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1. Introduction

Singular integral operators, notably the Hilbert transform, are foundational tools in modern
harmonic analysis and arise naturally in the theory of partial differential equations, signal processing,
and time-frequency analysis. The Hilbert transformH is defined by the singular integral

H f (x) = p.v.
1
π

∫
R

f (y)
x − y

dy,

where “p.v.” denotes the Cauchy principal value. This operator serves as a prototypical example of
Calderón–Zygmund singular integral operators and is intimately connected with Fourier multipliers
and pseudodifferential operators [1, 2].

In classical settings, the boundedness of H on Lp(R) for 1 < p < ∞ is well known [3]. However,
traditional Lebesgue and Sobolev spaces do not fully capture the nuanced behavior of functions with
irregularities, anisotropies, or localized frequency characteristics. This motivates the need for refined
function spaces—such as Triebel–Lizorkin spaces F s

p,q(R)—which generalize Sobolev spaces via the
Littlewood–Paley decomposition and admit a rich multiscale frequency structure [4–9].

Triebel–Lizorkin spaces allow for a deeper microlocal analysis of singular integral operators. These
spaces are defined via a dyadic partition of unity in the frequency domain as follows:

F s
p,q(R) :=

 f ∈ S′(R) : ‖ f ‖F s
p,q :=

∥∥∥∥∥∥∥∥
∑

j∈Z

2 jsq|ϕ j ∗ f |q


1/q
∥∥∥∥∥∥∥∥

Lp

< ∞

 ,
where {ϕ j} j∈Z is a dyadic Littlewood–Paley resolution of unity, and ∗ denotes convolution.

In recent years, a number of studies involving variants of Fourier multipliers and function spaces
including Triebel–Lizorkin spaces have emerged (see [10–15]). However, most of the existing studies
in this area are concentrated on theoretical results. Hence, one of the aims of this study is to extend
the theoretical framework on a class of Hilbert-type operators to the financial model representation of
the Black–Scholes partial differential equation (BSPDE) and the tractability of the results for option
price analysis and visualization. Refer to [16, 17] and the references therein for more details on the
BSPDE. This functional framework is ideally suited to studying the boundedness and approximation
properties of singular integral transforms such as the Hilbert transformH , particularly in the presence
of irregular or non-smooth financial data.

The field of mathematical finance increasingly requires analytical tools capable of handling non-
smooth volatility, irregular market microstructure noise, and turbulent price dynamics [18–22]. In
particular, the modeling of high-frequency financial data, rough volatility, and fractional stochastic
processes necessitates a time-frequency sensitive framework to capture essential local features and
singularities [23, 24].

This paper initiates a rigorous study of the approximation and boundedness of the Hilbert transform
in Triebel–Lizorkin spaces. We introduce a regularized operator Hδ defined via Fourier multiplier
smoothing as

Hδ f (x) =

∫
Rd

e−δ|ξ|(−i sgn(ξ)) f̂ (ξ)e2πixξdξ,

and investigate its convergence in F s
p,q norms. We also prove its boundedness using advanced multiplier

theorems, Littlewood–Paley theory, and interpolation estimates.
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The novelty of our work lies in the synthesis of advanced harmonic analysis with applications
to financial modeling. We demonstrate that the Triebel–Lizorkin framework can effectively describe
price dynamics with low regularity and is suitable for representing solutions to pricing equations under
stochastic and fractional volatility.

Among our main objectives of this study are:

• To prove the boundedness of H and its regularized form Hδ on F s
p,q(R), with precise norm

estimates;
• To establish convergence rates ofHδ f → H f in F s

p,q-norms as δ→ 0+;
• To provide applications to financial modeling—particularly in pricing under rough volatility—

demonstrating the effectiveness of Triebel–Lizorkin spaces in modeling financial time series with
singular features.

This research bridges theoretical harmonic analysis and applied financial mathematics, opening a
pathway for deploying sophisticated functional analytic tools in modeling real-world financial systems.

2. Preliminaries

In this section, we recall essential background on Triebel–Lizorkin spaces, Littlewood–Paley
theory, and Fourier analysis techniques relevant to our study of singular integral operators and their
approximations.

Remark 2.1. Throughout the paper, we use the following notations:

• F and F −1 denote the Fourier and inverse Fourier transforms;
• 〈x〉 = (1 + |x|2)1/2;
• A . B means A ≤ CB for some constant C > 0.

Definition 2.2. (Littlewood–Paley decomposition) [25]
Let ϕ ∈ C∞0 (Rd) be a non-negative radial function such that ϕ(ξ) = 1 for |ξ| ≤ 1, and ϕ(ξ) = 0 for

|ξ| > 3
2 . Define ψ(ξ) = ϕ(ξ/2) − ϕ(ξ), so that ψ is supported in the annulus {ξ ∈ Rd : 1/2 ≤ |ξ| ≤ 2}.

The dyadic decomposition of unity is given by
∞∑

j=−∞

ψ j(ξ) = 1 for all ξ , 0,

where ψ j(ξ) = ψ(2− jξ). The frequency localization operator ∆ j is defined via:

∆̂ j f (ξ) = ψ j(ξ) f̂ (ξ), j ∈ Z.

Definition 2.3. (Triebel–Lizorkin spaces F s
p,q(Rd)) [26]

The inhomogeneous Triebel–Lizorkin space F s
p,q(Rd), s ∈ R, is defined as the space of all tempered

distributions f ∈ S′(Rd) such that

‖ f ‖F s
p,q =

∥∥∥∥∥∥∥∥
 ∞∑

j=0

2 jsq|∆ j f (x)|q


1/q
∥∥∥∥∥∥∥∥

Lp
x

< ∞, (2.1)

with the usual modification when q = ∞. These spaces interpolate between Sobolev and Hardy spaces
and are stable under Fourier multipliers satisfying Mihlin–Hörmander type conditions.
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Definition 2.4. (Fourier multipliers and singular integrals [11, 12, 14, 27])
Let m : Rd → C be a bounded function. The associated Fourier multiplier operator Tm acting on

f (x) is defined as:
Tm f (x) = F −1(m(ξ) f̂ (ξ)

)
(x). (2.2)

In particular, the Hilbert transform corresponds to the multiplier m(ξ) = −i sgn(ξ) in one dimension.

Definition 2.5. (Bony’s paraproduct formula in Triebel–Lizorkin spaces [28–30]) Let f , g ∈ S ′(Rd)
be tempered distributions. With the Littlewood–Paley decomposition (∆ j) j∈Z and the low-frequency
cut-off S j =

∑
k< j ∆k, the product f g can be decomposed as

f g = T f g + Tg f + R( f , g), (2.3)

where

T f g =
∑
j∈Z

S j−1 f ∆ jg,

Tg f =
∑
j∈Z

S j−1g ∆ j f ,

R( f , g) =
∑
j∈Z

∆ j f ∆̃ jg, with ∆̃ jg =
∑
|k− j|≤1

∆kg.

Remark 2.6. The decomposition (2.3) is continuous in the Triebel–Lizorkin scale:

(1) For s ∈ R, 0 < p < ∞, 0 < q ≤ ∞,

T f g : F s
p,q × L∞ −→ F s

p,q, Tg f : L∞ × F s
p,q −→ F s

p,q.

(2) If s1 + s2 > 0, then
R( f , g) : F s1

p1,q1
× F s2

p2,q2
−→ F s1+s2

p,q ,

with
1
p

=
1
p1

+
1
p2
,

1
q

= min
(
1,

1
q1

+
1
q2

)
.

(3) In particular, if s > 0 and f , g ∈ F s
p,q ∩ L∞, then

f g ∈ F s
p,q, ‖ f g‖F s

p,q . ‖ f ‖L∞‖g‖F s
p,q + ‖g‖L∞‖ f ‖F s

p,q .

Definition 2.7. (Fourier transform ([31,32])) Let f : R→ R be a real-valued function for x ∈ R. Then
the Fourier transform of f is defined as

F ( f (x);ω) = f (ω) =

∫ ∞

−∞

f (x)eiωx dx, ω ∈ R, (2.4)

where i =
√
−1 and ω is a parameter.
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Definition 2.8. (Fractional Hilbert operator) For α ∈ (0, 1), defineHα by the Fourier multiplier

Ĥα f (ξ) = i sgn(ξ) |ξ|α f̂ (ξ), ξ ∈ R. (2.5)

Equivalently, Hα = H ◦ |D|α. Then Hα : F s
p,q(R) → F s−α

p,q (R) is bounded for 1 < p < ∞, 0 < q ≤ ∞,
s ∈ R.

Definition 2.9. (The Black–Scholes PDE operator with a fractional Hilbert term) On the log-price line
R s.t. x = log S , let σ : R → R and r ∈ R. Define the spatial BS operator with a nonlocal fractional
Hilbert part by

Lαu(x) := σ(x)Hαu(x) + r x ∂xu(x) − r u(x) , (2.6)

where Lα : F s
p,q(R)→ F s−α

p,q (R) for s > α. The (backward) Black–Scholes PDE reads

∂tu(t, x) +Lαu(t, x) = 0. (2.7)

Definition 2.10. (Augmented BS PDE operator)

L̃αu := 1
2σ

2(x) ∂xxu +
(
r − 1

2σ
2(x)

)
∂xu − ru + λσ(x)Hαu, (2.8)

so that ∂tu + L̃αu = 0 and L̃α : F s
p,q → F s−2

p,q ∩ F s−α
p,q , typically requiring s > max{2, α}.

Theorem 2.11. (Marschall’s multiplier theorem [33, 34]) Let m ∈ Ck(Rd \ {0}) with derivatives
satisfying

|∂αm(ξ)| ≤ Cα|ξ|
−|α| for |α| ≤

[
d
2

]
+ 1.

Then the associated Fourier multiplier operator Tm f = F −1(m f̂ ) is bounded on the Triebel–Lizorkin
space F s

p,q(Rd) for all 1 < p < ∞, 0 < q ≤ ∞, and s ∈ R.

Refer to [9, 35] for a comprehensive treatment of Triebel–Lizorkin spaces and their applications in
analysis and PDEs.

3. Main results

We now develop the main analytical results concerning the boundedness of a class of Hilbert-type
integral operators on Triebel–Lizorkin spaces F s

p,q(Rd). Throughout this section, we assume 0 < p <

∞, 0 < q ≤ ∞, and s ∈ R, unless otherwise stated.

Theorem 3.1. (Boundedness of the operators) LetHα be the generalized Hilbert-type operator defined
by

Hα f (x) := p.v.
∫
Rd

f (y)
|x − y|d−α

K
(

x − y
|x − y|

)
dy, (3.1)

where 0 < α < d, and the kernel K ∈ L∞(Sd−1) satisfies the cancellation condition∫
Sd−1

K(θ) dθ = 0.

Then for 1 < p < ∞, 0 < q ≤ ∞, and s ∈ R, the operatorHα extends to a bounded linear operator on
the Triebel–Lizorkin space F s

p,q(Rd), i.e.,

‖Hα f ‖F s
p,q ≤ C‖ f ‖F s

p,q , ∀ f ∈ F s
p,q(Rd),

where the constant C > 0 depends only on p, q, s, α, and ‖K‖L∞(Sd−1).
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Proof. We prove the result by combining Fourier-analytic methods and maximal function estimates.
Step 1 (Fourier multiplier structure): We first observe that the operator Hα can be represented as a

Fourier multiplier operator. Indeed, by the standard singular integral theory, the Fourier transform of
the distributional kernel

Kα(x) :=
1
|x|d−α

K
(

x
|x|

)
, x ∈ Rd \ {0},

is given by

K̂α(ξ) = mα

(
ξ

|ξ|

)
|ξ|−α, ξ ∈ Rd \ {0}, (3.2)

where mα ∈ L∞(Sd−1) satisfies the cancellation condition∫
Sd−1

mα(θ) dθ = 0.

Therefore, for f ∈ S(Rd),

Ĥα f (ξ) = mα

(
ξ

|ξ|

)
|ξ|−α f̂ (ξ).

In other words,Hα acts as a Fourier multiplier operator with symbol

m(ξ) := mα

(
ξ

|ξ|

)
|ξ|−α.

Step 2 (Triebel–Lizorkin norm invariance): We use the Littlewood–Paley decomposition f =∑∞
j=0 ∆ j f , where ∆ j are frequency-localized projections via a dyadic partition of unity. The

Triebel–Lizorkin norm is given by

‖ f ‖F s
p,q =

∥∥∥∥∥∥∥∥
 ∞∑

j=0

2 jsq|∆ j f (x)|q


1/q
∥∥∥∥∥∥∥∥

Lp

. (3.3)

Applying Hα to each dyadic piece ∆ j f , we note that Hα∆ j f remains frequency-localized around
the same scale 2 j, due to the multiplier being homogeneous and smooth away from zero.

Step 3 (Uniform Operator norm estimate): From the vector-valued Calderón–Zygmund theory
(see [36]), we have ∥∥∥∥∥∥∥∥

 ∞∑
j=0

|Hα∆ j f |q


1/q
∥∥∥∥∥∥∥∥

Lp

.

∥∥∥∥∥∥∥∥
 ∞∑

j=0

|∆ j f |q


1/q
∥∥∥∥∥∥∥∥

Lp

. (3.4)

Since Hα commutes (up to smooth multipliers) with ∆ j, and preserves the localization, we can factor
out the scale

‖Hα f ‖F s
p,q .

∥∥∥∥∥∥∥∥
 ∞∑

j=0

2 jsq|∆ j f |q


1/q
∥∥∥∥∥∥∥∥

Lp

= ‖ f ‖F s
p,q . (3.5)

Thus, Hα is bounded on F s
p,q(Rd). The dependence of the constant C on the kernel norm and other

parameters follows from the kernel’s boundedness and homogeneity. This concludes the proof. �
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Theorem 3.2. (Approximation via truncated Hilbert-type operators) Let H ε
α denote the truncated

Hilbert-type operator defined by

H ε
α f (x) :=

∫
|x−y|>ε

f (y)
|x − y|d−α

K
(

x − y
|x − y|

)
dy, ε > 0,

under the same assumptions as in Theorem 3.1. Then, for any f ∈ F s
p,q(Rd), the family {H ε

α f }ε>0

converges strongly toHα f in the Triebel–Lizorkin norm

lim
ε→0
‖H ε

α f −Hα f ‖F s
p,q = 0.

Moreover, the convergence is uniform on compact subsets of F s
p,q(Rd).

Proof. Let us define the truncation residual as

Rε f (x) :=
(
Hα −H

ε
α

)
f (x) =

∫
|x−y|≤ε

f (y)
|x − y|d−α

K
(

x − y
|x − y|

)
dy. (3.6)

Step 1 (Pointwise control): Since K ∈ L∞(Sd−1), we estimate

|Rε f (x)| ≤ ‖K‖∞

∫
|x−y|≤ε

| f (y)|
|x − y|d−α

dy.

This is a localized Riesz potential:

|Rε f (x)| ≤ C ·
(
Iεα| f |

)
(x), Iεα| f |(x) :=

∫
|x−y|≤ε

| f (y)|
|x − y|d−α

dy.

Step 2 (Domination by local maximal function): Using known estimates (see [8, 36]), we have

Iεα| f | . ε
αM f (x),

whereM f is the Hardy–Littlewood maximal function. Hence,

|Rε f (x)| . εαM f (x).

Step 3 (Triebel–Lizorkin norm control): SinceM f ∈ Lp(Rd) for 1 < p < ∞, andM is bounded on
F s

p,q (see [1], Ch. 6), we conclude:
‖Rε f ‖F s

p,q . ε
α‖ f ‖F s

p,q .

Therefore, ‖H ε
α f −Hα f ‖F s

p,q → 0 as ε → 0, uniformly on bounded sets.
This establishes the strong convergence of truncated operatorsH ε

α toHα in Triebel–Lizorkin spaces,
completing the proof. �

Theorem 3.3. (Compactness on bounded sets) Let Hα be the Hilbert-type operator as defined
previously, acting on F s

p,q(Rd) with 0 < α < d, 1 < p < ∞, 0 < q < ∞, and s > 0. Then

(i) The operatorHα is bounded on F s
p,q;
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(ii) If Ω ⊂ Rd is a bounded open set, and fn ⇀ f weakly in F s
p,q(Ω), then

Hα fn → Hα f strongly in F s−δ
p,q (Ω),

for any δ ∈ (0, s);
(iii) In particular,Hα : F s

p,q(Ω)→ F s−δ
p,q (Ω) is a compact operator.

Proof. We show the proof in three steps.

Step 1 (Boundedness): This follows directly from Theorem 3.1 proven earlier:

‖Hα f ‖F s
p,q ≤ C‖ f ‖F s

p,q .

Step 2 (Compact Sobolev embedding): Let χ ∈ C∞c (Ω) be a smooth cut-off function with χ ≡ 1 on
a compact subset Ω′ ⊂ Ω. Then for each fn weakly converging to f in F s

p,q(Ω), we have:

χHα fn → χHα f strongly in F s−δ
p,q (Rd),

by Rellich–Kondrachov-type compact embeddings:

F s
p,q(Ω) b F s−δ

p,q (Ω), 0 < δ < s.

Step 3 (Strong convergence): By the truncation estimate shown in Theorem 3.2, the error,
introduced by cutting off the kernel in the near-field zone |x − y| ≤ ε, is arbitrarily small. Thus,
for δ > 0, the smoothing effect ofHα lowers the regularity by no more than δ, and

‖Hα fn −Hα f ‖F s−δ
p,q
→ 0.

Hence, Hα maps weakly convergent sequences into strongly convergent sequences in lower-
smoothness Triebel–Lizorkin spaces, proving compactness. �

Theorem 3.4. (Commutator estimate for Hilbert-type operators) Let α ∈ (0, 1), s > α, 1 < p < ∞,
0 < q ≤ ∞, and let a ∈ F s1

p1,q1(R) with s1 > α. Then the commutator

[Hα, a] f := Hα(a f ) − aHα f

satisfies the estimate
‖[Hα, a] f ‖F s−α

p,q
≤ C‖a‖F s1

p1 ,q1
‖ f ‖F s

p,q ,

for some constant C > 0 independent of f .

Proof. We recall that the fractional Hilbert-type operatorHα is a singular integral of the form

Hα f (x) = p.v.
∫
R

f (x) − f (y)
|x − y|1+α

dy. (3.7)

Hence, the commutator can be expressed as

[Hα, a] f (x) = p.v.
∫
R

a(x) − a(y)
|x − y|1+α

f (y) dy. (3.8)

AIMS Mathematics Volume 10, Issue 9, 21794–21819.
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We apply Bony’s paraproduct decomposition (see [30]) as follows:

a f = Ta f + T f a + R(a, f ), (3.9)

where

Ta f =
∑

j

S j−1a · ∆ j f ,

T f a =
∑

j

S j−1 f · ∆ ja,

R(a, f ) =
∑
| j−k|≤1

∆ ja · ∆k f .

Using the linearity ofHα, we split

[Hα, a] f = Hα(Ta f + T f a + R(a, f )) − aHα f .

(i) Estimate ofHα(Ta f ) − aHα f :
We write

Hα(Ta f ) − aHα f = [Hα,Ta] f + (Ta − a)Hα f . (3.10)

Since Ta − a is a smoothing operator, andHα is bounded from F s
p,q → F s−α

p,q , we have

‖(Ta − a)Hα f ‖F s−α
p,q . ‖a‖F s1

p1 ,q1
‖ f ‖F s

p,q . (3.11)

Also,
‖[Hα,Ta] f ‖F s−α

p,q . ‖a‖F s1
p1 ,q1
‖ f ‖F s

p,q .

(ii) Estimate ofHα(T f a):
We note that T f a ∈ F s1

p,q, andHα : F s1
p,q → F s1−α

p,q , so

‖Hα(T f a)‖F s−α
p,q . ‖a‖F s1

p1 ,q1
‖ f ‖F s

p,q .

(iii) Estimate ofHα(R(a, f )):
Since R(a, f ) is localized in frequency andHα is bounded on F s−α

p,q , we obtain

‖Hα(R(a, f ))‖F s−α
p,q . ‖a‖F s1

p1 ,q1
‖ f ‖F s

p,q .

Combining all estimates yields the desired result:

‖[Hα, a] f ‖F s−α
p,q . ‖a‖F s1

p1 ,q1
‖ f ‖F s

p,q .

The proof is complete. �

Remark 3.5. For the next result, the fractional Hilbert–Black–Scholes model is defined by (2.7) in the
preliminaries section.
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Theorem 3.6. (Boundedness of the fractional Hilbert–Black–Scholes operator) Let α ∈ (0, 1), s ∈ R,
1 < p < ∞, 0 < q ≤ ∞. Suppose σ ∈ F s1

p1,q1(R), with s1 > α, p1 < ∞, and u ∈ F s
p,q(R), with s > α, and

then the operator Lα satisfies the boundedness estimate

‖Lαu‖F s−α
p,q ≤ C

(
‖σ‖F s1

p1 ,q1
+ |r|

)
‖u‖F s

p,q ,

where
Lαu(x) := σ(x)Hαu(x) + r x ∂xu(x) − r u(x).

Proof. Refer to (2.6) and (2.7) defined for the class of fractional Hilbert–Black–Scholes model under
consideration. In what follows, we estimate each term of Lαu in the F s−α

p,q -norm:
(1) Term 1: σ(x)Hαu
By the commutator estimate (Theorem 3.4) and the boundedness ofHα : F s

p,q → F s−α
p,q , we get

‖σHαu‖F s−α
p,q ≤ ‖[Hα, σ]u‖F s−α

p,q + ‖Hα(σu)‖F s−α
p,q . ‖σ‖F s1

p1 ,q1
‖u‖F s

p,q . (3.12)

(2) Term 2: rx∂xu
Multiplication by x is a smooth multiplier, and ∂x shifts the smoothness index by −1, so

‖x∂xu‖F s−α
p,q . ‖u‖F s

p,q , since s > α. (3.13)

(3) Term 3: −ru
Clearly,

‖ru‖F s−α
p,q ≤ |r|‖u‖F s

p,q .

Combining the three terms gives

‖Lαu‖F s−α
p,q ≤ C

(
‖σ‖F s1

p1 ,q1
+ |r|

)
‖u‖F s

p,q , (3.14)

completing the proof. �

Theorem 3.7. (Approximation and uniform boundedness of H ε
α) Let H ε

α be a mollified version of the
fractional Hilbert-type operatorHα, defined via the convolution with a mollifier ρε ∈ C∞c (R). Then for
s > α, 1 < p < ∞, and 0 < q ≤ ∞, we have

lim
ε→0
‖H ε

α f −Hα f ‖F s−α
p,q = 0, ∀ f ∈ F s

p,q(R). (3.15)

Moreover, there exists a constant C > 0 independent of ε such that

‖H ε
α f ‖F s−α

p,q ≤ C‖ f ‖F s
p,q .

Proof. Define the mollified kernel Kε
α(x) := Kα ∗ ρε(x), where

Kα(x) :=
1
|x|1+α

, ρε(x) :=
1
ε
ρ
( x
ε

)
,

and ρ ∈ C∞c (R) is a standard mollifier.
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ThenH ε
α f = Kε

α∗ f , and as ε → 0, Kε
α → Kα in the sense of distributions. Since the Triebel–Lizorkin

space F s
p,q is closed under convolution with smooth compactly supported functions, and the singular

integral operatorHα is bounded from F s
p,q → F s−α

p,q , we can use continuity to conclude

‖H ε
α f −Hα f ‖F s−α

p,q → 0.

To prove the uniform boundedness, observe that ‖Kε
α‖L1 . ε−α, but the smoothing by convolution with

ρε regularizes the singularity of Kα, so the operator norm of H ε
α remains uniformly bounded on F s

p,q.
Then

‖H ε
α f ‖F s−α

p,q ≤ C‖ f ‖F s
p,q .

This proves both approximation and uniform boundedness. �

Theorem 3.8. (Product estimate in Triebel–Lizorkin spaces) Let s > 0, 1 < p < ∞, and 0 < q ≤ ∞.
Then the pointwise product

( f , g) 7→ f g

extends to a continuous bilinear map

F s
p,q(Rd) × L∞(Rd)→ F s

p,q(Rd),

and satisfies the estimate

‖ f g‖F s
p,q . ‖ f ‖F s

p,q‖g‖L∞ , ∀ f ∈ F s
p,q, g ∈ L∞.

Proof. We use Littlewood–Paley decomposition. Let {∆ j} j≥−1 denote a dyadic partition of unity on the
Fourier side, and define

∆ j f = F −1[ϕ j f̂ ],

where ϕ j is supported on {ξ : 2 j−1 ≤ |ξ| ≤ 2 j+1}. The Triebel–Lizorkin norm is given by

‖ f ‖F s
p,q =

∥∥∥∥∥∥∥∥
 ∞∑

j=0

2 jsq|∆ j f |q


1/q
∥∥∥∥∥∥∥∥

Lp

. (3.16)

Use Bony’s paraproduct decomposition (see [29, 30]) as

f g = T f g + Tg f + R( f , g), (3.17)

where

• T f g =
∑

j S j−1 f · ∆ jg (low-high interactions),
• Tg f =

∑
j S j−1g · ∆ j f (high-low interactions),

• R( f , g) =
∑

j ∆ j f · ∆̃ jg (high-high interactions).

Since g ∈ L∞, we use the uniform bound

‖S j−1g‖L∞ , ‖∆̃ jg‖L∞ ≤ ‖g‖L∞ .

Each term is estimated using standard Triebel–Lizorkin theory (see, e.g., [1, 8]) as follows:
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For Tg f , the main term, one obtains

‖Tg f ‖F s
p,q . ‖g‖L∞‖ f ‖F s

p,q .

Similarly, for T f g, one uses the fact that f ∈ F s
p,q implies S j−1 f ∈ Lp, and convolution with bounded

∆ jg ∈ L∞ gives
‖T f g‖F s

p,q . ‖ f ‖F s
p,q‖g‖L∞ .

Finally, the remainder R( f , g) also satisfies

‖R( f , g)‖F s
p,q . ‖ f ‖F s

p,q‖g‖L∞ .

Combining all estimates yields the desired result. �

Theorem 3.9. (Weighted stability of Hα) Let σ ∈ F s
p,q,w(R), the weighted Triebel–Lizorkin space with

Muckenhoupt Ap-weight w, and suppose Hα is the generalized Hilbert-type operator. Then for s > α,
1 < p < ∞, 0 < q ≤ ∞, and w ∈ Ap, the following inequality holds:

‖Hα(σ f )‖F s−α
p,q,w ≤ C‖σ‖F s

p,q,w‖ f ‖F s
p,q,w ,

where C depends on α, p, s, and the weight constant [w]Ap , but is independent of σ and f .

Proof. Let σ ∈ F s
p,q,w and f ∈ F s

p,q,w. Consider the commutator decomposition

Hα(σ f ) = σHα f + [Hα, σ] f . (3.18)

By the weighted boundedness ofHα on F s−α
p,q,w (see [7] for weighted Triebel–Lizorkin theory), we obtain

‖σHα f ‖F s−α
p,q,w ≤ ‖σ‖F s

p,q,w‖Hα f ‖F s−α
p,q,w ≤ C‖σ‖F s

p,q,w‖ f ‖F s
p,q,w . (3.19)

Next, consider the commutator term [Hα, σ] f , which is also bounded by Theorem 3.4 extended to
the weighted case. More precisely, by the Coifman–Fefferman weighted commutator theorem ([1,37])
adapted for fractional singular integrals, we have

‖[Hα, σ] f ‖F s−α
p,q,w ≤ C‖σ‖F s

p,q,w‖ f ‖F s
p,q,w . (3.20)

Putting both estimates together,

‖Hα(σ f )‖F s−α
p,q,w ≤ C‖σ‖F s

p,q,w‖ f ‖F s
p,q,w , (3.21)

which concludes the proof. �

4. Examples

This section provides some examples to validate the results.
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Example 4.1. (Fractional Hilbert operator on a decaying function) Let

f (x) =
1

(1 + |x|)β
, β > 1.

Then f ∈ F s
p,q(R) for s < β − 1

p . Consider the generalized Hilbert-type operator with fractional order
α = 0.5:

H0.5 f (x) = p.v.
∫
R

f (x − y)
|y|1.5

dy.

Using the known boundedness properties of fractional integral operators in Triebel–Lizorkin spaces,
we have

H0.5 : F s
p,q → F s−0.5

p,q , for s > 0.5.

Therefore,
‖H0.5 f ‖F s−0.5

p,q
≤ C‖ f ‖F s

p,q ,

which confirms the fractional smoothing property of the operator.

Example 4.2. (Mollified volatility under the Hilbert operator) Let f (x) = sin(x) and σ(x) = χ[0,1](x),
which is not in F s

p,q for s > 0 due to its discontinuity.
Define the mollified function as

σε(x) = (χ[0,1] ∗ ρε)(x), where ρε is a standard mollifier.

Consider the fractional Hilbert operator

Hα(σε f )(x) =

∫
R

σε(x − y) f (x − y)
|y|1+α

dy.

As ε → 0, we have the following convergence:

Hα(σε f )→ Hα(σ f ) in F s−α
p,q , for s > α.

Hence,
‖Hα(σε f ) −Hα(σ f )‖F s−α

p,q → 0,

showing robustness of the operator under the non-smooth volatility approximations.

5. Applications to option price analysis

The rigorous results on boundedness and approximation of Hilbert-type operators in Triebel–
Lizorkin spaces that we established are significant for financial modeling, especially in the presence of
non-smooth volatility dynamics. We begin by presenting a detailed derivation of the Hilbert–type
Black–Scholes equation, after which we establish the corresponding mild solution in its integral
formulation.
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5.1. Derivation of the fractional Hilbert–Black–Scholes equation

We begin from the classical Black–Scholes model for the price u(x, t) of a derivative written on an
underlying asset with log-price x = log S . Under the risk-neutral measure, the dynamics of S t satisfy

dS t = rS t dt + σ(S t, t)S t dWt, (5.1)

where r ∈ R is the risk–free interest rate and σ(·, t) denotes the volatility, which we allow to be non-
smooth.

Step 1: (Classical PDE form). Applying Itô’s lemma to u(S t, t) and imposing the usual hedging
argument, one obtains the Black–Scholes-type PDE

∂u
∂t

+
1
2
σ2(x, t)x2∂

2u
∂x2 + rx

∂u
∂x
− ru = 0. (5.2)

Step 2: (Functional setting for non-smooth volatility). In real markets, volatility σ(x, t) is often rough
or irregular. To rigorously treat such dynamics, we assume

σ(·, t) ∈ F s
p,q(R) ∩ L∞(R), u(·, t) ∈ F s

p,q(R),

with s > 0, so that multiplications and nonlocal operators are well-defined in the Triebel–Lizorkin
spaces.

Step 3: (Incorporation of singular interactions). To account for nonlocal singular effects of volatility
clustering and memory, we introduce a fractional Hilbert-type operator Hα, α ∈ (0, 1), defined by the
Fourier multiplier

Ĥα f (ξ) := i sgn(ξ) |ξ|α f̂ (ξ), ξ ∈ R. (5.3)

This operator captures fractional oscillatory behavior and interacts naturally with non-smooth functions
in F s

p,q.

Step 4: (Generalized PDE). We extend the Black–Scholes equation (5.2) by adding a singular
perturbation term of the form λHα[σ(x, t)u(x, t)], where λ ∈ R measures the strength of the nonlocal
contribution. This leads to the fractional Hilbert–Black–Scholes PDE

∂u
∂t

+
1
2
σ2(x, t)x2∂

2u
∂x2 + rx

∂u
∂x
− ru + λHα[σ(x, t)u(x, t)] = 0, (5.4)

where

• u(x, t) is the price of a financial derivative,
• σ(x, t) ∈ F s

p,q is a possibly non-smooth volatility function,
• Hα is a fractional Hilbert-type operator of order α ∈ (0, 1),
• r is the risk-free rate, and λ ∈ R controls the influence of singularity.

PDE (5.4) is precisely the generalized option pricing equation that we study. Its novelty lies in
the incorporation of the fractional Hilbert operator, which accounts for nonlocal memory effects and
irregular volatility dynamics while remaining well-posed in the Triebel–Lizorkin framework.
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5.2. The mild solution to the derived generalized fractional Hilbert–Black–Scholes PDE in Triebel-
Lizorkin spaces

Before we provide an integral solution to the above model, we first consider the regularity and
mollification of the volatility approximation as follows.

Assume u(x, t) ∈ F s
p,q(R) for fixed t, and suppose that σ(x, t) ∈ F s

p,q ∩ L∞. Then from Theorems 3.8
and 3.1, the singular termHα(σu) satisfies

Hα(σu) ∈ F s−α
p,q , provided s > α.

Therefore, PDE (5.4) is well-posed in the space F s−α
p,q and admits classical a priori estimates. This

confirms the regularity of the solution.
To show the mollified volatility approximation, let σε(x, t) = ρε ∗ σ(x, t) denote a mollification of

the volatility function. By Theorem 3.7, we obtain the convergence of the singular term as

‖Hα(σεu) −Hα(σu)‖F s−α
p,q → 0, as ε → 0. (5.5)

This allows numerical approximations to be conducted using smooth volatility proxies, while
maintaining rigorous bounds on the error in functional space norms. We provide the solution as
follows:

We begin by rewriting the operator form of Eq (5.4) as

∂tu +Aσ(t)u + λHα [σ(x, t)u] = ru, (5.6)

where

Aσ(t) := −
1
2
σ2(x, t) x2∂xx − rx∂x.

Step 1: (Linear semigroup theory): Under the assumption σ(x, t) ∈ L∞([0,T ]; F s
p,q), we treat Aσ(t) as

a time-dependent pseudo-differential operator. It is well known that the generator

ABS := −
1
2
σ2x2∂xx − rx∂x + r

generates a strongly continuous semigroup {S (t)}t≥0 on F s
p,q (see [34, 38]).

Next, we extend this to a non-autonomous case via the variation of parameters.
Step 2: The mild solution of (5.4) is given, using the Duhamel formula, as

u(t) = S (t)u0 − λ

∫ t

0
S (t − τ)Hα [σ(·, τ)u(τ)] dτ. (5.7)

Step 3: (Functional bounds): We now estimate the integral term. SinceHα is bounded on F s
p,q (see [7,

35]), we have
‖Hα[σu]‖F s

p,q
≤ C ‖σu‖F s

p,q
.

By paraproduct decomposition (Bony’s formula, see [29]), we write

σu = Tσu + Tuσ + R(σ, u),
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where each term is continuous from F s
p,q × F s

p,q → F s
p,q, provided s > d · max

(
0, 1

p − 1
)
. Hence,

σu ∈ F s
p,q and soHα[σu] ∈ F s

p,q.

Step 4: (Picard iteration): Define a Picard sequence with

u0(t) := S (t)u0, un+1(t) := S (t)u0 − λ

∫ t

0
S (t − τ)Hα [σ(·, τ)un(τ)] dτ.

Using the boundedness ofHα and contractivity of S (t) on F s
p,q, we prove that un → u ∈ C([0,T ]; F s

p,q)
strongly. The limit function u(x, t) solves (5.4) in the mild sense and belongs to the space

u ∈ C([0,T ]; F s
p,q(R)).

This is shown in what follows.

Let u0(x) = u(x, 0) ∈ F s
p,q(R), and let S (t) represent the evolution semigroup generated by the

differential operator

Aσ(t) := −
1
2
σ2(x, t)x2 ∂

2

∂x2 − rx
∂

∂x
+ r.

Then, the mild solution to the generalized option pricing equation

∂u
∂t

+
1
2
σ2(x, t)x2∂

2u
∂x2 + rx

∂u
∂x
− ru + λHα

[
σ(x, t)u

]
= 0

is given by the variation of constants formula

u(x, t) = S (t)u0(x) − λ
∫ t

0
S (t − τ)Hα

[
σ(x, τ) u(x, τ)

]
dτ.

The term S (t)u0(x) describes the classical evolution under the generalized Black–Scholes-type operator
Aσ(t). The integral term accounts for the nonlocal contribution of the fractional Hilbert-type operator
Hα, incorporating singularity and memory effects. This concludes our process to obtain the desired
solution.

Remark 5.1. (Implications for pricing models with memory and jumps). The inclusion ofHα captures
long-range dependence and singular behavior, which are common in empirical volatility surfaces.
These singularities are handled naturally within the Triebel–Lizorkin framework, ensuring stable
estimates for solutions to pricing equations under rough volatility regimes.

5.3. Numerical justification of the fractional Hilbert-type Black–Scholes (FBHS) model

To demonstrate the advantages of the proposed model, we compare the generalized option pricing
PDE

∂u
∂t

+
1
2
σ2(x, t)x2∂

2u
∂x2 + rx

∂u
∂x
− ru + λHα[σ(x, t)u] = 0 (5.8)

with the classical Black–Scholes PDE

∂u
∂t

+
1
2
σ2x2∂

2u
∂x2 + rx

∂u
∂x
− ru = 0. (5.9)
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Step 1. (Simulation setup): The parameters used in the numerical experiment are presented in Table 1.
The volatility function is chosen as

σ(x, t) = 0.2 + 0.05 sin(πx), (5.10)

which introduces oscillatory irregularities in volatility, mimicking real market microstructure effects.
The fractional Hilbert-type operator is applied with α ∈ {0.2, 0.4, 0.6, 0.8} and fixed λ = 0.1. These
values highlight the sensitivity of option prices to memory and singularity effects.

Step 2. (Mild solution representation): Using the integral formulation derived earlier, the FHBS model
admits the representation

u(t) = S (t)u0 − λ

∫ t

0
S (t − τ)Hα[σ(·, τ)u(τ)] dτ, (5.11)

which is stable in the Triebel–Lizorkin framework. In contrast, the classical BS PDE reduces to the
semigroup solution without the singular integral correction term.

Step 3. (Numerical comparison): We compute option prices under both models and record their
deviations:

∆u(x, t) = uFHBS(x, t) − uBS(x, t). (5.12)

For small α, the deviation is minimal, reflecting that the FHBS reduces to BS in the local regime.
However, for larger α, the discrepancy grows, capturing volatility clustering and structural irregularities
absent in the BS model.

Step 4. (Interpretation): The numerical simulations reveal that the FHBS model exhibits the following
properties:

• It accounts for non-smooth oscillations in volatility that the BS model suppresses.
• It generates option prices with heavier tails and skewness, consistent with observed implied

volatility surfaces.
• It provides a flexible framework: As α → 0, FHBS recovers BS; as α increases, fractional

memory effects become pronounced.

Remark 5.2. The inclusion of Hα captures long-range dependence and singular behavior, which are
common in empirical volatility surfaces (refer to the numerical results in Table 2). These singularities
are handled naturally within the Triebel–Lizorkin framework, ensuring stable estimates for solutions
to pricing equations under rough volatility regimes. Thus, both theoretical and simulation evidence
confirm that the FHBS model offers a richer structural representation compared to the classical Black–
Scholes framework.
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Table 1. Simulation parameters for the fractional Hilbert-type option pricing model.

Parameter Description Value
S 0 Initial asset price 100
K Strike price 100
r Risk-free interest rate 0.05
T Time to maturity 1.0 year
σ(x, t) Volatility function 0.2 + 0.05 sin(πx)
α Order of fractional Hilbert-type operator 0.2, 0.4, 0.6, 0.8
λ Influence of fractional Hilbert term 0.1
Nx Number of spatial grid points 200
Nt Number of time steps 1000
Domain x Spatial domain for asset price [0, 2K]
Boundary conditions Dirichlet u(0, t) = 0,

u(2K, t) = 2K
−Ke−r(T−t)

Final condition European call payoff u(x,T )
= max(x − K, 0)

Table 2. Comparison of Black–Scholes (BS) and fractional Hilbert–Black–Scholes (FHBS)
option prices.

Strike (K) BS Price FHBS Price Error (FHBS − BS)
80 24.588835 24.573463 −0.015373
85 20.469288 20.453954 −0.015334
90 16.699448 16.684152 −0.015296
95 13.346465 13.331207 −0.015258

100 10.450584 10.435364 −0.015220
105 8.021352 8.006171 −0.015182
110 6.040088 6.024944 −0.015144
115 4.466579 4.451473 −0.015106
120 3.247477 3.232409 −0.015068

Remark 5.3. (Why FHBS improves on classical BS? Theoretical and numerical perspective) The
numerical corrections reported in Table 2 are small but systematic, and should be read in the light
of two complementary strands of theory.

First, from a modeling viewpoint, empirical and theoretical research on rough volatility shows that
volatility trajectories exhibit low Hölder regularity and memory-like features which are not captured
by the classical Black–Scholes ansatz; see [18, 23] for the volatility is rough paradigm and [40]
for mathematically tractable rough Heston-type models. The introduction of the nonlocal fractional
Hilbert-type termHα[σu] is a parsimonious way to encode oscillatory, nonlocal interactions between
the local volatility field σ and the option value u-effects that are known to influence implied-volatility
skew and tail behavior.
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Second, from a functional-analytic viewpoint, the Triebel–Lizorkin scale provides the natural
framework to treat such non-smooth volatility profiles and the singular integral operators acting on
them. Standard references (see [35]) develop the necessary multiplier and product calculus in these
spaces; recent work establishes a few boundedness criteria for Hilbert-type and related singular
integral operators on Besov/Triebel–Lizorkin classes, which justifies the mapping properties used in
our analysis and the stability of the mild formulation.

Finally, a discrete-type Hilbert transform was implemented in Python script to obtain comparable
option prices using the model presented. In [39], discrete-type methods based on spectral filtering were
successfully applied in option-pricing contexts; this study provides both the motivation and validation
of employing spectral and spectral–filter techniques to approximateHα in practice.

Taken together, these points explain why the FHBS model:

(1) introduces a theoretically grounded correction that accounts for roughness and nonlocal memory
in volatility (consistent with rough-volatility literature);

(2) is well-posed and stable when σ and u are taken in appropriate Triebel–Lizorkin classes, because
Hα and the multiplication by σ admit boundedness/commutator estimates in that scale; and

(3) produces the modest but persistent price adjustments seen in Table 2, which are precisely the sort
of corrections one expects when fractional/nonlocal effects are present but not dominant.

Therefore, the combination of (i) empirical motivation from rough-volatility models, (ii) functional-
analytic boundedness in Triebel–Lizorkin spaces, and (iii) numerically verified approximation of
the Hilbert-type term provides a coherent justification for the FHBS corrections observed in our
simulations.

Hence, the numerical simulations (based on the given data in Table 1) and the option-price-
comparison results presented in Table 2 reveal that the generalized option pricing model incorporating
the fractional Hilbert-type operator captures additional structural irregularities in volatility that are
not addressed by the classical Black–Scholes model. The 2D plots (Figures 1 and 2) and surface
plots (Figures 3–6) clearly show that for varying values of α, the Hilbert-enhanced model responds
more sensitively to local volatility shocks, especially in markets with memory or microstructure
noise. This reflects more realistic derivative pricing under irregular, non-smooth conditions. Unlike
Black–Scholes, the Hilbert-based model allows finer resolution in capturing non-stationarity and
singularities in volatility. Hence, it improves pricing accuracy in regimes where volatility dynamics
are far from ideal or smooth, typical in turbulent financial markets.
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Figure 1. Comparison of call option prices under Hilbert-type operator model and classical
Black–Scholes.

Figure 2. 2D-visualization of call option prices under a Hilbert-type Operator, model given
α = {0.1, 0.3, 0.5, 0.7, 0.9}, time t = 0.5.

Figure 3. Comparison of option pricing under a Hilbert-type model vs. classical
Black–Scholes.
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Figure 4. The graph of payoff function u(x), non-smooth volatility σ(x), Hα(u), andHσ(u).

Figure 5. 3D-visualization of call option prices under a Hilbert-type operator model
for varied values of α = {0.1, 0.3, 0.5, 0.7, 0.9} and time t = 0.5.
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Figure 6. Visualization of the payoff function u(x) and non-smooth volatility function σ(x),
Hα(u), andHα(σu) given for α = 0.6.
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5.4. Discussion of results

The comparative analysis between the proposed fractional Hilbert-type Black–Scholes (FHBS)
model and the classical Black–Scholes (BS) framework demonstrates a close alignment in option
prices, with the FHBS model producing values that remain within the expected range. This
agreement validates the robustness of the fractional Hilbert-type operator framework embedded in
Triebel–Lizorkin spaces, while at the same time capturing structural nuances that the classical BS
model neglects.

A notable distinction lies in the volatility specification. In our FHBS formulation, the volatility
function is defined as

σ(x, t) = 0.2 + 0.5 sin(πx),

whereas the BS model employs a constant volatility assumption. The adoption of a non-constant
volatility function in FHBS is motivated by real market irregularities, such as volatility clustering,
leverage effects, and rough volatility phenomena, which cannot be adequately represented by constant-
volatility dynamics. The sinusoidal form of σ(x, t) introduces spatial variability in volatility, enabling
the FHBS framework to better mimic local fluctuations and irregular structures of asset price behavior
observed in empirical markets.

Consequently, the FHBS model not only extends classical pricing into the setting of
Triebel–Lizorkin spaces but also accommodates the irregularities and rough structures characteristic
of real financial markets. This highlights its potential as a more flexible and realistic option pricing
framework compared to the classical BS approach.

6. Conclusions

This paper presented a rigorous mathematical framework for analyzing a class of generalized
option pricing equations incorporating fractional Hilbert-type operators acting on non-smooth volatility
functions within Triebel–Lizorkin spaces F s

p,q. By leveraging the microlocal structure and fine
regularity properties of these function spaces, we established boundedness, approximation, and well-
posedness results for the singular perturbed pricing operator. The integration of Hα into the pricing
dynamics introduced a novel operator-theoretic formulation that extended classical PDE models in
financial mathematics. The theoretical analysis serves as a foundational basis for future studies in
pseudodifferential operator theory, harmonic analysis, and their applications in complex financial
systems. We can state the future research directions in this regard as:

• Extension to multi-dimensional asset models and exotic derivatives;
• Analysis under jump-diffusion and rough volatility processes;
• Calibration and empirical validation using real financial data;
• Further incorporation of nonlocal and memory effects via fractional and pseudo-differential

operators;
• Developing adaptive numerical schemes tailored for Triebel–Lizorkin-based models.

These avenues promise to enhance the robustness of option pricing frameworks under more realistic
and turbulent market conditions, offering new tools for theoretical modeling and financial engineering.
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21817

Author contributions

P. A. Bankole and M. Nasir: Conceptualization, software, writing–original draft preparation; P.
A. Bankole and S. Etemad: Methodology; M. D. la Sen and S. Etemad: Validation, writing–review
and editing; P. A. Bankole, M. Nasir, M. D. la Sen and S. Etemad: Formal analysis; M. Nasir and S.
Etemad: Investigation; S. Etemad: Supervision; M. D. la Sen: Project administration. All authors have
read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The authors are grateful to the Basque Government for its support through Grant IT1555-22.

Conflict of interest

The authors declare no conflict of interest.

References

1. L. Grafakos, Classical Fourier analysis, 3 Eds., Graduate Texts in Mathematics, Springer, 249
(2014).

2. E. M. Stein, Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals,
Princeton University Press, Princeton, NJ, 1993.

3. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University
Press, Princeton, NJ, 1970.

4. Y. Sawano, Theory of Besov spaces and Triebel–Lizorkin spaces, Lecture Notes in Mathematics,
Springer, 2294 (2018).

5. A. Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics,
Academic Press, Orlando, 1986.

6. M. Meyries, M. C. Veraar, Sharp embedding results for spaces of smooth functions with power
weights, Stud. Math., 208 (2012), 257–293. https://doi.org/10.4064/sm208-3-3
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