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1. Introduction

In mathematics, inequalities have played a significant role in various fields for many years. A pivotal
moment in the study of inequalities occurred with the publication of the book “Inequalities” by G. H.
Hardy, J. Littlewood, and J. Polya in 1934 [1]. This influential work not only shaped the discipline
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but also provided valuable insights, techniques, and applications, establishing inequalities as a well-
defined area of study. Another crucial contribution was made in 1961 when Edwin F. Beckenbach and
R. Bellman released their important book on this topic [2]. This work further advanced the field of
inequalities, emphasizing its relevance and offering new perspectives for research.

These significant texts have had a profound effect on the study of inequalities, laying a strong
foundation for future inquiries. For additional information, readers can consult the references provided.
Inspired by the extensive history of inequalities and their practical applications, this paper seeks to
enhance the classical Cauchy–Schwarz inequality. Our aim is to deepen our understanding of this
inequality and explore its implications.

Before addressing our primary topic, it is beneficial to review some well-known and extensively
studied inequalities in inner product spaces, which may be either real or complex. For our purposes, we
will considerH as a complex Hilbert space equipped with an inner product ⟨·, ·⟩ and the corresponding
norm ∥ · ∥. Among the fundamental inequalities in inner product spaces is the Cauchy–Schwarz
inequality (CSI), which is widely recognized and utilized. It can be stated as follows:

|⟨u, v⟩| ≤ ∥u∥∥v∥, (1.1)

for all u, v ∈ H . Equality in (1.1) holds if and only if a complex number µ ∈ C exists such that u = µv.
In Buzano’s paper [3], a revised version of the Cauchy–Schwarz inequality was presented, known

as the Buzano inequality (BuI):

|⟨x, z⟩⟨z, y⟩| ≤
1
2

(|⟨x, y⟩| + ∥x∥∥y∥) ∥z∥2, (1.2)

for any x, y, z ∈ H . This inequality serves as a notable extension of the Cauchy–Schwarz inequality
and has significant applications across various areas of mathematics.

Another important inequality in the literature was established by A. Selberg (see, for example, [4, p.
394]). For the vectors x, z1, . . . , zn in H , where zi , 0 for all i ∈ {1, . . . , n}, we can apply Selberg’s
inequality (SI), which states that:

n∑
i=1

|⟨x, zi⟩|
2∑n

j=1

∣∣∣⟨zi, z j⟩
∣∣∣ ≤ ∥x∥2 . (1.3)

Selberg’s inequality plays a significant role in harmonic analysis and mathematical physics, with
numerous applications. It has been extensively studied, as evidenced by notable works such as [5–7].
Moreover, when the vectors zi are orthonormal for all i ∈ {1, . . . , n}, the inequality (1.3) simplifies to
the well-known Bessel’s inequality [4].

Refining the Cauchy–Schwarz inequality has both theoretical and practical importance. From a
theoretical viewpoint, sharper inequalities provide deeper insight into the geometry of Hilbert spaces
and operator behavior. On the practical side, such refinements play an important role in numerous fields
including numerical linear algebra, quantum information theory, and spectral theory. For instance, in
quantum mechanics, the CSI is often used in the derivation of uncertainty relations, and its refinement
may lead to tighter bounds. In numerical analysis, improved versions of the CSI contribute to better
error estimates in iterative methods and stability analyses.

Despite the large number of generalizations of the CSI, many of them do not take the structure of
positive operators or orthogonal projections into account, which naturally arise in applications. This
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motivates the need for new results that incorporate such structures while still refining the classical
inequality.

For further insights into the Cauchy–Schwarz inequality (CSI) and its refinements, we recommend
reviewing several classical and modern contributions. Bombieri’s work [8] provides a fundamental
large sieve inequality that highlights the strength of the CSI in number theory. Dragomir and
collaborators [9–11] present various refinements and applications of the CSI and Bessel-type
inequalities in inner product spaces. More recent developments and extensions, such as those
connected with Selberg- and Heinz–Kato–Furuta-type inequalities, can be found in the works of Fujii
and co-authors [12, 13], while Steele’s monograph [14] gives a comprehensive exposition of the CSI
and its role as a central tool in mathematical inequalities.

Throughout this manuscript, we denote the C∗-algebra of all bounded linear operators on H as
B(H). The identity operator is represented by I. For any operator T ∈ B(H), we indicate its adjoint
by T ∗.

An operator T is considered positive, written as T ≥ 0, if it satisfies the condition ⟨T x, x⟩ ≥ 0 for
all x ∈ H . Furthermore, for the operators T and S , the notation T ≥ S signifies that T − S is a positive
operator.

Assuming T is positive, we can apply the operator Cauchy–Schwarz inequality as follows:

|⟨T x, y⟩| ≤ ⟨T x, x⟩
1
2 ⟨Ty, y⟩

1
2 , (1.4)

for any vectors x, y ∈ H .
In this paper, we aim to refine the inequality (1.4). Our main result enhances this inequality,

leading to several new inequalities that generalize and improve upon the existing results in the
literature. Additionally, we investigate significant refinements of the Cauchy–Schwarz inequality using
orthogonal projections and prove several related inequalities that recover and extend the recent findings
by various authors.

2. Some preliminaries

In this section, we will discuss fundamental concepts, definitions, and motivations that are crucial
for understanding the main results of this paper. First, we note that the inequality (1.4) can be expressed
using the square root of the positive operator T ∈ B(H) as follows:

|⟨T x, y⟩| ≤ ∥T
1
2 x∥∥T

1
2 y∥.

Additionally, (1.4) leads to the following useful result:

∥T x∥2 ≤ ∥T∥⟨T x, x⟩,

which is valid for any positive operator T and any x ∈ H .
In [15, Proposition 1], a refined version of (1.4) is presented. Specifically, if T is a positive operator

in B(H) and α ∈ [0, 1], then the following holds:

|⟨T x, y⟩|2 ≤ (1 − α)⟨T x, x⟩
1
2 ⟨Ty, y⟩

1
2 |⟨T x, y⟩| + α⟨T x, x⟩⟨Ty, y⟩

≤ ⟨T x, x⟩⟨Ty, y⟩, (2.1)
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for any x, y ∈ H .
It is straightforward to observe that the parameters in the inequality, which do not depend on the

operator T or the vectors x and y, satisfy the condition

(1 − α) + α = 1.

Motivated by this property and the proof of (2.1), we will consider the following subset of functions
defined on the interval [0, 1]:

S =
{
f : [0, 1]→ [0, 1], f (α) + f (1 − α) = 1 for any α ∈ [0, 1]

}
. (2.2)

For instance, it is easy to show that

f1(α) = α, f2(α) =
1
2

(
1
2
+ α

)
, and f3(α) = sin2

(
π

2
α
)

belong to S.
We will now present a characterization of the set S defined above.

Proposition 2.1. f ∈ S if and only if an antysimmetric functions with two arguments, i.e. Φ(x, z) =
−Φ(z, x), exists such that

f (α) =
1
2
+ Φ(α, 1 − α),

where
−

1
2
≤ Φ(α, 1 − α) ≤

1
2
,

for all α ∈ [0, 1].

Proof. In [16], Polyanin and Manzhirov studied and solved the following functional equation:

f (α) + f (a − α) = g(α), (2.3)

where the function g satisfies the condition g(α) = g(a − α), with α, a ∈ R. The general solution of
(2.3) is given by:

f (α) =
1
2

g(α) + Φ(α, a − α),

where any antisymmetric function with two arguments Φ. In particular, if we take g(α) = 1 for all
α ∈ [0, 1] and set a = 1, then the general solution of the functional equation presented in (2.2) is given
by

f (α) =
1
2
+ Φ(α, 1 − α).

To obtain all functions in S, it is necessary to impose conditions on the antisymmetric function Φ
defined above, ensuring that the range of f is contained within [0, 1]. Specifically, in addition to being
antisymmetric, Φ must satisfy the following condition:

−
1
2
≤ Φ(α, 1 − α) ≤

1
2
,

for all α ∈ [0, 1]. □
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Notice that the functions f1 and f3 mentioned earlier both belong to S and are related in the
following way:

f3(α) = sin2
(
π

2
f1(α)

)
.

In the following result, we will demonstrate, without providing a proof since it is nearly immediate,
that this holds in general for any function f1 that belongs to S.

Lemma 2.1. Let f ∈ S. Then, g(α) = cos2
(
π
2 f (α)

)
and h(α) = sin2

(
π
2 f (α)

)
also belong to S.

For the upcoming discussion, it is important to recall the Selberg operator defined as follows.

Definition 2.1. Given a subset Z = {zi : i = 1, . . . , n} of nonzero vectors in the Hilbert space H , the
Selberg operator SZ is defined by

SZ =
n∑

i=1

zi ⊗ zi∑n
j=1 |⟨zi, z j⟩|

∈ B(H),

where x ⊗ y denotes a rank-one operator defined by x ⊗ y(z) = ⟨z, y⟩x, with x, y, and z being vectors in
the Hilbert spaceH .

Using the Selberg operator, we can reformulate the (SI) as follows:

0 ≤ ⟨SZx, x⟩ =
n∑

i=1

|⟨x, zi⟩|
2∑n

j=1 |⟨zi, z j⟩|
≤ ⟨x, x⟩,

for any x ∈ H . Thus, the (SI) implies that every Selberg operator is a positive contraction; i.e.,
0 ≤ SZ ≤ I.

We conclude this preliminary section by noting that within the space of bounded linear operators
B(H), there is a special group called Hilbert-Schmidt operators, denoted as B2(H). This group forms
its own Hilbert space, with an inner product defined by

⟨X,Y⟩2 =
∞∑

i=1

⟨Xei,Yei⟩ = tr(Y∗X),

for any operators X,Y in B2(H). Here, {ei}
∞
i=1 is any orthonormal basis of H , and tr(·) is the trace

function.
When looking at non-zero operators X,Y ∈ B2(H), the angle between them, αX,Y ∈ [0, π], is

calculated using the formula:

cos(αX,Y) =
Re⟨X,Y⟩2
∥X∥2∥Y∥2

,

where the Hilbert-Schmidt norm ∥X∥2 is defined as ∥X∥22 = ⟨X, X⟩2.

3. Main results

In this section, we present our main results. The primary finding of this manuscript is a
generalization of (2.1), which naturally refines (1.4).
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Theorem 3.1. Assume that T is a positive operator in B(H), f ∈ S, and that r > 0. Then, for any
x, y ∈ H , we have:

|⟨T x, y⟩|r ≤ f (1 − α)∥T
1
2 x∥

r
2 ∥T

1
2 y∥

r
2 |⟨T x, y⟩|

r
2 + f (α)∥T

1
2 x∥r∥T

1
2 y∥r

≤ ∥T
1
2 x∥r∥T

1
2 y∥r.

Proof. Let T be a positive operator in B(H), and let α ∈ [0, 1]. Since f (α) + f (1 − α) = 1 for any
f ∈ S, it follows that for any x, y ∈ H , we have

|⟨T x, y⟩|r = [ f (α) + f (1 − α)]|⟨T x, y⟩|r

= f (α)|⟨T x, y⟩|r + f (1 − α)|⟨T x, y⟩|r.

Applying inequality (1.4) and using the fact that T
1
2 exists due to the positivity of T , we obtain that

|⟨T x, y⟩|s ≤ ⟨T x, x⟩
s
2 ⟨Ty, y⟩

s
2 = ∥T

1
2 x∥s∥T

1
2 y∥s

for any s > 0. Combining the previous inequalities for s = r and s = r
2 , we conclude that

|⟨T x, y⟩|r = f (α)|⟨T x, y⟩|r + f (1 − α)|⟨T x, y⟩|r

= f (α)|⟨T x, y⟩|
r
2 |⟨T x, y⟩|

r
2 + f (1 − α)|⟨T x, y⟩|r

≤ f (1 − α)∥T
1
2 x∥

r
2 ∥T

1
2 y∥

r
2 |⟨T x, y⟩|

r
2 + f (α)∥T

1
2 x∥r∥T

1
2 y∥r

≤ f (1 − α)⟨T x, x⟩
r
2 ⟨Ty, y⟩

r
2 + f (α)⟨T x, x⟩

r
2 ⟨Ty, y⟩

r
2

= [ f (α) + f (1 − α)]⟨T x, x⟩
r
2 ⟨Ty, y⟩

r
2

= ⟨T x, x⟩
r
2 ⟨Ty, y⟩

r
2 = ∥T

1
2 x∥r∥T

1
2 y∥r.

This finishes the proof. □

Remark 3.1. It is immediate that by considering f (α) = α with α ∈ [0, 1] and r = 2, we obtain (2.1).

Next, as an application of our findings, we will demonstrate that several inequalities, both recently
established by the authors of this manuscript and by others, can be derived by considering different
positive operators T , functions f , and values of r. The first application of Theorem 3.1, obtained by
considering an orthogonal projection, can be stated in the following result.

Theorem 3.2. Let P be an orthogonal projection on H and f ∈ S. Then, for any x, y ∈ H , α ∈ [0, 1]
and r > 0, we have

|⟨Px, y⟩ − ⟨x, y⟩|r ≤ f (1 − α)∥P⊥x∥
r
2 ∥P⊥y∥

r
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ r
2 + f (α)∥P⊥x∥r∥P⊥y∥r

≤ ∥P⊥x∥r∥P⊥y∥r

≤ (∥x∥∥y∥ − ∥Px∥∥Py∥)r

≤ (∥x∥∥y∥)r,

where P⊥ = I − P.
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Proof. As is well-known, if P is an orthogonal projection, then P⊥ is as well. Then, by Theorem 3.1,
for any x, y ∈ H and f ∈ S, we have

|⟨Px, y⟩ − ⟨x, y⟩|r = |⟨P⊥x, y⟩|r

≤ f (1 − α)∥P⊥x∥
r
2 ∥P⊥y∥

r
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ r
2 + f (α)∥P⊥x∥r∥P⊥y∥r

≤ ∥P⊥x∥r∥P⊥y∥r.

Taking into account that ∥P⊥z∥2 = ∥z∥2−∥Pz∥2 for any z ∈ H and using the inequality (a2−b2)(c2−d2) ≤
(ac − bd)2 for all a, b, c, d ≥ 0, we obtain

∥P⊥x∥r∥P⊥y∥r =
[(
∥x∥2 − ∥Px∥2

) (
∥y∥2 − ∥Py∥2

)] r
2

≤ [∥x∥∥y∥ − ∥Px∥∥Py∥]r

≤ (∥x∥∥y∥)r.

Hence, the proof is complete. □

Example 3.1. In this example, we illustrate in a simple case, that the bound obtained in Theorem 3.2
is indeed sharper than the well-known estimate

|⟨Px, y⟩ − ⟨x, y⟩|r ≤ (∥x∥∥y∥ − ∥Px∥∥Py∥)r.

LetH = R2 with the standard inner product and let P be the orthogonal projection onto span{e1}, i.e.,

P =
[
1 0
0 0

]
, P⊥ = I − P =

[
0 0
0 1

]
.

Consider

x =
[
1
1

]
, y =

[
1
2

]
.

Then
⟨x, y⟩ = 3, ⟨Px, y⟩ = 1,

so ∣∣∣⟨Px, y⟩ − ⟨x, y⟩
∣∣∣2 = ∣∣∣ 1 − 3

∣∣∣2 = 4.

Moreover,
∥P⊥x∥ = 1, ∥P⊥y∥ = 2, and ⟨P⊥x, y⟩ = 2.

Choose f ∈ S with f (t) = t, take α = 1
2 and r = 2. Applying Theorem 3.2 yields∣∣∣⟨Px, y⟩ − ⟨x, y⟩

∣∣∣2 ≤ f (1 − α) ∥P⊥x∥ ∥P⊥y∥
∣∣∣⟨P⊥x, y⟩

∣∣∣ + f (α) ∥P⊥x∥2 ∥P⊥y∥2.

With the data above, the right-hand side is equal to 4. Hence, in this case, the refined bound from
Theorem 3.2 is exact: ∣∣∣⟨Px, y⟩ − ⟨x, y⟩

∣∣∣2 = 4.

On the other hand, the classical estimate gives(
∥x∥ ∥y∥ − ∥Px∥ ∥Py∥

)2
=

(√
2
√

5 − 1
)2
= (
√

10 − 1)2 ≈ 4.6776,

so we obtain the strict chain∣∣∣⟨Px, y⟩ − ⟨x, y⟩
∣∣∣2 = 4 < (

√
10 − 1)2 =

(
∥x∥ ∥y∥ − ∥Px∥ ∥Py∥

)2
.
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Remark 3.2. It is noteworthy that the inequality derived in Theorem 3.2 serves to generalize the result
presented in Theorem 3.1 of [17].

Two of the authors of this manuscript derived the following inequalities in [17], employing a proof
based on different techniques: Suppose that P is an orthogonal projection. We then have:

|⟨Px, y⟩ − ⟨x, y⟩|2 ≤ ∥y∥2(∥x∥2 − ∥Px∥2),

for every x, y, z ∈ H . In particular, if y , 0 and z , 0, we obtain

∥z∥2

∥y∥2

∣∣∣∣∣∣
〈
x, z

〉〈
z, y

〉
∥z∥2

−
〈
x, y

〉∣∣∣∣∣∣2 ≤ ∥x∥2 ∥z∥2 − |⟨x, z⟩|2. (3.1)

The inequality (3.1) is a generalization of the well-known Ostrowski result in a inner product space.

As a consequence of Theorem 3.2, we obtain the following refinements.

Corollary 3.1. Let P be an orthogonal projection on H and f ∈ S. Then, for any x, y ∈ H and
α ∈ [0, 1], we have

|⟨Px, y⟩ − ⟨x, y⟩|2 ≤ f (1 − α)∥P⊥x∥∥P⊥y∥
∣∣∣⟨P⊥x, y⟩

∣∣∣ + f (α)∥P⊥x∥2∥P⊥y∥2

≤ ∥P⊥x∥2∥P⊥y∥2

≤ ∥y∥2(∥x∥2 − ∥Px∥2),
(3.2)

where P⊥ = I − P.
In particular, if y , 0 and z , 0, we derive∣∣∣∣∣⟨x, z⟩⟨z, y⟩∥z∥2

− ⟨x, y⟩
∣∣∣∣∣2 ≤ f (1 − α)∥P⊥0 x∥∥P⊥0 y∥

∣∣∣⟨P⊥0 x, y⟩
∣∣∣ + f (α)∥P⊥0 x∥2∥P⊥0 y∥2

≤ (∥x∥2 − ∥P0x∥2)(∥y∥2 − ∥P0y∥2)

≤
∥y∥2

∥z∥2
(
∥x∥2∥z∥2 − |⟨x, z⟩|2

)
, (3.3)

with P0 = z0 ⊗ z0 is the one-dimensional orthogonal projection , where z0 =
z
∥z∥ .

Proof. The inequality (3.2) follows directly from Theorem 3.2 by setting r = 2 and applying the
fundamental properties of orthogonal projections P and P⊥. To establish the inequality (3.3), we
examine (3.2) under the specific condition P = P0. In this and similar situations, the following holds:∣∣∣∣∣⟨x, z⟩⟨z, y⟩∥z∥2

− ⟨x, y⟩
∣∣∣∣∣2 = |⟨Pz0 x, y⟩ − ⟨x, y⟩|2

≤ f (1 − α)∥P⊥0 x∥∥P⊥0 y∥
∣∣∣⟨P⊥0 x, y⟩

∣∣∣ + f (α)∥P⊥0 x∥2∥P⊥0 y∥2

≤ (∥x∥2 − ∥P0x∥2)(∥y∥2 − ∥P0y∥2)
≤ ∥y∥2(∥x∥2 − ∥P0x∥2)

= ∥y∥2
(
∥x∥2 −

1
∥z∥2
|⟨x, z⟩|2

)
=
∥y∥2

∥z∥2
(
∥x∥2∥z∥2 − |⟨x, z⟩|2

)
.

This achieves the proof. □
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Remark 3.3. We note that the inequality (3.3) represents a sharper variant of the classical Cauchy-
Schwarz inequality.

Now we are in a position to derive a refinement of Ostrowski’s inequality in inner product spaces,
utilizing functions that belong to the set S.

Corollary 3.2. Let f ∈ S. Then, for any x, y, z ∈ H such that z , 0, ⟨x, z⟩ = 1, ⟨y, z⟩ = 0, and
α ∈ [0, 1], we have

∥y∥2

∥z∥2

≤ f (α)
∥y∥
∥z∥

√
∥x∥2∥z∥2 − 1|⟨x, y⟩| + f (α)

∥y∥2

∥z∥2
(∥x∥2∥z∥2 − 1) +

∥y∥2

∥z∥2
− |⟨x, y⟩|2

≤ ∥x∥2∥y∥2 − |⟨x, y⟩|2.

We are now in a position to derive, by considering the identity operator in Theorem (3.1), the
following refinements and inequalities associated with Buzano’s inequality (1.2).

Corollary 3.3. Let x, y ∈ H , and f ∈ S. Then for any α ∈ [0, 1] and r ≥ 1, we have

|⟨x, y⟩|r ≤ f (1 − α)∥x∥
r
2 ∥y∥

r
2 |⟨x, y⟩|

r
2 + f (α)∥x∥r∥y∥r

≤ ∥x∥r∥y∥r. (3.4)

Proof. The inequality (3.4) is derived from Theorem 3.1 by selecting T = I.
□

Starting from the BuI and applying a similar argument to the one used in the proof of Theorem 3.1,
we can derive the following generalization of that inequality.

Proposition 3.1. Let x, y, z ∈ H with ∥z∥ = 1, and f ∈ S. Then for any α ∈ [0, 1] and r ≥ 1, we have

|⟨x, z⟩⟨z, y⟩|r ≤
1
2

f (α)|⟨x, y⟩|r +
1
2

(1 + f (1 − α)) ∥x∥r∥y∥r

≤ ∥x∥r∥y∥r.

Proof. Considering the convex function g(t) = tr for t ∈ [0,∞) and applying Buzano’s inequality, we
obtain:

|⟨x, z⟩⟨z, y⟩|r ≤
1
2
|⟨x, y⟩|r +

1
2
∥x∥r∥y∥r

=
1
2

[
f (α) + f (1 − α)

]
|⟨x, y⟩|r +

1
2
∥x∥r∥y∥r

=
1
2

f (α)|⟨x, y⟩|r +
1
2

[
1 + f (1 − α)

]
∥x∥r∥y∥r.

Finally, the last inequality is obtained by applying the Cauchy-Schwarz inequality (CSI) along with
the identity satisfied by the function f . □
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Corollary 3.4. Let x, y, z ∈ H with ∥z∥ = 1. Then for any θ ≥ 0 and r ≥ 1, we have

|⟨x, z⟩⟨z, y⟩|r ≤
1

4θ + 4
|⟨x, y⟩|r +

4θ + 3
4θ + 4

∥x∥r∥y∥r

≤ ∥x∥r∥y∥r. (3.5)

Proof. The proof follows directly by setting f (α) = α with α = 1
2(θ+1) for θ ≥ 0, and then applying

Proposition 3.1. □

Remark 3.4. The inequality (3.5) for the case r = 2 was recently obtained by Guesba and Garayev
in [18]. Furthermore, for any r ≥ 1, they established the following result:

|⟨x, z⟩⟨z, y⟩|r ≤
1

2θ + 2
|⟨x, y⟩|r +

2θ + 1
2θ + 2

∥x∥r∥y∥r.

This inequality can be derived from Proposition 3.1 by setting f (α) = α and choosing α = 1
θ+1 .

Our next main objective of this paper is to offer significant refinements of the Cauchy-Schwarz
inequality through the use of orthogonal projections. To achieve our goals, we first recall the result
from [17]: Let P be an orthogonal projection, and let x, y ∈ H ; in this case

|⟨x, y⟩| ≤ ∥x∥∥y∥ + |⟨Px, y⟩| − ∥Px∥∥Py∥ ≤ ∥x∥∥y∥.

We will now present a refinement of this inequality.

Theorem 3.3. Let P be an orthogonal projection on H and f ∈ S. Then, for any x, y ∈ H and
α ∈ [0, 1], we have

|⟨x, y⟩|

≤ f (1 − α)∥P⊥x∥
1
2 ∥P⊥y∥

1
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ 1
2 + f (α)∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩|

≤
√
∥x∥2 − ∥Px∥2

√
∥y∥2 − ∥Py∥2 + |⟨Px, y⟩|

≤ ∥x∥∥y∥ − ∥Px∥∥Py∥ + |⟨Px, y⟩|

≤ ∥x∥∥y∥.

Proof. Decomposing x = Px + P⊥x for any x ∈ H and applying the triangle inequality, we obtain that
For any x, y ∈ H , we have

|⟨x, y⟩| =
∣∣∣⟨Px + P⊥x, y⟩

∣∣∣ ≤ ∣∣∣⟨P⊥x, y⟩
∣∣∣ + |⟨Px, y⟩| .

Applying Theorem 3.2 to
∣∣∣⟨P⊥x, y⟩

∣∣∣, it follows that:

|⟨x, y⟩| ≤
∣∣∣⟨P⊥x, y⟩

∣∣∣ + |⟨Px, y⟩|

≤ f (1 − α)∥P⊥x∥
1
2 ∥P⊥y∥

1
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ 1
2

+ f (α)∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩|

≤ ∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩| .
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Since ∥P⊥x∥ =
√
∥x∥2 − ∥Px∥2 holds for any x ∈ H , and using the elementary inequality

(α2 − β2)(γ2 − δ2) ≤ (αγ − βδ)2

which is valid for any real numbers α, β, γ, and δ, we deduce that:

|⟨x, y⟩| ≤
√
∥x∥2 − ∥Px∥2

√
∥y∥2 − ∥Py∥2 + |⟨Px, y⟩|

≤ ∥x∥∥y∥ − ∥Px∥∥Py∥ + |⟨Px, y⟩|

≤ ∥x∥∥y∥.

Hence, the proof is complete. □

Motivated by the preceding proof, given an orthogonal P, we define the following functions:

ΦP : H ×H → R, ΦP(x, y) := ∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩| ,

and
ΨP : H ×H → R, ΨP(x, y) := ∥P⊥x∥∥P⊥y∥ + ∥Px∥∥Py∥.

Such functions are symmetric and comparable due to the idempotence property of every orthogonal
projection and the Cauchy-Schwarz inequality. More precisely, for any for any x, y ∈ H , the following
holds:

ΦP(x, y) ≤ ΨP(x, y).

Additionally, by applying Proposition 3.3 and noting that

∥P⊥x∥∥P⊥y∥ ≤ ∥x∥∥y∥ − ∥Px∥∥Py∥,

we conclude that both ΦP and ΨP provide an enhancement of the Cauchy-Schwarz inequality. In
particular,

|⟨x, y⟩| ≤ ΦP(x, y) ≤ ΨP(x, y) ≤ ∥x∥∥y∥. (3.6)

Remark 3.5. Note that the following inequality holds for any x, y ∈ H and for any orthogonal
projection P:

∥Px∥∥Py∥ − |⟨Px, y⟩| ≤ ∥x∥∥y∥ − |⟨x, y⟩| , (3.7)

because, by (3.6), we have

0 ≤ ∥Px∥∥Py∥ − |⟨Px, y⟩| = ΨP(x, y) − ΦP(x, y) ≤ ∥x∥∥y∥ − |⟨x, y⟩| .

In conclusion, we obtain the following refinement of the classical Cauchy-Schwarz inequality:

|⟨x, y⟩| ≤ |⟨x, y⟩| + ∥Px∥∥Py∥ − |⟨Px, y⟩| ≤ ∥x∥∥y∥.

From now on, for convenience, we will use P(H) to denote the set of all orthogonal projections
defined on the Hilbert spaceH .
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Theorem 3.4. For any x, y ∈ H , it holds that

|⟨x, y⟩| = inf
P∈P(H)

ΦP(x, y) = inf
P∈P(H)

ΨP(x, y),

and
sup

P∈P(H)
ΦP(x, y) = sup

P∈P(H)
ΨP(x, y) = ∥x∥∥y∥.

Proof. If x = 0 or y = 0, the equalities hold trivially. Therefore, we can assume, without loss of
generality, that x , 0. We consider P0 = x0 ⊗ x0 ∈ P(H) where x0 =

x
∥x∥ . We then have

ΨP0(x, y) = ∥P0x∥∥P0y∥ + ∥P⊥0 x∥∥P⊥0 y∥ = |⟨x, y⟩|.

From (3.6), we conclude that

|⟨x, y⟩| ≤ inf
P∈P(H)

ΦP(x, y) ≤ inf
P∈P(H)

ΨP(x, y) ≤ ΨP0(x, y) = |⟨x, y⟩|.

Thus, the identities involving the infimum are proven. Now, consider P1 = 0, the null projection. In
this case, we have:

ΦP1(x, y) = ∥P⊥1 x∥∥P⊥1 y∥ + |⟨P1x, y⟩| = ∥x∥∥y∥.

Again using the inequality (3.6), we obtain:

∥x∥∥y∥ = ΦP1(x, y) ≤ sup
P∈P(H)

ΦP(x, y) ≤ sup
P∈P(H)

ΨP(x, y) ≤ ∥x∥∥y∥.

Thus, we can conclude the proof. □

The following result is obtained as a consequence of Proposition 3.3.

Corollary 3.5. For any f ∈ S and x, y ∈ H , it holds that

|⟨x, y⟩| = inf
P∈P(H)

{∣∣∣⟨P⊥x, y⟩
∣∣∣ + |⟨Px, y⟩|

}
= inf

P∈P(H)
Λ f ,P(x, y),

where

Λ f ,P(x, y) = f (1 − α)∥P⊥x∥
1
2 ∥P⊥y∥

1
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ 1
2

+ f (α)∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩| .

In addition, we have

∥x∥∥y∥ = sup
P∈P(H)

{ √
∥x∥2 − ∥Px∥2

√
∥y∥2 − ∥Py∥2 + |⟨Px, y⟩|

}
= sup

P∈P(H)
{∥x∥∥y∥ − ∥Px∥∥Py∥ + |⟨Px, y⟩|} .
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Proof. By the proof leading to Proposition 3.3 and, in particular, the following inequalities:

|⟨x, y⟩| ≤
∣∣∣⟨P⊥x, y⟩

∣∣∣ + |⟨Px, y⟩|

≤ f (1 − α)∥P⊥x∥
1
2 ∥P⊥y∥

1
2
∣∣∣⟨P⊥x, y⟩

∣∣∣ 1
2

+ f (α)∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩|

≤ ∥P⊥x∥∥P⊥y∥ + |⟨Px, y⟩| = ΦP(x, y)

and
ΦP(x, y) ≤

√
∥x∥2 − ∥Px∥2

√
∥y∥2 − ∥Py∥2 + |⟨Px, y⟩|

≤ ∥x∥∥y∥ − ∥Px∥∥Py∥ + |⟨Px, y⟩| ≤ ∥x∥∥y∥,

which are valid for any x, y ∈ H , f ∈ S, and P ∈ P(H). So, the proof of this corollary follows directly
from the previous inequalities and Theorem 3.4. □

We now present a new proof and refinement of the well-known fact that every orthogonal projection
satisfies the classical Buzano inequality ( [19]). The central idea of this result builds upon the proof of
that inequality, proposed by Fuji and Kubo in [20], along with the inequalities derived in (3.6).

Theorem 3.5. Let P,Q ∈ P(H) and x, y ∈ H . Then

|⟨Px, y⟩| ≤
1
2

(
ΦQ((2P − I)x, y) + |⟨x, y⟩|

)
≤

1
2

(
ΨQ((2P − I)x, y) + |⟨x, y⟩|

)
≤

1
2

(∥(2P − I)x∥∥y∥ + |⟨x, y⟩|)

≤
1
2

(∥x∥∥y∥ + |⟨x, y⟩|) .

Proof. We immediately find that for all x, y ∈ H and P ∈ P(H), the following holds:

2 |⟨Px, y⟩| = |⟨2Px, y⟩| = |⟨(2P − I)x, y⟩ + ⟨x, y⟩|

≤ |⟨(2P − I)x, y⟩| + |⟨x, y⟩| .

As a consequence of the inequality (3.6), we have

|⟨(2P − I)x, y⟩| ≤ ΦQ((2P − I)x, y) ≤ ΨQ((2P − I)x, y),

for any Q ∈ P(H) and x, y ∈ H . By combining the preceding inequalities and utilizing the most recent
inequality given in (3.6), we conclude that

2 |⟨Px, y⟩| ≤ |⟨(2P − I)x, y⟩| + |⟨x, y⟩|

≤ ΦQ((2P − I)x, y) + |⟨x, y⟩|
≤ ΨQ((2P − I)x, y) + |⟨x, y⟩|
≤ ∥(2P − I)x∥∥y∥ + |⟨x, y⟩| .

The proof concludes by noting that ∥2P − I∥ ≤ 1. □
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Example 3.2. LetH = R2 with the standard inner product, and let

P =
[
1 0
0 0

]
, x =

[
1
1

]
, y =

[
1
2

]
.

Let Q denote the orthogonal projection onto span{(1, 1)}. A direct computation yields the following
bounds for |⟨Px, y⟩|:

|⟨Px, y⟩| = 1 <
1
2

(
ΦQ((2P − I)x, y) + |⟨x, y⟩|

)
= 2 <

1
2

(
∥x∥ ∥y∥ + |⟨x, y⟩|

)
≈ 3.081.

This illustrates that the inequalities in Theorem 3.5 are strict, and that by choosing appropriate
orthogonal projections Q, one can obtain bounds that are sharper than the classical Buzano estimate,
providing greater flexibility in controlling the inner products.

Building upon the proof technique used in the previous result, we are now equipped to derive the
following statement, which serves as a refinement of Proposition 3.1 in [21].

Corollary 3.6. Let T ∈ B(H), α ∈ C \ {0}, with ∥αT − I∥ ≤ 1, and let P ∈ P(H). For any x, y ∈ H , the
following holds:

|⟨T x, y⟩| ≤
1
|α|

(ΦP((αT − I)x, y) + |⟨x, y⟩|)

≤
1
|α|

(ΨP((αT − I)x, y) + |⟨x, y⟩|)

≤
1
|α|

(∥(αT − I)x∥∥y∥ + |⟨x, y⟩|)

≤
1
|α|

(∥x∥∥y∥ + |⟨x, y⟩|) .

Our final objective in this paper is to present various applications of our main result in broader
contexts than those previously discussed, where we considered the identity operator or orthogonal
projections. Specifically, we will focus on the Selberg operator and inequalities related to the angle
between the operators in the B2(H) ideal.

We begin with a result that emerges from the positivity of the Selberg operator associated with a set
Z ⊆ H , in conjunction with Theorem 3.1. Specifically, we state the following result.

Proposition 3.2. Given a subset Z = {zi : i = 1, . . . , n} of nonzero vectors in the Hilbert space H ,
f ∈ S, and r ≥ 1, we have:

|⟨SZx, y⟩|r ≤ f (1 − α)
∥∥∥∥S

1
2
Z

x
∥∥∥∥ r

2
∥∥∥∥S

1
2
Z

y
∥∥∥∥ r

2
|⟨SZx, y⟩|

r
2 + f (α)

∥∥∥∥S
1
2
Z

x
∥∥∥∥r ∥∥∥∥S

1
2
Z

y
∥∥∥∥r

≤

∥∥∥∥S
1
2
Z

x
∥∥∥∥r ∥∥∥∥S

1
2
Z

y
∥∥∥∥r
.

The next result deals with the operators in B2(H).
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Theorem 3.6. Let X,Y ∈ B2(H) be non-zero operators, and f ∈ S. For any α ∈ [0, 1], we have

cos2(αX,Y) ≤ f (α)
√

cos(α|X∗ |,|Y∗ |)
√

cos(α|X|,|Y |)
|⟨X,Y⟩2|
∥X∥2∥Y∥2

+ f (1 − α) cos(α|X∗ |,|Y∗ |) cos(α|X|,|Y |)
≤ cos(α|X∗ |,|Y∗ |) cos(α|X|,|Y |).

Proof. Let us note that for any X,Y in the Hilbert-Schmidt class and non-zero, and for any α ∈ [0, 1],
we have:

cos2(αX,Y) =
(
Re⟨X,Y⟩2
∥X∥2∥Y∥2

)2

≤
|⟨X,Y⟩2|2

∥X∥22∥Y∥
2
2

=
[ f (α) + f (1 − α)]|⟨X,Y⟩2|2

∥X∥22∥Y∥
2
2

=
f (α)|⟨X,Y⟩2|2

∥X∥22∥Y∥
2
2

+
f (1 − α)|⟨X,Y⟩2|2

∥X∥22∥Y∥
2
2

.

By Theorem 2.6 in [22], we know that

|⟨X,Y⟩2|2 ≤ |⟨|X∗|, |Y∗|⟩2||⟨|X|, |Y |⟩2|. (3.8)

Combining the two previous inequalities, we obtain:

cos2(αX,Y) ≤
f (α)
√
|⟨|X∗|, |Y∗|⟩2|

√
|⟨|X|, |Y |⟩2||⟨X,Y⟩2|

∥X∥22∥Y∥
2
2

+
f (1 − α)|⟨|X∗|, |Y∗|⟩2||⟨|X|, |Y |⟩2|

∥X∥22∥Y∥
2
2

= f (α)

√
|⟨|X∗|, |Y∗|⟩2|
∥X∥2∥Y∥2

√
|⟨|X|, |Y |⟩2|
∥X∥2∥Y∥2

|⟨X,Y⟩2|
∥X∥2∥Y∥2

+ f (1 − α)
|⟨|X∗|, |Y∗|⟩2|
∥X∥2∥Y∥2

|⟨|X|, |Y |⟩2|
∥X∥22∥Y∥

2
2

.

Using the fact that if Z,W are positive operators, then ⟨Z,W⟩2 ≥ 0, it follows that

cos2(αX,Y) ≤ f (α)
√

cos(α|X∗ |,|Y∗ |)
√

cos(α|X|,|Y |)
|⟨X,Y⟩2|
∥X∥2∥Y∥2

+ f (1 − α) cos(α|X∗ |,|Y∗ |) cos(α|X|,|Y |).

Finally, note that by (3.8), we have:

|⟨X,Y⟩2|
∥X∥2∥Y∥2

≤

√
|⟨|X∗|, |Y∗|⟩2|
∥X∥22∥Y∥

2
2

√
|⟨|X|, |Y |⟩2|
∥X∥22∥Y∥

2
2

=
√

cos(α|X∗ |,|Y∗ |)
√

cos(α|X|,|Y |).
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Therefore, we have shown that

cos2(αX,Y) ≤ f (α)
√

cos(α|X∗ |,|Y∗ |)
√

cos(α|X|,|Y |)
|⟨X,Y⟩2|
∥X∥2∥Y∥2

+ f (1 − α) cos(α|X∗ |,|Y∗ |) cos(α|X|,|Y |)
≤ cos(α|X∗ |,|Y∗ |) cos(α|X|,|Y |).

□

Remark 3.6. Let us note that if we consider λ ≥ 0, α = 1
1+λ ∈ [0, 1], and f (α) = α in Theorem 3.6, we

recover, as a particular case, the inequality (2.7) established by Zamani in [22].

4. Conclusions

In this paper, we have presented several refinements and generalizations of the operator Cauchy–
Schwarz inequality, particularly in the context of positive operators. By introducing new inequalities
involving orthogonal projections and, more generally, positive operators, we have not only extended
known results but also provided a unified framework that recovers various inequalities previously
established in the literature.

These contributions open up new directions for research in several areas. In particular, the refined
inequalities developed here may offer valuable tools in harmonic analysis, operator theory, and related
branches of functional analysis. Moreover, since inequalities of the Cauchy–Schwarz type often play a
crucial role in studying convergence in iterative methods, error bounds, and variational estimates, our
results may find applications in numerical linear algebra and quantum information theory.

Natural open problems arise from this work. For instance, it would be interesting to determine
whether the techniques employed here can be adapted to nonpositive or unbounded operators, or
extended to more general settings such as Hilbert C∗-modules. Another promising direction is to study
whether analogous inequalities hold under different operator means or to explore possible connections
with matrix trace inequalities.

We hope that the refinements and methodologies presented in this manuscript inspire further
developments and applications in the theory of operator inequalities.
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spaces, Studia Univ. Babeş-Bolyai, Mathematica, 37 (1992), 77–86.

12. M. Fujii, R. Nakamoto, Simultaneous extensions of Selberg inequality and Heinz-Kato-Furuta
inequality, Nihonkai Math. J., 9 (1998), 219–225.

13. T. Furuta, When does the equality of a generalized Selberg inequality hold?, Nihonkai Math. J., 2
(1991), 25–29.

AIMS Mathematics Volume 10, Issue 9, 20294–20311.

https://dx.doi.org/https://doi.org/10.1007/978-3-642-64971-4
https://dx.doi.org/https://doi.org/10.1112/jlms/s1-43.1.93
https://dx.doi.org/https://doi.org/10.1007/BF01875849


20311

14. J. M. Steele, The Cauchy-Schwarz master class. An introduction to the art of mathematical
inequalities, AMS/MAA Problem Books Series, Mathematical Association of America,
Washington, DC, Cambridge University Press, Cambridge, 2004.

15. N. Altwaijry, C. Conde, S. S. Dragomir, K. Feki, Some refinements of Selberg inequality and
related results, Symmetry, 15 (2023). https://doi.org/10.3390/sym15081486

16. A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, CRC Press, Boca Raton, FL,
1998.

17. N. Altwaijry, C. Conde, S. S. Dragomir, K. Feki, Inequalities for linear combinations
of orthogonal projections and applications, J. Pseudo-Differ. Oper. Appl., 15 (2024).
https://doi.org/10.1007/s11868-024-00640-z

18. M. Guesba, M. T. Garayev, Estimates for the Berezin number inequalities, J. Pseudo-Differ. Oper.
Appl., 15 (2024), 43, https://doi.org/10.1007/s11868-024-00612-3 .

19. S. S. Dragomir, Buzano’s inequality holds for any projection, Bull. Aust. Math. Soc., 93 (2016),
504–510. https://doi.org/10.1017/S0004972715001525

20. M. Fujii, F. Kubo, Buzano’s inequality and bounds for roots of algebraic equations, Proc. Amer.
Math. Soc., 117 (1993), 359–361. https://doi.org/10.2307/2159168

21. T. Bottazzi, C. Conde, Generalized Buzano inequality, Filomat, 37 (2023), 9377–9390.
https://doi.org/10.2298/FIL2327377B

22. A. Zamani, A geometric approach to inequalities for the Hilbert-Schmidt norm, Filomat, 37 (2023),
10435–10444. https://doi.org/10.2298/FIL2330435Z

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 9, 20294–20311.

https://dx.doi.org/https://doi.org/10.3390/sym15081486
https://dx.doi.org/https://doi.org/10.1007/s11868-024-00640-z
https://dx.doi.org/https://doi.org/10.1007/s11868-024-00612-3
https://dx.doi.org/https://doi.org/10.1017/S0004972715001525
https://dx.doi.org/https://doi.org/10.2307/2159168
https://dx.doi.org/https://doi.org/10.2298/FIL2327377B
https://dx.doi.org/https://doi.org/10.2298/FIL2330435Z
https://creativecommons.org/licenses/by/4.0

	Introduction
	Some preliminaries
	Main results
	Conclusions

