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Abstract: In social systems, information dissemination is affected by environmental factors. Moreover, 

positive information can promote social development. Therefore, a stochastic SEIR model was 

proposed to study the mechanism of traffic congestion warning information dissemination. In this 

article, we proved the existence of global positive solutions and the extinction of information, and 

proposed sufficient conditions for stationary distributions. Based on the Hamiltonian function, an 

optimal stochastic control strategy for the random propagation model was proposed. The numerical 

simulation results indicated that the theoretical results could be validated and compared with 

deterministic models. Adding random interference could promote the propagation of congestion 

information, it could promote the propagation of information, and better control traffic congestion. The 

volatility of congestion warning information propagation became more apparent with the increase of 

random disturbance intensity. By controlling random parameters, the propagation of congestion 

warning information could be effectively controlled, thereby controlling congestion. Moreover, the 

propagation effect of the proposed optimal stochastic control strategy was better than that of the 

random model, which verified the effectiveness of the proposed optimization control strategy. 
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1. Introduction  

In modern cities, traffic congestion is not only an engineering problem, but also an information 

management issue. With the development of intelligent transportation systems (ITS) and mobile 

Internet, the real-time transmission of traffic information has had a profound impact on drivers’ route 

choice, travel decision-making, and the overall road network efficiency. However, the accuracy, 

dissemination speed, and coverage of information may alleviate congestion or exacerbate traffic flow 

fluctuations due to misleading or information overload [1]. Therefore, studying the dissemination 

mechanism of congestion information is of great significance for optimizing traffic management and 

enhancing road network resilience. 

In depth research on the dissemination mechanism, influencing factors, and regulatory effects of 

congestion information on traffic behavior not only helps to build a more intelligent traffic 

management system, but also provides a new idea for urban governance to guide traffic flow with 

information flow. Ahmad, M proposed an intelligent transportation system that conveys danger 

warnings and imminent traffic congestion information to all vehicles within its coverage area [2]. 

Yilmaz implemented traffic congestion control at the route level through a route guidance system that 

provides proactive warnings or suggestions to nearby or en route drivers [3]. Sha proposed that an 

efficient and accurate traffic information transmission system is key support for real-time monitoring 

of road network operation status, scientific analysis of traffic situation, and rapid implementation of 

emergency response [4]. Alobeidyeen et al. developed an Information Network Flow Model (INFM) 

to study its correlation with the evolution of traffic congestion on the transportation network under 

discrete timestamps [5]. Ning et al. innovatively constructed the architecture of traffic early warning 

information distribution system and designed a collaborative transmission scheme of vehicle early 

warning information based on the reverse path selection mechanism [6]. Cai et al. proposed that the 

dissemination of Traffic Accident Information will greatly contribute to reducing fuel consumption and 

congestion in the future Internet of Vehicle environment [7]. Xie et al. dynamically send current and 

expected traffic status information to users through advanced travel information systems to minimize 

congestion and enhance road network capacity [8]. 

In terms of methods, based on the high similarity in diffusion mechanisms between traffic 

congestion information dissemination and virus transmission, information dissemination can be 

studied using infectious disease models. Saberi proposed to simulate the process of infectious disease 

transmission among populations to study the spread and dissipation of urban congestion [9]. Zhang 

developed a new SIR propagation model that considers the impact of receivers on information 

propagation [10]. Qin and Li established a network-based SEIR model to examine how self-protection 

awareness affects disease transmission [11]. She proposed the SIS propagation model research on the 

collaborative evolution mechanism between epidemic information and public opinion on social 

networks [12]. Based on the SEIR model, Nian proposed measures that can effectively regulate the 

process of public opinion dissemination [13]. 

In terms of information dissemination, scholars have considered the impact of random factors on 

the dissemination mechanism. Ma introduced random factors to verify the characteristics and 

mechanisms of uncertain information propagation [14]. Zhou proposed a rumor propagation model 

that is based on information intervention and considers the decay of information over time [15]. Li et 

al. proposed an algorithm for generating graph structured data to alleviate the excessive smoothing of 

node information in deep network propagation [16]. Di Crescenzo proposed a growth model for 

random false news dissemination [17]. Myilsamy proposed a nonlinear rumor propagation model and 

randomly studied the rumor propagation problem in homogeneous networks [18]. Nian and Zhang 
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analyzed the driving mechanism of opinion leaders on the spread of public opinion and proposed an 

efficient online public opinion intervention strategy based on this [19]. Nian et al. also defined three 

ways in which information propagates in the hierarchical structure of the network and constructed a 

hierarchical network information propagation model to further explore the laws of information 

propagation in the network [20]. Regarding the dissemination of positive information, Nyawa et al. 

proposed that the dissemination of reliable information can eliminate people’s hesitation about getting 

vaccinated [21]. Al-Oraiqat et al. demonstrated the effectiveness of using the positive information 

dissemination model of “opinion leaders” and improved the efficiency of information dissemination [22]. 

Moreover, to study random information transmission in transportation networks, Ravi et al. proposed that 

Internet services use a random model to transmit information to vehicles and predict their traffic [23]. Lu 

proposed multiple dynamic evolution equations to elucidate the interactions between traffic flow, 

information creation, and dissemination, achieving information exchange between vehicles [24]. Xie 

et al. proposed the development and analysis of an interruption network evaluation method in a random 

traffic environment to promote information dissemination in the transportation network [25]. Zheng 

proposed an optimization model based on arterial signal information control stochastic simulation with 

traffic safety and efficiency as dual objectives [26].  

The abovementioned scholars studied the influence of random factors on the dissemination of 

public sentiment and uncertain information, but few researchers have considered the influence of 

random factors on dissemination of positive information, such as congestion warning information. In 

the real world, not all information is unfavorable, and some positive information can promote social 

development. When severe traffic congestion occurs, effective dissemination of congestion warning 

information can help each individual take proactive measures. The impact of dynamic connections 

leads to random changes. Introducing random factors can cause the simulation of congestion warning 

information dissemination model to be more realistic. In view of this, a stochastic SEIR model is 

proposed to analyze the mechanism by which environmental factors affect the dissemination of traffic 

congestion warning information. The existence of global positive solutions is proved, the extinction 

and persistence of congestion information are verified, and key parameters are selected as control 

variables. The effectiveness of the proposed theorem is verified through numerical simulations and 

compared with that of deterministic models. The subsequent content of the paper is: In Section 2, we 

propose the stochastic congestion information propagation model constructed on the basis of model 

assumptions. In Section 3, we prove the existence of global positive solutions, the extinction of 

information, and propose sufficient conditions for stationary distributions. In Section 4, we propose an 

optimal stochastic control strategy for congestion information dissemination. We systematically study 

the impact of random noise intensity on information propagation dynamics through numerical 

simulation experiments, evaluate the regulatory performance of the optimal stochastic control strategy, 

and compare and analyze the propagation characteristics with deterministic models in Section 5. 

Finally, in Section 6, we summarize the content of the article. 

2. Materials and methods 

The node status includes four types: The ignorant S  refers to the group that has not yet received 

congestion information, the hesitant E  refers to the group of people who, upon receiving congestion 

information, exhibit two states: One is a positive attitude towards congestion information and a 

preference for faster driving modes; the other party holds a negative attitude toward congestion 

information and tends to choose driving modes with shorter distances. The two groups are collectively 

referred to as hesitant individuals. The distributor I   refers to the group of people who receive 
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congestion information and spread it through social media, and the immune R  is not interested in 

and no longer accepts congestion information. 

The SEIR propagation model is shown in Figure 1. 

 

Figure 1. The SEIR propagation model. 

The parameter definitions of the SEIR model are as follows: 

(1) Among them, the time-varying increment of network nodes is b , and each type of user may 

exit the social network for any reason; that is, the population migration rate is  . 

(2) When the ignorant receive congestion information, different actors will have different attitudes 

toward the congestion information, hesitate whether to spread the congestion information, and become 

hesitant with a probability of   . In addition, ignorant individuals who receive traffic congestion 

information and are not interested in it or do not involve themselves will transform into immune 

individuals with a probability of  . 

(3) Some hesitant individuals hold a positive attitude toward congestion information and are 

willing to spread it through social media, with a probability of    becoming distributors. Some 

hesitant individuals hold a negative attitude towards traffic congestion information and believe that 

traffic congestion is not related to individuals. They will directly transform into immune individuals 

with a probability of  . 

(4) Some information distributors gradually lose their willingness to spread over time and become 

immune with an   probability. 

In addition, environmental noise characterizes the social uncertainty and disturbance factors 

inherent in the information dissemination system. It is unscientific to ignore the impact of random 

environmental noise fluctuations when studying congestion warning information. The incorporation 

of environmental noise into the deterministic model of information dissemination can better represent 

the propagation mode of congestion warning information in real traffic congestion situations. Due to 

the random disturbance   and   of environmental noise, the contact rate between individuals and 

information disseminators exhibits random fluctuations, as well as the dissemination rate of becoming 

a disseminator of congestion warning information. The parameter representation of random 

interference is as follows (Eq (1)) 

   
1 1 2 2

( ), ( ).B t B t               (1) 

i
B  is an independent standard Brownian motion, and  2 0( 1,2)

i
i  represents the intensity of 

( 1,2)
i
B i . In this work, 

1
B  and 

2
B  indicate that there is no mutual influence between   and  . 

In traffic congestion scenarios, the efficiency of information dissemination mainly depends on the 

degree of cognitive adoption of individuals and is not related to the frequency of physical contact, and 

the two are independent of each other. 
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On this basis, a stochastic SEIR  model is constructed: 

        


         


       


   

1 1

1 1 2 2

2 2

( ) ( ),

( ) ( ) ( ),

( ) ( ),

( ) [ ] .

dS t b SI S S dt SIdB t

dE t SI E E E dt SIdB t EdB t

dI t E I I dt EdB t

dR t S E I R dt

   

     

   

   

     (2) 

3. Results 

3.1. Analysis of the existence of global positive solutions 

Let  



0

( , , )
t

F P  be a complete probability space, where the domain stream  
0t

F  satisfies the 

usual condition (the measure satisfies the axioms of monotonicity, continuity, and completeness). It 

can also be expressed as follows:  
  3

1 2 3
( , , ) 0, 1,2,3

i
R x x x x i . 

The completeness analysis of the dynamic behavior of stochastic systems is based on the 

existence of global solutions. Moreover, according to the actual situation, the dynamic model of 

coupled state transfer needs to take positive values. The random system (Eq (2)) can be proven globally 

positive using Theorem 3.1. 

Theorem 3.1. Under any initial condition ( ( ), ( ), ( ))S t E t I t ,  0t , Eq (2) has a probability of 1 that a 

unique global solution ( ( ), ( ), ( ))S t E t I t  exists. For any  0t ,
 

 3 3( ( ), ( ), ( )) ,( ( ), ( ), ( )) . .S t E t I t R S t E t I t R a s  

Proof. For any 


 3( ( ), ( ), ( ))S t E t I t R , the coefficients of stochastic system Eq (2) satisfy the Lipschitz 

continuity condition within the local rang. Therefore, random system Eq (2) has a strong solution with 

unique orbits ( , , )S E I  on a local interval that holds for any  0,
e

t  , where 
e
  is a certain blasting 

moment [27]. The proof of global existence reduces to verifying   . .
e

a s  the following stopping time 

criterion:  inf ( ) 0 ( ) 0 ( ) 0, 0, .
e

S t orE t orI t t         

If inf  is specified, providing that  
e

   can be proven, then    . .a s  can be proven, and

  . .
e

a s  and 


 3( ( ), ( ), ( )) . .S t E t I t R a s  will also be proven. Otherwise, when    , there will be a time 

when  0T  makes   ( ) 0P T . 

We define 2C function 
 
3 3:V : ( ) lnV x SEI ( Eq (3)). 

   ( ) ln ln ln ln .V t SEI S E I         (3) 

Because for any    ( ), 0,T t   , using the Ito  formula, we obtain the following (Eq (4)): 

     

 
          

 

 
       

 

     

2 2 2

2 2 2

2 2
2 2 2 2

1 1 22

2
2 1 2
2 1 1 1 2 2 22

( ) ( ) ( )
,

2 2 2

1 1 1
      = ( )

2 2 2

1
         + ,

2

      =

dS dE dI dS dE dI
dV

S E I S E I

b SI S I
I I dt dt

S E E

SI EE E
dt IdB dB dB dB

I E II

b SI E
I

S E I


        

 
    

 
   

 
      

 

   
      
   

2 2 2
2 2 2 2 2

1 1 2 22 2

1 2
1 1 2 2

1 1 1 1
3

2 2 2 2

         .

S I E
I dt

E I

SI E
I dB dB

E I

     

 
 

 (4)  
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The ( )V t  implies (Eq (5)) 

     
1 1 2 2

( ) ( , , ) ( ) (1 )
SI E

dV t L S E I dt I dB dB
E I

.       (5) 

Among them (Eq (6)), 

         
2 2 2

2 2 2 2 2

1 1 2 22 2

1 1 1 1
( , , ) 3 .

2 2 2 2

S I E
L S E I I

E I
              (6) 

Thus, 

0

0 1 1

0 2 2

( ) (0) ( ( ), ( ), ( ))

( ) ( )
          ( ( ) ) ( )

( )

( )
           (1 ) ( ).

( )

t

t

t

V t V L S j E j I j dj

S j I j
I j dB j

E j

E j
dB j

I j





  

 

 

         (7) 

Since the ( )V   part is equal to 0, we therefore obtain  



 lim ( ) .
t
V t


           (8) 

In the system (Eq (7)), we obtain t   

0

0 1 1

0 2 2

(0) ( ( ), ( ), ( ))

( ) ( )
          ( ( ) ) ( )

( )

( )
           (1 ) ( ) .

( )

t

t

t

V L S j E j I j dj

S j I j
I j dB j

E j

E j
dB j

I j





   

 

   

        (9) 

According to Eqs (7) and (8), Eq (9) is less than or equal to  . Moreover, for any initial condition, 


 3( (0), (0), (0))S E I R  and ( ), ( ), ( )S j E j I j   in Eq (9) always lie within a forward invariant bounded set. 

( ), ( ), ( )S j E j I j >0, and Eq (9) is greater than  , which is contradictory. The result of Eq (9) rejects the 

original hypothesis     ; thus, we obtain     . For any  0,
e

t   , a unique local solution 

( ), ( ), ( )S j E j I j  for the random system Eq (2) exists. 

3.2. Disappearance of the congestion warning information 

The conditions for the extinction of congestion information are proposed in Theorems 3.2 and 3.3. 

In the random SEIR model established in the article, the extinction of the congestion information 

requires the following conditions to be met: 1) No individuals who are skeptical of congestion warning 

information are present under road congestion conditions, and 2) in the state of road congestion, no 

distributor of the information is present. If either of the above two conditions is met, the information 

is not present in the social system. 

First, Theorem 3.2 provides the conditions under which individuals who are skeptical of 

congestion warning information are not present under road congestion conditions. 

Theorem 3.2. For any determined initial condition 


 3( (0), (0), (0))S E I R  , 2 2

1 2

ln
limsup ( , )
t

E
G

t
 


   is 

established, and 2 2

1 2
( , ) 0.G     At this point, ( )E t  tends exponentially toward 0, with
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 
     

 

2
2 2 2

1 2 22

1

1
( , )

22
G


     


. 

Proof. Using formula Ito  to differentiate ( )E t  in random system Eq (2), and (Eq (10)) 

 
 

        
 

2 2
2 2 1
1 2 1 2 22

1 1
ln ( ) .

2 2

SISI S I
d E t dt dB dB

E EE


          (10) 

Thus, we obtain Eqs (11) and (12) 

 
2 2

2 2

0 1 22

1
0 1 2 2

( ) ( ) ( ) ( )1 1
ln ( ) ln (0)

( ) 2 2( )

( ) ( )
               + ( ) ( ).

( )

t

t

S j I j S j I j
E t E dj

E j E j

S j I j
dB j B t

E j


    




 
        

 



    (11) 


  

1
01 1

( ) ( )
( ) ( )

( )

t S j I j
t dB j

E j
.        (12) 

Among them, the quadratic variation of 
1
( )t  (Eq (13)) is 

2 2
2

01 1 2

( ) ( )
( ) .

( )

t S j I j
t dj

E j
           (13) 

According to the exponential martingale inequality 



 

  
      
  

2

0

sup ( ) ( ) ln
2 2

d

t k

d d
P t t k k .      (14) 

Equation (14) where 0 1d   and where k  is a random integer. By using the Borel Cantelli 

lemma, we can know that the random integer 
0
( )k  exists, such that 

0
k k  has 

0

2
sup ( ) ( )

2t k

d
t t

d 

 
    
 

 

for almost all  ; therefore, for all   0,t k , we can obtain Eq (15) 

2 2
21

0 01 1 2

( ) ( ) ( ) ( )1 2
( ) ln .

( ) 2 ( )

t tS j I j S j I j
dB j d dj k

E j dE j


          (15) 

Then, we can obtain Eq (16) 

 


    



 
         

 



2 2
2 2

0 1 22

2 2

( ) ( ) ( ) ( )1 1
ln ( ) ln (0) (1 )

( ) 2 2( )

2
              + ln ( ).

t S j I j S j I j
E t E d dj

E j E j

k B t
d

   (16) 

Note that, 

2 2 2
2

1 2 2

1

( ) ( ) ( ) ( )1
(1 ) .

( ) 2 ( ) 2(1 )

S j I j S j I j
d

E j E j d

 



  


      (17) 

Substituting Eq (16) into Eq (17) yields Eq (18): 

2
2

2 2 22

1

1 2
ln ( ) ln (0) + ln ( ).

22(1 )
E t E t k B t

dd


    



  
        

   
     (18) 
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Therefore, when   1k t k , we obtain Eq (19) 

2
2

2 2 22

1

ln ( ) ln (0) 1 2
ln ( ).

22(1 )

E t E
k B t

t t dd


    



 
        

  
     (19) 

According to the strong law of Brownian motion, let k , and then t . Thus, we know that 


2

( )
lim sup 0.
t

B t

t
 We obtain Eq (20) 

2
2

22

1

ln ( ) 1
lim sup .

22(1 )t

E t

t d


   



 
     

  
       (20) 

Finally, let 0.d  We obtain Eq (21) 

2
2

22

1

ln 1
lim sup .

22t

E

t


   



 
     

 
       (21) 

Theorem 3.2 has been proven. 

Next, Theorem 3.3 proposes the condition under which not distributor of congestion warning 

information exists under road congestion conditions. 

Theorem 3.3. For any given initial value, 3( (0), (0), (0)) S E I R  , 2

2

ln ( )
limsup ( )



t

I t
G

t
 holds . .a s

Furthermore, 2

2( ) 0. G  Then, ( )I t  tend to 0 exponentially . .a s , where 
2

2

2 2

2

( ) ( )
2


  


  G . 

At this point, ( )I t  is exponentially approaching 0 (the proof process is consistent with that of 

Theorem 3.2 and is omitted here). 

3.3. Sufficient conditions for a stationary distribution 

We investigate the existence of stationary distributions of coupled states. In the deterministic 

model, the basic reproduction number 
  

0 ( )( )

b
R



     
. When the system reaches equilibrium, 

four state nodes in the system reach the equilibrium point * * * *( , , )A S E I  , where
2 2

* * *0 0

2 2

0 0

( 1)
, ,

( )

b R b Rb
S E I

R R

    

     

   
  

  
. 

Theorem 3.4. If  
  

0
1

( )( )

b
R



     
 , Eq (2) satisfies the following conditions under given 

initial conditions 


 3( (0), (0), (0))S E I R  (Eq (22)): 

     2 2 2

1 2 3
0 min( , , ).S E I          (22) 

Among them, the constraint condition is 2

2
    , we can obtain Eq (23) 

   

 

  

 

2 *2 *2 2 * 2 *2

1 2 2

1

2

2 2

3

1
,

2
,

,

.

S I E E  

  

   

  

       (23) 
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For any 


 3( (0), (0), (0))S E I R , the system has a steady-state distribution   , and its solutions 

are ergodic.  

Proof. We can obtain Eq (24) 

   
1 2 3

( , , ) ( ) ( ) ( , , )S E I E I S E I ,       (24) 

where (Eq (25)) 

   

   

      

* *

1 *

* *

2 *

* * * 2

3

( ) ln ,

( ) ln ,

1
( , , ) ( ) .

2

E
E E E E

E
I

I I I I
I

S E I S E I S E I

      (25) 

First, let * * *, ,A S S B E E C I I      , we can obtain Eq (26) 

* *
2 2 2 2 *

1 1 2*

2 2 2 2 *2 *2 2 *

1 1 2

1 1
( )

2 2

1
      .

2

SI S I
L B S I E

E E

ABC A C S I E

  

   

 
     

 

   

      (26) 

Next, we can calculate that (Eqs (27) and (28)) 

   


  

 

  
         

 
   

 

 

2
2 22 2

2 2 2

2 2

2

2 2

2

1
( ) ( )

2

1
       = ( )

2

1
      .

2

L E I E
I I

E
C E

I

BC E

      (27) 

2 *2 *2 2 * 2 2 2 *2

1 2 2 2

2 2 2

2 2 2 2

2

2 *2 *2 2 * 2 *2

1 2 2

1
( , , )

2

                 ( ) ( ) ( )

               = ( ) ( ) ( )

1
                  .

2

S E I S I E B E

A B C

A B C

S I E E

   

     

      

  

    

        

      

  

     (28) 

We obtain an ellipsoid from     *2 *2 *2

1 2 3
0 min , ,S E I    equation (Eq (29)) 

2 2 2

1 2 3
0.A B C               (29) 

This lies in 


3  . It can be proven that the stochastic system has a unique stationary 

distribution (Eq (30)). 









 

  

  

 

1 2

1 2

1 2

1 2

( , ) 0

1( , ) 0

2( , ) 0

3( , ) 0

lim 0,

lim 0,

lim 0,

lim .

 

 

 

 

  

  

  

         (30) 

The solution of the stochastic SEIR model oscillates randomly in the neighborhood of equilibrium 
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point *A . The smaller the value of 
1 2
,  , the asymptotic deviation between deterministic systems 

and their randomly perturbed systems approaches zero. 

4. The stochastic optimal control model 

In order to promote the dissemination of positive information such as congestion information, in 

this section, we propose to achieve maximum coverage of congestion information in the shortest time 

possible while satisfying all constraints. The optimal control model transforms a complex decision 

problem into a mathematical framework. This provides a powerful tool to analyze the impact of model 

parameter changes on optimal strategies and results and to evaluate the robustness of strategies. 

In order to more accurately reflect the maximum size of the group that is aware of and may 

participate in the dissemination of congestion information, the research object is selected as ( ) ( )E t I t , 

and the optimal stochastic control strategy is proposed. 

Convert ,   in the model into ( ), ( )t t  . 

The objective function is represented as Eq (31): 

 
     

 

2 21 2
0( , ) ( ) ( ) ( ) ( ) ,

2 2
ft c c

J E I E t I t t t dt        (31) 

satisfy the following state system as Eq (32): 

        


         


       

1 1

1 1 2 2

2 2

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ).

dS t b t SI S S dt SIdB t

dE t t SI t E E E dt SIdB t EdB t

dI t t E I I dt EdB t

   

     

   

    (32) 

Under initial constraint conditions (Eq (33)): 

  
0 0 0

(0) , (0) , (0) ,S S E E I I         (33) 

where (Eq (34)) 

              
 

( ), ( ) ( ( ), ( )) ,0 ( ), ( ) 1, 0, .
f

t t U t t measurable t t t t    (34) 

Theorem 4.1. The existence of optimal control for * *( , ) Z    enables us to establish the objective 

functional (Eq (35)): 

 * *( , ) max ( , ) : ( , ) .M M Z              (35) 

Proof. Let ( ) ( ( ), ( ), ( ))TX t S t E t I t  and obtain Eq (36) 

2 21 2( , ( ), ( ), ( )) ( ) ( ).
2 2

c c
N t Y t t t E I t t              (36) 

The existence of optimal control requires the following five conditions to be met: 

(1) The control domain and state domain have non emptiness. 

(2) Control the range of variable values to form a closed convex set. 

(3) The linear functions in the state and control variables determine the right-hand side of the 

state system. 

(4) The integrand of the objective functional is convex on Z . 
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(5) There exist constants 
1 2
, 0d d  and  1 such that the integrand of the objective functional 

satisfied Eqs (37) and (38) 

22 2

1 2
( , ( ), ( ), ( )) ( ) .N t Y t t t d d              (37) 

  ( ) , ( ) ( ) , ( ) ( ) .S t B E t t SI I t t E          (38) 

Next, for any  0t , a positive constant L  (Eq (39)), 

22 22 21 2
1

( , ( ), ( ), ( )) ( ) ( ) ( ) 2 .
2 2

c c
N t Y t t t t t E I d L                 (39) 

Let 1 2
1 2

min , , 2
2 2

c c
d d L

 
  

 
 , and  2   meet condition (5). Therefore, the optimal stochastic 

control strategy has been achieved. 

In the dissemination of congestion information, the introduction of a companion system with 

cross-sectional equations introduces a dynamic and forward-looking “value evaluation system” for 

information dissemination strategies, enabling control strategies to intelligently judge the real-time 

value of information and make optimal resource allocation decisions at critical moments based on this. 

In real traffic management, the value of congestion information is high at the beginning of peak hours. 

Timely notification can prevent a large number of vehicles from rushing into congestion points, so 

maximum resources should be invested in dissemination. As time goes by, the value of this information 

will continuously decay through the accompanying equation, so it is necessary to quickly reduce 

investment and shift resources to more important information. Theorem 4.2 proposes corresponding 

mathematical conditions for this. 

Theorem 4.2. There exist adjoint variables 
1 2 3
, ,    that satisfy Eq (40) 

1 1 2 1 1 2 1 1 1

2 2 3 2 2 2 3 2 1 2 2

3 1 2 3 1 1 2 3 2

( ) ( )( ) ( ) ( ) ,

( ) 1 ( )( ) ( ) ( ) ,

( ) 1 ( )( ) ( ) ( ) .

d t t I I dt dW

d t t dt dW dW

d t t S S dt dW

          

           

          

          


            


           

    (40) 

The boundary conditions need to meet Eq (41): 

1 2 3
( ) ( ) ( ) 0.
g g g
t t t              (41) 

In addition, we obtain Eq (42) 

* 1 2

1

* 2 3

2

( )
( ) min 1,max 0, ,

( )
( ) min 1,max 0, .

SI
t

c

E
t

c

 


 


    
   

    

    
   

    

        (42) 

Proof. By constructing Hamiltonian functions, we obtain Eq (43) 

2 21 2
1

2 3 1 1

2 1 2 3 2

( ) ( ) ( )
2 2

       ( ) ( ) ( )

       ( ) .

c c
H E I t t b t SI S S

t SI t E E E t E I I SI

SI E E

     

          

    

           

              

  

    (43) 

Using the Pontryagin maximum principle, the adjoint system is described by the following 
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differential Eq (44): 

   
     

  

31 2, ,
dd dH H H

dt S dt E dt I
,        (44) 

and the boundary conditions are (Eq (45)) 

1 2 3
( ) ( ) ( ) 0.
g g g
t t t              (45) 

Approach (Eq (46)) 

1 1 2

2 2 3

0,

0.

H
c SI SI

H
c E E

  


  



   




   



         (46) 

In summary, the optimal stochastic control strategy of the system can be characterized as (Eq (47)): 

* 1 2

1

* 2 3

2

( )
( ) min 1,max 0, ,

( )
( ) min 1,max 0, .

SI
t

c

E
t

c

 


 


    
   

    

    
   

    

        (47) 

Remark 4.1. The complete description of the optimal control system includes the state equation 

constrained by initial Eq (32) and the adjoint equation with cross-sectional Eq (41), and its coupled 

system can be expressed as (Eqs (48) and (49)): 

1 2
1 1

1

1 2

1

1 1

2 3

2

( )
( ) min 1,max 0, ( ),

( )
min 1,max 0,

( )
( )

min 1,max 0,

SI
dS t b SI S S dt SIdB t

c

SI
SI

c
dE t dt SIdB

E
E E E

c

 
  

 


 

 

     
       

      

     
   

     
  

     
     

     

2 2

2 3
2 2

2

1 2
1 2

1 1 11

1 1 2 1

2

( ) ( ),

( )
( ) min 1,max 0, ( ),

( )
min 1,max 0, ( )

( ) ( ),

( ) ( )

1 min 1,m
( )

t EdB t

E
dI t E I I dt EdB t

c

SI
I

d t dt dW tc

I

d t



 
  

 
 

 

     





     
      

      

     
   

      
 
    




2 3
2 3

2 1 2 22

2 2 2 3

1 2
1 2

3 3 21

3 1 1 2

( )
ax 0, ( )

( ) ( ),

( ) ( )

( )
1 min 1,max 0, ( )

( ) ( ),

( ) ( )

E

dt dW t dW tc

SI
S

d t dt dW tc

S

 
 

 

     

 
 

 

     














     
   

      
 
    

     
    

      
 
    























  (48) 

and 

1 2 3
( ) ( ) ( ) 0.
g g g
t t t             (49) 
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5. Numerical simulations 

To investigate the regulatory effect of environmental factors on congestion information diffusion 

under a deterministic framework and the impact of random disturbances on group behavior evolution, 

system parameters need to meet the basic threshold conditions of information propagation, that is, the 

basic reproduction number needs to comply with the requirements of the fundamental laws of 

propagation dynamics 
0

1R . First, the density change trends of each population in stochastic systems 

and deterministic systems are compared. Second, we observe the impact of different disturbance 

intensities on dissemination of congestion information in random systems. The effectiveness of 

optimal stochastic control strategy proposed is then verified. Finally, by comparing the optimal control 

effects under different noise intensities, the regulatory effect of control strategies on propagation 

dynamics of congestion warning information is quantitatively analyzed. 

In real life, people hold different attitudes toward congestion information based on their 

personality, values, job nature, etc., so it is difficult to obtain real data on the conversion between 

groups. Thus, we aim to investigate the observation of deterministic and stochastic systems, as well as 

the changes in each set of features during information propagation as long as the system parameters 

meet the threshold conditions for information propagation, namely the basic reproduction number 


0

1R . Therefore, drawing on the research parameter settings of Kang Sida et al. [28], the parameters 

are set as follows: 

3, 0.5, 0.3, 0.3, 0.3, 0.7, 0.2b             . 

After calculation, 0
1.52 1

( )( )

b
R



     
  

  
  meets the threshold condition for 

information dissemination. Figure 2 compares the trends of each population over time in deterministic 

and stochastic systems when the interference intensity is  0.001( 1,2)
i

i . Figures 2(a)–(c) respectively 

show the temporal trends of the ignorant, hesitant, and distributor in deterministic and stochastic 

systems. It can be seen that the solution of a deterministic system converges to a positive equilibrium 

point, while the solution of a stochastic system oscillates randomly near the positive equilibrium point. 

Moreover, in the system with added stochastic disturbances, the dissemination of congestion 

information is superior to deterministic systems, indicating that random environmental interference 

promotes information dissemination. When information spreads in the system, the solution of the random 

system is in an unstable state, and the density distribution of each group shows a stable and ergodic 

fluctuation over time, and its statistical characteristics approach the actual observed distribution.  
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(a) 

 
(b) 

 
(c) 

Figure 2. Comparing the trends of (a) S  , (b) E  , and (c) I   density changes in various 

populations between deterministic and stochastic systems. 

To compare the system response on the propagation of congestion warning information under 

perturbation parameter gradient, we simulate trend charts of congestion information propagation over 

time for stochastic systems with disturbance intensities of ( 1,2) 0.001  0.0001
i
i and    and conduct a 

combined analysis. Figures 3(a)–(c) show the temporal trends of the ignorant, hesitant, and distributor 

under different levels of interference intensity, respectively. It can be seen that regardless of the group, 

the fluctuation of congestion warning information dissemination tends to flatten with the decrease of 

interference intensity, and congestion information exhibits stronger propagation and penetration in 

strong noise environments. Therefore, the speed of congestion information dissemination can be 

controlled by controlling the degree of interference in the system. 
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(a) 

 
(b) 

 
(c) 

Figure 3. Density variation trends of different groups (a)S , (b) E , and (c) I  under different 

levels of interference (  ( 1,2) 0.001
i
i  and 0.0001 ). 

Finally, to verify the effectiveness of the proposed control strategy, under the condition of fixing 

other system parameters, the control effect of optimal stochastic control strategy on dynamic evolution 

of population density E  and I  are quantitatively analyzed by adjusting the random parameters   

and  . Figures 4(a),(b) respectively compare the temporal trends of the hesitant and distributors under 

constant control and optimal control strategies. It can be seen that when the disturbance intensity is 

0.001
i

   , population density E   and I   under the optimal stochastic control strategy of random 

parameters   and   is better than that under constant control measures, which verifies the global 

optimality of the control law. The values of the parameters are further changed, and the density change 

trends of groups E  and I  under optimal control and constant control under different disturbance 

intensities (  ( 1,2) 0.001
i
i   and 0.0001  ) are compared, as shown in Figures 5(a),(b). Experimental 

verification shows that the proposed strategy has superior performance independent of parameters. 

Moreover, adopting the optimal stochastic control strategy can suppress congestion warning information 

fluctuation during propagation. In addition, theoretical and numerical simulations show that random 
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disturbance can reduce the phase transition threshold of information propagation, which can be used to 

optimize congestion control. 

 
(a) 

 
(b) 

Figure 4. Density variation trends (a) E   and (b) I   under constant control measure and 

optimal control when  ( 1,2) 0.001
i
i . 

 
(a) 

 
(b) 

Figure 5. Density variation trends (a) E   and (b) I   of different disturbance intensities 

under constant control measures and optimal control. 

6. Conclusions 

In this article, we constructed a congestion information propagation model that considers random 

factors. The model uses Gaussian white noise to represent the two parameters, confirming the existence 

of positive global solutions and verifying the extinction and persistence of the congestion warning 

information distribution. The global optimal control law of the random model was proposed, and the 

propagation dynamics of congestion information were simulated and reproduced using Matlab. System 

response characteristics of disturbance intensity gradient on the propagation of congestion information 

were compared, and the effectiveness of the proposed optimal stochastic control strategy was verified. 
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The following conclusions can be drawn from our research. 

(1) The dissemination of congestion information is filled with many unpredictable random factors. 

Ignoring these factors can lead to overly idealized models. Moreover, actively introducing random 

white noise interference into the model is not to increase complexity, but to make the model more 

realistic, robust, and use randomness to improve the effectiveness of congestion information 

dissemination and better control traffic congestion. 

(2) As the noise level in the environment where the congestion information dissemination system 

is located significantly increases, its dynamic behavior will exhibit more intense and nonlinear 

fluctuation characteristics. Communicators can intentionally introduce or amplify noise to achieve the 

goal of expanding the scope of congestion information dissemination. By controlling random 

parameters, the propagation of information can be effectively controlled, thereby achieving intelligent 

suppression and control of traffic congestion phenomena at the macro level. 

(3) Under the constructed optimal random control strategy framework, the system dynamically 

generates the optimal stochastic control strategy by sensing the dynamic state of congestion 

information propagation in real time. Compared with the uncontrolled benchmark random propagation 

model, the congestion information propagation system using this strategy exhibits multi-dimensional 

performance indicators, such as higher peak propagation scale, shorter burst response time, and more 

stable sustained propagation trend, verifying the effectiveness of the proposed random control strategy 

in improving the efficiency of congestion information propagation. 

(4) We successfully transferred the stochastic SEIR model from the field of epidemiology to the 

field of traffic information dissemination, providing a new perspective for understanding driver 

behavior and combining theoretical models with engineering practice. This model enhances the 

capability of traffic management departments from passive information dissemination to active 

management of the information dissemination process. For example, the model can predict how long 

it will take for a new congestion message to reach a sufficient number of drivers, and the traffic 

management center can determine the lead time based on this; timely and effective dissemination of 

information is crucial for traffic recovery in emergency situations such as traffic accidents and severe 

weather; and the success of traffic management policies, such as new traffic restrictions, toll policies, 

and promotion of public transportation, largely depends on public awareness and acceptance. This 

model can also be a tool for policy dissemination simulation. 

In the real world, information dissemination is influenced by many uncertain factors. By 

incorporating these uncertain factors into a deterministic model, a more accurate stochastic 

dissemination model can be established. For positive information, such as congestion warning 

messages, the randomness and complexity of social systems promote the dissemination of information, 

thereby controlling traffic congestion. For negative information, such as public opinion and rumors, it 

is possible to minimize randomness and thus limit the spread of this information. 

This article also has the following research limitations: First, although the random propagation 

model constructed in this article considers the interference of random factors in complex social systems, 

we did not take into account the impact of the heterogeneity of social networks on the process of 

congestion warning propagation. Second, we used only Matlab for numerical simulations, but when 

traffic congestion occurred, parameter data such as initial values of each node could not be obtained, 

and could draw only on the parameter settings of other scholars. Finally, in the event of sudden traffic 

congestion, the dissemination of congestion information presents typical multi-scale and nonlinear 

dynamic characteristics. Subsequent research will be conducted from the following three aspects: 

(1) In the future, the impact of scale-free networks and small world networks on the dissemination of 

congestion warning information will be studied and compared. (2) By developing more advanced 
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parameter estimation and uncertainty quantification methods, the problem of parameter setting can be 

solved. (3) We will focus on constructing a nonlinear dynamic model of congestion information 

propagation under the coupling of individual psychology and behavior, and systematically analyze the 

cascading effects caused by sudden traffic incidents. 
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