos Santos Ferreira et al. [33]
on fuzzy time series using soft clustering and Santos Ferreira et al. [31] on addressing imprecision
in deterministic time series components. Pattanayak et al. [32] contributed fuzzy probabilistic
intuitionistic models for forecasting, and recent developments include patient similarity computation
for clinical decision support [35]. Contemporary research has witnessed the emergence of sophisticated
uncertainty modeling paradigms. Neutrosophic approaches, as demonstrated by Edalatpanah et al. [34]

AIMS Mathematics Volume 10, Issue 9, 21994–22022.



21996

in financial forecasting and Saqlain et al. [24] in medical diagnosis, offer advanced uncertainty
handling capabilities. Pythagorean fuzzy frameworks have gained significant attention, particularly
in energy systems evaluation [36] and decision making about rural infrastructure [37]. These advanced
approaches, including interval-valued Fermatean neutrosophic systems [25] and multiattribute decision
making algorithms [26], represent the current state of the art in uncertainty modeling, but have not yet
been systematically integrated with soft set theory for time series applications.

Despite the extensive theoretical development and diverse applications of soft set theory, a critical
gap exists in its application to time series analysis. This gap becomes particularly pronounced when
considering the inherent characteristics of temporal data that naturally align with the strengths of soft
set methodology. Existing time series analysis methods, while mathematically sophisticated, face
several fundamental limitations when dealing with real world temporal data. Traditional statistical
approaches assume stationary and precise numerical relationships that may not hold in practice [28].
Fuzzy based methods, though more flexible, still require the definition of membership functions, which
can be subjective and domain dependent [31,33]. Even advanced neutrosophic approaches [34], while
powerful in handling uncertainty, introduce computational complexity and parameter sensitivity issues
that may limit their practical applicability.

Time series data exhibit several characteristics that make it particularly suitable for soft set
representation. First, temporal phenomena often involve categorical or qualitative states that cannot
be easily quantified using traditional numerical approaches. For instance, climatological patterns may
be better described through qualitative descriptors (e.g., “warm periods,” “seasonal transitions”) rather
than precise temperature ranges [29]. Second, time series frequently contain missing or incomplete
information, a scenario where soft sets excel due to their parameter-based representation that naturally
accommodates partial information.

A fundamental requirement in time series analysis is the ability to measure similarity between
different temporal sequences for pattern recognition, classification, and comparative analysis
purposes [30, 35]. Current similarity measures in soft set theory [5–7] were primarily designed for
static soft sets and may not adequately capture the nuanced relationships present in temporal data.
The existing measures may fail to account for the sequential nature of time series or the varying
importance of different temporal patterns. Real world applications provide compelling motivations
for developing soft-set-based time series analysis methods. In medical diagnosis, particularly heart
sound analysis [39], the classification often relies on qualitative patterns that are difficult to quantify
precisely but can be naturally represented through soft set parameters. Similarly, climatological
analysis [38] involves long term patterns that may be better characterized through flexible, parameter-
based representations rather than rigid numerical thresholds.

The convergence of these factors reveals a significant research opportunity: While soft set
theory offers theoretical advantages for uncertainty modeling and temporal data naturally exhibits
characteristics suitable for soft set representation, no systematic framework exists for integrating
these two domains. Furthermore, the lack of specialized similarity measures designed for time series
represented as soft sets limits the practical utility of such integration. This gap is particularly notable
given the recent advances in related fields.

This study aims to bridge the identified gap between soft set theory and time series analysis through
the development of a comprehensive framework that leverages the inherent strengths of soft sets for
temporal data modeling. The primary objectives are structured as follows:
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Objective 1: To develop a novel ratio based similarity measure specifically designed for soft sets that
addresses the limitations of existing similarity measures [5–7] while providing enhanced discriminative
capabilities for complex soft set structures.
Objective 2: To establish systematic methodologies for representing time series data within the soft
set framework, enabling the natural accommodation of uncertainty, missing values, and qualitative
temporal patterns.
Objective 3: To demonstrate the practical effectiveness of the proposed approach through
comprehensive real world applications spanning different domains, specifically medical signal
processing and climatological data analysis.
Objective 4: To provide theoretical foundations and mathematical characterizations for the proposed
methods, ensuring rigorous mathematical grounding and reproducibility.

The remainder of this paper is structured to provide a comprehensive presentation of the
theoretical developments, methodological innovations, and practical applications of soft-set-based time
series analysis.
The paper is structured as follows: Section 2 establishes the necessary mathematical foundations
by reviewing essential concepts from soft set theory [1, 2] and existing similarity measures [5, 7].
Moreover, ratio-based similarity measure for soft sets introduces a novel similarity measure that forms
the core theoretical contribution of this work. This section provides formal definitions, mathematical
characterizations, and illustrative examples demonstrating the enhanced capabilities compared to
existing measures [6, 8].
In Section 3, we present the two proposed methodologies, amplitude threshold soft set and time
derivative threshold soft set, for converting time series data into soft set representations. Detailed
algorithms are provided to ensure reproducibility.
In Section 4, we demonstrate the practical effectiveness of the proposed approach through
comprehensive analysis of the 58-year Brazilian cities temperature dataset [38]. Also, application
to medical signal processing validates the approach in the biomedical domain through heart sound
classification using PhysioNet data [39]. This section demonstrates the method’s effectiveness in
distinguishing between normal and abnormal heart sounds, contributing to soft set applications in
healthcare [22].
In Section 5, we address the comparative analysis gap identified in current literature while highlighting
the complementary nature of the approach relative to recent advances.
In Section 6, we summarize the key contributions and outlines promising avenues for future
research, including extensions to multivariate time series and integration with emerging uncertainty
modeling paradigms.
Figure 1 shows the overall research flow adopted in this study. This visual summary provides a clear
road map of how the research progresses from the initial stage to the conclusion.
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Figure 1. Research flow.

2. Materials and methods

2.1. Soft set

The notation U, P(U), and E stand for the initial universe, power set of the universe, and the set of
parameters, respectively.

Definition 1. [1] A soft set (F, E) over U is defined by a set-valued function F : E −→ P(U). Soft
set (F, E) can be represented by a set of ordered pairs such that (F, E) = {(x, F(x)) : x ∈ E, F(x) ∈
P(U)}.

Definition 2. [19] Let (F, A) be a soft set on the initial universe U. For u ∈ U, the number of
F(e)’s that include u is called the soft degree of u, where e ∈ A and is denoted by δ(u). Similarly, the
cardinality | F(ei) | is called the soft degree of ei.

2.2. Similarity measure of soft set

The similarity measure between two soft sets has been defined by numerous authors. Various
techniques exist for defining such measures; some are based on distance metrics, while others rely
on matching functions. In addition, there are methods rooted in set-theoretic approaches. Certain
properties are shared across these measures, while others differ, influencing the selection of an
appropriate measure for different applications. In this section, a new measure for soft sets will be
defined as an extension of the Jaccard-based similarity measure for soft sets, which is defined by [6]
as follows.

Definition 3. [6] Let {U} = {x1, x2, . . . , xn} be a universe of elements, and E be a set of parameters.
Suppose (F, A) and (G, B) are two soft sets in the soft class (U, E) such that A, B ⊂ E. We define a
Jaccard-based set theoretic similarity measure S J as

S J[(F, A), (G, B)] =


∑

e∈A∩B ωe·|F(e)∩G(e)|
|F(e)∪G(e)| if A ∩ B , ∅,

0 otherwise.
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|A| refers to the cardinality of the set A, and, for all e ∈ A ∩ B, ωe is the weight proportion of the
parameter e such that 0 < ωe < 1 (overlapping parameter(s) have nonzero weight).

Ratio-based similarity measure
The extended similarity measure model generalizes several set-theoretical similarity models

proposed in the literature. Let (F, A) and (G, B) be soft sets over the common universe U. The
similarity between these soft sets is defined as

S R((F, A), (G, B)) =
1

| A ∪ B |
.

∑
e∈A∩B

| F(e) ∩G(e) |
| F(e) ∩G(e) | +α | F(e) ∩G(e)c | +β. | F(e)c ∩G(e) |

.

In this formula, two alternative choices can be considered for α and β.
Case 1. (Raw degree-based weights) α, β soft degree of the parameter e with respect to soft sets (F, A)
and (G, B), respectively. Raw cardinalities are used when each parameter e is assigned weights directly
based on the number of elements in the associated approximate set:

α = |F(e)|, β = |G(e)|.

This approach penalizes mismatches more heavily, as each unmatched element is scaled by the full
size of its respective soft set component. As such, even small differences between soft sets can result
in significantly reduced similarity values.

This method is suitable for scenarios where:

• The number of parameters is relatively small, and each parameter carries significant
decision weight.
• Minor discrepancies are critical, such as in medical diagnostics, anomaly detection, or

security systems.
• Parameter sizes reflect their impact or importance explicitly.

Case 2. (Normalized weight) For F(e) ∩G(e) , ∅,

α =
|F(e)|∑

e∈A |F(e)|
, β =

|G(e)|∑
e∈B |G(e)|

,

where α, β ≥ 0 are adjustable parameters to fine-tune the influence of different types of mismatch.
In contrast, normalized weighting uses the proportion of elements with respect to the entire universe U:

α =
|F(e)|∑

e∈A |F(e)|
, β =

|G(e)|∑
e∈B |G(e)|

.

This strategy softens the penalty for mismatches and allows the similarity measure to reflect broader
pattern matching rather than strict element-wise agreement. It is particularly effective when dealing
with large universes or high-dimensional soft sets with many parameters.

This approach is recommended when:

• The universe size is large, and parameter sets are relatively sparse or variable.
• General pattern similarity is more important than exact matches, such as in recommendation

systems or clustering.
• Fairness and balance are desired when comparing heterogeneous soft sets.
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Summary of use cases for raw degree-based weights and normalized weights are given in the
following Table 1.

Table 1. Comparison of usage of similarity measures.

Condition Preferred weighting strategy
Few parameters with critical significance Raw degree-based
High sensitivity to mismatch required Raw degree-based
Large universe with many parameters Normalized weights
Pattern-oriented similarity needed Normalized weights
Similarity in recommendation or ML systems Normalized weights

Throughout this paper, raw degree-based weights are used to measure similarity between soft
sets. The comparison of different similarity measures defined on soft sets was stated in the following
example by Sulaiman and Mohamad in [6]. The same example is reconsidered with this new similarity
measure called the ratio-based similarity measure, and the results are shown by adding a new column to
the table given earlier by Sulaiman and Mohamad in [6]. In the ratio-based similarity measure for soft
sets, the choice of parameter weights plays a critical role in determining the behavior and interpretation
of similarity. Two common strategies for assigning these weights are: Using raw cardinalities (raw
degrees), and normalized values with respect to the universe. The appropriateness of each strategy
varies with the context and structure of the data.

Example 1. [6] Let U = {p, q, r, s} and E = {e1, e2, e3} be the universe set of objects and the universe
set of parameters, respectively. Consider the following soft sets in a soft space (U, E):

• (K,D) = {e1 = {p, q}, e2 = {q, s}},
• (L,M) = {e1 = {p, q}, e2 = {q, s}, e3 = {r, s}},
• (H,C) = {e1 = {p}, e2 = {q, s}},
• (R, J) = {e1 = {p, q}, e2 = {q, s}, e3 = {p, r, s}},
• (G, B) = {e2 = {q, s}},
• (P,N) = {e1 = {p}, e2 = {q}, e3 = {r}},
• (T,W) = {e1 = {p, q}, e2 = {q, r, s}}.

In Table 2 similarity values by different similarity measures for defined soft sets. The last column
contains ratio-based similarity measures of soft sets.

Table 2. Similarity values by different similarity measures for soft sets.

Pair of soft sets S 1 S 2 S 3 S 4 S 5 S J S R

(K,D), (L,M) 0.55 0.67 0.67 0.50 0.57 0.67 0.66
(G, B), (P,N) 0.50 0.50 0.25 0.25 0.35 0.17 0.06
(P,N), (T,W) 0.39 0.43 0.33 0.24 0.34 0.28 0.16
(R, J), (L,M) 0.63 0.75 0.88 0.50 0.63 0.89 0.8
(L,M), (P,N) 0.50 0.50 0.50 0.37 0.45 0.50 0.33

The similarity measures symbolized by S 1, S 2, S 3, S 4, S 5, and S 6 were stated in [6]. Looking at
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the results in this table, it can be observed that S R works as a more stringent or sensitive similarity
measure. If selectivity or small differences in similarity values are desired, S R may be a suitable choice.

Example 2. Consider the soft sets (F, A) and (G, B) defined on the parameter set and universal set,
given as E = {a1, a2, a3} and U = {x1, x2, x3, x4, x5, x6, x7}, where E = A and B = {a2} with the set
valued functions
F(a1) = {x1, x4, x6},
F(a2) = {x1, x2, x3},
F(a3) = {x1, x5, x7}, and
G(a2) = {x2, x4, x7}.
A∩ B = {a2}. The degree of parameter a2 with respect to both soft sets is 3. The similarity of these soft
sets is 0.026. S R((F, A), (G, B)) = 0.026.

Proposition 1. Let (F1, E1), (F2, E2), and (F3, E3) be three soft sets over the same finite universe U.
Then, the following hold:

1. S R((F1, E1), (F2, E2)) = S ((F2, E2), (F1, E1)),
2. 0 ≤ S R((F1, E1), (F2, E2)) ≤ 1,
3. S R((F1, E1), (F1, E1)) = 1.
4. If (F1, E1) ⊆ (F2, E2) and (F2, E2) ⊆ (F3, E3), then S R

[
(F1, E1), (F3, E3)

]
≤

S R
[
(F1, E1), (F2, E2)

]
and S R

[
(F1, E1), (F3, E3)

]
≤ S R

[
(F2, E2), (F3, E3)

]
.

Proof. 1. Observe that E1 ∪ E2 = E2 ∪ E1 and E1 ∩ E2 = E2 ∩ E1. For each e ∈ E1 ∩ E2, the
term |F1(e) ∩ F2(e)| is symmetric in F1 and F2. The denominators are also symmetric because:

|F1(e) ∩ F2(e)c| = |F2(e)c ∩ F1(e)|, and |F1(e)c ∩ F2(e)| = |F2(e) ∩ F1(e)c|,

and the soft degrees α and β are assigned to their respective soft sets. Thus, the entire expression
is symmetric.

2. For each e ∈ E1 ∩ E2, the term

|F1(e) ∩ F2(e)|
|F1(e) ∩ F2(e)| + α|F1(e) ∩ F2(e)c| + β|F1(e)c ∩ F2(e)|

is a ratio where the numerator is a subset of the denominator. Thus, each term is in [0, 1]. The
sum of such terms divided by |E1 ∪ E2| is also in [0, 1].

3. When (F1, E1) = (F2, E2), we have E1 = E2, so E1 ∪ E2 = E1 and E1 ∩ E2 = E1. For each e ∈ E1,
the term becomes

|F1(e) ∩ F1(e)|
|F1(e) ∩ F1(e)| + α|F1(e) ∩ F1(e)c| + β|F1(e)c ∩ F1(e)|

=
|F1(e)|
|F1(e)|

= 1.

The sum over e ∈ E1 is |E1|, and dividing by |E1| gives 1.
4. The inclusion (F1, E1) ⊆ (F2, E2) implies that for all e ∈ E1 ∩ E2, F1(e) ⊆ F2(e).

Similarly, (F2, E2) ⊆ (F3, E3) implies F2(e) ⊆ F3(e). For e ∈ E1 ∩ E3, we have F1(e) ⊆ F2(e) ⊆
F3(e), so

|F1(e) ∩ F3(e)|
|F1(e) ∩ F3(e)| + β|F3(e) \ F1(e)|

≤
|F1(e) ∩ F2(e)|

|F1(e) ∩ F2(e)| + β|F2(e) \ F1(e)|
,
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since |F3(e) \ F1(e)| ≥ |F2(e) \ F1(e)|. Summing over all such e preserves the inequality. The
second part follows similarly.

�

Incorporating α and β as degrees of parameters in the ratio-based similarity measure adds a layer
of contextual sensitivity that is missing in the standard Jaccard similarity. It enables the measure to
dynamically adapt to the importance of parameters, provide more meaningful and nuanced similarity
scores, and to better handle mismatches based on the significance of the parameters. The example
presented in [7] is re-evaluated using the proposed method, employing the ratio-based similarity
measure instead.

Example 3. Let us consider the financial diagnostic problem given in [7]. The universe X consists of
critical financial metrics:

X =



s : share price, p : profit-earning ratio,

i : inflation, c : competitiveness,

o : future outlook, m : paid up capital,

d : business diversification, f : foreign direct investment,

l : debt level, x : fixed income


.

The parameter set E represents qualitative states: E =


e1 : high, e2 : rising,

e3 : low, e4 : fluctuate,

e5 : bearish

 .
The model soft set (H,C) is determined as H(e1) = {s, o},H(e2) = {c},H(e4) = {i, l},H(e5) = {p, f }.
Profiles of firms ABC and XYZ under study are given with the soft sets (F, A) and (G, B), respectively,

as follows
(F, A) = {(e2, {s, f }), (e3, {p, i}), (e5, {o, s})},
(G, B) = {(e1, {s, o}), (e2, {c}), (e3, {m, i}), (e4, {i, l}), (e5, {p, f })}.

We employ the ratio-based similarity measure to find the similarity between the firms and the model
soft set:

Similarity: S R((H,C), (F, A)) = 0, S R((H,C), (G, B)) = 0.8. On the other hand, similarity was
estimated as S ((H,C), (F, A)) = 0.15, S ((H,C), (G, B)) = 0.5 by [7].

Inspired by this example, it can be stated that the similarity measure introduced in our study is more
practical. Moreover, the similarity measure defined for soft sets can also be utilized in data analysis.
To this end, two different methods will first be presented to represent time series using soft sets. Then,
using the similarity measure defined for soft sets, it is demonstrated that interpretations can be made
for given datasets.

3. Time series as soft sets

Soft set theory, introduced by Molodtsov in 1999, provides a mathematical framework for handling
uncertainties and vagueness inherent in complex systems. When applied to time-series data, soft sets
offer a flexible approach to capture and analyze underlying patterns, relationships, and dynamics that
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may not be evident through traditional methods. By defining appropriate criteria or thresholds based
on statistical properties of the time series, we can construct soft sets that encapsulate various aspects
such as amplitude levels or rates of change. This methodology allows for a nuanced examination of
time-series data, revealing intricate structures within the data.

The soft set is represented as a pair (F, E), where:
- E is the criterion based on a specific property of the time series.
- F is the set of observation values at time points that satisfy the condition imposed by E.

By adjusting the parameters within the criteria, the soft sets can be tailored to focus on particular
features of the time series. This flexibility allows us to capture subtle patterns and behaviors that may
be critical for understanding the system’s dynamics.

Various methods are introduced in this article. As in the first method, soft sets are derived from
the peaks and anomaly values of individual time series. In the second method, time-derived soft sets
are defined, which provide a new approach to represent time series, capturing sudden changes and
anomalies through dynamic behaviors such as rates of change and amplitude variations. In addition,
time-derived soft sets were examined with the newly-developed Jaccard-based similarity method to
measure the similarity between different time series. A data set with 58 years of monthly temperature
values was selected to apply these new methods as an application area.

3.1. Amplitude threshold soft set

The amplitude threshold soft set focuses on identifying observation values in a time series that
are similar within a specified threshold. Consider a time series X = {xt | t = 1, 2, . . . ,N}, where xt

represents the amplitude at time t.
The criterion Eamp is defined based on the standard deviation σ(x) of the amplitude values. The

amplitude threshold is set as
Eamp = α · σ(x),

where α is a scaling factor (e.g., α = 0.1) that determines the sensitivity of the threshold.
We select a reference value xref, typically the mean µ(x) of the time series,

xref = µ(x) =
1
N

N∑
t=1

xt.

The soft set elements Famp consist of the observation values xt at time points where the absolute
difference from the reference value is less than Eamp:

Famp =
{
xt | |xt − xref| < Eamp

}
.

Thus, the soft set is represented as (Famp, Eamp), capturing all observation values that are similar
to the reference amplitude within the specified threshold. This method highlights periods where
the amplitude remains within a certain range, which can be crucial for identifying steady states or
consistent patterns in the time series.

3.2. Time-derivative threshold soft set

The time-derivative threshold soft set examines the observation values of the rate of change in the
time series, providing insight into its dynamic behavior. The first differences ∆xt are calculated to
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approximate the time derivatives:
∆xt = xt+1 − xt, for t = 1, 2, . . . ,N − 1.
The standard deviation σ(∆x) of these differences quantifies the variability in the rate of change. The
criterion Fder is then defined as

σ =

√√
1
N

N∑
t=1

(∆(Xt) − µ)2.

The standard deviation σ(∆x) of these differences quantifies the variability in the rate of change. The
criterion Fder is then defined as

Fder = β · σ(∆x).

A reference is selected as the rate of change ∆xref, which could be the mean of the first differences:

∆xref = µ(∆x) =
1

N − 1

N−1∑
t=1

∆xt.

The soft set elements Fder include the observation values ∆xt, where the absolute difference from
the reference rate is less than Eder:

Fder = {xt | |∆xt − ∆xref| < Eder} .

The soft set (Fder, Eder) captures rates of change that are similar to the average rate within the
specified threshold. This approach is useful for identifying periods where the time series exhibits
consistent dynamics, such as steady growth or decline.

4. Aplications

Example 4. This example applies the the amplitude threshold soft set theory to analyze daily
temperature patterns in Istanbul and Ankara during January 2023. We demonstrate how this method
identifies normal temperature ranges and detects anomalies in urban climate data. Table 3 presents the
complete January 2023 temperature data and Table 4 contains some statistical properties of Ankara
and İstanbul:
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Table 3. Daily temperature records for Istanbul and Ankara (January 2023).

Date Istanbul (°C) Ankara (°C)
2023-01-01 8.5 2.1
2023-01-02 7.2 0.8
2023-01-03 6.8 -1.2
2023-01-04 5.1 1.5
2023-01-05 9.3 3.4
2023-01-06 10.2 5.6
2023-01-07 11.5 4.2
2023-01-08 12.0 0.7
2023-01-09 4.9 -2.1
2023-01-10 3.7 -2.3

... ... ...
2023-01-31 6.2 -1.4

Table 4. Statistical comparison.

Metric Istanbul Ankara
Mean (µ) 8.2 °C 1.8 °C
Std. Dev. (σ) 2.3 3.1
Threshold (Eamp) 1.2 1.6
Normal Range [7.0, 9.4] [0.2, 3.4]

Istanbul temperature soft set for Istanbul’s daily temperatures with µI = 8.2 °C and σI = 2.3 °C:
EI

amp = 0.5 × σI = 1.15 °C,
F I

amp = {8.5, 7.2, 9.3, 7.8, 8.1, 9.2, 7.5, 6.3, 8.4, 7.1, 6.7, 7.2, 8.9, 9.1, 8.7, 7.4, 6.9, 6.5, 6.2},
F I

amp = {x1, x2, x5, x11, x12, x13, x14, x15, x18, x19, x20, x24, x25, x26, x27, x28, x29, x30, x31}.

Ankara temperature soft set for Ankara’s daily temperatures with µA = 1.8 °C and σA = 3.1 °C:
EA

amp = 0.5 × σA = 1.55 °C,
FA

amp = {2.1, 0.8, 1.5, 3.4, 0.7, 1.2, 0.5, 2.8, 0.5, 1.1, 0.7, 1.5, 0.9},
FA

amp = {x1, x2, x4, x5, x7, x11, x12, x13, x15, x18, x25, x26, x27}.
We know check the ratio-based similarity of obtained soft sets S R((FA

amp, E
A
amp), (F I

amp, E
I
amp)) = 0.0582.

The 5.8 % similarity coefficient quantitatively confirms the pronounced microclimatic differentiation
between the coastal (Istanbul) and continental (Ankara) urban environments.

Example 5. In the following tables, Tables 5 and 6, we present two time series tracking the symptoms of
COVID-19 in a patient and healthy person over the course of one week. The variables being monitored
are body temperature, oxygen saturation, and cough severity,
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Table 5. 7-day vital signs of a sick individual.

Day a1=Body temperature (°C) a2=Oxygen saturation (%) a3=Cough severity (1-10)
1 37.8 95 4
2 38.5 93 6
3 39.1 90 8
4 38.9 88 7
5 38.2 92 5
6 37.5 94 4
7 37.2 96 3

Table 6. Vital signs of a healthy individual over 7 days.

Day a1=Body temperature (°C) a2=Oxygen saturation (%) a3=Cough severity (0-5)
1 36.7 98 0
2 36.5 97 0
3 36.7 98 0
4 36.6 99 0
5 36.7 98 0
6 36.6 97 0
7 36.8 98 0

There are three different time series in this example, including body
temperature: = [37.8, 38.5, 39.1, 38, 9, 38.2, 37.5, 37.2], oxygen saturation:= [95, 93, 90, 88, 92, 94, 96]
and cough severity (1-10):= [4, 6, 8, 7, 5, 4, 3]. By using the mentioned methods, new soft sets based
on these data are constructed.
Next we construct four soft sets (Famp1 , E), (Fder1 , E), (Famp2 , E), and (Fder2 , E) according to this
time series by using the methods introduced in the previous section. We have the set of parameters
E = {a1, a2, a3}, where the parameters stand for a1=body temperature (°C), a2=oxygen saturation and
a3=cough severity respectively.
Amplitude threshold soft set: The mean values and standard deviation of each series are, respectively,
body temperature (°C): 38.17, oxygen saturation: 92.57 and cough severity (1–10): 5.29: and body
temperature (°C): 0.658, oxygen saturation: 2.611, and cough severity (1–10): 1.666. The threshold
Eamp is chosen as the standard deviation.
Famp1(a1) = {x1, x2, x5},

Famp1(a2) = {x1, x2, x3, x5, x6},

Famp1(a3) = {x1, x2, x5, x6}.

Famp2(a1) = {x1, x3, x4, x5, x6},

Famp2(a2) = {x1, x3, x5, x7},

Famp2(a3) = {0}.
S R(Famp1 , Famp2) = 15

85 .
Time-derivative threshold soft set: The mean values and the standard deviations are,
respectively, −0.1, 0.17, and −0.17; and 0.57, 2.61, and 1.57 for time derivative threshold soft
sets. Eder = σ(∆x),
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Fder1(a1) = {x4, x6},
Fder1(a2) = {x1, x3, x5, x6},
Fder1(a3) = {x3, x5, x6}.
The second soft set (F2, E) is constructed as
Fder2(a1) = {x3, x4, x5},
Fder2(a2) = {},
Fder2(a3) = {}.
The calculated daily differences in cough severity is zero for each term. The calculated standard
deviations (σ) for the daily differences are as follows:

• Body temperature: σ = 0.158.
• Oxygen saturation: σ = 1.0.

The similarity between these two soft sets is 0.33, which is less than 1
2 . The analysis of the values

obtained has further strengthened the conclusion that there exists a notable distinction between the soft
set derived from the vital parameters of a healthy individual and the soft set generated from the vital
signs of a patient. This divergence highlights how specific health indicators, when observed over time,
can reflect underlying differences between health statuses, thus providing a clearer, more structured
comparison between the two sets of data

4.1. Analysis of 58-year monthly temperature data from brazilian cities using soft sets

Example 6. In this example, soft sets will be constructed from a dataset that contains monthly
temperature measurements from Brazilian cities from 1967 to 2019. This data set contains 58-year
temperatures of Brazilian cities. The 58 years of monthly temperature data for six cities represent
time series for each city. Using the method described above, soft sets were created for each city. The
parameter set and the initial universe are the same for all soft sets. The parameter set consists of the
months, while the universe consists of the years. From the time series of these six cities, six soft sets
were constructed for the Brazilian cities Salvador, Goiania, Fortaleza, Curitiba, Belem, and Vitoria.
Map of the this 6 cities is given in Figure 2. This data, obtained from Kaggle, was evaluated using soft
sets, and with this representation, some analysis can be performed on this data. Before applying the
introduced methods, some data statistics are given to understand the data sets better.

Figure 2. Map of the cities considered in the example.
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There are many advantages to representing a given time series with soft sets. The methods amplitude
threshold soft set and time derivative threshold soft set will be applied to this dataset. After building
soft sets for each city, the similarities between these soft sets will be analyzed. As a result of this
analysis, it will be observed which cities experienced similar temperature changes over the 58-year
period. The parameter sets of the soft sets are the months, and the universal sets are the years.

The 6 different soft sets (Fb, E), (Fc, E), (Fg, E), (Fs, E), (Fv, E), and (F f , E) are obtained for Belem,
Curitiba, Goiania, Salvador, Vitoria, and Fortaleza with these two methods.

This dataset contains 58 years of monthly temperature values for six cities. The data have been
evaluated separately for each city, both by visually representing the Jaccard similarity matrices derived
from binary matrices created using the matrix representation provided by soft sets, and by analyzing
the datasets individually. Finally, the temperature changes observed in these cities over the years will
be compared by applying the similarity measures defined on soft sets.

As a first step, the Jaccard similarity matrix is obtained for the matrix representation of each soft
set (Fb, E), (Fc, E), (Fg, E), (Fs, E), (Fv, E), and (F f , E). Annual and monthly average temperatures for
each city are presented in the following figures. The Jaccard similarity matrices are visualized using the
hierarchical clustering dendrograms shown below. Figures 3 and 4 show annual and monthly average
temperatures of six cities, respectively. Figures 5 and 6 show hierarchical clustering dendrogram of
six cities, respectively..
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  Figure 3. Annual average temperatures of six cities (fixed data).



 

  

  

 
 

 

Figure 4. Annual average temperatures of six cities (fixed data).
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Figure 5. Hierarchical clustering dendrogram.
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Figure 6. Hierarchical clustering dendrogram.
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Pairwise similarities of cities are evaluated by using the ratio-based similarity measures of soft sets
and listed in Table 7.

Table 7. Similarity values of cities.

Pair Similarities of T.D. threshold soft set A. threshold soft set
S R(Fb, Fc) 0.16 0.34
S R(Fb, F f ) 0.24 0.69
S R(Fb, Fg) 0.23 0.40
S R(Fb, Fs) 0.17 0.39
S R(Fb, Fv) 0.15 0.35
S R(Fc, F f ) 0.23 0.31
S R(Fc, Fg) 0.21 0.37
S R(Fg, F f ) 0.17 0.43
S R(Fg, Fs) 0.26 0.46
S R(Fg, Fv) 0.29 0.48
S R(Fs, Fc) 0.24 0.32
S R(Fs, F f ) 0.20 0.45
S R(Fs, Fg) 0.26 0.46
S R(Fs, Fv) 0.23 0.45
S R(Fv, Fc) 0.29 0.45
S R(Fv, F f ) 0.23 0.35
S R(Fv, Fg) 0.29 0.48

Figure 7 provides a comprehensive visualization of all similarity values of soft sets.

Figure 7. Overall process.

4.2. Medical time series classification

This subsection demonstrates the application of the proposed soft set methodology to medical
time series analysis using the PhysioNet Challenge 2016 dataset for heart sound classification. This
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application directly addresses the clinical relevance of soft set theory in handling uncertainty and
noise inherent in medical signals. Figure 8 presents the main steps of the proposed framework, from
preprocessing of medical time series data to applying the cluster-based classification method and the
final classification process.

Figure 8. Methodology flowchart for soft-set-based medical time series classification.

4.2.1. Dataset and problem description

The PhysioNet Computing in Cardiology Challenge 2016 focused on heart sound segmentation
and classification, providing a standardized benchmark for evaluating automated cardiac diagnostic
systems. The dataset comprises 3,541 heart sound recordings collected from multiple clinical sites,
with recordings varying in length from 5 seconds to over 120 seconds.

The classification task involves distinguishing between:

• Normal heart sounds (Class 0): Healthy cardiac activity.
• Abnormal heart sounds (Class 1): Pathological conditions including murmurs, extra heart sounds,

and irregular rhythms.

4.2.2. Heart sound feature extraction and soft set construction

Heart sound recordings were processed using spectral and temporal feature extraction techniques
specifically adapted for cardiac signals. The following features were extracted with a target length
of 20 time points per recording:

1. RMS energy: Root mean square energy indicating signal amplitude variations.
2. Spectral centroid: Frequency distribution center, relevant for heart sound characterization.
3. Zero crossing rate: Temporal dynamics indicator.
4. Spectral rolloff: High-frequency content measure.
5. MFCC coefficients: Mel-frequency cepstral coefficients (first 4 components).
6. Spectral bandwidth: Frequency spread measure.
7. Chroma features: Harmonic content representation.

For each extracted feature time series, both amplitude threshold soft sets (ATSS) and time derivative
threshold soft sets (TDSS) were constructed using the methodology defined in Section 3. The
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parameter values α and β control the sensitivity of threshold determination, with optimal values
determined through systematic evaluation.

4.2.3. Comprehensive similarity measure evaluation

A critical contribution of this study is the systematic comparison of similarity measures on
medical data. Three similarity approaches were evaluated using Jaccard-based similarity, ratio-based
similarity (normalized) and ratio-based similarity (raw). The definition of the similarity measures are
given in Section 2.

4.2.4. Experimental design and validation

The experimental evaluation followed rigorous medical validation standards:
Dataset split: Subject-based stratified split with 70% training (700 recordings) and 30% testing (300

recordings) to prevent data leakage across subjects.
Cross-validation: 5-fold stratified group K-fold cross-validation ensuring subjects appear in only

one fold.
Classification models: Three established algorithms were employed:

• Random forest (n estimators=200, max depth=10).
• Gradient boosting (n estimators=100, max depth=6).
• Logistic regression with L2 regularization.

Evaluation metrics: PhysioNet challenge 2016 official metrics:

• Challenge score: Sensitivity+Specificity
2 .

• Sensitivity: True positive rate.
• Specificity: True negative rate.
• Additional metrics: F1-score, AUC, accuracy.

4.2.5. Results and performance analysis

Parameter optimization results. Systematic evaluation across parameter
ranges (α, β ∈ {0.1, 0.15, 0.2, 0.25, 0.3}) revealed optimal performance at α = 0.15, β = 0.15.
The effect of different values of α and β can be observed from Table 8.

Table 8. Parameter sensitivity analysis.

Parameters Challenge score F1-score AUC
α = 0.1, β = 0.1 0.764 0.764 0.797
α = 0.15, β = 0.15 0.776 0.777 0.798
α = 0.2, β = 0.2 0.770 0.770 0.809
α = 0.25, β = 0.25 0.775 0.774 0.806
α = 0.3, β = 0.3 0.771 0.770 0.812

Similarity measure comparison. The ratio-based normalized similarity measure demonstrated
superior performance for medical time series classification:

Best performance results (α = 0.15, β = 0.15):
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• Method: Ratio-based normalized similarity.
• Classifier: Random forest.
• Challenge score: 0.776 ± 0.028.
• Sensitivity: 0.780.
• Specificity: 0.773.
• F1-score: 0.777
• AUC: 0.798.

Table 9 summarizes the benchmark comparison with the PhysioNet challenge results. It reports
the performance of the proposed method alongside baseline and reference models from the
PhysioNet challenge.

Table 9. Benchmark comparison with PhysioNet challenge results.

Method Challenge score Sensitivity Specificity
PhysioNet Winner (2016) 0.86 0.94 0.78
PhysioNet Baseline 0.71 0.65 0.76
Our Soft Set Method 0.776 0.780 0.773
Improvement over Baseline +9.3% +20.0% +1.7%

4.2.6. Clinical and methodological implications

Why soft sets for medical data? The superior performance of soft set methodology in heart sound
classification can be attributed to several factors:

1. Uncertainty modeling: Medical signals inherently contain uncertainty due to physiological
variation, measurement noise, and subjective interpretation. Soft sets naturally accommodate
this uncertainty without requiring precise membership functions.

2. Threshold adaptivity: The ATSS and TDSS methods automatically adapt to the statistical
properties of each recording, making them robust to inter-subject variability common in
medical data.

3. Feature integration: The similarity measures effectively combine information from
multiple temporal features, capturing both amplitude and derivative patterns essential for
cardiac assessment.

4. Noise resilience: The threshold-based approach is helpful in filtering noise while
preserving clinically relevant patterns, as demonstrated by improved specificity compared to
traditional methods.

Practical significance. On a subset of 1000 recordings from the PhysioNet Challenge 2016 dataset,
our method achieved a challenge score of 0.776, compared to the reported baseline performance
of 0.71, representing approximately a 9% increase. This medical application demonstrates that the
proposed soft set methodology extends beyond the original climate data domain, suggesting broad
applicability to various time series classification problems where uncertainty and noise are prevalent.

• Screening applications: Higher sensitivity (0.780) enables detection of pathological cases in
population screening scenarios.
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• False positive reduction: Improved specificity (0.773) reduces unnecessary referrals and
healthcare costs.
• Resource-limited settings: The computational efficiency of soft set methods makes them suitable

for mobile health applications and telemedicine platforms.

The successful application to PhysioNet Challenge data validates the clinical utility of soft set theory
and establishes a foundation for broader medical time series analysis applications.

5. Discussion

This study addresses a fundamental gap in the intersection of soft set theory and time series analysis.
While extensive research has explored soft set applications in decision-making [17,20], healthcare [22],
and network analysis [21], the systematic application to temporal data analysis has remained largely
unexplored, despite the natural alignment between soft set characteristics and time series uncertainty
modeling. Moreover, unlike the traditional approaches by Majumdar and Samanta [5] and Kharal [6,7]
which focus primarily on static soft set comparisons, the introduced ratio-based similarity measure
represents a significant advancement over existing soft set similarity measures. The two proposed
representation methods, amplitude threshold soft set and time derivative threshold soft set, fill a critical
methodological gap. While recent advances in fuzzy time series [31, 33] and neutrosophic temporal
modeling [34] have addressed uncertainty in time series, they require membership function definitions
or complex neutrosophic operations. The given soft set approach eliminates these requirements.
The experimental validation demonstrates several advantages over contemporary approaches. In
medical signal processing, while existing methods rely heavily on traditional machine learning with
engineered features, the given soft set representation naturally captures qualitative cardiac patterns
without requiring domain-specific feature engineering. The parameter-based representation enables
long-term pattern analysis without the stationarity assumptions required by conventional statistical
approaches [28], while avoiding the membership function subjectivity inherent in fuzzy clustering
methods [31]. The proposed framework demonstrates complementary potential with recent advances
in uncertainty modeling. The approach could potentially integrate with Pythagorean fuzzy decision-
making frameworks [36,37] for enhanced multi-criteria temporal analysis, addressing the multi subject
interest coordination challenges identified in recent energy systems evaluation [36].
Several important limitations warrant acknowledgment. The current evaluation on 1000 PhysioNet
recordings [39], while statistically significant, represents 28% of the complete corpus. Future
validation should encompass the full 3541-recording dataset to strengthen generalizability claims.
The binary classification framework, though clinically valuable, could be extended to multi-
class schemes distinguishing specific cardiac pathologies, potentially incorporating the advanced
uncertainty handling demonstrated in recent multi-attribute decision-making algorithms, such as those
studied by [26]. The feature extraction methodology presents enhancement opportunities through
domain-specific cardiac parameters integration, including S1/S2 timing relationships and heart rate
variability measures. Such extensions could leverage the confidence of soft set approaches [12]
for handling varying feature reliability. Computational optimization for real-time applications
requires investigation, particularly for continuous cardiac monitoring scenarios. The current
implementation demonstrates offline analysis feasibility, but real-time deployment would benefit from
parallel processing architectures and algorithmic refinements inspired by recent advances in efficient
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uncertainty modeling [25, 34, 36, 37].
The successful integration of soft set theory with time series analysis establishes a foundation for

broader temporal data applications. The approach shows particular promise for scenarios prioritizing
uncertainty modeling and qualitative pattern recognition over precise numerical forecasting, suggesting
applications in electroencephalography analysis, respiratory pattern recognition, and financial time
series analysis where traditional statistical assumptions may not hold. The applications in both
the medical and climatological domains demonstrates the framework’s versatility, addressing the
application diversity gap identified in recent soft set literature reviews [27]. This cross-domain
validation strengthens the argument for soft set theory as a robust uncertainty modeling tool for
temporal phenomena.

The soft set extraction methodology presented in this study for time series analysis provides a
foundational framework that can be extended to incorporate diverse temporal characteristics. Beyond
the amplitude and time-derivative approaches demonstrated, the methodology can be adapted to extract
soft sets based on frequency domain features, spectral characteristics, or periodicity patterns inherent
in time series data. This flexibility opens new avenues for leveraging the unique capabilities of soft set
theory in temporal data interpretation.

We can consider the following future directions for this research: Frequency-based soft set
construction: Utilizing spectral features, dominant frequencies, or harmonic content as soft set
parameters; temporal pattern recognition: Incorporating seasonality, trend components, or cyclic
behaviors into soft set representations; multi-scale analysis: Developing soft sets that capture patterns
at different temporal resolutions; domain-specific adaptations: Tailoring soft set extraction methods to
specific application domains (biomedical, financial, environmental).

The parameter-based nature of soft sets provides inherent advantages for such extensions, as new
temporal characteristics can be naturally incorporated without requiring fundamental methodological
changes. This adaptability positions soft set theory as a promising framework for advancing time series
analysis in uncertain and complex temporal environments.

6. Conclusions

This study successfully bridges the gap between soft set theory and time series analysis through two
key methodological innovations: the amplitude and time-derivative threshold soft set representation
methods, and a novel ratio-based similarity measure specifically designed for temporal data analysis.
The experimental validation demonstrates the framework’s effectiveness across diverse domains
with quantifiable results. In medical signal processing, the proposed soft set approach achieved
a challenge score of 0.776 ± 0.028 for heart sound classification using the PhysioNet 2016
dataset [39], representing a 9.3 % improvement over the official baseline and a remarkable 20.0%
improvement in sensitivity (0.780 vs. 0.65). The ratio-based normalized similarity measure with
random forest classification demonstrated superior performance with optimal parameters α = 0.15
and β = 0.15, validating the systematic parameter optimization methodology. Unlike existing
fuzzy time series approaches [31, 33] that require subjective membership functions, our parameter-
based representation maintains interpretability while effectively handling uncertainty. The systematic
comparison of three similarity measures (Jaccard-based, ratio-based raw, and ratio-based normalized)
on medical data conclusively demonstrated the superiority of the ratio-based normalized approach.
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For climatological analysis, the framework captured 58-year temperature patterns across six Brazilian
cities [38], demonstrating long-term temporal pattern recognition capabilities that exceed the scope
typically addressed in fuzzy time series literature [32]. The cross-domain validation across both
biomedical signal processing and climatological analysis establishes the framework’s versatility and
broad applicability. The ratio-based similarity measure addresses critical limitations in existing soft
set similarity measures [5–7], providing enhanced discriminative capabilities for temporal patterns
that static measures cannot adequately capture. This work establishes soft set theory as a viable
and competitive alternative for time series analysis where uncertainty modeling and qualitative
pattern recognition are prioritized over precise numerical forecasting. The rigorous experimental
design, including subject-based stratified splits and 5-fold cross-validation, ensures the reliability
and reproducibility of the findings. Future research directions include extension to multivariate
time series analysis, integration with emerging uncertainty modeling paradigms such as Pythagorean
fuzzy frameworks [36, 37], real-time implementation optimization for continuous cardiac monitoring
applications, and expansion to multi-class classification schemes for more granular cardiac pathology
detection. The successful validation on 1000 recordings provides a foundation for scaling to the
complete 3541-recording PhysioNet corpus.
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