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1. Introduction

Examining traveling wave solutions for nonlinear partial differential equations (NLPDEs) is
essential for comprehending the inner workings of complicated processes. Over the past few decades,
significant advancements have been made in the fields of electromagnetism, mechanics of liquids,
complex physics, atomic materials, electrical engineering, and optical fibers, among others, and
numerous effective and proficient techniques for obtaining analytical traveling wave solutions have
been discovered in the literature [1–3]. A few recent studies have made substantial contributions
towards nonlinear wave dynamics theory employing analytical methods. Ali et al. [4] examined the
solitary wave solutions of the reduced modified Camassa–Holm (MCH) and combined KdV–mKdV
equations, extending the theory of integrable systems. Ahmed et al. conducted research on a fourth-
order (2+1)-dimensional nonlinear Schrödinger equation with a modified extended direct algebraic
method that generated a variety of optical soliton solutions [5]. In the meantime, Wang et al.
investigated the soliton fission and fusion phenomena in a high-order coupled nonlinear Schrödinger
model for the purpose of modeling pulse dynamics in fiber lasers [6]. As a consequence, a number of
mathematicians and physicists attempted to devise different techniques to find solutions to these kinds
of equations. Soliton theory is important for many nonlinear models when it comes to explaining many
intricate events in the field of NLPDEs. Soliton dynamics in various models have been researched by
many scientists [7,8]. Recent investigations have extensively reported the physics of optical solitons in
various nonlinear media and fiber geometries. One-soliton solution propagation in multimode optical
fibers, taking the impact of higher-order terms to simulate actual transmission conditions, has been
investigated by Zhou et al. [9]. Authors in [10] have investigated the dynamics of solitons in magneto-
optic waveguides under Kudryashov’s law using a modified extended mapping technique to take into
account a coupled generalized NLS system. Khalifa et al. [11] studied solitons of twin-core optical
couplers under Kerr nonlinearity using the modified extended direct algebraic method to yield a family
of exact solutions. In [12], they retrieved soliton solutions of fiber Bragg gratings for arbitrarily
high-order coupled systems with arbitrary refractive index profiles, highlighting control of soliton
dynamics in complex media. Earlier, Zhou et al. discussed optical solitons in parabolic law nonlinear
birefringent fibers and presented observations on the effects of polarization along with non-Kerr-type
nonlinearities [13].

Recent research has explored various aspects of nonlinear wave dynamics, focusing particularly on
rogue waves and soliton structures in extended (2+1)-dimensional frameworks, including models like
the modified Korteweg–de Vries–Calogero–Bogoyavlenskii–Schiff equation [14]. Ahmad et al. [15]
explored soliton and lump solutions of the M-truncated stochastic Biswas–Arshed model of interest
to optical communications systems, providing insight into the stochastic behavior of nonlinear waves
in optical fibers. Shakeel et al. [16] initially employed the modified exp-function method to obtain
analytical solutions of the strain wave equation, adding to the study of wave propagation in nonlinear
elastic media. Ma and Chen [17] employed a direct search method to obtain accurate analytical
solutions of the nonlinear Schrödinger equation and provided new insights into soliton dynamics
through the use of symbolic computation techniques. In another paper, Ma and Lee [18] suggested
an approach involving a transformed rational function for obtaining exact solutions of the (3+1)-
dimensional Jimbo–Miwa equation, which revealed the effectiveness of the method in solving higher-
dimensional nonlinear evolution equations.
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The concatenation model is an interesting theory that was initially proposed by Ankiewicz et
al. in 2014, around ten years ago, even though there are other ideas that explain how solitons
move across continents and seas using optical fiber [19, 20]. This model describes the dynamics of
soliton transmission at intercontinental distances and combines three well-known equations. These
are the Lakshmanan–Porsezian–Daniel (LPD) model, the Sasa–Satsuma equation (SSE), and the
nonlinear Schrödinger equation (NLSE). The phrase describes the sequence in which these three
models are combined.

The studied concatenation model has recently become even more significant and garnered a lot
of interest from a variety of viewpoints. The Laplace–Adomian decomposition approach [21] was
also used to numerically address the model. Painleve analysis and the trial equation technique were
also used [22–24]. All of these investigations were carried out on the model’s scalar form. The last
few years have seen major advancements in the research of NLPDEs of water wave models in [25]
using the Lie symmetry algorithm. The generalized (3+1) dimensional cubic quasi-linear Schrödinger
equation with certain spatial distribution parameters was solved mathematically precisely by Kumar
et al. [26] using space-time periodic traveling wave solutions. Bulut et al. [27] used the potent Sine-
Gordon expansion approach to look for solutions to several significant nonlinear mathematical models
that emerge in nonlinear sciences. The soliton solutions with dual-power law non-linearity and fourth-
order dispersion to the nonlinear Schrödinger equation were studied by Zayed et al. [28], and many
various investigations were done on different models [29–31].

1.1. Novelty and contribution of the present work

The novelty of this work lies in the application of conformable fractional derivative in birefringent
optical fibers so that wave propagation in nonlinear optical media can be modeled more extensively
and realistically. In contrast to other classical integer-order approaches, the conformable fractional
derivative preserves essential properties like linearity and the chain rule, which are particularly
beneficial for analytic solution methods. With the application of the IME tanh function approach
to this fractionalized model, we can retrieve a broad class of soliton solutions from bright, dark,
and singular waveforms, some of which previously went undocumented in the literature within the
case of birefringent fibers. This generalized solution paradigm not only advances the mathematical
theory, but also provides new tools for the optimization of signal stability and transmission in future
optical communications.

The following is the structure of our article: Section 1 delivers an introduction to the solitons and
NLPDEs theory. Section 2 provides an overview of the proposed model along with an explanation
of its theoretical background. Given in Section 3, these are the prominent features of the IME tanh
function algorithm. In addition, we give the mathematical background of the conformable fractional
derivative. To obtain these few classes of exact solutions, a comprehensive symbolic computation is
performed using the Wolfram Mathematica program, which summarizes all of the results in Section 4.
Section 5 uses both 2D and 3D simulations to graphically depict the dynamic wave patterns of several
distinct soliton solutions. Section 6 presents a comparison with some literature. Finally, Section 7
presents the conclusions of the work, and some future perspectives are presented in Section 8.
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2. Governing model and theoretical background

For polarization-preserving fibers, the concatenation model may be expressed as follows [32]:

iUt + aUxx + b |U|2U + c1

[
σ1 Uxxxx + σ2 (Ux)2U∗ + σ3 |Ux|

2U + σ4 |U|
2Uxx + σ5 U

2U∗xx

+σ6|U|
4U

]
+ i c2

[
σ7 Uxxx + σ8 |U|

2Ux + σ9 U
2U∗x

]
= 0.

(2.1)

Three well-researched fiber optic models, the NLSE, the LPD equation, and the SSE, are combined
to create the concatenation model, or Equation (2.1). It should be mentioned that we have the NLSE
when c1 = c2 = 0, the SSE when c1 = 0, and the LPD model when c2 = 0. Eq (2.1) is the outcome of
concatenating the three globally accepted models from nonlinear fiber optics.

In the case of birefringent fibers, Eq (2.1) could be split into the subsequent coupled system of
equations [32]:

i
∂αΦ

∂tα
+ a1Φxx +

(
b1|Φ|

2 + c1|Ψ|
2
)
Φ + c11

[
σ11Φxxxx +

(
A1Φ

2
x + B1Ψ

2
x

)
Φ∗ +

(
γ1 |Φx|

2 + λ1 |Ψx|
2
)
Φ

+
(
δ1|Φ|

2 + ζ1|Ψ|
2
)
Φxx +

(
µ1Φ

2 + ρ1Ψ
2
)
Φ∗xx +

(
f1|Φ|

4 + g1|Φ|
2|Ψ|2 + h1|Ψ|

4
)
Φ
]

+i c21

[
σ71Φxxx +

(
η1|Φ|

2 + θ1|Ψ|
2
)
Φx +

(
ε1Φ

2 + T1Ψ
2
)
Φ∗x

]
= 0,

(2.2)

i
∂αΨ

∂tα
+ a2Ψxx +

(
b2|Ψ|

2 + c2|Φ|
2
)
Ψ + c12

[
σ12Ψxxxx +

(
A2Ψ

2
x + B2Φ

2
x

)
Ψ∗ +

(
γ2 |Ψx|

2 + λ2 |Φx|
2
)
Ψ

+
(
δ2|Ψ|

2 + ζ2|Φ|
2
)
Ψxx +

(
µ2Ψ

2 + ρ2Φ
2
)
Ψ∗xx +

(
f2|Ψ|

4 + g2|Ψ|
2|Φ|2 + h2|Φ|

4
)
Ψ
]

+i c22

[
σ72Ψxxx +

(
η2|Ψ|

2 + θ2|Φ|
2
)
Ψx +

(
ε2Ψ

2 + T2Φ
2
)
Ψ∗x

]
= 0,

(2.3)

where
∂α

∂tα
is the conformable fractional derivative with order 0 < α ≤ 1, Φ(x, t) and Ψ(x, t)

denote the soliton wave profiles, a j ( j = 1, 2) represent the chromatic dispersion along the two
components, b j denote self-phase modulation, and c j represent the cross-phase modulation. On
the other hand, σ1 j accounts for the 4th-order dispersions along the two components. Then,
A j,B j, γ j, λ j, δ j, ζ j, µ j, ρ j, f j, g j, and h j are the respective split-ups of the coefficients σ2 to σ6 from the
LPD model described in Eq (2.1) along the two components for a birefringent fiber. Also, σ7 j ( j = 1, 2)
represent the coefficients of the 4th-order dispersion along the components, while in Eq (2.1) this
influence is denoted by σ7. Finally, the components of soliton self-frequency shift along the two
components of a birefringent fiber are specified as η j, θ j, ε j, and T j. These components replaced σ8

and σ9 in the SSE part of Eq (2.1).

2.1. Motivations about the suggested model

The aforementioned linked system explains how solitons move through birefringent fibers. The
three main equations that comprise it are the NLSE, the LPD model, and the SSE. Concatenating
these three models creates a more complete model that can explain how solitons behave in a variety of
scenarios. A key formula in nonlinear optics, the NLSE describes how light travels through a material
having a nonlinear refractive index. It is employed to simulate how solitons move across fiber optic
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communication networks. A modified version of the NLSE, the LPD model has extra terms to take
into consideration the effects of birefringence, the characteristic of a medium that splits light into two
polarized components.

Soliton behavior in birefringent fibers is investigated using this model. Soliton propagation in
dispersive media is described by the SSE, another crucial equation in soliton theory. This variant
of the NLSE is used to study the behavior of solitons in media with higher-order dispersion. A more
comprehensive and accurate description of the behavior of solitons in birefringent optical fibers is
provided by the concatenation model, which integrates all three equations into a single model. It has
several applications in fiber optic communication systems, which use solitons to transmit data across
long distances with little distortion.

This integrated model is designed to phenomenologically explain rich nonlinear dynamics in
birefringent fibers, particularly under conditions of ultrashort pulse propagation, high peak powers,
and strong birefringence effects. These conditions apply to experimentally applied femtosecond
laser systems, polarization-preserving photonic crystal fibers, or dispersion-managed birefringent
waveguides where higher-order dispersion, retarded nonlinear response, and birefringence-induced
polarization dynamics are involved.

Therefore, this hybrid is an experimentally feasible, physically meaningful model and can explain
experimentally observed phenomena such as polarization-dependent pulse splitting, soliton trapping,
and birefringent pulse compression or broadening in nonlinear dual-core or highly birefringent fibers.

It should be mentioned that the initial model was presented around ten years ago in [19, 20].
The precise shape of an optical fiber and the applications for which it would be appropriate are still
unknown. For the first time, the governing model (2.1) is separated and considered with differential
group delay in this study, assuming that it would be logical for erbium-doped fiber. Prior to any
laboratory testing, this model is put up as merely analytical. This model was studied before in [32],
but in its general form, in this paper, we will study it in its fractional form by applying the conformable
fractional derivative.

3. Some mathematical preliminaries

3.1. Mathematical background of the conformable fractional derivatives

Let v : [0,∞) → R exist. Consequently, the conformable fractional derivative for v with order α is
as follows [33]:

Dαv(t) = lim
S→0

v(t + S1−α) − v(t)
S

, (3.1)

where t > 0, 0 < α ≤ 1.
If v is α−differentiable in some interval (0, α), α > 0, and

lim
t→0+

Dαv(t)

exists, then it could be defined as
Dαv(0) = lim

t→0+
Dαv(t). (3.2)

The following practical theorem follows from the previous statement [34, 35].
Theorem 1. Assuming 0 < α ≤ 1 and that v and q are α−differentiable at t > 0, then:
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(1) Dα(mv + nq) = m(Dαv) + n(Dαq),∀m, n ∈ R.
(2) Dα(tg) = g tg−α,∀g ∈ R.
(3) Dα(γ) = 0 for every constant function, v(t) = γ.
(4) Dα(vq) = v(Dαq) + q(Dαv).

(5) Dα

(
v
q

)
=

q(Dαv) − v(Dαq)
q2 .

(6) If v is differentiable, then (Dαv)(t) = t1−αdv
dt

(t).

The conformable fractional derivative is employed due to its tractability, locality, and retention of
the conventional calculus rules (product rule, chain rule, and quotient rule), in contrast to Caputo
or Riemann–Liouville derivatives, which would complicate analytical solutions. Additionally, it
provides a simpler analytical treatment of nonlinear equations whereby the exact closed-form solutions,
inclusive of solitons, can be derived. While Caputo and Riemann–Liouville are properly defined, they
may be more involved (e.g., requiring initial conditions in integral form or having non-local memory
kernels), which could hamper physical interpretation for models of optical fibers. Therefore, in the
context of the proposed analytical approach, the conformable derivative is a reasonable compromise
between mathematical rigor and physical significance.

3.2. Preliminaries of the IME tanh function algorithm

The application of the IME tanh method to the present nonlinear coupled system is based on a
series of assumptions and approximations that make the model amenable analytically. The system is
first assumed to have traveling wave solutions, which will enable the use of a wave transformation to
reduce the original set of NLPDEs to a single nonlinear ordinary differential equation (NLODE). This
form change is based on the assumption that the wave possesses a coherent profile during propagation,
which is a typical feature of solitonic propagation in optical fiber. Besides, applying the IME tanh
method requires the nonlinear terms to be presentable as polynomial functions of the solution and its
derivatives, such that there must be a balance between the highest-order derivative and the nonlinear
terms, which is referred to as the homogeneous balance principle. This is an assumption that restricts
the admissible forms of nonlinearity to those that are compatible with the ansatz employed by the IME
tanh method.

The methodology further stipulates that the system is not chaotic or very disordered in its
dynamics in the solution regime, thereby enabling the exclusion of higher-order dispersive and
stochastic perturbations unless they are explicitly added (e.g., in conformable or fractional stochastic
frameworks). The fractional derivative, which is employed in some of the models, is used because it is
easy and chain-rule friendly, which is necessary to preserve analytical tractability when transforming
waves. These approximations collectively allow closed-form soliton solutions to be derived while
preserving the nonlinear and dispersive leading-order terms of the physical system of interest. For
partial differential equations solutions, the IME tanh function algorithm is a helpful tool. It can
handle complex boundary conditions, and offers accurate and efficient solutions for both linear and
nonlinear equations. It also provides easy-to-understand and easy-to-use solutions. It helps to explain
the underlying occurrences by offering a comprehensible physical explanation of the solutions.

This subsection outlines the key elements of the IME tanh function algorithm that will be used in
this investigation.
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Let us examine the subsequent NLPDE [36]:

P

(
Q,
∂αQ

∂tα
,Qx,Qxx,Qtt,Qxt, . . .

)
= 0, (3.3)

where P denotes a function in the argument Q(x, t) accompanied by its partial derivatives. The
following steps show the detailed algorithm.
I. Here, our goal is to change Eq (3.3), an NLPDE, into an NLODE. To do this, we use the next
transformation [17]:

Q(x, t) = V(ξ)ei(κx−`t), ξ = qx − ωt. (3.4)

The amplitude component of the solution is indicated by V(ξ) in this case, and the real constants
κ, `, q, and ω will be computed as tasks proceed.
We then construct the required NLODE by combining Eq (3.4) in Eq (3.3) as follows:

S(V, V′, V′′, V′′′, . . .) = 0, ′ =
d
dξ
. (3.5)

II. Based on the implemented algorithm, the general form of the solution for Eq (3.5) is as follows [18]:

V(ξ) =

M∑
j=0

A jW
j(ξ) +

M∑
j=1

B jW
− j(ξ). (3.6)

In this case, the parameters A j and B j ( j = 1, 2, ...,M) represent constants in the resulting solution
equation. This gives the necessary condition thatAM and BM cannot both be zero simultaneously.
III. To assess the positive integerM, the balancing principle is employed to Eq (3.5). And, the function
W(ξ) also satisfies the following constraint:

(
W′(ξ)

)2
=

(
dW
dξ

)2

= τ0 + τ1W(ξ) + τ2W
2(ξ) + τ3W

3(ξ) + τ4W
4(ξ), (3.7)

while τl (0 ≤ l ≤ 4) represent constant values that shall assist in identifying potential solution scenarios.
From the different possible values of τ0, τ1, τ2, τ3, and τ4, we obtain from (3.7) the various kinds of
fundamental solutions as follows:
Case 1. τ0 = τ1 = τ3 = 0,

W(ξ) =

√
−
τ2

τ4
sech(

√
τ2 ξ), τ2 > 0, τ4 < 0,

W(ξ) =

√
−
τ2

τ4
sec(
√
−τ2 ξ), τ2 < 0, τ4 > 0,

W(ξ) =
−1
√
τ4 ξ

, τ2 = 0, τ4 > 0.

Case 2. τ1 = τ3 = 0,

W(ξ) = ε

√
−
τ2

2τ4
tanh

(√
−
τ2

2
ξ

)
, τ2 < 0, τ4 > 0, τ0 =

τ2
2

4τ4
,
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W(ξ) = ε

√
τ2

2τ4
tan

(√
τ2

2
ξ

)
, τ2 > 0, τ4 > 0, τ0 =

τ2
2

4τ4
,

W(ξ) =

√
−τ2m2

τ4(2m2 − 1)
cn

(√
τ2

2m2 − 1
ξ

)
, τ2 > 0, τ4 < 0, τ0 =

τ2
2m2(1 − m2)
τ4(2m2 − 1)2 ,

W(ξ) =

√
−m2

τ4(2 − m2)
dn

(√
τ2

2 − m2 ξ

)
, τ2 > 0, τ4 < 0, τ0 =

τ2
2(1 − m2)

τ4(2 − m2)2 ,

W(ξ) = ε

√
−

τ2m2

τ4(1 + m2)
sn

(√
−

τ2

1 + m2 ξ

)
, τ2 < 0, τ4 > 0, τ0 =

τ2
2m2

τ4(m2 + 1)2 ,

where m is the modulus of the Jacobi elliptic functions.
Case 3. τ3 = τ4 = 0,

W(ξ) = −
τ1

2τ2
+ exp(ε

√
τ2 ξ), τ2 > 0, τ0 =

τ2
1

4τ2
,

W(ξ) = −
τ1

2τ2
+
ετ1

2τ2
sin(
√
−τ2 ξ), τ0 = 0, τ2 < 0,

W(ξ) = −
τ1

2τ2
+
ετ1

2τ2
sinh(2

√
τ2 ξ), τ0 = 0, τ2 > 0,

W(ξ) = ε

√
−
τ0

τ2
sin(
√
−τ2 ξ), τ1 = 0, τ0 > 0, τ2 < 0,

W(ξ) = ε

√
τ0

τ2
sinh(

√
τ2 ξ), τ1 = 0, τ0 > 0, τ2 > 0.

IV. Rendering Eq (3.5) with the solution that seems to be provided in Eqs (3.6) and (3.7) will generate
a polynomial in W(ξ). Mathematical software like Wolfram Mathematica or Maple programs may
be utilized to solve an algebraic system of nonlinear equations that arises when the coefficients of
Wk(ξ), (k = 0,±1,±2, ...), are set equal to zero. For Eq (3.3), there are thus several exact solutions that
we can obtain.

4. Structuring of optical solitons and various exact solutions

In this part, the IME tanh function algorithm is utilized to create some possible solutions for
Eqs (2.2) and (2.3). To achieve this, we assume that

Φ(x, t) = P1(ξ) ei
(
−K x+ω tα

α +θ0
)
, (4.1)

Ψ(x, t) = P2(ξ) ei
(
−K x+ω tα

α +θ0
)
, (4.2)

and

ξ = k

(
x −

tα

α
ν

)
, ν , 0. (4.3)
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where P1(ξ) and P2(ξ) denote the amplitude of the solution which are unique for each type of solution,
and K , ω, θ0, k, and ν represent some constants to be evaluated within the paper. Observe that
the use of the wave variable (ξ) here serves to highlight the impact of the fractional derivative on
wave propagation. Specifically, the occurrence of the tα term reflects the impact of a fractional time
derivative with 0 < α ≤ 1 modeling sub-diffusive behavior. This fractional exponent reduces the rate
of temporal evolution of the wave compared to the classical case (α = 1), which shows that the wave
speed properly reduces in fractional-order media. This has a physical implication that propagation is a
memory process where the response of the medium lags owing to the intrinsic non-locality introduced
by the fractional derivative. Thus, for α < 1, the wave experiences retardation in transmission behavior,
which conforms to anomalous diffusion phenomena often encountered in complex physical systems. It
is also known that the velocity is not constant for α < 0.
When Eqs (4.1)–(4.3) are substituted into Eqs (2.2) and (2.3), the real and imaginary components are
separated to produce the following:
Real parts

−
[
K3 (c21σ71 − c11Kσ11) + a1K

2 + ω
]
P1 +

[
b1 − c11K

2 (A1 − γ1 + δ1 + µ1) + c21K (η1 − ε1)
]
P3

1

+c11f1P
5
1 + c11g1P

2
2 P

3
1 + c11h1P

4
2 P1 +

[
c1 − K (c11K (B1 + ζ1 − λ1 + ρ1) + c21 (T1 − θ1))

]
P1P

2
2

+c11k
2 (A1 + γ1)P1

(
P′1

)2
+ c11k

2 (B1 + λ1)P1
(
P′2

)2
+ c11k

2
(
P2

1 (δ1 + µ1) + P2
2 (ζ1 + ρ1)

)
P′′1

+k2 [a1 + 3K (c21σ71 − 2c11Kσ11)]P′′1 + c11σ11k
4 P(4)

1 = 0,
(4.4)

−
[
K3 (c22σ72 − c12Kσ12) + a2K

2 + ω
]
P2 +

[
b2 − c12K

2 (A2 − γ2 + δ2 + µ2) + c22K (η2 − ε2)
]
P3

2

+c12f2P
5
2 + c12g2P

2
1 P

3
2 + c12h2P

4
1 P2 +

[
c2 − K (c12K (B2 + ζ2 − λ2 + ρ2) + c22 (T2 − θ2))

]
P2P

2
1

+c12k
2 (A2 + γ2)P2

(
P′2

)2
+ c12k

2 (B2 + λ2)P2
(
P′1

)2
+ c12k

2
(
P2

2 (δ2 + µ2) + P2
1 (ζ2 + ρ2)

)
P′′2

+k2 [a2 + 3K (c22σ72 − 2c12Kσ12)]P′′2 + c12σ12k
4 P(4)

2 = 0,
(4.5)

while the imaginary parts reduce to

−
[
ν −

(
K2 (4c11Kσ11 − 3c21σ71)

)
+ 2a1K

]
P′1 +

[
c21 (ε1 + η1) − 2c11K (A1 + δ1 − µ1)

]
P2

1 P
′
1

+
[
c21 (θ1 + T1) − 2c11K (ζ1 − ρ1)

]
P2

2 P
′
1 − 2B1c11K P1P2 P

′
2 + k2 (c21σ71 − 4c11Kσ11)P(3)

1 = 0,
(4.6)

−
[
ν −

(
K2 (4c12Kσ12 − 3c22σ72)

)
+ 2a2K

]
P′2 +

[
c22 (ε2 + η2) − 2c12K (A2 + δ2 − µ2)

]
P2

2 P
′
2

+
[
c22 (θ2 + T2) − 2c12K (ζ2 − ρ2)

]
P2

1 P
′
2 − 2B2c12K P2P1 P

′
1 + k2 (c22σ72 − 4c12Kσ12)P(3)

2 = 0.
(4.7)

With the following limitations, we can get the exact solution for j = 1, 2:

c2 j

(
ε j + η j

)
= 2Kc1 j

(
A j + δ j − µ j

)
, (4.8)

c2 j

(
θ j + T j

)
= 2Kc1 j

(
ζ j − ρ j

)
, (4.9)

B j = 0, (4.10)

c2 jσ7 j = 4Kc1 jσ1 j, (4.11)
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from which one can retrieve the speed as

ν = −2K
(
a j +Kc2 jσ7 j

)
. (4.12)

Set
P2 = ς P1, ς , 0, 1. (4.13)

Thus, Eqs (4.4) and (4.5) will be as follows:[
c11K

4σ11 − c21K
3σ71 − a1K

2 − ω
]
P1 +

[
b1 + c1ς

2 − K
(
− c21θ1ς

2 +A1c11K + c11K
(
− γ1 + δ1

+ς2(ζ1 − λ1 + ρ1
)

+ µ1
)

+ c21

(
ε1 − η1 + T1ς

2
) )]
P3

1 + c11

(
f1 + g1ς

2 + h1ς
4
)
P5

1 + c11k
2
(
A1 + γ1

+λ1ς
2
)
P1

(
P′1

)2
+ c11k

2
(
δ1 + ς2 (ζ1 + ρ1) + µ1

)
P2

1 P
′′
1 + k2 [a1 + 3K (c21σ71 − 2c11Kσ11)]P′′1

+c11k
4σ11P

(4)
1 = 0,

(4.14)

ς
(
c12K

4σ12 − c22K
3σ72 − a2K

2 − ω
)
P1 + ς

[
b2ς

2 + c2 − K
[
c22

(
ς2 (ε2 − η2) − θ2

)
+A2c12Kς

2

+c12K
[
ς2 (−γ2 + δ2 + µ2) + ζ2 − λ2 + ρ2

]
+ c22T2

]]
P3

1 + c12ς
(
f2ς

4 + g2ς
2 + h2

)
P5

1

+c12k
2ς

(
ς2 (A2 + γ2) + λ2

)
P1

(
P′1

)2
+ c12k

2ς
(
ς2 (δ2 + µ2) + ζ2 + ρ2

)
P2

1 P
′′
1 + k2ς

(
a2

+3K
(
c22σ72 − 2c12Kσ12

))
P′′1 + c12k

4σ12ςP
(4)
1 = 0.

(4.15)

Following that, the coefficients of Eqs (4.14) and (4.15) may be found to be comparable using the
following constraints:

c11σ11 = ς c12σ12, (4.16)

a1 + 3K (c21σ71 − 2c11Kσ11) = ς (a2 + 3K (c22σ72 − 2c12Kσ12)) , (4.17)

c11

(
δ1 + ς2 (ζ1 + ρ1) + µ1

)
= c12ς

(
ς2 (δ2 + µ2) + ζ2 + ρ2

)
, (4.18)

c11 (A1 + γ1) + c11λ1ς
2 = ς

(
c12ς

2 (A2 + γ2) + c12λ2

)
, (4.19)

−
(
K2 (a1 +K (c21σ71 − c11Kσ11))

)
− ω = ς

(
−

(
K2 (a2 +K (c22σ72 − c12Kσ12))

)
− ω

)
, (4.20)

b1 − K (c21 (ε1 − η1) + c11K (A1 − γ1 + δ1 + µ1)) + ς2 (c1 − K (c11K (ζ1 − λ1 + ρ1) + c21 (T1 − θ1)))

= ς
(
c2 + ς2 (b2 − K (c22 (ε2 − η2) + c12K (A2 − γ2 + δ2 + µ2))) − K (c12K (ζ2 − λ2 + ρ2) + c22 (T2 − θ2))

)
,

(4.21)

and
c11f1 + c11g1ς

2 + c11h1ς
4 = ς

(
c12f2ς

4 + c12g2ς
2 + c12h2

)
. (4.22)

Therefore, we will deal only with Eq (4.14), which will take the following form:

c11k
4σ11P

(4)
1 +L0P

′′
1 +L1P

2
1 P
′′
1 +L2P1

(
P′1

)2
+L3P1 +L4P

3
1 +L5P

5
1 = 0. (4.23)

The symbols Li and (i = 0, 1, 2, 3, 4, 5) are some constants that are included for notational ease of use:

L0 = k2 (a1 + 3K (c21σ71 − 2c11Kσ11)) ,

L1 = c11k
2
(
δ1 + ς2 (ζ1 + ρ1) + µ1

)
,

L2 = c11k
2 (A1 + γ1) + c11λ1k

2ς2,

L3 = −
(
K2 (a1 +K (c21σ71 − c11Kσ11))

)
− ω,

L4 = b1 − K (c21 (ε1 − η1) + c11K (A1 − γ1 + δ1 + µ1))

+ ς2 (c1 − K (c11K (ζ1 − λ1 + ρ1) + c21 (T1 − θ1))) ,

L5 = c11f1 + c11g1ς
2 + c11h1ς

4.

(4.24)
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Therefore, using the balance principle described in subsection 3.2 between P(4)
1 and P5

1, one can
construct the exact solution of Eq (4.23) as

P1(ξ) = A0 +A1W(ξ) +
B1

W(ξ)
, (4.25)

where Ai (i = 0, 1) and B1 are constants, which can be calculated under the restrictions A1 , 0 or
B1 , 0.
If the solution form in Eq (4.25) is substituted with the limitation in Eq (3.7) in Eq (4.23), then there
exists a polynomial in W(ξ). Upon adding all terms with identical powers until they reach zero, an
algebraic system of nonlinear equations is created:

0 = 2τ0L1B
3
1 + τ0L2B

3
1 +L5B

5
1 + 24c11k

4σ11τ
2
0B1,

0 = 4τ0L1A0B
2
1 + τ0L2A0B

2
1 + 5L5A0B

4
1 +

3
2
τ1L1B

3
1 + τ1L2B

3
1 + 30c11k

4σ11τ0τ1B1,

0 = 4τ0L1A1B
2
1 − τ0L2A1B

2
1 + 2τ0L1A

2
0B1 + 3τ1L1A0B

2
1 + τ1L2A0B

2
1 + 5L5A1B

4
1 + 10L5A

2
0B

3
1 + 2τ0L0B1

+ τ2L1B
3
1 + τ2L2B

3
1 +L4B

3
1 +

15
2

c11k
4σ11τ

2
1B1 + 20c11k

4σ11τ0τ2B1,

0 = 4τ0L1A0A1B1 − 2τ0L2A0A1B1 +
7
2
τ1L1A1B

2
1 − τ1L2A1B

2
1 +

3
2
τ1L1A

2
0B1 + 2τ2L1A0B

2
1 + τ2L2A0B

2
1

+ 20L5A0A1B
3
1 + 10L5A

3
0B

2
1 + 3L4A0B

2
1 +

3
2
τ1L0B1 +

1
2
τ3L1B

3
1 + τ3L2B

3
1 +

15
2

c11k
4σ11τ1τ2B1

+ 15c11k
4σ11τ0τ3B1,

0 = 2τ0L1A
2
1B1 − τ0L2A

2
1B1 + 4τ1L1A0A1B1 − 2τ1L2A0A1B1 + 3τ2L1A1B

2
1 − τ2L2A1B

2
1 + τ2L1A

2
0B1

+ τ3L1A0B
2
1 + τ3L2A0B

2
1 + 10L5A

2
1B

3
1 + 30L5A

2
0A1B

2
1 + 3L4A1B

2
1 + 5L5A

4
0B1 + 3L4A

2
0B1 + τ2L0B1

+ τ4L2B
3
1 +L3B1 + c11k

4σ11τ
2
2B1 +

9
2

c11k
4σ11τ1τ3B1 + 12c11k

4σ11τ0τ4B1,

0 =
1
2
τ1L1A1A

2
0 + τ0L2A

2
1A0 +

1
2
τ1L0A1 +

1
2
τ3L1A

2
0B1 + 4τ2L1A1A0B1 − 2τ2L2A1A0B1 + τ4L2A0B

2
1

+
5
2
τ1L1A

2
1B1 − τ1L2A

2
1B1 +

5
2
τ3L1A1B

2
1 − τ3L2A1B

2
1 + 20L5A1A

3
0B1 + 30L5A

2
1A0B

2
1 + 6L4A1A0B1

+L5A
5
0 +L4A

3
0 +L3A0 +

1
2
τ3L0B1 +

1
2

c11k
4σ11τ1τ2A1 + 3c11k

4σ11τ0τ3A1 +
1
2

c11k
4σ11τ2τ3B1

+ 3c11k
4σ11τ1τ4B1,

0 = τ0L2A
3
1 + τ1L1A0A

2
1 + τ1L2A0A

2
1 + τ2L1A

2
0A1 + τ2L0A1 + 3τ2L1A

2
1B1 − τ2L2A

2
1B1 + 4τ3L1A0A1B1

− 2τ3L2A0A1B1 + 2τ4L1A1B
2
1 − τ4L2A1B

2
1 + 10L5A

3
1B

2
1 + 30L5A

2
0A

2
1B1 + 3L4A

2
1B1 + 5L5A

4
0A1

+ 3L4A
2
0A1 +L3A1 + c11k

4σ11τ
2
2A1 +

9
2

c11k
4σ11τ1τ3A1 + 12c11k

4σ11τ0τ4A1,

0 =
1
2
τ1L1A

3
1 + τ1L2A

3
1 + 2τ2L1A0A

2
1 + τ2L2A0A

2
1 +

3
2
τ3L1A

2
0A1 +

3
2
τ3L0A1 +

7
2
τ3L1A

2
1B1 − τ3L2A

2
1B1

+ 4τ4L1A0A1B1 − 2τ4L2A0A1B1 + 20L5A0A
3
1B1 + 10L5A

3
0A

2
1 + 3L4A0A

2
1 +

15
2

c11k
4σ11τ2τ3A1

+ 15c11k
4σ11τ1τ4A1,

0 = τ2L1A
3
1 + τ2L2A

3
1 + 3τ3L1A0A

2
1 + τ3L2A0A

2
1 + 2τ4L1A

2
0A1 + 2τ4L0A1 + 4τ4L1A

2
1B1 − τ4L2A

2
1B1

+ 5L5A
4
1B1 + 10L5A

2
0A

3
1 +L4A

3
1 +

15
2

c11k
4σ11τ

2
3A1 + 20c11k

4σ11τ2τ4A1,

0 =
3
2
τ3L1A

3
1 + τ3L2A

3
1 + 4τ4L1A0A

2
1 + τ4L2A0A

2
1 + 5L5A0A

4
1 + 30c11k

4σ11τ3τ4A1,

0 = 2τ4L1A
3
1 + τ4L2A

3
1 +L5A

5
1 + 24c11k

4σ11τ
2
4A1.

Solving the above equations with the aid of the Wolfram Mathematica program allows us to get the
following results, but satisfying the condition thatA1 and B1 cannot both be zero simultaneously.
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Result 1. If τ0 = τ1 = τ3 = 0, then we have

A0 = B1 = 0, A1 = ±

√
−
τ4Υ + τ4 (2L1 +L2)

2L5
, τ2 =

−L0 ±

√
L2

0 − 4c11k4σ11L3

2c11k4σ11
,

L4 =
(5τ4Υ + τ4 (2L1 + 7L2))

√
L2

0 − 4c11k4σ11L3 + 4L0 (τ4Υ + τ4 (L1 + 2L2))

24c11k4σ11τ4
,

where Υ =
√

(2L1 +L2)2
− 96c11k4σ11L5 providing that (2L1 +L2)2

≥ 96c11k
4σ11L5. Therefore, by

considering the acquired set, Eqs (2.2) and (2.3) have the following solutions:

1.1. If τ2 > 0, τ4 < 0:

Φ1.1(x, t) = ±

√
τ2 (2L1 +L2 + Υ)

2L5
sech

[
k

(
x −

tα

α
ν

)
√
τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.26)

Ψ1.1(x, t) = ±ς

√
τ2 (2L1 +L2 + Υ)

2L5
sech

[
k

(
x −

tα

α
ν

)
√
τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.27)

and these denote bright soliton solutions under the condition that L5 (2L1 +L2 + Υ) > 0.

1.2. If τ2 < 0, τ4 > 0:

Φ1.2(x, t) = ±

√
τ2 (2L1 +L2 + Υ)

2L5
sec

[
k

(
x −

tα

α
ν

)
√
−τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.28)

Ψ1.2(x, t) = ±ς

√
τ2 (2L1 +L2 + Υ)

2L5
sec

[
k

(
x −

tα

α
ν

)
√
−τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.29)

and these describe singular periodic solutions when satisfying the constraint
L5 (2L1 +L2 + Υ) < 0.

1.3. If τ2 = 0, τ4 > 0:

Φ1.3(x, t) =

√
−

2L1+L2+Υ
2L5

k
(
x − tα

α
ν
) ei

(
−K x+ω tα

α +θ0
)
, (4.30)

Ψ1.3(x, t) = ς

√
−

2L1+L2+Υ
2L5

k
(
x − tα

α
ν
) ei

(
−K x+ω tα

α +θ0
)
, (4.31)

which denote rational solutions such that L5 (2L1 +L2 + Υ) < 0.
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Result 2. If τ1 = τ3 = B1 = 0, then

A0 = 0, A1 = ±

√
−
τ4 (2L1 +L2 + Υ)

2L5
, τ2 =

−L0 ±

√
2c11k4σ11(τ0(τ4(−24c11k4σ11L5+L2

2+2L1L2)+τ4L2Υ)−2L3L5)
L5

+L2
0

2c11k4σ11
,

L4 =

(5τ4Υ + τ4 (2L1 + 7L2))

√
L2

0 −
2c11k4σ11(τ0(τ4(−L2)Υ−τ4(−24c11k4σ11L5+L2

2+2L1L2))+2L3L5)
L5

+ 4L0 (τ4Υ + τ4 (L1 + 2L2))

24c11k4σ11τ4
,

where Υ =
√

(2L1 +L2)2
− 96c11k4σ11L5, providing that (2L1 +L2)2

≥ 96c11k
4σ11L5. Therefore,

when considering the acquired set of solutions, Eqs (2.2) and (2.3) have the following solutions:

2.1. If τ2 < 0, τ4 > 0, and τ0 =
τ2

2
4τ4

, then

Φ2.1(x, t) =
1
2

√
τ2 (2L1 +L2 + Υ)

L5
tanh

[
k

(
x − ν

tα

α

) √
−
τ2

2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.32)

Ψ2.1(x, t) =
ς

2

√
τ2 (2L1 +L2 + Υ)

L5
tanh

[
k

(
x − ν

tα

α

) √
−
τ2

2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.33)

and these are considered as dark soliton solutions such that L5 (2L1 +L2 + Υ) < 0.

2.2. If τ2 > 0, τ4 > 0, and τ0 =
τ2

2
4τ4

, then

Φ2.2(x, t) =
1
2

√
τ2 (2L1 +L2 + Υ)

L5
tan

[
k

(
x − ν

tα

α

) √
τ2

2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.34)

Ψ2.2(x, t) =
ς

2

√
τ2 (2L1 +L2 + Υ)

L5
tan

[
k

(
x − ν

tα

α

) √
τ2

2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.35)

and these are singular periodic solutions such that L5 (2L1 +L2 + Υ) > 0.

2.3. If τ2 > 0, τ4 < 0, τ0 =
m2(1−m2)τ2

2

(2m2−1)2
τ4

, and 0 < m ≤ 1, Jacobi elliptic function (JEF) solutions are

given provided that m ,
1
√

2
and L5 (L2Υ + 2L1) > 0:

Φ2.3(x, t) = ±m

√
−
τ2 (L2Υ + 2L1)
2
(
1 − 2m2)L5

cn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
, (4.36)

Ψ2.3(x, t) = ±m ς

√
−
τ2 (L2Υ + 2L1)
2
(
1 − 2m2)L5

cn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
. (4.37)

2.4. If τ2 > 0, τ4 < 0, τ0 =
(1−m2)τ2

2

(2−m2)2
τ4
, L5 (2L1 +L2 + Υ) > 0, and 0 < m ≤ 1, JEF solutions are

constructed as

Φ2.4(x, t) = ±m

√
2L1 +L2 + Υ

2
(
2 − m2)L5

dn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
, (4.38)
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Ψ2.4(x, t) = ±m ς

√
2L1 +L2 + Υ

2
(
2 − m2)L5

dn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
, (4.39)

and when setting m = 1, bright soliton solutions can be given as

Φ2.5(x, t) = ±

√
2L1 +L2 + Υ

2L5
sech

[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
, (4.40)

Ψ2.5(x, t) = ±ς

√
2L1 +L2 + Υ

2L5
sech

[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
. (4.41)

2.5. If τ2 < 0, τ4 > 0, τ0 =
m2τ2

2

(1+m2)2
τ4
, L5 (2L1 +L2 + Υ) < 0, and 0 < m ≤ 1, JEF solutions are

given as

Φ2.6(x, t) = m

√
τ2 (2L1 +L2 + Υ)

2
(
m2 + 1

)
L5

sn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
, (4.42)

Ψ2.6(x, t) = m ς

√
τ2 (2L1 +L2 + Υ)

2
(
m2 + 1

)
L5

sn
[
k

(
x − ν

tα

α

)]
ei

(
−K x+ω tα

α +θ0
)
. (4.43)

Result 3. If τ3 = τ4 = 0, and Υ =
√

(2L1 +L2)2
− 96c11k4σ11L5 such that (2L1 +L2)2

≥

96c11k
4σ11L5, then, in this case, we find:

3.1. A1 = 0, A0 = ±
1
2

√
−
τ2 (2L1 +L2 + Υ)

2L5
, B1 = ±

τ1

2

√
−

2L1 +L2 + Υ

2τ2L5
, τ0 =

τ2
1

4τ2
,

L0 =
τ2

(
−

(
−32c11k

4σ11L5 +L2
2 + 2L1L2

))
± τ2L2Υ

16L5
+

2L3

τ2
,

L4 =
Υ

(
3c11k

4σ11τ
2
2 − 2L3

)
+ 2L1

(
3c11k

4σ11τ
2
2 + 2L3

)
+L2

(
3c11k

4σ11τ
2
2 + 2L3

)
24c11k4σ11τ2

.

3.2. A0 = A1 = τ1 = 0, B1 = ±

√
−
τ0 (2L1 +L2 + Υ)

2L5
, L0 = −

c11k
4σ11τ

2
2 +L3

τ2
,

L4 =
Υ

(
L3 − 9c11k

4σ11τ
2
2

)
− 2L1

(
3c11k

4σ11τ
2
2 +L3

)
− L2

(
15c11k

4σ11τ
2
2 +L3

)
24c11k4σ11τ2

.

From the set (3.1), we may build the next exponential solutions as follows:

Φ3.1(x, t) = ±
1
2


√

2τ1τ2

√
−

2L1+L2+Υ
τ2L5

2τ2ek
√
τ2(x− νt

α

α ) − τ1

+

√
−
τ2 (2L1 +L2 + Υ)

2L5

 ei
(
−K x+ω tα

α +θ0
)
, (4.44)

Ψ3.1(x, t) = ±
ς

2


√

2τ1τ2

√
−

2L1+L2+Υ
τ2L5

2τ2ek
√
τ2(x− νt

α

α ) − τ1

+

√
−
τ2 (2L1 +L2 + Υ)

2L5

 ei
(
−K x+ω tα

α +θ0
)
, (4.45)
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provided that τ2 > 0,L5 (2L1 +L2 + Υ) < 0, and 2τ2ek
√
τ2

(
x− νt

α

α

)
− τ1 , 0.

From the set (3.2), we can construct the following solutions such that L5 (2L1 +L2 + Υ) < 0:

3.2.1. If τ0 > 0 and τ2 < 0, singular periodic solutions are obtained:

Φ3.2,1(x, t) = ±

√
τ2 (2L1 +L2 + Υ)

2L5
csc

[
k

(
x − ν

tα

α

)
√
−τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.46)

Ψ3.2,1(x, t) = ±ς

√
τ2 (2L1 +L2 + Υ)

2L5
csc

[
k

(
x − ν

tα

α

)
√
−τ2

]
ei

(
−K x+ω tα

α +θ0
)
. (4.47)

3.2.2. If τ0 > 0 and τ2 > 0, singular soliton solutions are found:

Φ3.2,2(x, t) = ±

√
−
τ2 (2L1 +L2 + Υ)

2L5
csch

[
k

(
x − ν

tα

α

)
√
τ2

]
ei

(
−K x+ω tα

α +θ0
)
, (4.48)

Ψ3.2,2(x, t) = ±ς

√
−
τ2 (2L1 +L2 + Υ)

2L5
csch

[
k

(
x − ν

tα

α

)
√
τ2

]
ei

(
−K x+ω tα

α +θ0
)
. (4.49)

5. Conformable fractional derivative influence on the extracted solutions

By altering the model’s parameter values, several categories of solutions for Eqs (2.2) and (2.3)
might be extracted. Consequently, this technique has yielded a set of remarkable results that, to the best
of our knowledge, have not been previously reported or achieved in the existing literature. The two-
and three-dimensional simulation generated sketches of a number of specific solutions that demonstrate
the physical characteristics of the retrieved solutions (see Table 1). These graphical simulations will
show how robust the higher solutions are against perturbations, and they are made using the Wolfram
Mathematica software.

Figure 1 shows the 3D plots of Eq (4.26) by using different conformable fractional derivative
parameters aligned with the collective 2D plots for all cases. These bright solitons are linked to
localized wave packets that maintain their shape and energy for long distances, commonly occurring
in optical fibers and plasma channels. In addition, Figure 2 displays the same plots but for Eq (4.27)
using the same values in Figure 1.

Figure 3 displays the 3D plots of Eq (4.30) by using different fractional order α aligned with
the collective 2D plots for all cases. In addition, Figure 4 displays the same plots but for Eq (4.31)
using the same values in Figure 3. These rational solutions, typically expressed in the form of ratios
of polynomials, have been found to be related to rogue wave or wave amplification phenomena in
nonlinear media. They are spatially and temporally localized and often used to model extreme wave
phenomena in optical fibers, deep ocean waves, and plasma systems. Their analytical character allows
the modeling of high-amplitude transient behavior far from normal wave behavior, which gives insights
into wave focusing and instabilities in complicated systems.

In Figure 5, we showed the 3D plots of Eq (4.32) by using different fractional-order α aligned with
the collective 2D plots for all cases. These dark solitons are localized depressions of a long-lived wave
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background, of interest in signal void description in nonlinear optics and Bose-Einstein condensates.
In addition, Figure 6 displays the same plots but for Eq (4.33) using the same values in Figure 5.

Figures 7 and 8 display the solution of Eqs (4.34) and (4.35), respectively. The singular soliton
solutions in Eqs (4.46) and (4.47) are represented in Figures 9 and 10. Singular solitons and singular
periodic solutions commonly indicate wave localization or blow-up behavior and represent important
transitions in highly nonlinear regimes. The plots in Figure 11, clearly show the effect of the fractional-
order parameter α on the displacement x(t) and the velocity v(t) of the wave packet or pulse with respect
to time. In the left plot, the trajectories of the position with respect to time for different α values show
that the pulse is not travelling in a straight line; rather, its movement slows or accelerates depending
on the fractional order. Particularly for smaller α (α = 0.4), the displacement curve starts rapidly
but slows down in the latter half, while larger α values (α = 0.9) are associated with faster, almost
linear propagation.

In the right plot, the profiles of velocity demonstrate that there’s an initial drastic reduction,
especially in the case of small α, indicating that fractional derivatives produce memory effects that
delay the system after a burst. The velocity stabilizes sooner as α increases. All these results confirm
that fractional-order time derivatives cause non-local temporal behavior that alters both speed and path
of the pulse compared to classical models.

Table 1. Summary of the values of all plots.

Figure number Type of the solution Parameters’ values x−domain
Figures 1 and 2 bright soliton K = 0.6, a1 = 0.7, c21 = 0.5, k = 0.5, c11 =

0.65, δ1 = 0.9, µ1 = 0.8, ς = 1.5, ζ1 = 0.65, ρ1 =

0.8, A1 = 0.85, γ1 = 1.5, B1 = 0.85, λ1 = 0.9, σ11 =

0.6, σ71 = 0.8, ω = 0.5, θ0 = 0.8, f1 = 0.5, g1 =

0.6, h1 = 0.5

−15 ≤ x ≤ 15

Figures 3 and 4 rational K = 0.5, a1 = 0.8, c21 = 0.6, k = 0.7, c11 =

0.75, δ1 = 0.8, µ1 = 0.9, ς = 2, ζ1 = 0.6, ρ1 =

0.9, A1 = 1.5, γ1 = 1.3, B1 = 1.8, λ1 = 1.9, σ11 =

0.7, σ71 = 0.8, ω = 0.75, θ0 = 0.85, f1 = −1.55, g1 =

0.65, h1 = −0.75

−15 ≤ x ≤ 15

Figures 5 and 6 dark soliton K = 0.7, a1 = 0.8, c21 = 0.6, k = 0.7, c11 =

−0.5, δ1 = 0.8, µ1 = 0.85, ς = 2.5, ζ1 = 0.6, ρ1 =

0.7, A1 = 0.8, γ1 = 1.4, B1 = 0.95, λ1 = 0.8, σ11 =

−0.4, σ71 = 0.85, ω = 0.6, θ0 = 0.9, f1 = 0.6, g1 =

0.5, h1 = 0.6, τ0 = 0.7, τ4 = 0.6

−15 ≤ x ≤ 15

Figures 7 and 8 singular periodic K = 0.6, a1 = 0.9, c21 = 0.75, k = 0.8, c11 =

0.6, δ1 = 0.9, µ1 = 0.95, ς = 2, ζ1 = 0.7, ρ1 =

0.75, A1 = 0.85, γ1 = 1.5, B1 = 0.85, λ1 = 0.7, σ11 =

−0.6, σ71 = 0.95, ω = 0.7, θ0 = 0.8, f1 = 0.7, g1 =

0.6, h1 = 0.8, τ0 = 0.7, τ4 = 0.6

−5 ≤ x ≤ 5

Figures 9 and 10 singular soliton K = 0.9, a1 = 0.6, c21 = 0.9, k = −0.6, c11 =

−0.5, δ1 = 0.8, µ1 = 0.9, ς = 2, ζ1 = 0.65, ρ1 =

0.8, A1 = 0.85, γ1 = 1.5, B1 = 0.95, λ1 = 1, σ11 =

−0.7, σ71 = 0.85, ω = 0.7, θ0 = 0.9, f1 = 0.7, g1 =

0.8, h1 = 1.9, τ2 = 0.8

−15 ≤ x ≤ 15

Figures 11 position and velocity
profiles

α1 = 0.4, α2 = 0.7, α3 = 0.9, K = −0.5, a1 =

0.8, c21 = 0.7, σ71 = 0.85
− − −
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Figure 1. Graphical depictions of the bright soliton solution of Eq (4.26).

(a) (b)

(c)

α = 0.4

α = 0.7

α = 1

-10 -5 0 5 10 x

0.5

1.0

1.5

2.0

Ψ1.1(x,1)|

(d)

Figure 2. Graphical depictions of the bright soliton solution of Eq (4.27).
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Figure 3. Graphical depictions of the rational solution of Eq (4.30).
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Figure 4. Graphical depictions of the rational solution of Eq (4.31).
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Figure 5. Graphical depictions of the dark soliton solution of Eq (4.32).
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Figure 6. Graphical depictions of the dark soliton solution of Eq (4.33).
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Figure 7. Graphical depictions of the singular periodic solution of Eq (4.34).
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Figure 8. Graphical depictions of the singular periodic solution of Eq (4.35).
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Figure 9. Graphical depictions of the singular soliton solution of Eq (4.46).
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Figure 10. Graphical depictions of the singular soliton solution of Eq (4.47).
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Figure 11. Graphical depictions of the influence of fractional derivative parameter on
position and velocity profiles.

6. Comparison with literature

While previous efforts, such as [37], considered the concatenation model in birefringent fibers
using classical methods like the enhanced Kudryashov method and unveiled diverse solution families
like kink-type, rational, and shock structures, the current work extends this framework by invoking
conformable fractional derivatives. In contrast to integer-order models, the inclusion of the fractional-
order operator provides hereditary and memory effects in optical fiber media necessary for pulse
evolution modeling in nonlinear dispersive media with complex response properties. The conformable
derivative is of specific interest due to its compatibility with conventional chain rules and simpler
numerical implementation compared to Riemann–Liouville or Caputo versions. This extension allows
for more intricate wave structures and parameter sensitivity, a more flexible framework with which
to model temporal dispersion and nonlocality in birefringent optical fibers, the latter of which is
important in modern photonic communication systems. A comparison, side by side, of our fractional-
based solutions and those obtained by Ekici and Sarmaşık [37] highlights new dynamical behaviors,
especially under variation of the fractional order, that are evasive to classical models. Also, the
model discussed in [38] only applied the stochastic perturbation of some analytical solutions for the
concatenation model with spatio-temporal dispersion having multiplicative white noise.

7. Conclusions

The concatenation-type governing equation of optical solitons in a birefringent fiber, including
conformable fractional derivatives, was studied in this paper. To create the model, three conventional
equations are concatenated. They are the LPD model, the SSE, and the most well-known NLSE. Using
the principle of the IME tanh function algorithm, the research model was integrated. The model’s
bright, dark, and singular solitons were therefore recovered, together with the relevant constraint
conditions that arose organically during the soliton solution’s derivation. The technique used yields
a large number of solutions that are unique, such as JEFs, exponential, rational, and singular periodic
solutions. Our article has the greatest number of solutions when compared with what exists in
the literature.

Future research might focus on examining the stability and long-term characteristics of the
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discovered solitary wave solutions. Investigating parametric changes and their effects on the system
dynamics may reveal more intriguing events. Combining analytical and numerical approaches might
lead to a deeper understanding of this complex subject. In conclusion, this text’s results persuasively
demonstrate how effective and potent the IME tanh function technique mentioned above is at precisely
solving NLPDEs both now and in the future.
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