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Abstract: We introduce a novel definition of periodicity on arbitrary time scales, dependent on
a strictly increasing and differentiable function. This removes the commonly used and restrictive
assumption of a periodic time scale to define periodic functions. Our new definition furthermore
allows for a wider class of functions to be studied using the theory of periodic systems. After providing
crucial properties of these periodic functions, such as the translation invariance of integrals of periodic
functions, we apply the concept of this new periodicity to linear dynamic equations. We provide
necessary and sufficient conditions for a linear dynamic equation to have such a periodic solution and
discuss its uniqueness.
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1. Introduction

The study of dynamic equations on time scales, introduced by Stefan Hilger in 1988, has gained
increasing attention due to its unifying characteristics of the continuous and discrete calculus as well
as its potential in numerous applications [1,2]. Dynamic equations on time scales allow the modeling
of processes that change not necessarily continuously or discretely, but rather based on a general
time domain, called a time scale. The mathematical interest in such equations stems mainly from
their unifying characteristics of differential and difference equations. Instead of studying differential
equations and difference equations separately, the theory of time scales allows the study of both
equations within one unified framework. Given that dynamics of differential and difference equations
may behave drastically different, the analysis of dynamic equations on time scales may provide insights
into the relevance of the underlying time structure of such vastly different behaviors.

Furthermore, the benefit of dynamic equations on time scales in applications is twofold. On one
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hand, dynamic equations may describe complex systems and their changes more accurately. For
example, it allows for the modeling of hibernating species, where differential equations are well
equipped to describe changes during the species’ active period, but discrete equations are needed
to model the hibernation and the next active period [2]. On the other hand, dynamic equations on
time scales may allow for a reduction in the complexity of a continuous model by incorporating some
of the model’s complexity in the underlying time structure. For example, instead of working with
discontinuous or piecewise defined model parameters, one may be able to capture such discontinuities
in the construction of the time scale and use the time scales analogue of continuous model parameters,
simplifying the model structure on time scales.

Independent of the specific time structure, available methods to analyze dynamical systems reduce
as the complexity of a system increases. That is, differential, difference, and dynamic equations with
constant coefficients are in general much easier to investigate than nonautonomous systems for each
category. However, for a special subclass of nonautonomous systems, so-called periodic systems,
mathematical tools such as Floquet theory have been developed to aid its analysis. The interest
in periodic dynamical systems dates back to its application in celestial mechanics and solid state
physics [3]. The implementation of periodic coefficients in differential or difference equations remains
a popular tool to represent oscillatory behavior such as seasonal changes in ecology [4].

Given the potential of time scales to reduce the model complexity on one hand and allow for more
realistic modeling on the other hand, it is natural to extend the study of periodic systems to time scales.
The difficulty is, however, that classical periodicity may not be well-defined on time scales. More
precisely, the classical definition of periodicity, f(r + w) = f(¢) for all ¢ in the domain of f, requires
that 7 + w is also in the domain. Thus, if f is defined on a time scale that is any nonempty closed
subset of the real numbers, ¢ + w must not necessarily be in that time scale, rendering the classical
definition of periodicity useless. To enable the study of periodic systems on time scales, many works
assumed a periodic time scale [5—7]. Here, a periodic time scale refers to any time structure that
guarantees that if 7 is in the time scale, then 7 + w is also in the time scale. This is however rather
restrictive and many popular time scales, such as the quantum time domain ¢'* for ¢ > 1 used in
physical applications [8—10], do not satisfy this condition. In the special case of quantum time scales,
a periodicity definition was presented in [11]. There, the authors called a function f : ¢ — R
w-periodic if g* f(¢g“t) = f(¢) and developed the corresponding Floquet theory on quantum calculus.

More recently, the authors in [12] revisited the definition of periodicity and provided a definition
for the special case of isolated time scales. These are time domains consisting of time points that are a
positive distance apart but are not necessarily equidistant. One may understand an isolated time scale
as a generalized discrete time domain Ty = {...,7_,%,1t,...}. A function f : T; — R was introduced
as w-periodic if

(tivws1 — ti+w)f(ti+w) = (ti+l - ti)f(ti)

for all #; € T;. Although nonstandard, this definition preserved several useful properties of periodic
functions and collapses to the classical formulation f(¢ + hw) = f(¢) if T; consists of equidistant points
with distance 4. Motivated by this definition, the authors then extended the concept of periodicity to
define v-periodicity in the continuous case [13], before returning to time scales theory and introducing
the concept of v-periodicity on time scales, unifying the concepts for continuous and arbitrary discrete
time domains and their generalizations.

Around the same time, a different definition of periodicity for a distinct class of time scales was
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introduced in [14]. In this approach, the w-periodicity of a function depends on multivariate shift
functions ¢. and a value w that is part of the time scale. This definition differs from ours and does not
encompass the concept of periodicity as established in quantum calculus. Also, a significant restriction
arises in this case: the time scale itself must be periodic in its shifts. Despite its seemingly general
framework, this requirement limits its applicability, as it is not always satisfied. For example, the time
scale T = {n" | n € N} does not satisfy this condition for any fixed w € T [12, Appendix A.6]. In
addition, it should be noted that the results presented in this paper have not been given yet for the
periodicity concept in [14].

On the other hand, the definition of A-periodicity also presented in [14], for isolated time scales and
considering the function v = o, aligns closely with the definition of w-periodicity provided in [12].
However, the notion of periodicity introduced in this paper is more general than that presented in [14],
even when restricted to isolated time scales. This increased generality is due to the flexibility allowed
in the choice of the function v within our framework. In our definition of w-periodicity, v is required
only to be an increasing and differentiable function, providing many possibilities in its selection. For
instance, we can define v(r) = log(¢), thereby allowing the exponential function to be v-periodic. This
level of generality is not achievable under Adivar’s definition of A-periodicity or periodicity, as these
require the shift operators to satisfy the following condition: If ¢ € [#y, oo)r, then (¢,7)) € D, and
0.(t, 1) = t, which is clearly incompatible with the logarithm function.

This is just one example, but many more general choices for the function v can be accommodated
within this framework, showing the generality of our definition and consequently of our results.

We emphasize that the key principle guiding our definition of periodicity is rooted in the geometric
properties of periodic functions. Specifically, it is a well-established fact that the area under the graph
of a traditional w-periodic function remains constant over intervals of length w. Our general definition
preserves this fundamental property across any time scale, demonstrating that this approach provides
the most natural and accurate interpretation of periodic functions in the context of time scales. Unlike
definitions relying on additive properties, our framework captures the true essence of periodicity,
ensuring consistency with its geometric foundation while extending its applicability.

2. Time scales preliminaries

In this section, we briefly summarize useful time scales fundamentals and refer the interested reader
to the introductory books on time scales [1,2]. A time scale T is a closed nonempty subset of R.
To capture the underlying time structure, the forward jump operator o : T — T defined by (put
inf(Q =supT)
o) :=inf{seT: s>t}

and the graininess operator u : T — R defined by

u@) :=o(@) —t

are introduced, see [2, Definition 1.1]. If o(¢) > ¢, then we say that ¢ is right-scattered. If o7(¢) = ¢, then
we say that 7 is right-dense. Similarly, left-scattered and left-dense points are defined. For a function
f:T —= R, weput f7 := foo. Wecall f rd-continuous provided it is continuous at all right-dense
points and its left-sided limits exist (as finite values) at all left-dense points, see [1, Definition 1.58].
The set of all rd-continuous functions is denoted by C,q = Cq(T, R).
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Definition 2.1 (see [1, Definition 2.25]). A function p : T — R is called (positively) regressive provided
1+up #0(1 +up > 0) on T. The set of all rd-continuous and (positively) regressive functions is
denoted by R = R(T,R) (R* = R*(T,R)).

The set of rd-continuous and regressive functions, R, is a crucial set in the theory of time scales. In
fact, most theorems in this manuscript require functions to be rd-continuous and regressive. Note that
if T = R, then all continuous functions are rd-continuous and regressive.

The following circle-plus addition turns (R, ®) into an Abelian group.

Definition 2.2 (see [2, p. 13]). Define circle plus and circle minus for f,g € R by
f-g
1+pug
Definition 2.3 (see [1, Definition 1.10]). Assume f : T — R is a function and let t € T, where
T« = T\ {M} if T has a left-scattered maximum M and otherwise, T* = T. Then we define f2(t) to be
the number (provided it exists) with the property that given any & > 0, there is a neighborhood U of t
(i.e., U= (t—0,t+06)NT for some 6 > 0) such that

[f(c@®) = f(s) = FAO((t) - )| < slo(®) = 5| forall seU.

We call f2(t) the delta (or Hilger) derivative of f at t.

feg=f+g+ufg, fog=

If T = R, then the delta-derivative is equivalent to the classical derivative, and if T = Z, then the
delta-derivative of a function f : Z — R collapses to the forward difference.
For differentiable f, g : T — R, the product rule and the quotient rule (see [1]) read as

J_‘)A _fe-re
8 887

where the latter assumes g, g” # 0, and the “simple useful formula” says

f7=f+ufh

In the rest of this paper, we also use the notation 27 = (f*)7.

Integration on time scales is defined in terms of antiderivatives. F is an antiderivative of f if F* = f
holds. By [1, Theorem 1.74], every rd-continuous function possesses an antiderivative. For s,7 € T,
we then define

2

(fe)* = f2¢7 + fg" = fPg+ f7¢"  and (

f f(OAT = F(t) — F(s).

If T = R, then the delta integral coincides with the classical Riemann integral, and for isolated time
scales T = Ty,

fsf(T)AT= Z umf(r), tseT;, t<s.

T€(t,s)NTr

Relevant for our analysis is the following chain rule. For that, we define for i € N,
Q/(T) := {v € C! (T, R), such that v* > 0 and W(T) = T}, (2.1)

where Ci 4(T,R) is the set of functions f : T — R, f(T) C R that are i-times delta-differentiable with
an rd-continuous ith delta-derivative.
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Remark 2.4. For v € Q/(T) for some i € {1,2,...}, v and o commute, that is, vo o = o ov. The proof is
provided in the Appendix. Note that this further implies uv* = u” because v = v —v =0’ —v = .

Theorem 2.5 (see [1, Theorem 1.93]). Consider v € Q'(T). Letw : T — R. If v2(t) and w*((t)) exist
fort € TX then
(wov)® = (W o v~ (2.2)

Theorem 2.6 (see [1, Theorem 1.98]). Let v € QI(T). If f : T — R is an rd-continuous function and v
is differentiable with an rd-continuous derivative, then fort,s € T,

v(s)

f?m%mm: (f o v H(1)AT. (2.3)
t v(t)

It follows from Theorem 2.6 by replacing f with f” := f o v that for v € Q(T) and f € C,a(T,R),

then fort,s € T,
v(s)

fﬁjAT:‘f“vAﬁﬁfOKT»At (2.4)

v(t)
The time scales exponential function can be defined as the unique solution to a linear dynamic
equation.

Theorem 2.7 (see [1, Theorem 2.33]). Let p € R and ty € T. Then the initial value problem

yh=p@y, ¥t =1
possesses a unique solution, denoted by e, (-, t).

If the time scale is isolated, then the time scales exponential function for p € R can be expressed as

)= || A+pepin, >0

s€[to,)NT
If T = R, then the exponential dynamic equation is identical to the classical exponential function

t
A p(s)ds
ey(t,t9) = efo .

Useful properties of the dynamic exponential function for p,g € R and t,s,r € T are summarized
below (see [1, Theorems 2.36, 2.39, and 2.48]):

1) eo(t,s) =1 and e,(t,1) =1, ) epgq(t, s) = e,(t, 5)e,(t, ),
.. _ep(t,9) . 3 3
1) epe(t, 5) = el 5’ V) egplt,s) = ey(s, 1) = m,
. | _ elt,s)
V) ep(o(t),s) = (1 + u@)p(@))ey(t, s), vi) ep(t,o(s)) = W,
vii) €5, 5) = pep(-, 9), viil)  e5(s,-) = —pef(s, ),
ix) pe R’ implies e,(t,s) > 0, X) eyt r)ey(r,s) = ey(t, s).
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Theorem 2.8 (see [2, Theorems 2.74 and 2.77]). If p e R, f : T - R, 1ty € T, and yy € R, then the
unique solution of y* = p(t)y + f(t) with y(ty) = vy is given by

!
(1) = e,(t,10)yo + f ep(t, 0(5)) f(s)As. (2.5)
fo
Furthermore, the unigue solution of y* = —p(t)y” + f(t) with y(ty) = y, is given by
t
0 = et + [ et 97510 2.6)
1o

Proposition 2.9. Let v € Q'(T) and f € R. Then, for h(t) := e;(v(1), 1),

h* = (0 f)e i (2.7)
and
er(v(1),1) = ef(v(to), to)ea praf(t, o). (2.8)

Proof. Let ty € T be arbitrary but fixed. Then

h(t) = ey (V(1), to)es(to, 1) = er(V(1), fy)eey(t, f)

and hence

R 5) B FO)e,(v(), toVA (Deas (0 (1), 1o) + € /(18 to) O F (1))eas (1. to)

= {F W Deap(o (D), 1) + (©F (1)} (D), to)ees(t, to) = (V£ © f) (D),
confirming the first claim. The first equality holds due to the product rule and the identity in (2.2) as
indicated by the equation number above the equality sign*. To agree with the second claim, note that
by (2.7), h solves a first-order dynamic equation of the form y* = py with p = v*f” © f. Since f € R

and v* /¥ € R (because for v € Q!(T), ooy = voo so that uv® = y*, implying that 1+ f” = (1+uf)”),
and we have p € R, so that h(1) = e,(t, ty)h(ty), confirming the claim in (2.8). O

3. Periodicity on time scales

We define periodicity on an arbitrary time scale T via a strictly increasing function v € Q!(T).
Throughout the remainder of this manuscript, we assume that v € Q'(T) with Q! defined in (2.1) for
i=1.

Definition 3.1. A function f : T — R is called v-periodic provided
VAF = f, where " = fov. (3.1)

The set of rd-continuous functions that satisfy (3.1) is denoted by P,(T) (for short P,).

“Henceforth, to assist the reader in following our calculations, we put corresponding identities that are applied in the calculations
above the corresponding equality sign.
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Example3.2. 1) Let T = R. Let w € R. We define v(f) = ¢t + w for all + € R. Then v is strictly
increasing and v(R) = R. Moreover, v'(f) = 1 for all r € R. Hence an f : R — R is v-periodic if
and only if

@ E A0 L0 =V @O f0@) = fF1) = ft+w) forall 1eR,

i.e., if and only if f is w-periodic in the classical sense.
2) Let T = Z. Let w € Z. We define v(t) = t + w for all + € Z. Then v is strictly increasing and
v(Z) = Z. Moreover,

VO = AV@®) =v(t+ D) —v(t) =t+1+w—-(t+w)=1 forall teZ

Hence an f : Z — Z is v-periodic if and only if

3.1) .
f@O =20 (1) = AVvO) F (@) = () = f(t+w) forall teZ,
i.e., if and only if f is w-periodic in the classical sense.

3) Let T be a periodic time scale (see [15, Definition 1]), i.e., there exists w € T such that r € T
implies t + w € T. We define v(f) = t + w for all t € Z. Then v is strictly increasing and v(Z) = Z,
see [15, Theorem 2]. Moreover, v2(t) = 1 for all t € T, see [15, Theorem 2]. Hence an f : T — T
is v-periodic if and only if

&) E A0 () = F) = ft+w) forall teT,
i.e., if and only if f is w-periodic in the “classical” sense.

4) Let T = ¢* U {0} with ¢ > 1. Let w € Z. We define v(f) = g“t. Then v is strictly increasing and

v(T) = T. Moreover,

1) —v(t “agt — q“t
A = vig) —v(®) _ q%qt—q"t _
(g— Dt (q— D
for t € T \ {0}, and this is also true for # = 0, considering the limitast — 0. Hencean f : T —» T
is v-periodic if and only if
f@ =0 (1) = ¢ f@0) = ¢°f (q“t) forall teT,
i.e., if and only if f is w-periodic in the sense of [11, Definition 3.1].

5) Let T = J,ez{t;} with t; < t;y; for all i € Z. Let w € Z. We define v(t;) = t;,, for all i € Z. Then v
is strictly increasing and v(T) = T. Moreover,

liv1) = Vi) _ livwr1 ~ livw .
Ay = L) =Y _ o “livw oy ez,
livi — i liv1 — 1i
Hence an f : T — T is v-periodic if and only if
(CHYIN v livw+1 = livw tivwrl = livw .
J@) = v f () = ————f(t) = ———— f(tiew) forall i€Z,
liv1 — 1 liv1 — 8

i.e., if and only if f is w-periodic in the sense of [12, Definition 4.1].
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6) Let T = R. Let v : R — R be differentiable and strictly increasing with v(R) = R. Then an

f : R — Ris v-periodic if and only if

(31) A

J@ = v 0Or®=ynfu@) foral teR,

1.e., if and only if f is v-periodic in the sense of [13, Definition 1].

All of the situations discussed in Example 3.2 are known from the various given sources. However,
we can apply our results to time scales that are not covered in the previous literature. One such time

scale is discussed in Example A3 in the Appendix.
The following properties of v-periodic functions can be easily verified using (3.1).

Lemma 3.3. If f € P,, then (uf)” = uf.

Proof. Let f € P,. Then,
Wf) =wf = whf = uf,

where we used uv® = u” from Remark 2.4.

Lemma34. If f,g € P, and a,B € R, then af + g, f ® g and ©g are also v-periodic.

Proof. Since
viaf +Bg) = avif +Big = af +Bg,

the first claim follows. Furthermore,

V@) =VvA(f +g+ufg) =vif +vg + Vi g
=f+gtufg=rog

Lastly, note that

P N -8 -8
V(6 =V = = =6 s
() 1+wg 1+wlgy 1+ug &

which completes the proof.
Lemma 3.5. Consider f : T — R such that f € P,. Then f € P,.,.

Proof. Since VA f” = £,V := v o v implies

VA =(vov) fvov(22) AVAFY = V(v f)"Gil)yAf"(il)f,
which completes the proof.
Theorem 3.6. Consider f € Cq(T,R) and v € Q(T). Let
V(1)
F,(t) := f(T)AT, teT.

t

Then F% = vAf¥ — f. Thus, if f € P,, then F, is constant.

(3.2)
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Proof. Define H(?) := f[ : f(T)At for arbitrary but fixed #, € T. Hence
F\(1) = H((1)) — H().
Then, the claim follows from (2.2). O

Theorem 3.7 (Conservation of areas). If f € P, and t,s € T, then

V(1) v(s) s v(s)
Jf(DAT = f(@AT  and f f(OAT = f(D)AT. 3.3)

t s v(1)

Proof. Let f € P,. The first equality in (3.3) follows immediately from Theorem 3.6. The second
equality is derived by splitting the integrals and applying the first identity. O

Remark 3.8. The two properties in (3.3) are key properties of periodic functions. These area-preserving
properties link the definition of periodicity introduced in this work to previously formulated definitions
for special cases of time scales (see [16] for quantum time scales, see [12] for isolated time scales, and
see [13] for the continuous time scale). Thus, our Definition 3.1 can be understood as a unification of
these concepts and its extension to arbitrary time scales.

Theorem 3.9. Let f € P, NR. Then, forallt,s €T,

er((t),1) = er(v(s),s) and er(V(t),v(s)) = es(t,s). (3.4)

Proof. For f € P, N R, v*f¥ = fso that v*f* & f = 0. Thus, by (2.8), e,(v(1), 1) = e;((s), s), and the
first equality follows. The second equality is a consequence of the first equality and the semi-group
property es(a,b) = es(a,c)es(c,b) fora,b,c € T. O

4. Existence of periodic solutions to linear dynamic equations

In this section, we apply the definition of periodicity introduced in this manuscript to discuss the
existence and uniqueness of v-periodic solutions to linear dynamic equations. For the remainder of this
manuscript, we let v € Q*(T), defined in (2.1).

For f € R and v € Q*(T), we introduce E;: T — Ras

Ef (1) := vA(De,(v(1), 1). (4.1)
Lemma 4.1. For f € R, f, f” # 0, the identity
VAL W ATA P A 4.2)
is equivalent to each of the following statements:

i) Ey is constant, where Ey is defined in (4.1).
i) V\ f' e f = -1z,

iii) g}” = f7 2L ifu # 0,
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Proof. We note that E, = v2h, where 4 is defined in Proposition 2.9. Then,

E;‘» =V h + A RA @ {VAA + VA"(VAfV o f)} h

h
:(VAA+,uVAAf+VAo'VAfV_VA0'f)1+ﬂf
h
_ AA Ao A pv A
_<v + VvV f _vf)l+,uf’

confirming the equivalence between (4.2) and 1). Next, ii) is equivalent to

yAA JAA yAA _ FOAT — ARy — A8 A AN

Apev _ 7 - __ _ _ =
4 f - yho ®f - yho + f ’uva(r - VAO' - VAO' ’

and this is equivalent to (4.2). Lastly, iii) is equivalent to

0= &N ”ozﬁ{ijﬁi_vm}

of v f\L+wf YA
v 1
= (e =)
v 1
e R
S J7;

_J . . {_VAA 4 fVA _ VAvaAO'} ’

kvt
where we used uv®* = v7 — v = y” for the last equal sign, and for u # 0, this is equivalent to (4.2). O

In the special case when T = R, Lemma 4.1 is consistent with [13, Lemma 17]. Moreover, if T is
an isolated time scale and v = o, then Lemma 4.1 collapses to [12, Lemma 6.2 and Theorem 6.3],
supporting once more the claim that Definition 3.1 is a unification of the concept of periodicity on
arbitrary time scales.

By Lemma 4.1, f,e/(-, 1) € P, for f # 0, if and only if v** = 0, restricting the time scale. Thus, in
contrast to the continuous time domain, for general time scale T, 0 # f € $#, does not guarantee that
its corresponding dynamic exponential function is also v-periodic.

4.1. Homogeneous dynamic equations

We consider the homogeneous first-order linear dynamic equation
X = a(t)x (4.3)
for a € R. By (2.5), the solution is given by
x(1) = e, (1, 19)x(ty), to,t € T. 4.4)

By [1, Theorem 2.44], if a € R, then e,(t,1)) # O for all t+ € T. Thus, we may consider x(¢y) # 0
henceforth.
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Theorem 4.2. A nontrivial solution of (4.3) is v-periodic if and only if a satisfies (4.2) and there exists
to € T such that E,(ty) = 1.

Proof. 1f x is a nontrivial solution of (4.3), then x(¢) = e,(t, to)x(ty) # 0. Then x € P, iff

x() = vAOX((1) = VA ()e (v(1), 1) x(ty) = VA(1)e,(V(t), Deu(t, o) x(ty) = E(D)x(),

ie., E,(t) = 1 for all t € T. By property i) in Lemma 4.1, this holds if and only if a satisfies (4.2) and
E () = 1. O

Theorem 4.2 highlights that the classical statement of the existence of a periodic solution in the case
of periodic coeflicients does not necessarily hold on time scales but depends on the underlying time
structure.

Example 4.3. If a € R is constant, then 0 # x solving (4.3) can only be v-periodic if v** = 0 whenever
Ao _ VAYY _ Ao . . . . .

v =1 and Ao = 4 whenever v*7 # 1, posing restrictions on the function v and the underlying

time scale T. More precisely, let z := v*. Then the required condition is equivalent to z* = az(z” —1) so

that for u := z7!, we obtain a linear dynamic equation u#® = —a + au”. By (2.6), assuming also —a € R,

the solution is
!
u(t) = eg—a)(t, to)u(ty) + f (—a)eg—a)(t, $)As = 1 + eg_a)(t, 1o)(u(ty) — 1).
1o

Thus,
VA(to)e_a(t, To)
VA(to)e_q(t,19) + 1 — vA(1y)

VA(r) =

and since v € Q!'(T) requires v* > 0, we require
sgn(e_q(t, 1)) = sgn(v*(fo)e_a(t, 10) + 1 = V2 (1o)).
Theorem 4.4. Let a € R satisfy (4.2). If there exists ty € T such that

VA(t))ea("(to), 1) = 1,
then all solutions of (4.3) are v-periodic. In all other cases, (4.3) has no nontrivial v-periodic solution.

Proof. This follows directly from Theorem 4.2. O

If T = R, then Theorem 4.4 collapses to the statement in [13, Theorem 19].

Example 4.5. If T = Tz, where T is an isolated time scale and v = 0, then Theorem 4.4 coincides
with [12, Theorem 6.4] after using [12, Lemma 6.2] to express the required condition in the form
of (4.2). More precisely, consider now the isolated time scale T = ¢"° for ¢ > 1 and v(f) = g“t. Then
vA(t) = g and Theorem 4.4 states that if a that is v-periodic, which is equivalent to condition (4.2), and
g“e.(q“ty, 1) = 1 for some t, € g™, then all solutions are v-periodic. Otherwise, if no such #, € g'"
exists and a € P,, then only the trivial solution x = 0 is v-periodic.

AIMS Mathematics Volume 10, Issue 9, 21512-21532.



21523

Example 4.6. Consider again the quantum time scale T = g™ for g > 1 but with a different v € Q'(T),
namely, v(¢) = 7Lt fort = ¢ Then v is strictly increasing and
100Gi+1) 100i
2q1+|_ 2+ J —_ ql. l+iJ
-1 ’

VAt =q

Let a € RN P,. Then, Theorem 4.4 implies that if there exists f, = g* € T such that

b)) 7

—L—[]a+@-aa@n =1,
q i=0

q

where
100
T = p(io)) = 'L 1¢t,
then all solutions to x* = a(f)x are v-periodic.

We note that the same analysis can be conducted for the homogeneous dynamic equation

= al)x” (4.5)

for —a € R. By (2.6), its solution is given by
x(t) = eg-a)(t, 10)x(f0), 1o € T. (4.6)

All previous results still uphold but need to be adjusted to ©(—a) instead of a. We summarize them
briefly below but omit their proofs.

Lemma 4.7. A function 0 # x € P, solves (4.5) if and only if a satisfies
VA + VA B(-a)) = vAie(-a)). 4.7)

Lemma 4.8. Let —a € R satisfy (4.7). If there exists ty € T such that Eq_,\(ty) = 1, or equivalently,
VA(to)x(V(ty)) = x(to) for x(ty) # 0, then all solutions of (4.5) are v-periodic. In all other cases, (4.5)
has no nontrivial v-periodic solution.

Remark 4.9. Using the definition of the operation &, (4.7) can equivalently be expressed as
AO’VA

VAL + wa’)(1 + pa) + v a’(1 + pa) = v2a(l + p'a”).

Note that in this case, if a € R is constant, then we have
VAL + wa)(1 + ua) + V)7 (0Ma(l + pa) = via(l + (ba),

which certainly differs from the condition in Remark 4.3. Thus, given a time scale T, one may find
v € QI(T) so that x* = ax has a v-periodic solution for constant a, but the same time scale may not
yield a suitable v € Q!(T) so that x* = ax” has a V-periodic solution for the same constant a. This
highlights once more the importance of the underlying time scale T and the periodicity function v.
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4.2. Nonhomogeneous dynamic equations

In this subsection, we address the existence and uniqueness of v-periodic solutions to a
nonhomogeneous first-order linear dynamic equation of the form

2 =al®)x+b@), teT, (4.8)

where a € Rand b € C,4. By (2.5), the solution to (4.8) is given by

x(t) = e (t, tp)x(ty) + f e (t,o(8)b(s)As, tyeT. 4.9)

Throughout this section, we let v € Q*(T) and recall that vo o = o o v.

Theorem 4.10. If a € R satisfies (4.2), b € Cyq satisfies
V™A% =b on T, (4.10)

and there exists ty € T such that E,(ty) # 1, where E, is defined in (4.1), then (4.8) has a unique
nontrivial v-periodic solution given by

V(1)
x(r) = ﬂf e, (t, o(8)b(s)As, “4.11)
where E
- (%) (4.12)
I- Ea(t())

Proof. The solution x of (4.8) is given by (4.9). Clearly, if x = 0, then it is v-periodic. Let x # 0. Then

V(1)
VAOX((0) = vA (1) {ea(v(t),to)x(to)+f ea(V(I),O'(S))b(S)AS}

fo

V(1)
= VA (1)ea((1), 1) {X(t) + f eq(t, (T(S))b(S)AS}
V(1)
=E (1) {x(t) + f e, (t, O'(S))b(s)As} 4.13)

V(1)
= E,(ty) {x(t) + f eq(t, O'(S))b(S)AS} , (4.14)

where, in the last equality, we used Lemma 4.1 i) and the assumption that a satisfies (4.2). Thus, if X is
a v-periodic solution, then

Ea(IO) 7

V(1)
x(t) = m t e (t,0(8)b(s)As = /lv[ e (t,a(8)b(s)As,

and hence X is given by (4.11). On the other hand, to confirm that x given in (4.11) is indeed a solution
and v-periodic, we first note that for ) € T,

V(1) t
f(t)=/lea(t,to){ f e(ty, o(5))b(s)As — f ea(to,cr(S))b(S)AS}

To fo

AIMS Mathematics Volume 10, Issue 9, 21512-21532.



21525

and thus

V(1)
X(1) = da(De,(t, 1o) f eq(to, o(5))b(s)As

+ Aey(07(2). o) A (Dea(to, T(M))BO(D)) = ealty, ()b(1))
= a(Ox (1) + A | Dedlo(t), o)D) - b(1))

_ v A A _
= a(t)%(t) + b(t) + N OREN (Ob((D)) — bB)(1 + A)
= a(t)%(t) + b(t) + wvm(t)b(v(t)) — b(1)(1 + )
B E.(o(1))
. A
LD () + b(r) + —Ej(vggz))vm(t)b(v(t)) - b1 + )
L LOF(@E) + b(1) + Eil;((?o)) — b + Q)
= 1 - E (o(t))
=a()x(t) + b(t) + {ﬁm — 1} b(l)
0% + b(0),

so that X solves (4.8). Lastly, we show that v*(£)x(v(f)) = X(t). We have

24)

V(1)
VAOFO () E VA0 f VA(S)ea(n(1), T (V($))b(¥(5))As

V(1) A b
= AE,(ty) f ea(t, O-(S))g (Vy((os-zs)(;(s')()s)) ’

(410 f V(’)e (¢ o(s) E. (1) b(s) S
;o e.(V(0(s)), () v2(o(s))

_ "0 Ea(tO)
=41 ft e (t, a(s)) E.(0(s) b(s)As

V(1)
= /lf e (t,a(s)b(s)As = x(1).

The proof is complete. O

Remark 4.11. If T = T for an arbitrary but isolated time scale T; and v(t) = 0“(¢), then Theorem 4.10
is consistent with [12, Theorem 7.5]. If T = R, then Theorem 4.10 collapses to [13, Theorem 27].

Theorem 4.12. Let a € R satisfy (4.2) and let b € Cyq satisfy (4.10). If x solves (4.8) with
VA (to)x(¥(19)) = x(fo)

for some ty € T, then x is v-periodic.

Proof. Define
g(t) == v (Ox(v(1)) — x(t).
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Then
g2(1) = VA ()x(n(D) + (TP OWAD) — X 0)
A x((0) + VAT O) [aO)XOAD) + bO)] — [a(®)x(0) + b(1)]
U2 VA DX (1)) + VA OV @ () a ()X (D)) — a(t)x(0)
A Wanx((1) - a)x(1) = alg(@).
Thus, g(t) = e,(t, ty)g(ty) for 1y € T. Since g(#y) = 0, g(¢) = 0, which completes the proof. O

Theorem 4.13. Let a € R and b € Cyq such that a satisfies (4.2) and b satisfies (4.10). Assume there
exists ty € T such that E,(ty) = 1. If

v(fo)
f e (ty, o(8))b(s)As = 0, 4.15)

fo
then all solutions of (4.8) are v-periodic. Otherwise, no nontrivial solution of (4.8) is v-periodic.

Proof. Let x be a solution of (4.8). By using E () = 1 in (4.13), we get

V(1)
AOXD) = 3(1) + f eu(t. o (s)b(s)As.

Hence, by (4.15), v(t))x(v(ty)) = x(ty) so that the claim follows by Theorem 4.12. O

The above results for (4.8) can also be extended to the second form of a linear dynamic equation,
namely,
X =at)x” + b1, teT, (4.16)

where —a € R and b € C4. By (2.6), the solution to (4.16) is given by

x(1) = 6’9(_a)(f, t0)x(tg) + f 6’9(_a)(f, s$)b(s)ds, tyeT. “4.17)

fo

Note that the same results obtained for (4.8) apply but for a replaced by &(—a). We already argued
that the analogue of condition (4.2) for the homogeneous case in (4.5) is (4.7). Since the condition
on b, (4.10), is independent of a, the condition remains the same. We state below the corresponding
theorems for (4.16) below but omit their proofs.

Theorem 4.14. If —a € R satisfies (4.7), b € Cy satisfies (4.10), and there exists ty € T such that
Eo_a)(ty) # 1, then (4.16) has a unique v-periodic solution given by

_ Egato)
1 — Eg)(t0)

Other results obtained for (4.8) can now be rephrased for (4.16) accordingly.

V(1)
X = Af eo—a)(t, )b($)As, A (4.18)
t

Theorem 4.15. Let —a € R satisfy (4.7) and let b € Cyq satisfy (4.10). If x solves (4.16) with
VA(to)x(v(ty)) = x(ty), for some ty € T, then x is v-periodic.
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Theorem 4.16. Let —a € R satisfy (4.7) and let b € Cyq satisfy (4.10). Assume there exists ty € T such
that Ee(_a)(lo) =11If

v(to)
f o(-a)(fo, $)D(s)As = 0,

1o

then all solutions of (4.16) are v-periodic. Otherwise, no nontrivial solution of (4.16) is v-periodic.

5. Conclusions

In this work, we introduced a novel definition of periodicity with respect to a strictly increasing and
delta-differentiable function v. We say a function f is v-periodic provided it satisfies the functional
equation (3.1). This definition finally allows the concept of periodicity on arbitrary time scales without
the restrictive assumption of a periodic time scale. Our introduced definition is consistent with a
recently introduced concept of generalized periodicity in the real numbers [13] and collapses, for the
special case of v = 0, to a definition of periodicity recently introduced for isolated time scales [12].
Thus, our definition of v-periodic functions unifies these earlier results that considered specific time
domains and, in some cases, even specific expressions of v.

Furthermore, if v(f) = ¢ + w, the definition coincides with the classical definition of w-periodicity,
that is, f(r+w) = f(¢) on periodic time scales that include the classical discrete and continuous spaces.
Our definition of v-periodicity guarantees two key properties, namely the invariance of integrals of
periodic functions. That is, the area underneath a periodic function over the length of its period remains
constant and the integration bounds of a periodic function can always be shifted by the period without
impacting its value. These crucial aspects hold also in our generalized definition of periodicity, see
Theorem 3.7.

We applied our concept of periodicity to scalar linear dynamic equations and provided sufficient
and necessary conditions for the existence of v-periodic solutions. We first focused on the existence
and uniqueness of v-periodic solutions to linear homogeneous and then nonhomogeneous dynamic
equations. For each of these two classes, we considered both types of dynamic equation with and
without a o-operator on the right-hand side.

For each of the four dynamic equations, we provided necessary and also sufficient conditions for the
existence of a v-periodic solution, providing new insights into solutions to nonautonomous dynamic
equations. In the special case when v(f) = ¢ + w and the time scale is periodic, including isolated
time scales discussed in [12], known results are recovered from our presented theorems. In contrast
to these classical results that require the model coefficient to be either constant or itself periodic,
our generalization of periodicity can aid the analysis of nonautonomous and (in the classical sense)
nonperiodic dynamic equations, by providing a classification of solutions that satisfy the identity (3.1)
and the translation invariant properties in (3.3). Hence, the introduction of v-periodic functions can be
thought of as a tool of reducing system complexity of nonautonomous dynamic equations.
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Appendix

Lemma A1l. Consider a strictly increasing function v : T — T with v(T) = T. Then the following
holds: t € T is right-scattered (right-dense) if and only if v(t) € T is right-scattered (right-dense).

Proof. We first show that for fixed ¢ € T that is 1) right-dense (or ii) right-scattered), v(¢) € T is 1) right-
dense (or ii) right-scattered). Case i) Let # € T be right-dense. Then there exists a sequence {t,}, C T
such that #, > 1, and lim,_,, #, = . Since v is strictly increasing and rd-continuous, v, := v(t,) € T
such that v,,; < v, and lim, v, = v(lim,_ #,) = v(¢) so that v(¢) is also right-dense. Case ii) To
show that if # € T is right-scattered, then so is v(¢), suppose instead that v(¢) is right-dense. Then, there
exists a sequence {v,}, with v,,; < v, and lim,_., v, = v(¢). Since v(T) = T, there exists {s,}, with
s, € T such that v, = v(s,). Since v is strictly increasing, s,+; < s, and by the rd-continuity of v,
lim,_,, s, = t, violating the assumption that ¢ is right-scattered.

It is left to show the reverse statement, that is, if v(¢) € T is right-scattered (right-dense), then t € T
is right-scattered (right-dense). That is, we show that if v(¢) € T is 1) right-dense (or ii) right-scattered),
then ¢ € T that is 1) right-dense (or ii) right-scattered). Case 1) Let v(f) € T be right-dense so that
v(t) = o(v(1)). To show that ¢ is also right-dense, we proceed in the same fashion. That is, due to v(¢)
being right-dense, there exists a sequence {v,}, C T such that v,;; < v, and lim,_,, v, = v(f). Since
v(T) = T, there exist {s,}, C T such that v(s,) = v,. By the properties of v, s, > s,,; and lim,,_,, s, = 1,
implying that 7 is right-dense. Case i1) Let v(#) € T be right-scattered so that v() < o (v(¢)). To show
that ¢ is also right-scattered, we proceed by contradiction. Let ¢ be right-dense. Then there exists a
decreasing sequence {t,}, | C T with 7, > ¢ for all n € N, such that lim,,_,., #, = ¢. Since v(¢,) € T and v
is strictly increasing, we have v(t,) > v(t,,1). Furthermore, by the continuity of v, lim,_,., v(¢,) = (),
so that o(v(¢)) = v(¢), resulting in a contradiction that v(7) is right-scattered. O

Theorem A2. Consider a strictly increasing function v : T — T with v(T) = T. Then, vo o = o o v.

Proof. First note that if ¢ is right-dense, then, by Lemma A1, v(¢) is also right-dense and we have
o(v(t)) = v(t) = v(o(t)), confirming the desired claim. Thus, if the desired equality was false for some
T €T, then T would have to be right-scattered, and, by Lemma A1, also v(T'). First, suppose that there
exists T € T such that

(cov)(T) > (oo)T). (A.1)
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Then,
(1) 3 Wo(T)) > W),

where the second inequality holds since T is right-scattered and v is strictly increasing. Thus, there
exists s = v(0(T)) € Tsuchthat 7 < s < o(7) for v = ¥(T') € T, contradicting the definition of . Now,
consider the case that there exists 7 € T such that

(cov)(T) < (voo)T). (A.2)

Then, since T is right-scattered and v is strictly increasing,

WT) < o(T)) < W (T)). (A3)

Thus, there exists s = v(o(T)) € T such that v(T) < s < v(o(T)). Since v(T) = T, there exists T
such that s = v(r). Furthermore, since v is strictly increasing, T < 7 < o(T), again resulting in a
contradiction of the definition of o~. This completes the proof. O

Example A3. Let us consider the time scale
T=| J(2i2i + 11U R2i- 7)),
i€Z

where 0 < 1; < 1 for all i € Z. Note that if 7; are pairwise distinct, then T is neither a periodic time
scale nor an isolated time scale, and hence the previous definitions of periodicity (see Example 3.2) do
not apply to T. An illustration of T is shown in Figure A1l. For the purpose of this illustration, we used

2 +5
T = ﬁ for ieZ.
[ ] [ ] [ ] [ ] [ ] [ ]
-2 -1 0 1 2 3 4 5 6 7 8 9
T To T L) T3 T4

Figure A1. Illustration of T.

For this time scale T, the forward jump operator is

t if re[2i,2i+1) for i€Z,
ot)=3t+1-1 if r=2i—1 for i€Z,
t+7; if t=2i—-7; for i€eZ.
Now we define
v(t):{mz if re[2i,2i+1] for i€Z,
t+2—At; if r=2i—-71; for i€Z.
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Then v is strictly increasing and v(T) = T. Indeed, we now calculate v*. Let i € Z. Then

VA6 =1 for te[2i,2i-1),

V(oQRi-1D)-v2i-1) vQi—-1)-v(2i-1)

A2i-1) = =
yei-b ocRi-1)-Q2i-1) Ri-1)-Q2i-1)
CQRit+2-1) - Qi+ 1) -1y
B l—T,' B l—T,' ’
and
Avms vioRi—1))—-vQRi—T1) v(Q2i)—-vQ2i—-T1))
ViQ2i-1) = . . = —
ocQi—-1)-QRi—1) 20— 2i— 1))
QRi+2)-Qi+2-T141) T
- T B Ti '
In summary,
1 if re2i,2i+1) for i€Z,
iy =95 if r=2i-1 for i€Z,
e if tr=2i—-1; for i€Z.
Now let f : T — R. Leti € Z. Then
f(t+2) if te[2i,2i+1) for ieZ,
VA f((0) = § L (2 + 1) if t=2i-1 for i€Z,

T;—+ilf(2i+2_7i+l) if t=2i—-7; for i€Z.

So f is v-periodic if and only if it is “normal periodic” on [2i,2i + 1) for all i € Z and

f(2i+2—7,-+1):$f(2i—7i) and  fQ2i+1) =

Ti+l

i+1

It is easy to solve the recursions in (A.4) and to arrive at

1-7’0
1—T,‘

fQRi-1)= f(-1) and f(2i—7',~)=%f(—7’0) forall ieZ.

By choosing
f=D) = f(=70) = 0,

we could have a v-periodic f as depicted in Figure A2.

Y fi-1) forall ieZ.

(A4)

(A.5)
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f®

A LA A

-2 \]11 0
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Figure A2. Example of a v-periodic function on T.

By choosing f(-1) = —

1-7¢

and f(-71¢) = %, (A.5) turns into

1 1
fQRi-1)= = and f(Q2i-1;)=— forall ieZ, (A.6)
—Ti Ti
and we could have a v-periodic f as depicted in Figure A3.
f@
[ J
[ ] [ ]
[ ]
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PY o
[ ]
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Figure A3. Example of a v-periodic function on T.
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