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Abstract: In this paper, we defined a novel edit distance for merge trees, which we argued to be
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works, we investigated its stability properties, which ended up being analogous to the ones of the
1-Wasserstein distance between persistence diagrams. We tested and compared our metric against
the interleaving distance in several simulations and case studies, highlighting the trade-off between
stability and sensitivity when choosing the appropriate metric for a given data analysis problem, much
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with other edit distances appearing in the literature, with both theoretic and practical considerations.
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1. Introduction

Topological data analysis (TDA) is a particular set of techniques within the field of applied topology
which aim at including topological information into data analysis pipelines. Topological information is
usually understood in terms of generators of homology groups [26] with coefficients in some field. With
persistent homology, these generators are extracted along a filtration of topological spaces to capture
the shape of the initial datum, typically a function or a point cloud, at “different resolutions” [19]. To
proceed with the analysis, this ordered family of vector spaces is then represented with a topological
summary. There are many different kinds of topological summaries such as persistence diagrams [18]
(PDs), persistence images [1], persistence silhouettes [12], and persistence landscapes [7]. Each of
these summaries live in a space with different properties and purposes: for instance, persistence
diagrams are highly interpretable and live in a metric space; persistence landscapes are embedded
in a linear space of functions, but the embedding is not closed under linear combinations; and
persistence images are instead obtained as vectors in Rn, making them suitable for many machine
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learning techniques.
Along with the aforementioned summaries, there are also tree-shaped objects called merge trees.

Merge trees arise naturally within the framework of TDA when dealing with zero dimensional
homology groups, as they capture the merging structure of path connected components along a filtration
of topological spaces. Originally, such objects stem out of Morse theory [31] as a topological summary
related to Reeb graphs [5,46] and are frequently used for data visualization purposes [56]. Analogously,
other different but related kinds of trees like hierarchical clustering dendrograms [32] or phylogenetic
trees [23] have also been used extensively in statistics and biology to infer information about a fixed
set of labels. When considered as unlabeled objects, however, both clustering dendrograms and
phylogenetic trees can be obtained as particular instances of merge trees. The uprising of TDA has
propelled works aiming at using merge trees and Reeb graphs as topological summaries in data analysis
contexts and, thus, developing metrics and frameworks to analyze populations of such objects.

Previous works on merge trees

The works that have been dealing with the specific topic of merge trees can be divided into two
groups: the first group is more focused on the definition of a suitable metric structure to compare
merge trees, and the second is more focused on the properties of merge trees and their relationships
with PDs [3,15,29]. The first group, in turns, splits into a) works dealing with the interleaving distance
between merge trees and other metrics with very strong theoretical properties [4, 8, 16, 21, 25, 49],
and b) works defining edit distances focused on computational efficiency [40, 47, 48, 53, 54] at
the cost of sacrificing stability properties and trying to mitigate the resulting problems with pre-
processing and other computational solutions. Among the aforementioned edit distances, only [53],
in its unconstrained formulation, which shares some similarities with our approach, satisfies some
stability properties, as we prove in this paper.

Main contributions

This paper introduces a novel edit distance for merge trees with the following key contributions:

1) We show that the stability properties of the metric are akin to the ones of the 1-Wasserstein
distance for persistence diagrams;

2) We compare our metric with the interleaving distance between merge trees through theoretical
analysis and empirical case studies, exploring the trade-off between stability and sensitivity in
topological data analysis. We also propose an analogy which compares such trade-off to the
bias-variance trade-off in statistical modeling.

As we have already mentioned, the metric we propose shares some similarities with the one
developed in [53]. More formally, consider f : X → R and g : X → R, and call, with a temporary
abuse of notation, DB( f , g) the distance between the merge trees associated to f and g, as defined
in [53]; similarly, call dE( f , g) the edit distance between the merge trees associated to f and g that we
define in this paper. In Proposition 7, we prove that:

| DB( f , g) − dE( f , g) |=| max f −max g | . (1.1)
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We point out that the metric in [53] and our metric, which has appeared also in earlier papers and
preprints (see, for instance, [10, 35]), have both been developed independently. On top of that, despite
these strong relationships, there are some very important differences between the two metrics, as we
detail in Appendix A.2. For instance, for any k ∈ R, DB( f , f + k) = 0, while dE( f , f + k) =| k |. In
particular, Theorem 3 does not hold for DB.

The main characteristics of our metric are the following:

• The metric we propose has stability properties analogous to the ones of 1-Wasserstein distance
between PDs. In particular, the 1-Wasserstein distance (W1) and the bottleneck distance between
PDs (dB) enjoy the following relationship for every pair of diagrams D,D′:

dB(D,D′) ≤ W1(D,D′) ≤ (dim(D) + dim(D′))dB(D,D′), (1.2)

with dim(Di) being the cardinality of the diagrams Di. Similarly, we prove that the edit distance
that we define (dE) and the interleaving distance between merge trees (dI) satisfy:

dI(T,T ′) ≤ dE(T,T ′) ≤ 2(size(T ) + size(T ′))dI(T,T ′), (1.3)

with size(Ti) being the number of edges of the merge tree Ti. We point out that the rightmost
inequality is obtained by [39], which investigates some statistical properties of the metric we
define here. The leftmost inequality, instead, is proven in Theorem 3. In Section 6, we argue that
Eqs (1.2) and (1.3) make W1 and dE better suited for general data analysis purposes, compared
to their universal counterparts, that is, dB and dI , framing such choice as some kind of bias-
variance trade-off. Section 7 supports these claims with examples and simulations. Table 2,
instead, highlights that almost no other edit distance for merge trees is stable. In Appendix A, we
give examples on how the metrics in [40,47,48,54] fail to be stable: only [53], which was already
shown to have some good behavior on some datasets [52], satisfies some stability properties,
which we prove with Proposition 7. Note that such inequality does not involve dI and, along the
same lines, DB doesn’t satisfy Eq (1.3). See Appendix A.2 and Figure 10 for more details.

• The metric we propose has computational complexity close to the one of the classical edit distance
between unlabeled trees [27]. Call DE such edit distance. Table 1 compares the computational
costs of DE and dE in terms of binary linear programming (BLP), showing that dE differs from
DE only by two log factors in the number of variables. Table 2 shows that none of the metrics
in [40,47,48,53,54] is cheaper than DE. However, for all those metrics, the authors have proposed
a polynomial time algorithm to compute an upper bound. These algorithms are obtained in similar
ways: [28, 45, 57] contain some upper bounds for DE, which can also be regarded as a metrics
on their own. Such “approximated” edit distances have polynomial time complexity. The authors
of [40,47,48,53,54] frame their metrics as edit distances and then resort to these variations/upper
bounds to obtain feasible algorithms. We highlight that, via Eq (1.1), a constrained upper bound
of dE with polynomial time complexity can be found using the algorithm in [53] and the heuristics
developed by [55] can be employed also to compute our metric. We leave the exploration of these
methods to future works.
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Table 1. Computational costs of the classical edit distance for unlabeled trees [27] and our
edit distance for merge trees, with N = size(T ) and M = size(G).

BLP Problems Variables Constraints
DE(T,G) O(M · N) O(M · N) O(log2(M) · log2(N))
dE(T,G) O(M · N) O(M · log2(M) · N · log2(N)) O(log2(M) · log2(N))

Table 2. A summary of the Edit Distances for Merge Trees. The column “Metric” states
which distances satisfy the triangular inequality. The column “Stability” underlines that
dE and DB are the only edit distances satisfying some stability properties, with N and M
being the number of edges in the considered merge trees. The column “Computational Cost”
compares the computational cost of the other edit distances, with DE: ∼ DE standing for the
cost being equivalent, up to nuances, to the one of DE; while ≥ DE stands for the cost being,
in general, higher.

Metric Stability Comput. Cost
dE Yes dI ≤ dE ≤ 2(N + M)dI ≥ DE

Wass [40, 47] Yes No ∼ DE

BDI [54] No No ≥ DE

DB [53] Yes DB ≤ 2(N + M) ∥ f − g ∥∞ ≥ DE

Local [48] Yes No ∼ DE

Connections with other works

As previously mentioned, this work builds upon results established in separate papers. Specifically:

• [36] introduces an edit distance for weighted trees, which we briefly recall in Section 3, and then
extend to merge trees in Section 4. As the results in that section demonstrate, this extension is far
from straightforward and involves substantial additional work.

• [39] provides the righthand side of Eq (1.1). While none of the mathematical results in the present
manuscript directly rely on this inequality, its validity is essential for the broader soundness of
our proposed metric—particularly with regard to the stability properties discussed in Section 6.

Outline

This paper is organized as follows: Section 2 and Section 3 contain the preliminary definitions
needed in the paper, which are collected from previous works in the field. In the latter one, in particular,
we review the definition of an edit distance between weighted trees, which we use in Section 4 to define
a metric structure for merge trees. Section 5 introduces the interleaving distance between merge trees,
which is fundamental for the discussion contained in Section 6, regarding the stability properties of
dE. Section 7 contains several simulations and case studies in which the practical consequences of the
considerations in Section 6 are extensively showcased. In Section 8, we draw some conclusions and
point to future works.

The Appendix contains a detailed comparison (both practical and theoretic) with the metrics for
merge trees which we mention in the introduction (Appendix A). Appendix B contains the proofs of
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the results in the manuscript.

2. Preliminary definitions-merge trees

We introduce merge trees coherently with most of the scientific literature dealing with such topics:
a combinatorial object, which we call tree structure, with a monotone increasing function defined on
its vertices (monotone w.r.t. a partial ordering of the vertices).

Definition 1. A tree structure T is given by a set of vertices VT and a set of edges ET ⊂ VT × VT

which form a connected rooted acyclic graph. We indicate the root of the tree with rT . We say that
T is finite if VT is a finite set. The degree of a vertex v ∈ VT is the number of edges which have that
vertex as one of the endpoints, and is called degT (v). Any vertex with an edge connecting it to the root
is its child and the root is its parent: this is the first step of a recursion which defines the parent and
children relationship for all vertices in VT . The vertices with no children are called leaves or taxa and
are collected in the set LT . The relation child < parent generates a partial order on VT . The edges
in ET are identified in the form of ordered couples (a, b) with a < b. A subtree of a vertex v, called
subT (v), is the tree structure whose set of vertices is {x ∈ VT | x ≤ v}.

In Definition 1, we introduce the term tree structure to differentiate such objects from the generic
word “tree”, which we will use to indicate either a tree structure, or a weighted tree or a merge tree,
when the context allows to lighten the notation.

Given a tree structure T , identifying an edge (v, v′) with its lower vertex v gives a bijection between
VT − {rT } and ET , that is, ET � VT − {rT }, as sets. Given this bijection, we often use ET to indicate the
vertices v ∈ VT − {rT }, and vice versa, to simplify the notation.

Now, we want to identify merge trees independently of their vertex set.

Definition 2. Two tree structures T and T ′ are isomorphic if there exists a bijection η : VT → VT ′ that
induces a bijection between the edges sets ET and ET ′: (a, b) 7→ (η(a), η(b)). Such η is an isomorphism
of tree structures.

Now, we can give the definition of a merge tree.

Definition 3. A merge tree is a finite tree structure T with a monotone increasing height function
hT : VT → R ∪ {+∞} and such that: 1) degT (rT ) = 1, 2) hT (rT ) = +∞, 3) hT (v) ∈ R for every v < rT .
Two merge trees (T, hT ) and (T ′, hT ′) are isomorphic if T and T ′ are isomorphic as tree structures and
the isomorphism η : VT → VT ′ is such that hT = hT ′ ◦ η. Such η is an isomorphism of merge trees. We
use the notation (T, hT ) � (T ′, hT ′). The set of all merge trees up to isomorphism is calledMT .

With some slight abuse of notation, we set max hT = maxv∈VT |v<rT hT (v) and arg max hT = max{v ∈
VT | v < rT }. Note that, given (T, hT ) merge tree, there is only one edge of the form (v, rT ), and we have
v = arg max hT .

Definition 4. Given a tree structure T , we can eliminate a degree two vertex, connecting the two
adjacent edges which share such vertex as endpoint. Suppose we have two edges e = (v1, v2) and
e′ = (v2, v3), with v1 < v2 < v3, and suppose v2 is of degree two. Then, we can remove v2 and merge
e and e′ into a new edge e′′ = (v1, v3). This operation is called the ghosting of the vertex. Its inverse
transformation is called the splitting of an edge.
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Consider a merge tree (T, hT ) and obtain T ′ by ghosting a vertex of T . Then, VT ′ ⊂ VT , and, thus,
we can define hT ′ := hT |VT ′ .

We can now state the following definition.

Definition 5. Merge trees are equal up to degree 2 vertices if they become isomorphic after applying a
finite number of ghostings or splittings. We write (T, hT ) �2 (T ′, hT ′). The set of all merge trees up to
degree 2 vertices is calledMT / ∼2.

Merge trees are usually employed to give a combinatorial representation of persistent sets [16, 34]
which are generated via usual TDA pipelines applying the functor π0 on filtrations of topological
spaces. Going through such details is not essential for defining and understanding the metric dE;
however, it is necessary to introduce the interleaving distance between merge trees and discuss the
stability properties of both metrics. Therefore, we will postpone their discussion to Section 5.

3. Preliminary definitions-weighted trees edit distance

In this section, we introduce the last pieces of notation we need to define the merge tree edit
distance. In Section 3.1, we report how [36] builds a metric for weighted trees, and in Section 3.2,
we recall from [36] the definition of mapping, a combinatorial object which will be used throughout
the manuscript.

3.1. Weighted trees and edits

Definition 6. A tree structure T with a weight function wT : ET → R>0 is called a weighted tree.
Isomorphisms of weighted trees are defined as in Definition 3. The set of all weighted trees up to
isomorphism is called (T ,R≥0).

Given a weighted tree (T,wT ), we can modify its edges ET � VT − {rT } with a sequence of the
following edit operations (see Figure 1):

• We call shrinking of a vertex/edge a change of the weight function. The new weight function
must be equal to the previous one on all edges, apart from the “shrunk” one, whose weight can
become bigger or smaller. In other words, for an edge e, this means changing the value wT (e)
with another value in R>0.

• A deletion is an edit with which a vertex/edge is deleted from the tree structure. Consider an edge
(v1, v2). The result of deleting v1 is a new tree structure, with the same vertices apart from v1 (the
lower one), and with the parent of the deleted vertex which gains all of its children. The inverse
of the deletion is the insertion of an edge along with its lower vertex. We can insert an edge at a
vertex v specifying the name of the new child of v, the children of the newly added vertex (that
can be either none, or any portion of the children of v), and the value of the weight function on
the new edge.

• Lastly, we can remove or add degree two vertices via the ghosting and splitting edits, which have
already been defined in Definition 4. The weight function is obtained by summation of the merged
edges in case of ghostings. In case of splittings, it must be arbitrarily defined, with the condition

AIMS Mathematics Volume 10, Issue 7, 17179–17231.



17185

that splitting an edge and then ghosting the degree two vertices obtained must restore the original
edge weight.

The set of all weighted trees considered up to ghostings and splittings is called (T2,R≥0).
A weighted tree T can be edited to obtain another weighted tree, on which one can apply a new

edit to obtain a third tree and so on. Any finite sequence of edits is called edit path. See Figure 1 for
an example of an edit path. The set of finite edit paths between T and T ′ is called Γ(T,T ′). We use
functional notations to refer to edits and edits paths, even though each edit transforms a single tree,
and it is not defined on the whole space. In particular, we represent an edit defined on a weighted tree
T as a function e : {T } → (T ,R≥0), so that e(T ) is the weighted tree we obtain by transforming T with
e. Given an edit path γ = {e1, e2} with two edits, we write γ(T ) := e2(e1(T )) = e2 ◦ e1(T ) to identify the
weighted tree obtained applying e1 on T and e2 on e1(T ). Analogously for paths with a higher number
of edits. This notation will help us simplify some of the upcoming definitions.

(a) Starting and target weighted
trees, with highlighted vertices
involved in the edit path.

(b) Deletions of v1, v2, v3, in red. (c) Ghostings of v4, v5, in yellow.

(d) Shrinkings of v6 and v7 to match
the weight, respectively, of w6 and
w7, in green.

(e) Splitting edges via w4 and w5, in
yellow. (f) Insertions of w1,w2,w3, in red.

Figure 1. (b)→(e) form an edit path made from the left weighted tree in (a) to the right one.
The edit path can be represented with a mapping Section 3.2 consisting of the couples (vi,D)
for all the red vertices in (b), (vi,G) for all the yellow vertices in (c), (vi,wi) for all the vertices
associated via the green color in (d), (G,wi) for all the yellow vertices in (e), and (D,wi) for
all the red vertices in (f).

The cost of the edit operations is defined as follows:

• The cost of shrinking an edge is equal to the absolute value of the difference of the two weights;
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• For any deletion/insertion, the cost is equal to the weight of the edge deleted/inserted;

• The cost of ghostings and splittings is zero.

The cost of an edit path is the sum of the costs of its edit operations. Putting all the pieces together,
the edit distance dE between weighted trees is defined as dE(T,T ′) = infγ∈Γ(T,T ′) cost(γ). In [36], it is
proved that dE is a metric on the space of weighted trees considered up to degree two vertices.

3.2. Mappings

Given an edit path between two weighted trees, its cost is often invariant up to many permutations
of the edits. To better work in such an environment, we start considering paths up to some permutation
of the edits. Objects called mappings, as defined in [36], help us in doing this, as well as making the
metric dE more tractable. For this reason now we report their definition. Symbols D and G are used to
indicate “deletion” and “ghosting”.

A mapping between T and T ′ is a set M ⊂ (ET ∪ {D,G}) × (ET ′ ∪ {D,G}) satisfying:

(M1) Consider the projection of the Cartesian product (ET ∪{D,G})× (ET ′ ∪{D,G})→ (ET ∪{D,G});
we can restrict this map to M obtaining πT : M → (ET ∪ {D,G}). The maps πT and πT ′ are
surjective on ET and ET ′ , i.e., ET ⊂ Im(πT ) and ET ′ ⊂ Im(πT ′);

(M2) πT and πT ′ are injective on M ∩ (ET × ET ′);

(M3) Given (a, b) and (c, d) ∈ M ∩ (VT × VT ′), a > c, if, and only if, b > d;

(M4) If (a,G) ∈ M (or analogously (G, a)), then after applying all deletions of the form (v,D) ∈ M,
the vertex a becomes a degree 2 vertex. In other words, let child(a) = {b1, .., bn}. Then, there is
exactly one i such that for all j , i, for all v ∈ Vsub(b j), we have (v,D) ∈ M; and there is one, and
only one, c such that c = max{x < bi | (x, y) ∈ M for any y ∈ VT ′}.

We call Mapp(T,T ′) the set of all mappings between T and T ′. We may refer to edges which appear
in the couples in M ∩ (VT × VT ′) as the coupled or matched edges/vertices.

As in [36], we use the properties of M ∈ Mapp(T,T ′) to parametrize a set of edit paths starting from
T and ending in T ′, which are collected under the name γM.

• γT
d is a path made by the deletions to be done on T , that is, the couples (v,D), executed in any

order. So, we obtain T M
d = γ

T
d (T ), which, instead, is well-defined and does not depend on the

order of the deletions. Similarly, we define γT ′
d as a path made by the deletions to be done on T ′,

that is, the couples (D,w), executed in any order, and obtain T ′Md = γ
T ′
d (T ′).

• One then proceeds editing T M
d by ghosting all the vertices (v,G) in M, in any order, getting a path

γT
g and the weighted tree TM := γT

g ◦ γ
T
d (T ). As before, we can do an analogous procedure on

T ′Md , ghosting all the vertices (G,w) in M, in any order, and building a path γT ′
g along with the

weighted tree T ′M := γT ′
g ◦ γ

T ′
d (T ′).

• Since all the remaining points in M are coupled, the two weighted trees T ′M and TM must be
isomorphic as tree structures. This is guaranteed by the properties of M. So, one can shrink TM

onto T ′M, and the composition of the shrinkings, executed in any order, is an edit path γT
s .
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By construction, γT
s ◦γ

T
g ◦γ

T
d (T ) = T ′M and (γT ′

d )−1 ◦ (γT ′
g )−1 ◦γT

s ◦γ
T
g ◦γ

T
d (T ) = T ′, where the inverse

of an edit path is thought as the composition of the inverses of the single edit operations, taken in the
inverse order.

Lastly, we call γM the set of all possible edit paths of the form (γT ′
d )−1◦(γT ′

g )−1◦γT
s ◦γ

T
g ◦γ

T
d , obtained

by changing the order in which the edit operations are executed inside γd, γg, and γs. Even if γM is a
set of paths, its cost is well-defined:

cost(M) := cost(γM) = cost(γT
d ) + cost(γT

s ) + cost(γT ′
d ).

See Figure 1 for an example of a mapping between weighted trees. We conclude this section by
recalling that [36, Main Theorem] proves that given two weighted trees T and T ′, for every finite edit
path γ ∈ Γ(T,T ′), there exists a mapping M ∈ Mapp(T,T ′) such that cost(M) ≤ cost(γ).

Lastly, we consider M2(T,T ′) ⊂ Mapp(T,T ′) defined as follows.

Definition 7. [36] A mapping M ∈ Mapp(T,T ′) has maximal ghostings if the following hold: (v,G) ∈
M if, and only if, v is of degree 2 after the deletions in T , and, similarly, (G,w) ∈ M if, and only if, w
is of degree 2 after the deletions in T ′.

A mapping M ∈ Mapp(T,T ′) has minimal deletions if the following hold: (v,D) ∈ M implies
that neither v nor parent(v) are of degree 2 after applying all the other deletions in T , and, similarly,
(D,w) ∈ M implies that neither w nor parent(w) are of degree 2 after applying all the other deletions
in T ′.

We collect all mappings with maximal ghostings and minimal deletions in the set M2(T,T ′).

Lemma 1. [36]

min{cost(M) | M ∈ Mapp(T,T ′)} = min{cost(M) | M ∈ M2(T,T ′)}.

4. Merge trees edit distance

In this section, we finally exploit the notation established in the previous sections to obtain a
(pseudo) metric for merge trees.

4.1. Truncation operators

First, we need to bridge between merge trees and weighted trees, in order to induce a metric on
merge trees by means of the edit distance defined in Section 3. The general idea is that we want to
truncate the edge going to infinity of a merge tree to obtain a weighted tree.

Starting from a merge tree (T, hT ), it is quite natural to turn the height function hT into a weight
function wT via the rule wT ((v, v′)) := hT (v′) − hT (v). The monotonicity of hT guarantees that wT takes
values in R>0. However, we clearly have an issue with the edge (v, rT ) as hT (rT ) = +∞. To solve this
issue we need some novel tools; see Figure 2. First, consider the set of merge treesMT and build the
subsetMT K := {(T, hT ) ∈ MT | max hT ≤ K}, for some K ∈ R. Then, define the truncation operator
at height K as follows:

TrK :MT K −−−−−−−−−−−→ (T ,R≥0),
(T, hT ) 7→ (T, hK) 7→ (T,wT ),

(4.1)
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with hK(v) = hT (v) if v < rT and hK(rT ) = K. Then, we set wT ((v, v′)) = hK(v′) − hK(v). To avoid
wT ((v, rT )) = 0, if max hT = K, we take (T, hT ) 7→ (T ′, hT ′) 7→ (T ′,wT ′) with T ′ obtained from T via the
removal of rT from VT and (v, rT ) from ET . The map hT ′ is hT |VT ′ . Then, wT ′((v, v′)) := hT ′(v′) − hT ′(v).

In other words, with TrK we are fixing some height K, truncating the edge (arg max hT , rT ) at height
K, and then obtaining a positively weighted tree, as in Figure 2. To go back with (TrK)−1, we “hang”
a weighted tree at height K and extend the edge (v, rT ) to +∞. We formally report these ideas in the
following proposition, which we state without proof.

(a) Two merge trees T and T ′. (b) A graphical representation of the weighted trees TrK(T )
and TrK(T ′). Roughly speaking, the merge trees T and T ′

are recovered sending the two roots back to infinity.

Figure 2. A graphical representation of the truncation operator.

Proposition 1. The operator TrK : MT K → (T ,R≥0) can be inverted via (T,wT ) 7→ Tr−1
K ((T,wT )) =

(T ′, hT ′) with the following notation: the tree structure T ′ is obtained from T via adding rT ′ to VT

and (rT , rT ′) to ET and ghosting rT if it becomes a degree 2 vertex. Then, we have hT ′(rT ) = K (if it
is not ghosted, i.e., if it is of order greater than 2), hT ′(rT ′) = +∞ and, recursively, for (v, v′) ∈ ET ,
hT ′(v) = hT ′(v′) − wT ((v, v′)). Clearly, Tr−1

K (TrK((T, hT ))) � (T, hT ). Thus,MT K � (T ,R≥0) as sets for
every K ∈ R. Moreover, TrK((T, hT )) ∼2 TrK((T ′, hT ′)) if, and only if, (T, hT ) ∼2 (T ′, hT ′).

4.2. Edit distance for merge trees

Consider (T, hT ), (T ′, hT ′) ∈ MT , and select K such that (T, hT ), (T ′, hT ′) ∈ MT K . Let (G,wG) =
TrK((T, hT )) and (G′,wG′) = TrK((T ′, hT ′)). Lastly, set:

dK((T, hT ), (T ′, hT ′)) := dE((G,wG), (G′,wG′)).

Despite being a promising and natural pseudo metric, dK is not defined on the wholeMT and, on
top of that, it is not clear if its value depends on the K we choose. The following result solves these
issues and proves that we can use dK to define a metric onMT .

Proposition 2. (Truncation) Take (T,wT ) and (T ′,wT ′) weighted trees. Suppose rT and rT ′ are of
order 1 and take two splitting operations induced by the following edges replacements: {(v, rT )} →
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{(v, v′), (v′, rT )} and {(w, rT ′)} → {(w,w′), (w′, rT ′)}, with which we obtain the weighted trees (G,wG)
and (G′,wG′). Suppose that wG((v′, rT )) = wG′((w′, rG)). Then, dE(T,T ′) = dE(subG(v′), subG′(w′)).

We now exploit Proposition 2 to define the edit distance between merge trees.

Theorem 1. (Merge tree edit distance) Given two merge trees (T, hT ), (T ′, hT ′) such that
(T, hT ), (T ′, hT ′) ∈ MT K and (T, hT ), (T ′, hT ′) ∈ MT K′ , then dK(T,T ′) = dK′(T,T ′).

Thus, for any couple of merge trees inMT , we can define the merge tree edit distance

dE((T, hT ), (T ′, hT ′)) := dK((T, hT ), (T ′, hT ′))

for any K ≥ max{max hT ,max hT ′}.

For ease of notation, we call dE both the edit distance between weighted trees and the one between
merge trees. The arguments of the distances should clarify which of the two metrics we are referring
to. By Proposition 1, we also have the following corollary of Theorem 1.

Corollary 1. The distance dE is a pseudo metric onMT and a metric onMT / ∼2: given two merge
trees (T, hT ) and (T ′, hT ′), dE((T, hT ), (T ′, hT ′)) = 0 if, and only if, (T, hT ) ∼2 (T ′, hT ′).

Remark 1. Theorem 1 and Corollary 1 have a series of important implications. First, they say that
(MT K/ ∼2, dE) is isometric and isomorphic to (T2, dE), and, thus, if we have a subset of merge trees
contained inMT K/ ∼2, for some K, we can map them in (T2, dE) via TrK and carry out our analysis
there. Second, suppose we are given a merge tree T ′′ with max hT ′′ > K. For any two merge trees
T,T ′ with K ≥ max hT ,max hT ′ , we can consider K′ ≥ max hT ′′ and compute dE(T,T ′′) = dK′(T,T ′′)
and dE(T ′,T ′′) = dK′(T ′,T ′′). However, we do not have to compute again dK′(T,T ′), for we have
dE(T,T ′) = dK′(T,T ′) = dK(T,T ′).

See Appendix A.1 for some examples. We close this section with the following remark.

Remark 2. A more naive approach could have been to model each merge tree as a triplet
(G,wG, hT (v)) ∈ (T ,R≥0) × R, with v = arg max hT and G = subT (v), i.e., to record the height of
the last merging point in T and then remove (v, rT ) from ET . Then, one could define a pseudo metric
onMT via the rule:

d((T, hT ), (T ′, hT ′)) =| hT (v) − hT ′(v′) | +dE((G,wG), (G′,wG′)),

but this leads to unstable behaviors, as in Figure 3.

By definition, computing dE for merge trees amounts to computing dK , and so, we can exploit the
algorithm presented in [36] to compute dE for weighted trees.
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(a) Two merge trees T (left) and T ′ (right).

(b) The trees T (left) and T ′ (right) in Figure 3(a)
represented as triplets of the form (G,wG, hT (v))
(see Remark 2) with the (dotted) edges to infinity
being removed to obtain weighted trees, and the
height of the highest finite vertices being recorded
as a real number.

(c) The weighted trees TrK(T ) (left) and TrK(T ′)
(right) with K = t′3, obtained from the merge trees
T and T ′ as in Figure 3(a).

Figure 3. This example illustrates a situation where the metric defined in Remark 2
exhibits unstable behavior, while the metric dK remains well-behaved. In the diagrams,
red edges represent deletions, and green arrows indicate the pairing between remaining
edges. The weight differences between paired edges are assumed to be negligible. In Figure
3(a), transforming the left merge tree into the right one involves accounting for the height
differences |hT (v) − hT ′( f ′)| and the deletion costs associated with the red edges. In contrast,
in Figure 3(c), the cost of the depicted mapping consists only of the (negligibly small) weight
differences between the paired edges and the deletion of the short edge (e′, rT ′).

Proposition 3. (Computational complexity [36]) Let T and T ′ be two merge trees with full binary tree
structures with #ET = N and #ET ′ = M. Then, dE(T,T ′) can be computed by solving O(N · M) BLP
problems with O(N · log(N) · M · log(M)) variables and O(log2(M) + log2(N)) constraints.
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As anticipated in Section 1, the classical edit distance can be computed by solving O(N · M) BLP
problems with O(N · M) variables and O(log2(M) + log2(N)) constraints [27]. In Appendix A.2, we
show that we can borrow from [53,55] heuristics to speed up the computations and algorithms to obtain
a polynomial time upper bound.

5. Abstract merge trees and the interleaving distance

Following [16,34], we introduce persistent sets. Figure 4 illustrates some of the objects we introduce
in this section.

(a) A filtration X· . (b) An abstract merge tree π0(X· ).

(c) An abstract merge tree π0(X· ).
(d) The merge tree M(π0(X· )) with π0(X· ) as in Figure
4(c).

Figure 4. On the first line, we see an example of a filtration along with its abstract merge tree.
In the bottom line, there is an abstract merge tree and the associated merge tree. The colors
are used throughout the plots to highlight the relationships between the different objects.

Definition 8. [16] A filtration of topological spaces is a (covariant) functor X· : R → Top from the
poset (R,≤) to Top, the category of topological spaces with continuous functions, such that: Xt → Xt′ ,
for t < t′, are injective maps.

Example 1. Given a real valued function f : X → R, the sublevel set filtration is given by Xt =
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f −1((−∞, t]) and Xt<t′ = i : f −1((−∞, t]) ↪→ f −1((−∞, t′]).
Example 2. Given a finite set C ⊂ Rn, the Čech filtration is given by Xt =

⋃
c∈C Bt(c) with Bt(c) = {x ∈

Rn |∥ c − x ∥< t}. As before, Xt<t′ = i :
⋃

c∈C Bt(c) ↪→
⋃

c∈C Bt′(c).
Given a filtration X· , we can compose it with the functor π0 sending each topological space into

the set of its path connected components. We recall that, according to standard topological notation,
π0(X) is the set of the path connected components of X, and given a continuous function q : X → Y ,
π0(q) : π0(X)→ π0(Y) is defined as:

U 7→ V such that q(U) ⊂ V.

Definition 9. [9, 14] A persistent set is a functor S : R → Sets. In particular, given a filtration
of topological spaces X· , the persistent set of components of X· is π0 ◦ X· . A (one-dimensional
persistence module) is a functor S : R→ VecK with values in the category of vector spaces VecK.

By endowing a persistent set with the discrete topology, every persistence set can be seen as the
persistence set of components of a filtration. Thus, a general persistent set S can be written as π0(X· ),
for some filtration X· .

Based on the notion of constructible persistent sets found in [16, 34], one then builds the following
objects.

Definition 10. [37] An abstract merge tree (AMT) is a persistent set S : R→ Sets such that there is a
finite collection of real numbers {t1 < t2 < . . . < tn} which satisfy:

• S (t) = ∅ for all t < t1;

• S (t) = {⋆} for all t > tn;

• if t, t′ ∈ (ti, ti+1), with t < t′, then S (t < t′) is bijective.

The values {t1 < t2 < . . . < tn} are called critical values of the tree, and there is always a minimal
set of critical values [37]. We always assume to be working with such a minimal set.

If S (t) is always a finite set, S is a finite abstract merge tree.
We report a result summarizing the relationship between abstract merge trees and merge trees.

The main consequence of such a result is that merge trees considered up to degree 2 vertices are an
appropriate discrete tool to represent the information contained in AMTs. Figures 4(a) and 4(b) can
help the reader going through the following proposition.

Proposition 4. [37] The following hold:

1) We can associate to a regular abstract merge tree R(π0(X· )), a merge tree without degree 2
verticesM(R(π0(X· )));

2) We can associate to a merge tree (T, hT ), a regular abstract merge tree F ((T, hT )). Moreover, we
haveM(F ((T, hT ))) �2 (T, hT ) and F (M(R(π0(X· ))) �a.e. π0(X· );

3) Given two abstract merge trees π0(X· ) and π0(Y· ),M(R(π0(X· ))) �M(R(π0(Y· ))) if, and only
if, π0(X· ) �a.e π0(Y· );

4) Given two merge trees (T, hT ) and (T ′, hT ′), we have F ((T, hT )) � F ((T, hT )) if, and only if,
(T, hT ) �2 (T ′, hT ′).
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Remark 3. For the sake of brevity, we don’t report the explicit construction ofM and F , which can
be found in [16,37]. Intuitively,M gives a discretization of an abstract merge tree π0(X· ), by sending
it in the “smallest” graph (in terms of vertices) needed to describe the maps π0(Xt≤t′), together with the
induced function defined on the vertices. In particular, this can be done without using degree 2 vertices,
which are superfluous. Viceversa, F associates to a merge tree a functor which is roughly an algebraic
equivalent of its geometric realization, where one can actually consider all the individual points on the
edges. Clearly, degree two vertices are lost in this procedure.

We adapt the definition of the interleaving distance between merge trees, which is originally stated
by [4] with a different notation.

Definition 11. (Adapted from [4] and [17]) Given X· filtration and ε > 0, we define Xε· as
Xεt := Xt+ε and Xεt≤t′ := Xt+ε≤t′+ε. Coherently with the literature on Reeb graphs, we define the ε-
smoothing operator Sε as: Sε(π0(X· )) := π0(Xε· ). Note that Sε also acts on natural transformations
α : π0(X· ) → π0(Y· ): by setting Sε(αt) := αt+ε, one obtains Sε(α) : Sε(π0(X· )) → Sε(π0(Y· )).
Lastly, we have the natural transformation iεπ0(X· )

: π0(X· ) → Sε(π0(X· )) given by (iεπ0(X· )
)t :=

π0(Xt≤t+ε) : π0(Xt)→ π0(Xt+ε).

Definition 12. (Adapted from [4]) Take two abstract merge trees π0(X· ) and π0(Y· ). Two natural
transformations α : π0(X· )→ Sε(π0(Y· )), β : π0(Y· )→ Sε(π0(X· )) are ε-compatible if:

• Sε(β) ◦ α = i2ε
π0(X· )

;

• Sε(α) ◦ β = i2ε
π0(Y· )

.

Unfolding the definitions, this means:

• βt+ε ◦ αt = π0(Xt≤t+2ε)

• αt+ε ◦ βt = π0(Yt≤t+2ε).

Then, the interleaving distance between π0(X· ) and π0(Y· ) is:

dI(π0(X· ), π0(Y· )) = inf{ε > 0 | ∃α, β ε-compatible}.

We also say that π0(X· ) and π0(Y· ) are dI(π0(X· ), π0(Y· ))-interleaved.

To lighten the notation, we may also write dI(T,T ′), implying dI(π0(X· ), π0(Y· )), with T =
M(π0(X· )) and T ′ =M(π0(Y· )).
Remark 4. We have introduced the interleaving distance with this notation, because we make use
of smoothing operators in Proposition 6. The name smoothing operator comes from the interleaving
distance between Reeb graphs. Introducing Reeb graphs and such distance to motivate our definition
is outside the scope of this work. However, for the reader familiar with such notions, we point out the
following facts. Merge trees can be obtained as Reeb graphs of the epigraph of a function f : X → R
with the projection on R: consider f : X → R and define Γ f = {(x, t) ∈ X × R | f (x) ≤ t}. Then, one
can take the projection to R and obtain: F : Γ f → R. Then, F−1(t) = {(x, t) | f (x) ≤ t} = f −1((−∞, t]).
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Thus, the merge tree of f is equivalently represented by the Reeb cosheaf [17] U 7→ π0(F−1(U)). The
smoothed version of this Reeb cosheaf, as defined in [17], is induced by F−1

ε (t) := F−1((t − ε, t + ε)) =
f −1((−∞, t + ε]), which implies that the smoothed Reeb cosheaf corresponds to the smoothed merge
tree in the sense that we define. This also implies that the interleaving distance between merge trees
can be induced by the one between Reeb graphs.

6. Finite stability and stability-Sensitivity trade-off

We now explore some key relationships between formal properties of metrics and practical
applications of merge trees.

Merge trees are trees which are used to represent data and, considering populations of such objects,
to explore the variability of a dataset. Thus, any metric which is employed on merge trees (and on any
data representation in general) needs to measure the variability between merge trees in a “sensible”
way, coherently with the application considered. A formal way to assess such properties often comes
in the form of continuity results of the operator mapping data into representations, which, in the TDA’s
literature, are called stability results. In particular, a metric d between persistence modules or merge
trees is referred to as stable if the operator mapping functions to modules/merge trees (via the sublevel
set filtration) is 1-Lipschitz continuous. That is, d(S f , S g) ≤∥ f−g ∥∞, with S f , S g being the persistence
modules/merge trees representing f , g. This holds, for instance, for the interleaving distance between
persistence modules [11] and merge trees.

Among stable distances, interleaving distances are often used as a benchmark to study the stability
of metrics, as such distances are universal for persistence modules and merge trees: for any other stable
metric d between persistence modules or merge trees, we always have d(S f , S g) ≤ dI(S f , S g). Thus,
a good behavior in terms of interleaving distance implies a good handling of pointwise noise between
functions and so also interpretability of the metric. In it also worth mentioning that other kinds of
universal properties have also been considered in literature [8, 30].

Being the edit distance a summation of the costs of local modifications of trees, we expect that dE

cannot be bounded from above by the interleaving distance between merge trees, as such metric in
some sense, measures only the biggest modification needed to optimally match two merge trees. Thus,
a suitable stability condition, which we name finite stability, would be for ε-interleaved trees to be
obtained one from the other just by means of edits with cost ε, and with edit paths whose number of
operations is bounded by the sizes of the trees. As a consequence, the cost of the local modifications
we need to match the two merge trees goes to 0 as their interleaving distance gets smaller and smaller,
as is the case for Wasserstein metrics between PDs.

Definition 13. Given a persistence module S : R → VecK, we define its dimension as dim(S ) :=
#PD(S ), i.e., the number of points in its persistence diagram (if it exists). When S is generated on
a field K by an abstract merge tree π0(X· ), we have dim(S ) := #PD(S ) = #LT , with (T, hT ) =
M(π0(X· )). In this case, we use dim(T ) to refer to dim(S ). We also fix the notation size(T ) := #ET .
Note that size(T ) ≤ 2 dim(T ). Lastly, we define the space of merge trees with uniform upper bound on
their size:

MT
N = {T ∈ MT | size(T ) ≤ N}.

With these pieces of notation, we can introduce the notion of finitely stable metrics.
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Definition 14. A metric d for merge trees is finitely stable if there is C > 0 such that for every pair
of ε-interleaved AMTs π0(X· ) and π0(Y· ), upon setting T = M(π0(X· )) and T ′ = M(π0(Y· )), we
have:

d(T,T ′) ≤ C(dim(T ) + dim(T ′))ε.

The name “finite” stability is motivated by the following immediate result, which we state without
proof.

Proposition 5. Let d be a finitely stable metric between merge trees and let φ : (X, dX) → (MT , dI)
be a Lipschitz operator from a metric space (X, dX) to the space of merge trees considered with the
interleaving distance. Then, for every N ∈ N, the following operator is Lipschitz:

φ|φ−1(MT N ) : (φ−1(MT N), dX)→ (MT N , d).

In view of these definitions, we can rewrite the following theorem from [39].

Theorem 2. [39] If there are α, β ε-compatible maps between two AMTs π0(X· ) and π0(Y· ), then
there exist a mapping M between T =M(π0(X· )) and T ′ =M(π0(Y· )) such that costM((a, b)) ≤ 2ε
for every (a, b) ∈ M. Since size(T ) ≤ 2 dim(T ) and size(T ′) ≤ 2 dim(T ′), dE is finitely stable.

Now, we prove a complementary result, which gives the complete picture of the stability properties
of dE, allowing the comparison with Wasserstein distances between PDs. Note that in the remaining
part of the manuscript, to lighten the notation, we often deliberately confuse the AMT π0(X· ) and the
associated merge tree T =M(π0(X· )).
Theorem 3. We always have dI(T,T ′) ≤ dE(T,T ′).

The bound given by Theorem 3 is tight.
Example 3. Consider f : I → R and g(x) = f (x) + k for some fixed k ∈ R, and let X· : (R,≤)→ Top
be the sublevel set filtration of f and Y· : (R,≤)→ Top of g (see Section 5). Let (T, hT ) and (T ′, hT ′)
be the merge trees representing π0(X· ) and π0(Y· ), and we have dI(T,T ′) = dE(T,T ′) = k.

Putting together Theorem 3 and Theorem 2, we obtain the following inequalities.

Corollary 2.
dI(T,T ′) ≤ dE(T,T ′) ≤ 2(size(T ) + size(T ′))dI(T,T ′). (6.1)

Equation (6.1) is the one that better summarizes the stability properties of dE. Moreover, inequalities
similar to the ones expressed by Eq (6.1) relate also the bottleneck and the 1-Wasserstein distances
between PDs. We recall that the points of a persistence diagram are often called persistence pairs and
that, given two persistence diagrams D and D′, the expression of the p-Wasserstein distance between
them is the following:

Wp(D,D′) =

inf
γ

∑
x∈D

∥ x − γ(x) ∥p∞

1/p ,
where γ ranges over the functions partially matching points between diagrams D and D′, and matching
the remaining points of both diagrams with the line y = x on the plane (for more details, see [13]).

AIMS Mathematics Volume 10, Issue 7, 17179–17231.



17196

The case p = ∞ is usually referred to as the bottleneck distance dB. Thus, for every pair of persistence
diagrams D,D′, we have:

dB(D,D′) ≤ W1(D,D′) ≤ (dim(D) + dim(D′))dB(D,D′). (6.2)

The similarity between Eqs (6.1) and (6.2) qualifies dE as an analogous for merge trees of the 1-
Wasserstein distance for PDs. As they have analogous stability properties, w.r.t. the universal distance
of, respectively, merge trees and PDs. Those properties are in line with our expectations: when editing
ε-interleaved merge trees, we need to produce a small local modification for each vertex of the merge
tree and then add up all the contributions. In the same way, with the 1-Wasserstein distance, one
measures the difference between ε-interleaved diagrams aggregating the small discrepancies between
all persistence pairs.

Roughly speaking, we can say that the left side of Eqs (6.1) and (6.2) guarantees that dE and W1

always have at least the same discriminatory power compared to their universal counterparts, while
the right side guarantees interpretability. In fact, via the universal properties of the bottleneck and
interleaving distances, we can replace dI and dB with ∥ f − g ∥∞ in the right side of Eqs (6.1) and (6.2).
In this way, we can describe the behavior of dE and W1 in terms of the operators mapping functions
into topological summaries.

Universal distances like the interleaving and the bottleneck ones satisfy such strong stability
properties because, in some sense, they measure the maximum cost of the modifications that we make
on the considered objects. In other words, they are very stable because they are heavily insensitive:
one could add an infinite amount of modifications to the considered objects, smaller than the biggest
one (like infinite points close enough to the diagonal of PDs), without these changes affecting the
distance. That is, they are very poor in discriminating between different objects, and not just when
such modifications are small, as shown in Section 7. This has clear repercussions on data analysis
pipelines. More formally, the topology induced by dE is strictly finer than the one induced by dI: on
one hand, for any T ′ ∈ MT and C > 0, the following hold:

{T ∈ MT | dE(T,T ′) < C} ⊂ {T ∈ MT | dI(T,T ′) < C}.

On the other hand, it is not difficult to build a tree T and a sequence {Tn}n∈N such that dI(Tn,T ) → 0
and dE(Tn,T )→ +∞. See also the upcoming example.
Example 4. Let hn : [0, 1] → R be hn(x) = 1/n · sin(2πn2x) and f : [0, 1] → R be f (x) = x. Let T
be the merge tree of (the sublevel set filtration of) f and Tn the merge tree of fn := f + hn. We have
dI(T,Tn) ≤ 1/n while dE(T,Tn) ∼ O(n). Similarly, let D be the PD of f and Dn the PD of fn. We have
dB(D,Dn) ≤ 1/n while W1(D,Dn) ∼ O(n).

These considerations reinforce the fact that, in general, dE is potentially better than dI at
discriminating trees, as it has more open sets to separate objects, just as W1 is better than dB at
distinguishing between persistence diagrams.

We can see the problem of balancing stability and sensitivity as a bias-variance trade-off: a
very stable metric captures reduced variability, potentially “underfitting” the data in order to be less
susceptible to noise, while a more sensitive metric will be more affected by noise, with the risk of
capturing too much variability and “overfitting” the data.

On paper, universal metrics can be more safely used when we need to work with topological
summaries extracted from noisy data. Consider, for instance, the following statistical model, which
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is standard in functional data analysis and regression problems [42]. Take an iid sample {(xi, yi)}ni=1
from the model Y | X = x ∼ f (x) + ε, with ε being a noise random variable with zero mean and finite
variance, X,Y being two real valued random variables, and f : [a, b]→ R a smooth function. Suppose
we can build an estimate f̂n of f (·) = E(Y | X = ·) from {(xi, yi)}ni=1. Having dI(T f ,T f̂n) ≤∥ f − f̂n ∥∞,
implies that f̂n can be a very naive estimate of f : as long as the estimate has a low point wise error,
we know that T f̂n is a good estimate of T f in terms of dI . Instead, if f̂n is a very rough estimate of f
(e.g., the piecewise affine interpolation of {(xi, yi)}ni=1), it could be a problem for dE and W1, as f̂n is
likely to have many ancillary/noisy oscillations, which can blow up size(T f̂n) and dim(PD( f̂n)), so that
T f̂n and PD( f̂n) can be very poor approximations of T f and PD( f ) in terms of dE and W1, respectively.
However:

1) As showcased in Section 7.2, there could be situations where the sensitivity of dE makes it a more
effective data analysis tool w.r.t. dI , even in the presence of considerable levels of noise;

2) As shown in [39], one can solve the problem of obtaining estimates f̂n which make T f̂n a good
estimator of T f also in terms of dE. That is, the problem of denoising data, i.e., estimating
topological summaries, can be successfully tackled even for more sensitive metrics, and one is
not constrained to use universally stable metrics. Of course, the same applies if the analysts and
the field experts can assume that the data generating process is affected by noise only in negligible
terms.

We want to add some last details on this topic. In particular, [39] considers only functions of the
form f : [a, b] → R, which means that the problem of estimating merge trees from noisy data is
far from being solved, leaving room for novel developments. For instance, we believe that smoothing
procedures can be designed working directly on topological summaries, with very general assumptions
on the data-generating models, exploiting results like the following.

Proposition 6. Consider T and {Tn}n∈N merge trees such that dI(T,Tn) → 0, and let d be a finitely
stable distance between merge trees. For any δ > 0, there exists ε > 0 (depending also on T ) such that,
for T ′n := Sε(Tn), we have:

1) dI(Tn,T ′n) ≤ δ for all n;

2) limn→∞ d(T,T ′n) ≤ δ.

To better understand the implications of Proposition 6, consider the following setting. Fix a merge
tree T and suppose Tn is an estimate of T obtained from noisy data, with n being some sampling
parameter of the data. Suppose that, as n grows, we can get better and better estimates of T in terms of
the interleaving distance, i.e., dI(T,Tn)

n
−→ 0 (possibly, with high probability, see [6] for similar results

obtained for persistence diagrams). For instance, in the functional model presented in the previous
paragraphs, n would be the number of points which we sample from the model, and Tn could be the
merge tree obtained from a suitable kernel smoothing of the sampled points. As a consequence of
Proposition 6, once we fix an error tolerance δ > 0, we know there is εδT > 0 such that the εδT -smoothed
merge trees T ′n := SεδT (Tn) converge to T in terms of dE up to an error of δ.

Of course these considerations are far from being satisfactory: since T is unknown, one needs to
estimate εδT , and, moreover, it would be desirable to find a way to let δ→ 0. Still, the level of generality
of these considerations motivates further research in this direction.
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Summarizing, it is possible for the analysts to build statistically grounded pipelines involving
metrics like dE and Wp, which are much more sensitive, and whose discriminative power is arguably
more useful in many data analysis scenarios compared to their universal counterparts. It is to the point
that, to the best of our knowledge, Wasserstein metrics are more frequently used in applications than
the bottleneck one. On the other hand, if data is heavily corrupted by noise and cannot be effectively
denoised, this will affect the results obtained with Wp and dE much more than if the analysis had been
carried out with dB and dI . Nonetheless, even in such situations, Wp and dE may still prove to be more
effective, as showcased in Section 7.2.

The final choice of a metric to be used in a data analysis should be guided by many factors,
adding to the stability-sensitivity discussion any specific knowledge about the data and the whole
tree-generating pipeline. To such extent, being able to choose between different tools, each with its
own well-understood characteristics, is certainly something to strive for.

7. Simulations and case studies

In this section, we take a practical look at the discussion presented in Section 6, comparing dE

and the interleaving distance in simulated scenarios and real-data applications. Notably, there are
just a few computational procedures for dI , which are either unreliable or very expensive (see [38]).
This also suggests that its popularity is primarily driven by its strong theoretical properties, which,
while valuable, may not translate directly into practical utility, as for the bottleneck distance between
persistence diagrams.

To compute dI , we resort to the computational framework presented in [38], which proposes mixed
linear programming procedures to find upper and lower bounds to the interleaving distance. We call
such bounds, respectively, du and dl. In particular,

1) We use the upper bound du as an estimate of dI . Thus, in the upcoming formulas, tables, etc., we
will always write du to highlight that we are considering a proxy of dI , but, to lighten the notation,
in the main text we will deliberately confound the interleaving distance and its estimate;

2) We use the lower bound dl and the bottleneck distance between persistence diagrams to find the
potential error range of the computed upper bound, exploiting the fact that dB ≤ dI [4]. More
precisely, we check the relative discrepancy:

∆ := (du −max{dl, dB})/du. (7.1)

Such quantity, in fact, gives an upper bound on the relative difference between dI and du, as
du − dI ≤ ∆ · du. We stress that this is not an error, but an upper bound on the error du − dI;

3) We compare the sup norms between the considered functions with du, to check if it shows
instances of unstable behavior, i.e., du(T f ,Tg) >∥ f − g ∥∞.

At the end of every section, apart from Section 7.1, in which the computations can be hand checked,
we comment on these quantities to strengthen our findings.

7.1. Toy example

We start illustrating the practical differences between dI and dE with a carefully designed toy
example that highlights some key properties and behaviors of the metrics. Refer also to Figure 5.
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(a) The functions f0, f3 belonging to the simulated dataset decribed in Section 7.

(b) The merge trees (T f0 , h f0 ) and (T f3 , h f3 ) associated to the functions in Figure 5(a).

(c) The persistence diagram
representing the functions in Figure
5(a). The point (0, 1) has multiplicity
equal to the number of local minima
minus 1.

(d) Matrix of pairwise distances of the
merge trees obtained from { fi}10

i=0, with
dE .

(e) Multidimensional scaling
embedding in R2 of the matrix of
pairwise distances shown in Figure
5(d). The shades of gray describe,
from white to black, the ordering of the
trees.

Figure 5. Plots related to the simulated scenario presented in Section 7.1.

For i = 0, . . . , 9, let hi : [0, 11] → R be such that hi ≡ 0 on [0, 11] − [i + 1/3, i + 2/3], while, on
[i + 1/3, i + 2/3], hi is the linear interpolation of (i + 1/3, 0), (i + 1/2, 1), and (i + 2/3, 0). Then, for
i = 0, . . . , 9, define Hi as Hi ≡ 0 on [0, 11] − [i + 2/3, i + 1], while, on [i + 2/3, i], Hi is the linear
interpolation of (i + 2/3, 0), (i + 3/4, 5), and (i + 1, 0).
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Then, fi, i = 0, . . . , 9, is obtained as follows:

fi = Hi +

9∑
j=0

h j.

Refer to Figure 5(a) to better visualize this dataset: we have a constant set of lower peaks at height
1 and a higher peak with height 5, which is shifting from left to right as i increases. In this way, we are
just changing the left-right distribution of the smaller peaks w.r.t. the highest one.

We obtain the associated merge trees and then compute the pairwise distances between the merge
trees with dE. The results are represented in Figure 5(d): the shortest edit path between the i-th merge
tree and i + 1-th is given by the deletion of one leaf in each tree to make the disposition of leaves
coincide between the two trees. The more the peaks’ disposition is different between the two trees,
the more one needs to delete leaves in both trees to find the path between them. Note that the first
function (the one in which the highest peak is the second peak) and the last function (the one in which
the highest peak is the second-last peak) can be obtained one from the other via a y-axis symmetry
and translation. Similarly, the second function is equal, up to homeomorphisms of the domain, to the
third-last one, etc. Thus, the merge trees are the same (see also [39]). To sum up the situation depicted
in the first row of Figure 5(d), first we get (left-to-right) farther away from the first merge tree, and then
we return closer to it. This intuition is confirmed by looking at the multidimentional scaling (MDS)
embedding in R2 of the pairwise distance matrix (see Figure 5(e), and note that the shades of gray
reflect, from white to black, the ordering of the merge trees). The discrepancies between the couple of
points which should be identified are caused by numerical errors.

First, it is very easy to observe that all such functions can’t be distinguished by PDs, since they
all share the PD in Figure 5(c). Second, the interleaving distance between any two merge trees
representing two functions fi and f j is 1/2 if i , j and 0 otherwise. Thus, the metric space obtained
with dI from the dataset { fi}

9
i=0 is isometric to the discrete metric space on 5 elements, where each point

is on the radius 1 sphere of any other point. Note that this results in a poorer “geometric structure” .
We point out that there are applications in which it would be important to separate f0 and f4 more

than f0 and f1, because they differ by “a higher amount of edits”: for instance, in [10], merge trees
are used to represent tumors, with leaves being the lesions, and it is well-known in literature that the
number of lesions is a non-negligible factor in assessing the severity of the illness [33], and, thus, a
metric more sensible to the cardinality of the trees is more suitable than dI .

7.2. Stability vs sensitivity

Now, we pick a standard generative model in functional data analysis and showcase how the
universal properties of the interleaving distance do not make it necessarily the best data analysis tool
to be used, even in presence of noise and absence of denoising procedures. Roughly speaking, we
consider two smooth functions f and g, add pointwise noise to them and see which metric, between
dE and dI , can better recognize if the observed function is a noisy observation of f or of g (without
employing any smoothing procedure).

More formally, the data generating pipeline is the following. We generate two smooth functions
f and g by interpolating, with cubic splines, two sets of randomly chosen couples in [0, 1] × R. The
distribution that we use to sample those sets of couples is the following: we take 0 = x1 < . . . < xN = 1,
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N = 20, forming a regular grid in [0, 1]. Then, y j
i , i = 1, . . . ,N, j = 1, 2 are sampled independently

from a Gaussian with mean 0 and standard deviation 50. Then, {(xi, y1
i )}i=1,...,N are interpolated to obtain

f and {(xi, y2
i )}i=1,...,N are interpolated to obtain g. Other methods to sample a couple of random smooth

functions could be employed as well.
We now report one of the standard generative models for functional data (see [42]), which we call

model (M).

(M) We have a real random variable X distributed with density p, supported on a compact interval
and bounded away from 0 on its support. We then consider a real random variable Y such that
Y | X = x ∼ h(x) + δ, with δ being an independent noise variable with zero mean and finite
variance, and h being a smooth function.

When the analyst observes a set of couples {(ai, bi)}i=1,...,n which can be regarded as a partial
observation of a function (i.e., functional data), such couples are usually modeled as i.i.d. samples
taken from (M). We specify model (M), calling it (Mσf ), assuming p equal to the uniform density on
[0, 1], h equal to f , and the noise variable δ being a Gaussian with mean zero and standard deviation
σ. We also consider (Mσg ), which is analogous to (Mσf ), except the smooth function h is taken equal to
g.

For each value of σ ∈ {0.1, 1, 10, 15, 25}, we sample a dataset Dσf where each of the 30 i.i.d.
observations (i.e., each of the partially observed functions) is obtained by sampling independently
n = 50 couples from (Mσf ). Similarly, we obtain a dataset Dσg in which each of the 30 i.i.d. observations
is obtained by sampling independently n = 50 couples from (Mσg ). The dataset Dσ is then the union of
Dσf and Dσg .

For each observation in Dσ, we compute the merge tree of the linear interpolation of the couples,
and then take the matrices of pairwise distances between the trees using du and dE. As σ, which
controls the magnitude of the noise, increases, we are interested in two things:

1) Observing the consequences of the stability properties on the distances;

2) Observing to what extent du and dE can capture the clustering structure in the data, separating
data sampled from Dσf versus data sampled from Dσg .

Figure 6 contains some plots related to this simulated scenario: in Figure 6(a), we see the smooth
“baseline” functions f , g; while in Figures 6(b)–6(d), we report the datasets Dσ, for some increasing
values of σ. The sampled partial observations of functions have been extended on [0, 1] via a nearest
value extension (NVE) technique, both for plotting purposes and to compute the sup norm between the
extended functions, to check the stability of the upper bound du. As already mentioned, merge trees,
instead, have been computed by considering the piecewise affine functions induced by each sample
{(ai, bi)}i=1,...,n - without extending the resulting functions to the whole interval [0, 1].
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(a) The two random functions f , g : [0, 1]→ R. (b) The two datasets Dσf and Dσg , for σ = 1.

(c) The two datasets Dσf and Dσg , for σ = 15. (d) The two datasets Dσf and Dσg , for σ = 25.

Figure 6. Plots related to the simulated scenario presented in Section 7.2. Each of the
partially observed functions, generated according to the models (Mσf ) or (Mσg ), have been
extended on [0, 1] using NVE.

First, we comment on the practical comparison between the stability of du and dE. Figure 7(a)
summarizes the behavior of the distances (interleaving or edit) between the merge trees of the noisy
functions and either T f or Tg, the merge trees of the underlying smooth functions, depending on the
generative model. More precisely,

1) The orange line interpolates, for each value of σ, the median of:

{du(Th,Th,σ) | h ∈ { f , g},Th,σ is the merge tree of some {(ai, bi)}i=1,...,50 ∈ Dσh };

2) The green line interpolates, for each value of σ, the median of:

{dE(Th,Th,σ) | h ∈ { f , g},Th,σ is the merge tree of some {(ai, bi)}i=1,...,50 ∈ Dσh };

3) The blue line interpolates, for each value of σ, the median of:

{∥ h − hσ ∥∞| h ∈ { f , g}, hσ is the NVE on [0, 1] of some {(ai, bi)}i=1,...,50 ∈ Dσh }.
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The vertical bars in Figure 7(a) represent the boxplots, i.e., 1.5 times the interquartile range (IQR)
below and above the median. In other words, we are checking how far from the true merge trees the
observed merge trees tend to fall, as noise increases, where far is either in terms of du or dE.

This is precisely where stability properties become crucial, as they provide robustness to support the
analyst’s findings. For a reference, we also report the plot of the line (σ, 6σ): we know that for every
(X,Y) distributed according to model (Mσf ), P(Y ∈ ( f (X) − 3σ, f (X) + 3σ) | X = x) ∼ 1, for every
x ∈ [0, 1]. In particular, for {(Xi,Yi)}i=1,...,50 i.i.d., we have P(maxi=1,...,50 | Yi − f (Xi) |< 6σ) ∼ 0.9.
Analogous computations hold for g and (Mσg ). In other words, [0, 6σ] is a 0.9 confidence interval for
the max difference between the smooth functions and the noisy observations, on the grid given by the
realizations of {Xi}i=1,...,50. Note that, despite this, outside such grid, i.e., outside the points where the
functions are observed, the error between the smooth functions and the extended noisy observations
can be higher. Still, the line (σ, 6σ) can serve as a rough reference for the pointwise difference between
the smooth functions and the noisy observations.

In Figure 7(a), we see that the deviation between the true and the observed merge trees behave as
we would expect: the deviation in terms of interleaving distance increases with the magnitude of the
noise σ, being controlled by the sup norm between the smooth functions and the extension on [0, 1] of
the noisy observations. The deviation in terms of dE, instead, explodes as σ increases, as dE depends
on a combination of 1) the magnitude of the noise, and 2) the number of oscillations in the functions.
In fact, when sampling and interpolating the partial and noisy observations of the functions, we are
also potentially increasing the number of oscillations of the data w.r.t. the original f and g: we can
have up to 50/2 local minima in the observed functions, while in the smooth ones we can have at most
20/2. This is coherent with the behavior we observe in Figure 7(a).

The line (σ, 6σ) further supports the coherence of our findings: for small values of σ, the noise
introduced by the variable δ has an almost negligible effect, and most of the errors are induced by
having to extend the partially observed functions from a random grid to [0, 1]; meanwhile, for σ > 10,
the variable δ has a much bigger effect, and, thus, we see that the whole boxplot of the (sup of the)
pointwise differences between the functions is below the dashed line.

We now examine how the metrics dE and du reflect the structure of Dσf and Dσg as σ increases. To
this end, we consider the matrices of the pairwise distance matrices between merge trees for each Dσ,
both in terms of dE and du. For each value of σ, we then construct the corresponding agglomerative
clustering dendrograms using average and complete linkage criteria, and cut each dendrogram to obtain
two clusters. We then evaluate the results turning the clustering problem into a classification problem,
where the true labels are given by the data generating models (i.e., Dσf or Dσg ). In a cross validation
(leave-one-out) fashion, each sample is first assigned to a cluster, and then predicted a label, depending
on the majority of the true labels of the other elements in the cluster. We then compute the accuracy of
these predicted labels. The results are shown in Table 3.
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(a) Lines resulting from the interpolation of the medians of the distances between the merge trees of the smooth functions
(i.e., f and g) and the merge trees obtained from their noisy observations (contained in, respectively, Dσf and Dσg ), for
different values of σ. For each value of σ, we report also the sup of the difference between the smooth functions and the
noisy observations (extended on [0, 1]). The dashed line represents the line (σ, 6σ), plotted for reference. For each σ, the
vertical bars represent the boxplots of the data. For bigger values of σ, we clearly see that dE (“Edit”) explodes, while du

(“Interleaving”) is controlled by the difference between the functions.

(b) Matrices of pairwise distances between merge trees obtained from the functions in Dσ, for σ = 15, computed with dI

(left) and dE (right). Elements in Dσ have been ordered to that Dσf comes before Dσg .

Figure 7. Additional plots related to the simulated scenario presented in Section 7.2.
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Table 3. The leave-one-out accuracies of the simulation described in Section 7.2: as a
function of the magnitude of the noise, σ, we have built a classification pipeline based on
a hierarchical clustering algorithm, employing average and complete linkages. Even with
abundant noise, the performance of dE is comparable, if not superior, to the one of dI . The
only exception to that being σ = 25, with complete linkage.

Average linkage Complete linkage
dE du dE du

σ = 0.1 0.93 1 1 0.93
σ = 1 1 1 1 0.93
σ = 10 0.92 0.97 0.97 0.92
σ = 15 0.93 0.92 0.92 0.73
σ = 25 0.52 0.52 0.53 0.61

While no unstable behaviors of du have been observed, the uncertainty regarding the estimates of dI

provided by du behaves as follows:

• For σ = 0.1: for the computations regarding the distances between the noisy and the smooth
trees the relative discrepancy ∆ (see Eq (7.1)) is less than 2.5 · 10−15 for 95% of the computations.
Meanwhile, when comparing different noisy trees, we obtain a ∆ of less than 3 · 10−8 for 95% of
the computations;

• For σ = 1: for the computations regarding the distances between the noisy and the smooth trees,
∆ is less than 2.9 ·10−9 for 95% of the computations. Meanwhile, when comparing different noisy
trees, we obtain a ∆ of less than 1.3 · 10−3 for 95% of the computations, whereas 90% of the
computations exhibit a relative error of less than 1.8 · 10−08;

• For σ = 10: for the distances between the noisy and the smooth trees, ∆ is less than 4.1 · 10−8

for 95% of the computations. Meanwhile, when comparing different noisy trees, we obtain a ∆ of
less than 0.05 for 90% of the computations and less than 0.008 for 85% of the computations;

• For σ = 15: for the distances between the noisy and the smooth trees, ∆ is less than 6 · 10−8 for
90% of the computations. Meanwhile, when comparing different noisy trees, we obtain a ∆ of
less than 0.1 for 90% of the computations and less than 0.02 for 80% of the computations;

• For σ = 25: for the distances between the noisy and the smooth trees, ∆ is less than 0.09 for 90%
of the computations. Meanwhile, when comparing different noisy trees, we obtain a ∆ of less than
0.12 for 90% of the computations and less than 0.05 for 80% of the computations.

As a consequence of the above, in the considered simulated scenarios, we obtained solid estimates
of dI , strengthening the conclusions that can be drawn from these simulations.

In Table 3, it is evident that, despite dE being more affected by noise (as shown by Figure 7(a)), it
is still comparable or even better at distinguishing between Dσf and Dσg than du, also for high values of
σ. The only exception to that being σ = 25, with complete linkage, where dI outperforms dE by 8%
accuracy. However, with the same linkage and σ = 15, dE heavily outperforms dI .

This is a clear example of what discussed in Section 6: the sensitivity of dE, i.e., how much dE

can separate the samples in Dσf from the ones in Dσg , is very often enough to overcome the corruption
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introduced by noise when generating samples. On the other hand, du is predictably less corrupted
by the presence of noise, but the underlying trade-off between stability and sensitivity makes it less
powerful in discriminating between data. Thus, even in these hand-crafted circumstances, we see that
considering universal metrics it not a “one-size-fits-all” solution to a data analysis problem.

7.3. Benchmark case studies

Now, we compare dI and dE on some benchmark functional datasets, tackling some classification
and regression problems.

The datasets we considered are suitable for our purposes for three main reasons: 1) they are freely
available and easily accessible, 2) for most datasets, the functions are defined on the same domain, and
so we can check the stability of du, and 3) they provide a relevant testing ground, despite not always
being specifically chosen for their suitability to TDA techniques.

Most of our pipelines, the only exception being the “Aneurisk65” dataset, follows these steps: we
compute merge trees, derive pairwise distances with du and dE, and embed the resulting metric spaces
into Euclidean spaces using Isomap [2]. Depending on the data analysis task, we then apply either
quadratic discriminant analysis (QDA) or linear regression to the embedded vectors. The “Aneurisk65”
dataset differs in that each statistical unit consists of a bivariate vector of functions, resulting in two
merge trees per unit. To incorporate this additional structure, we merge the information from the
respective distance matrices into a single final distance matrix, which is then processed using Isomap
and QDA. Further details on this procedure are provided in the following.

Since all functions in each dataset are evaluated on the same grid, we also implement baseline
pipelines by reducing the dimension of the functions’ vectors via principal component analysis (PCA)
and applying QDA or linear regression directly to the resulting vectors. The baseline results for the
“Aneurisk65” dataset, instead, are taken from [44].

The Isomap parameters, embedding dimension and neighborhood size — and the dimension of
the PCA, for the baseline pipelines, are selected via leave-one-out cross-validation, optimizing for
classification accuracy or mean squared error in regression.

The datasets, and the corresponding data analysis problems, we consider are the following:

• The “Octane” dataset [20] consists of near-infrared spectra of gasoline samples, measured at
wavelengths from 1102 nm to 1552 nm in 2 nm increments. It includes six outlier samples
containing added ethanol, as required by certain regulations. Our goal is to develop a classifier
for outlier detection. As shown in Figure 8(a), there is a clear separation between the outliers and
the rest of the data. Consistently, Table 4 demonstrates that all the models we tested successfully
accomplished this task;

• The “NOx” dataset [22] contains hourly measurements of daily nitrogen oxides (NOx) emissions
in the Barcelona area. Since NOx contributes to ozone formation and global warming, identifying
days with abnormally high emissions is crucial for implementing control measures, as these
emissions primarily stem from motor vehicles and industrial combustion processes. The data
is labeled based on whether the emission curve was recorded on a weekday or a weekend, and our
goal is to reconstruct this labeling through supervised classification. As shown in Figure 8(b), this
classification task is more challenging than the previous one. Nevertheless, Table 4 demonstrates
that our pipelines achieve very high cross-validation accuracy, with dE outperforming dI;

AIMS Mathematics Volume 10, Issue 7, 17179–17231.



17207

(a) The “Octane” dataset. The red functions represent
the outliers with the addition of ethanol. By visual
inspection we can see that the two classes are nicely
clustered and distinguishable.

(b) The “NOx” dataset. By visual inspection we see
that working and non-working days follow different
dynamics, especially regarding the morning peak.
This also explains why, as shown by Table 4, merge
trees work better than the vanilla model.

(c) The “Growth” dataset. Differences in the growth
dynamics between boys and girls are visible, and
partially related to the different biological clocks
between males and females. Despite that, merge trees
achieve good performances in distinguishing between
the two classes.

(d) The derivatives of the functions in the
“Tecator” dataset. The oscillatory patterns of
the curves differ between the high fat and low
fat classes, which is coherent with the merge
trees models having very high accuracy in the
classification task.

Figure 8. Plots related to the case studies presented in Section 7.3.

• The “Growth” dataset [50], also known as “The Berkeley Growth Study”, is widely used in
functional data analysis. It contains height measurements (in cm) for 54 girls and 39 boys,
recorded between ages 1 and 18. This dataset has been extensively studied, including research
focused on aligning and re-parameterizing growth curves to account for individual differences
in biological timing, thereby enabling clearer identification of growth patterns (see [51] and

AIMS Mathematics Volume 10, Issue 7, 17179–17231.



17208

references therein). A common approach is to analyze the first derivative of the growth curves to
distinguish growth dynamics between boys and girls. Following this, we smooth the measured
curves using a kernel smoother with a bandwidth of 3 (and with the same kernel employed in
[39]), compute numerical derivatives, and apply classification techniques to discriminate between
the two groups. As shown in Table 4, all models achieve good performances on this task, with dE

outperforming dI;

• The “Tecator” dataset (https://lib.stat.cmu.edu/datasets/tecator) consists of
publicly available measurements collected using the “Tecator Infratec Food and Feed Analyzer”,
which operates in the 850–1050 nm wavelength range based on the near-infrared transmission
principle. Each sample represents a curve extracted from meat with varying moisture, fat, and
protein content, allowing for a range of data analysis applications. Building on the derivatives of
these curves, we explore both a classification and a regression problem, as in [24]:

1) Classifying meat samples into high fat (fat content > 20) and low fat (fat content ≤ 20);

2) Predicting fat content using linear regression based on the absorbance curves.

The dataset includes 215 observations, with 77 high-fat and 138 low-fat samples. Table 4 reports
the leave-one-out accuracy for classification models and the mean squared error. The results
show that the merge tree approach (both with dI and dE) slightly outperforms the baseline model
in classification (with dE outperforming dI), while both dE and the baseline models do better than
dI in terms of mean squared error (MSE) in the regression problem;

• The final case study addresses a classification problem using the “Aneurisk65” dataset [44],
previously analyzed in [39]. This dataset, generated by the AneuRisk Project (https:
//statistics.mox.polimi.it/aneurisk), investigates the relationship between internal
carotid artery (ICA) morphology and cerebral aneurysm occurrence. It consists of 3D
angiographic images from 65 patients, from which ICA centerlines and radius values were
extracted [43], see Figure 9. Given its complexity, the “Aneurisk65” dataset serves as a benchmark
for functional data analysis methods requiring alignment and re-parametrization (see Electronic
Journal of Statistics, 2014, Vol. 8). Following [39, 44], we address the classification problem
of predicting aneurysm location, or its absence, based on ICA curvature and radius. Patients
are grouped as Upper (U) (aneurysm at/after the ICA’s terminal bifurcation), Lower (L) (before
bifurcation), or None (N) (no aneurysm). We classify L & N vs. U. The data used for this task
consists of a bivariate vector of functions: a function describing the radius of the ICA along the
centerline, and a function describing the curvature of the centerline. Following [39], we modify
the pipeline followed for the other datasets in order to merge the information given by the two
functional covariates:

1) As in [39], we denoise the functions using kernel smoothers;

2) For each patient we extract a merge tree from the (smoothed) curvature and one from the
(smoothed) radius function;

3) Separately for radius and curvature, we compute the pairwise distance matrices using du (as
the results for dE are already contained in [39]);
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4) We merge the information from the curvature and radius functions by producing a new matrix
using the formula d2

mixed = d2
curvature+d2

radius, where dcurvature and dradius are the pairwise distance
matrices of the merge trees derived from curvature and radius functions, respectively;

5) We use dmixed as input for the same pipeline employed in the previous scenarios: Isomap
Embedding and QDA.

Figure 9. Patient 1 in the AneuRisk65 dataset; on the left, the ICA of the patient is colored
according to the radius value, in the middle we see the associated radius function, and on
the right we report the associated merge tree. Patient 1 belongs to the Lower group (L). The
merge tree has been truncated at a height equal to the maximum of the function.

Table 4 shows that merge trees, with dE, outperform the functional pipeline developed in [44], while
the results with du don’t improve on the baseline results.

Table 4. Results of the classification and regression problems considered in Section 7.3. Each
column deals with a different task, with the first four columns representing the classification
problems and the rightmost one being the regression problem. Each row contains the leave-
one-out accuracy or leave-one-out MSE of the best performing model obtained with dE, du, or
the baseline models. For du and dE, we also report the parameters of the Isomap embedding,
(dim, neigh), which is used in the respective models, while for the Baseline models we report
the PCA dimension. Parameters were selected to maximize accuracy or to minimize MSE
using leave-one-out cross-validation.

Results
Octane NOx Growth Tecator Aneurisk65 Tecator (MSE)

dE 1 0.89 0.88 > 0.99 0.85 6.22
du 1 0.86 0.87 0.98 0.8 11.41
Baseline 1 0.94 0.93 0.97 0.82 6.14

Optimal parameters
Octane NOx Growth Tecator Aneurisk65 Tecator (MSE)

dE (2, 11) (6, 17) (8, 53) (10, 165) (7, 14) (36, 212)
du (2, 8) (4, 5) (10, 8) (10, 181) (8, 13) (56, 210)
Baseline 2 6 2 4 − 32
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In almost all the considered datasets, the computation of du gives a very solid estimate of dI , with
∆ being less than 0.008 for 95% of the computed distances in each dataset. The only exception is the
“Aneurisk65” dataset, for which the ∆s associated to the curvature functions do not exceed 0.002 for
95% of the distances, while for the radius functional covariate, 75% of the distances exhibits values
of ∆ lower than 0.01, and 70% has values of ∆ lower than 10−7. Of course, this does not imply that,
in the remaining cases, the distances computed with du for the radius functions are necessarily far
from dI , as ∆ only provides an upper bound for such error. Nevertheless, to strengthen our results, we
also repeated the pipeline used for the “Aneurisk65” dataset replacing du first with dl and then with
(du + dl)/2, obtaining, respectively, a leave-one-out accuracy of 0.77% and 0.78%. We did observe, for
the “Tecator” dataset, 7 instances of du exceeding ∥ · ∥∞. Since the values by which du exceeded ∥ · ∥∞
were always below 10−8, we believe it is due to numerical errors. Thus, we can conclude by saying
that dE systematically outperformed dI in our case studies.

8. Conclusions

With the present manuscript, we propose a novel edit distance for merge trees, which provides both
theoretical soundness and practical applicability. By discussing its stability properties and comparing
it with existing metrics, we have highlighted its potential advantages in real-world data scenarios. One
key observation is that while universal metrics like the interleaving distance offer strong theoretical
guarantees, they may not always provide the best discriminatory power for data analysis tasks. In
contrast, our edit distance effectively captures fine-grained structural variations, making it a valuable
tool in applications. As for all metrics between unlabeled trees, computational efficiency remains
an important consideration: while we prove that we can borrow polynomial time upper bounds and
heuristic approaches to optimize the computation of our metric, we leave this investigation, and the
resulting considerations about the scalability of our approach, to future works.

To enhance the utility of the metric data analysis scenarios, we also plan to investigate the following
topics:

• Developing consistent estimators for merge trees, w.r.t. dE, extending the work of [39], allowing
more general data and models;

• Study the existence and approximation of Frechét means of sets of trees, which are a diffused and
powerful statistics used for non-Euclidean data;

• Develop local linearizations of the tree-space to enable the use of more refined statistical and
machine learning techniques.

Lastly, we also wish that the stability-sensitivity trade-off of metrics between topological summaries
can become a more active topic of discussion in TDA. This would help in finally bridging the gap
between practical considerations of data analysts and the abstract focus of methodological research,
pushing forward the boundaries of TDA in a rigorous and effective way.

Use of Generative-AI tools declaration

AI language tools have been used to streamline the language of some paragraphs.
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consider separately the different metrics we compare dE against; plus, at the end, we consider some
topics which are common to all/most of the different comparisons. We avoid a comparison with [48]
as the goal of such metric is comparing subtrees of merge trees, and so it behaves very differently from
all other distances.

A.1. Editing a merge tree

Before commencing the comparisons, we devote this subsection to exploring, with some easy
examples, the definitions and results given in Sections 4.1 and 4.2. This should help the reader also in
following the upcoming discussion.

First note that, by construction, TrK((T, hT )), for K big enough, is a representation of the merge tree
(T, hT ) coherent with the metric dE and, thus, can be used also to visually compare two merge trees.
We can then consider a merge tree (T, hT ) and edit (T,wT ) according to the rules in Section 3.1: via
shrinking, deletions, and ghosting of vertices and the inverse operations. We look at the results of the
edits in light of the merge tree (TrK)−1((T,wT )).

Let (T, hT ) = M(π0(X· )) and consider an edge e = (v, v′) ∈ ET , with t = hT (v) and t′ = hT (v′).
Since the height of the root is fixed and equal to K, shrinking e reducing its weight by some value ε > 0
(with ε < wT (e)) amounts to “moving upward” subT (v′) by ε, that is, changing hT (v′′) 7→ hT (v′′) + ε,
as in Figure 1(c)→Figure 1(d) or in Figure 12(a) and Figure 12(c) (left). Having ε > wT (e) means
deleting e. Similarly, increasing wT (e) by ε amounts to lowering subT (v′) by ε, as in Figure 1(f), with
the insertion of the red internal vertex. Consider now the splitting of the edge e into e1 = (v, v′′) and
e2 = (v′′, v′), with T ′ being the novel tree structure and wT ′(e1) = ε1 and wT ′(e2) = ε2 - as for any of the
yellow vertices in Figure 1(e). We must have εi > 0 and wT (e) = ε1 + ε2. This clearly induces a well
defined height function hT ′(v′′). The merge tree (T ′,wT ′) differs from (T,wT ) by the degree two vertex
v′′, while the height function on VT ′ − {v′′} is still the same. Also, accordingly, the associated AMTs
are the same π0(X· ) = F ((T, hT )) � F ((T ′, hT ′)) (with F being as in Proposition 4). Thus, we have
changed the graph structure of T without changing the topological information it represents.

Remark 5. In light of this paragraph, it would be natural to try to define a family of metrics indexed
by integers p ≥ 1 by saying that the costs of an edit path the p-th root of sum of the costs of the edit
operations to the p-th power. However, now we can easily see that for any p > 1 this has no hope of
being a meaningful pseudo metric for weighted trees. In fact, consider the case of a weighted tree made
by two vertices and one edge with weight 1. The cost of shrinking the p-metric would be ∥ 1 ∥p= 1.
At the same time, one can split it in half with 0 cost, and the cost of shrinking this other tree would be
∥ (1/2, 1/2) ∥p< 1. Splitting the segment again and again will make its shrinking cost go to 0. In other
words, all weighted trees, if considered up to degree 2 vertices, would be at distance zero from the tree
with no branches.

A.2. A deformation-based edit distance for merge trees [53]

As mentioned in the main body of the manuscript, the approach of [53] shares some similarities
with ours. We have also highlighted that the metric between weighted trees which we employ to define
dE appeared in even earlier preprints [35].

The metric in [53] is an edit distance built with deletions and insertions, which also requires that
any time we obtain a degree 2 vertex via some deletions, that vertex is removed from the tree with
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a ghosting-like procedure. Despite these similarities, there are also important differences between
the metrics: there are subtle differences between the edit operations, and there are more profound
differences in the definition of merge trees. More in details:

1) [53] doesn’t explicitly model mathematically the ghosting of a degree 2 vertex or the splitting of
an edge at any point during the edit sequence. This, in particular, implies that an edit sequence
according to [53] is also an edit sequence according to our definition, but the vice versa in general
does not hold. However, Lemma 1 also implies that for every edit path with our edit operations,
there is an edit path according to [53] with the same cost;

2) The metric defined in [53] is applied on weighted trees which are obtained by truncating the edge
at infinity of (our) merge trees at the maximum of the associated function and then attaching
weights to edges by taking differences between the heights of the extremes. These objects are
therein called abstract merge trees; see Definition 1 in [53]. Our definition of merge trees, with
the edge at infinity, is more in line with the TDA perspective of indexing sublevel sets filtrations
on R (which, for instance, causes points in persistence diagrams to have death time equal to +∞),
while the definition in [53] is more in line with the computer vision community.

We bridge between the two definitions of merge trees with the following proposition, in which we
put ourselves in the set of hypotheses considered in [53] and consider merge trees according to the
definition therein contained, which will be called G1 and G2, and our merge trees, which will be called
T1 and T2.

Proposition 7. Consider f1, f2 : X → R to be Morse functions defined on X, a compact manifold with
boundary. Let (T1, hT1), (T2, hT2) be the merge trees obtained according to our definition (see Section 5),
and let (G1,wG1), (G2,wG2) be the weighted trees obtained truncating Ti at max fi, for i = 1, 2, and
considering the difference in heights between the extremes of each edge. The following holds:

| dE(T1,T2) − dE(G1,G2) |=| max f1 −max f2 | .

Moreover, we have:
dE(G1,G2) ≤ 2(size(T1) + size(T2)) ∥ f1 − f2 ∥∞ . (A.1)

Proof. We have already seen that for any couple of weighted trees we can always choose an edit path
suitable for the edit operations in [53]. Moreover, by [53], we know that, in the considered setting, the
roots of G1 and the root of G2 have only one child.

Without loss of generality, suppose max f1 ≤ max f2. Let G′1 be the weighted tree obtained
truncating T1 at height max f2. Note that dE(T1,T2) = dE(G′1,G2).

Set K = max f2 −max f1. We know that the tree structures of G1 and G′1 are isomorphic. Moreover,
we have that the weight functions of G1 and G′1 coincide on all edges apart from the edge that goes into
the root. Te difference between the weights of such edge in G1 and G′1 is exactly K.

Thus, we can take any edit path from G1 to G2 and, via the tree structure isomorphism of G1 and
G′1, it will induce an edit path from G′1 to G2. Vice versa, using the inverse of such isomorphism, we
can take any edit path from G′1 to G2 and induce an edit path from G1 to G2.

Since all the weights of the edges stay the same, a part from the one that goes into the root, the cost
of any edit path changes exactly either by +K or −K, when replacing G1 with G′1, and when replacing
G′1 with G1. Since dE(G′1,G2) = dE(T1,T2), we have the thesis.
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For the second part of the proof, we consider a mapping M between G′1 and G2 obtained as in
the proof of Theorem 2 (see [39]). Then, we induce, via the isomorphism of G′1 and G1, a mapping
between G1 and G2. Via the sections “Results on Internal Vertices” and “Internal Vertices” in the proof
of Theorem 2, we know that every couple (v,w) ∈ M satisfies the following. Let v′ be the parent of v
after the deletions to be done on G1 and let w′ be the parent of w after the deletions to be done on G2.
We always have:

| hT1(v) − hT2(w) |≤∥ f1 − f2 ∥∞;

and, unless v′ and w′ are the roots of the trees, we have:

| hT1(v
′) − hT2(w

′) |≤∥ f1 − f2 ∥∞ .

In particular, this implies that if v′ and w′ are the roots of the trees, the cost of shrinking (v, v′) onto
(w,w′), when editing G′1 to obtain G2, is at most ∥ f1 − f2 ∥∞, as v′ and w′ are both set at a height equal
to max f2 via the truncation process.

In the induced edit path from G1 to G2, this shrinking will cost:

| (max f1 − hT1(v)) − (max f2 − hT2(w)) |≤ 2 ∥ f1 − f2 ∥∞ .

Since the cost of the other edits is unchanged, we obtain the thesis. □

These facts have the following consequences, which are also exemplified in Figures 10 and 11:

1) The metric defined in [53] is completely insensitive to vertical translation, that is, it is not able to
distinguish between the merge tree of f and the merge tree of f + h, for any h ∈ R. In particular,
Theorem 3 does not hold for this metric;

2) We believe that explicitly modeling degree 2 vertices removal and addition is fundamental to
study the geometric and topological properties of the space of merge trees, and to design data
analysis tools, like means and embeddings in linear spaces. See Figure 11.
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(a) (b) (c)

(d) (e) (f)

Figure 10. In this figure, we showcase the differences between our metric and the one
defined in [53]. In Figure 10(a), we see tree functions f , g, h defined on a compact interval.
In Figure 10(b), we see their associated merge trees according to our definition, while in
Figure 10(c), we see the weighted trees used by [53] to compute the metric therein defined.
Figures 10(d)–(f) compare the two approaches for extracting merge trees from each function
separately. Figure 10(b) highlights that dE cannot distinguish between Tg and Tg as, in
fact, those two functions have the shame “shape” topologically (their abstract merge trees
as defined in Section 5 are isomorphic, i.e., the interleaving distance between them is zero;
this also implies that their persistence diagrams are the same). Meanwhile, [53] separates
those functions as their maxima are very different. On the other hand, the approach in [53]
cannot distinguish between G f and Gh, as the translation factor of 9 - h(x) = f (x) + 9 - is
completely lost when the weights associated to the edges are obtained. Instead, dE and dI

are able to separate between such merge trees. In particular, Theorem 3 does not hold for the
metric in [53].
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Figure 11. In this figure, we show the potential of explicitly modeling the addition and
removal of degree 2 vertices. Consider the weighted trees T0, T1, and T2 represented in the
figure. Let M0,i, with i = 1, 2 be two mappings M0,i defined, respectively, by the matchings
given by the straight arrows (via the usual edge-vertex identification). M0,1 is then completed
by the deletion of a3 and the ghosting of its parent. Similarly, M0,2 is then completed by the
deletion of a2 and the ghosting of its parent. Suppose now that we split T1 and T2 by inserting
the yellow vertices, resulting in the edges with yellow labels and the weighted trees T ′1 and
T ′2. At this point, we would be able to match b1 with a1 and b2 with a2 without raising the cost
of M0,1, and, similarly, to match c1 with a1 and c2 with a3 without raising the cost of M0,2.
Thus, we “refined” our weighted trees and obtained mappings as expensive as the starting
ones, but which involve only deletions and shrinkings, which are the operations giving the
classical edit distance. Such distance is much more regular compared to dE (and to the one
defined in [53]). For instance, with the identifications a1 ∼ b1 ∼ c1, a2 ∼ b2, and a3 ∼ c2, we
can represent T0 with the vector v0 = (3, 3, 2), T ′1 with the vector v1 = (4, 4, 0), and T ′2 with
the vector v0 = (2, 0, 2), and the mappings we described between those trees are straight lines
in R3 with ∥ · ∥1. This cannot be done with the edits in [53].

To conclude this section we point out again that the relationship between the deformation based
distance and dE proven in Proposition 7 enables the use of computational methods developed by the
same authors [55] to speed up the computations for dE .

A.3. Edit distance between merge trees [47] and Wasserstein distance [40]

The edit distance in [47] is similar to classical edit distances, with the edit operations being restricted
to insertion and deletion of vertices and with a relabeling operation which is equivalent to our shrinking
operation. There is, however, the caveat that vertices are in fact understood as persistence pairs (m, s),
with m being the leaf representing the local minimum giving birth to the component, and s the internal
vertex representing the saddle point where the components merge with an earlier born component,
and, thus, dies according to the elder rule. There is, therefore, a one-to-one correspondence between
persistence pairs in the merge tree and in the associated persistence diagram.

Editing a vertex m implies editing also its saddle point s: deleting (m, s) means deleting all vertices
m′ such that their persistence pair (m′, s′) satisfies s′ < s. If then s becomes of degree 2, it is removed.
In particular, the authors highlight the impossibility to make any deletion, with the word “deletion” to
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be understood according to our notation, on internal vertices, without deleting a portion of the subtree
of the vertex. So, they cannot delete and then insert edges to swap parent-children relationships. To
mitigate the effects of such an issue, they remove in a bottom-up fashion, as a preprocessing step, all
saddles s ∈ VT such that wT ((s, s′)) < ε for a certain positive threshold ε. All persistence pairs of the
form (m, s) are turned into (m, s′). Such issue is further discussed in Appendix A.6.

Two merge trees are then matched via mappings representing these edit operations. To speed up
the computations, the set of mappings between the trees is constrained so that disjoint subtrees are
matched with disjoint subtrees. The cost of the edit operation on an edit pair (m, s) is equal to the
edit operation being applied on the corresponding points in the associated PDs with the 1-Wasserstein
distance: deleting a persistence pair has the cost of matching the corresponding point to the diagonal,
and relabeling a persistence pair with another in the second tree has the cost of matching the two points
across the two diagrams; see [47, Section 4.3.1].

A closely related metric between merge trees is the Wasserstein distance defined in [40], which
extends the metric by [47] also producing further analyses on the resulting metric space of merge
trees by addressing the problem of barycenters and geodesics. In this work, the authors rely on a
particular branch decomposition of a merge tree, as defined in [54], from which they induce the branch
decomposition tree (BDT [40], Section 2.3) used to encode the hierarchical relationships between
persistence pairs. A branch decomposition is roughly a partition of the graph T of a merge tree
(T, hT ) via ordered sequences of adjacent vertices [54]. The chosen branch decomposition is the
one induced by the elder rule and persistence pairs. Edit operations on such BDTs entail improved
matchings and deletions between persistence pairs. To obtain the (squared) 2-Wasserstein distance, the
vertices of two BDTs are matched and the resulting costs are squared and then added. However, the
authors then explain that, with this first definition, geodesics cannot by found via linear interpolation
of persistence pairs for the hierarchical structure of the merge tree can be broken. To mitigate that,
they employ a normalization which shrinks all the branches on [0, 1], irrespective of their original
persistence [40, Section 4.2], leading to simple geodesics obtained with linear interpolation between
persistence pairs. To mitigate for this invasive procedure, they introduce yet another preprocessing
step, artificially modifying small persistence features to reduce the normalization effects.

Some of the limitations of this approach are listed in [40, Section 7.3]. Also, [54, Section 3.3]
adds on that with further details and examples. Namely, the restricted space of possible matchings
between trees, which is key to obtain the computational performances of the metrics, forces unstable
behaviors: issues with saddle swaps (see [40, Section 4.4 and Figure 10]) and instability of persistence
pairs, so that elder ruled-based matchings may force very high persistence features to be matched with
other very high persistence features, even in situations where this implies making many unreasonable
changes in the tree structures as in Figure 13(f), (see also [54, Figure 1, Figure 2(b), and Section 3.3],
and [40, Section 7.3]). Moreover, [40] does not address the interactions between the normalization and
the two preprocessing steps.

A.4. Branch decomposition-independent edit distances for merge trees [54]

The work [54] starts from the shortcomings of [40,47] trying to overcome them. Namely, it defines
branch decompositions (the persistence pairs of [47], induced one such branch decomposition), and
in order to avoid issues related with the instability of the persistence pairs, [54] introduces also the
possibility to optimize the chosen branch decomposition. The only big issue with such approach is
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that it does not define a metric on the space of merge trees, for the triangle inequality is not satisfied;
see [54, Theorem 2 and Figure 3].

A.5. Heights vs weights

In this section, we try to better understand the different behavior of dE when compared to the
persistence-based metrics presented in the previous sections. The basic idea is that wT encodes the
reciprocal positions of the merging points, instead of having the persistence pairs being free to move
independently, at least locally, inside a constrained space.

Using dB(PD(T ), PD(G)) ≤ dI(T,G) [4] and Theorem 3, one obtains:

W1(PD(T ), PD(G)) ≤ (dim(T ) + dim(G))dE(T,G),

with PD(T ) being the persistence diagram associated to the merge tree T . As we will see shortly, this
bound cannot be improved. It is thus evident that working with weights wT (e) instead of persistence
pairs, as PDs do, creates differences in how the variability between trees is captured by these two
metrics, despite the similarity in their stability properties.

Take, for instance, the merge trees in Figure 3(b): the persistence pairs are (c, v) and (d, rT ). The
pairs of the rightmost tree instead are (c′, v′), (e′, f ′), and (d′, rT ′). Deleting (e′, f ′), according to [40,
47, 54], amounts to deleting e′ according to our framework. Instead, shrinking (v, rT ) on (v′, rT ′), after
the deletion of (e′, f ′), for us means lengthening (v, rT ) by t2 − t′2, and so lowering v and all the vertices
below v by the same amount, as in Figure 12(a). On the other hand, matching the persistence pair (c, v)
with (c′, v′) for [40, 47] is equivalent to shifting the edge (c, v) downward toward (c′, v′), leaving all
other vertices fixed, as in Figure 12(b). We can compare the results of such edits in Figure 12(c).

Thus, given a persistence pair (m, s) inside a merge tree, corresponding to the point (b, d) inside the
persistence diagram, moving s upward by some ε > 0 such that hT (s) + ε < hT (s′) costs ε in terms of
the other edit distances, of the interleaving distance and in terms of the 1-Wasserstein distance between
PDs and leaves all other points with the same height. In terms of the edit distance dE, instead, moving
s upward by ε > 0 shortens the edge above s, keeping all other edges of a fixed length and, thus, moves
the vertices upward by ε.

We can interpret this fact as the metrics in [4, 40, 47] better capturing similarities between trees via
the location of their vertices in terms of heights; while dE better captures the “shape” of the tree, i.e.,
relative positions of its vertices, being less sensible on the height variability since you can move more
vertices at one. This is exactly what happens in the example f : I → R and g(x) = f (x) + h, h ∈ R, as
in Figure 12, we have W1(PD(T ), PD(G)) = dE(T,T ′)(dim(T ) + dim(G)).
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(a) Two merge trees T (left) and T ′ (right). We first delete
(e′, f ′) and then edit T with the shrinking defined by (v, v′).

(b) The same merge trees as in Figure 12(a), with some
edges drawn at different angles for visualization purposes.
We edit T matching the persistence pair (c, v) with (c′, v′)
according to [40, 47].

(c) The results of the edits applied on T in Figure 12(a) (left)
and in Figure 12(a) (right).

Figure 12. A comparison between the weight based edits on which is based dE and the
persistence based edits in [40, 47].

A.6. Stability vs preprocessing

As already mentioned, the metrics in [40, 47] lack stability properties, which means that there are
certain situations in which such metrics may perceive as very far trees which are in fact very close in
terms of interleaving distance. In particular, they are unable to model “saddle swaps”, that is, with our
terminology, deleting and inserting internal vertices to change parent-children relationships. As noted
also by the authors themselves, this issue needs to be addressed in some way. As already mentioned,
to do so, the authors resort to a computational solution implemented as a preprocessing step: they fix
a threshold ε > 0 for any couple of persistence pairs (m, s) and (m′, s′) with s′ > s and s′ − s < ε, and
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they change (m, s) into (m, s′), merging the two saddle points in a bottom-up recursive fashion.
In this section, we produce a brief investigation of such procedure, which is absent in the

aforementioned works. We represent the possible outcomes of this preprocessing in Figure 13. All
merge trees in Figure 13 are drawn with colors representing persistence pairs, and similar colors
yields persistence pairs with the same persistence throughout the whole figure. They ideally should
be matched by the metrics to achieve optimal distances, as the differences between edges of different
colors could be arbitrary big.

In Figure 13(a) (left), we suppose that the edges marked with a red cross represent distances between
saddles smaller or equal than ε > 0. Thus, we recursively merge each saddle point with the higher one,
starting from the bottom and going upward. In this way, we obtain the merge tree T ′ in Figure 13(a)
(right) which is then used as input for the metric.

In Figure 13(b), we see two merge trees T and G such that their interleaving distance is ε + ε′, for
we need to move points of T upward by ε+ ε′ to match persistence pairs of the same color in G. Their
edit distance dE would be 3(ε+ ε′), for we need to delete and then insert back three small edges in T to
swap parent-children relationships in a suitable way. Note that one can replicate analogous situations
to make the interleaving distance between the two merge trees arbitrarily big: informally speaking, it
is enough to add other persistence pairs as needed and force matchings between pairs in very “different
positions”.

In Figure 13(c), we see a possible output of the preprocessing routine. If the preprocessing threshold
is bigger than ε and ε′, then the pre-processed trees T ′ and G′ are equal. This, in some sense, is the
desired output of the authors of [40, 47] as, now, their metric can match persistence pairs according to
their colors. They suggest that such loss of variability, d(T ′,G′) = 0 even if T /2 G, could be mitigated
by adding to the distance between the preprocessed trees the fixed threshold as many times as there are
saddles merging in the procedure. Note that, even if this artificial addition approximately matches the
variability removed from the pairs attached to the orange vertical pair, it introduces artificial variability
at the level of the branches attached to the brown edge, as they do not need any modification to be
matched correctly.

In Figure 13(d), instead, we suppose that the preprocessing threshold is smaller than ε and ε′. The
metrics then are forced to match persistence pairs with different colors, causing an excess of variability
which is pictured with red edges in the figure. We point out that, depending on the weights of the
persistence pairs involved, these edges could be of arbitrary length.

In Figure 13(e), we represent the last possible output of the preprocessing procedure, which is a
situation in which the threshold we fix is greater than ε′ but smaller then ε. This is possibly the worst
scenario: pairs are matched in an optimal way, but we have introduced a lot of artificial variability,
represented with red edges, in G. Again, because of additive phenomena caused by recursive saddle
merging, these edges can be arbitrarily long.

We stress that the preprocessing does not fix the issues presented in Figure 13(f), [54, Figure 1,
Figure 2(b), and Section 3.3], and [40, Section 7.3].
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(a) A merge tree T (left) with its pre-
processed version (right) according to the
procedure in [40, 47].

(b) Two merge trees T and G which
are going to be preprocessed as in
Appendix A.6.

(c) A possible output of the preprocessing:
the preprocessing threshold is bigger than ε
and ε′.

(d) Another possible output of the
preprocessing: the preprocessing threshold
is smaller than ε and ε′.

(e) The last possible output of the
preprocessing: the preprocessing threshold
is smaller than ε but bigger than ε′.

(f) Metrics based on persistence pairs may
delete the pairs with the red cross and points
according to the remaining colors instead of
following the green arrows.

Figure 13. Plots related to Appendix A.6.

To conclude, we point out the following fact. We deem fundamental to have metrics being
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able to measure different kinds of variability in a dataset, especially if the information captured is
interpretable. However, any attempt to adapt our edit distance dE to work with heights instead of
weights would face the problem of coherently defining deletion edits. While it seems reasonable to
have wT ((v, v′)) as a cost to delete and edge, for instance, this cost amounts to the persistence of the
feature if (v, v′) is a persistence pair, any change in the height of v′ changes the weight of (v, v′) and,
thus, the cost of its deletion, invalidating all the results about mappings in [37] and the algorithm
therein. Similarly, adapting [40, 47] to handle saddle swaps would mean at least removing from their
mappings the property that would be (M3) in our notation, creating many issues from the theoretical
and computational point of view. In fact, internal edges are not really available in the representation
used by such metrics, where all points are instead understood as part of a persistence pair.

B. Proofs

Proof of Proposition 2:
Consider a minimizing mapping M ∈ M2(G,G′).
Apply the deletions and ghostings described by M both on G and on G′ obtaining, respectively, the

merge trees GM and G′M. Note that, since M ∈ M2(G,G′), if v′ is coupled with another edge by M,
then v must be deleted, otherwise, v′ would be of degree 2 after the deletions, and, thus, it should be
ghosted. Similarly, if v′ is deleted then v must be deleted as well as: otherwise, v′ would be of degree
2 after all the other deletions, and, thus, it cannot be deleted by M. The same, of course, applies to w′

and w.
Let wT ′(v′) = n′, wT ′(v) = n, wG′(w′) = m′, and wG′(w) = m. By construction, n′ = m′ and, thus,

the cost of the couple (v′,w′), if it can be added a mapping, is zero. Since M ∈ M2(G,G′), we know
(v′,w′) < M. Our goal is to build a mapping containing (v′,w′) with cost equal to the cost of M.

• First, suppose that v is not deleted and w is not deleted.

Then, there exist a = v1 ≤ . . . ≤ vk ≤ v′ and b = w1 ≤ . . . ≤ wr ≤ w′ vertices in T and T ′,
respectively, such that:

– (a, b) ∈ M;

– vi and wi are ghosted for all i (as M ∈ M2(G,G′) they cannot be deleted).

Let ni = wT (vi) and mi = wT ′(wi) for all i.

We have seen that if a = v′, then v must be deleted, which is absurd. Similarly, we cannot have
b = w′. Thus, a = v1 ≤ . . . ≤ vk = v < v′ and b = w1 ≤ . . . ≤ wr = w < w′. We have:

| n′ +
k∑

i=1

ni − (m′ +
r∑

i=1

mi) |=| n′ − m′ | + |
k∑

i=1

ni −

r∑
i=1

mi | .

This implies that we can add the couple (v′,w′) to M without increasing the cost of M.

• Suppose now v (and so v′) is deleted, but w is not. For what we have said before, it means that w′ is
ghosted and w is either coupled or deleted. This implies that the root of G′M is of order 1. However,
then, also the root of GM must be of order 1. In other words, there exist a = v1 ≤ . . . ≤ vk < v and
b = w1 ≤ . . . ≤ wr ≤ w vertices in T and T ′, respectively, such that:
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– (a, b) ∈ M;

– vi and wi are ghosted for all i (as M ∈ M2(G,G′) they cannot be deleted).

However, this also implies that, after all the other deletions v is of degree 2, and the same for v′,
but this cannot happen.

• Suppose, lastly, v and w are all deleted, which implies that also v′ and w′ are deleted. In this case,
we can add (v,w) and (v′,w′) to M decreasing its cost.

Thus, we can always add (v′,w′) to M, and since the cost of such couple is zero, we have dE(T,T ′) =
dE(G,G′) = dE(subG(v′), subG′(w′)).

■

Proof of Theorem 1:
Consider (T, hT ) and (T ′, hT ′) such that max hT < K′ and max hT ′ < K′. Consider (G,wG) =

TrK′((T, hT )) and (G′,wG′) = TrK′((T ′, hT ′)). For any K such that max hT < K < K′ and max hT ′ <

K < K′, there is a splitting of (v, rG) ∈ EG with a vertex w and a splitting of (v′, rG′) with a vertex w′

such that the obtained weighted trees (R,wR) and (R′,wR′) satisfy: wR((w, rG)) = wR′((w′, rG′)). Thus,
by Proposition 2, we obtain dE(G,G′) = dE(R,R′) = dE(subR(w), subR′(w′)). Moreover, subR(w) =
TrK((T, hT )) and subR′(w′) = TrK((T ′, hT ′)).

Being K,K′ arbitrary, we have that dK((T, hT ), (T ′, hT ′)) does not depend on K, for K >

max{max hT ,max hT ′}. We need to prove the case K = max{max hT ,max hT ′}.
Let (G,wG) = TrK((T, hT )) and (G′,wG′) = TrK′((T ′, hT ′)), for K′ > K, and consider now the

weighted tree ⋆ = ({⋆},w(∅) = 0),
We have that dE(G, ⋆) =

∑
e∈EG

wG(e) and dE(G′, ⋆) =
∑

e∈EG′
wG′(e). Thus, by the reversed triangle

inequality:
| dE(G, ⋆) − dE(G′, ⋆) |= K′ − K ≤ dE(G,G′).

So, we have:
dE(TrK′((T, hT )),TrK((T, hT ))) = K′ − K,

and we can set K = max{max hT ,max hT ′} and take K′ arbitrarily close to K to finish the proof.
■

Proof of Theorem 3:
Let π0(X· ) and π0(Y· ) be two AMTs, which are represented by the merge trees (T, hT ) and

(T ′, hT ′), respectively. Then, we obtain the weighted trees (T,wT ) and (T ′,wT ′) via the some TrK .
The proof is quite long and requires some technical definitions. We split it into different parts to make
it more easily readable.
Introduction display posets: For ease of notation, we introduce the following objects.

Definition 15. [16] Given a persistent set S : R→ Sets, we define its display poset as:

DS :=
⋃
t∈R

S (t) × {t}.

The set DS can be given a partial order with (a, t) ≤ (b, t′) if S (t ≤ t′)(a) = b.
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Let Dπ0(X· ) and Dπ0(Y· ) be the display posets induced by π0(X· ) and π0(Y· ). We call hπ0(X· ) the
height function of Dπ0(X· ) and hπ0(Y· ) the height function of Dπ0(Y· ). This construction is natural, in the
sense that natural transformation between persistent sets become order preserving maps between the
display posets. Given α : S → S ′ natural transformation between persistent sets, we have: Dα : DS →

DS ′ defined by:
Dα((a, t)) = (αt(a), t).

Given (a, t) ≤ (b, t′), we have that:
(αt(a), t) ≤ (αt′(b), t′),

because α is a natural transformation. For more details, see [16].
Introduction couplings: Here, we leverage on the notion of couplings between merge trees defined
in [38]. Before recalling such definition, we highlight a subtle difference in merge trees as defined
in [38] compared to the definition we give here. In [38], the edge going to infinity which we require
in our merge trees, (v, rT ) with hT (rT ) = ∞, is not needed and, thus, such edge is removed. In other
words, a merge tree (T, hT ) is the sense of [38] is such that degT (rT ) > 1 and hT (rT ) ∈ R. We state the
results in [38] with the notation of the present manuscript.

Consider C ⊂ VT × VT ′ . Since VT and VT ′ are posets, we can introduce a partial order relationship
on any C ⊂ VT × VT ′ , having (a, b) < (c, d) if, and only if, a < c and b < d. Thus, for each of the sets
VT , VT ′ , and C (or for any subset of those sets), we can consider the set of the maximal elements and
the set of the minimal elements, which we indicate with max C,min C etc..

We define a “multivalued” function ΛT
C : VT → P(VT ) with P(VT ) being the power set of VT .

ΛT
C(v) =

maxv′<v πT (C), if there exist v′ ∈ VT such that v′ < v and v′ ∈ πT (C);
∅, otherwise.

Given finite sets A, B, we indicate A − B := {a ∈ A | a < B}.

Definition 16. A coupling between two merge trees T and T ′ is a set C ⊂ VT × VT ′ such that:

(C1) # max C = 1;

(C2) the projection πT : C → VT is injective (the same for T ′);

(C3) given (a, b) and (c, d) in C, then a < c if, and only if, b < d;

(C4) a ∈ πT (C) implies #ΛT
C(a) , 1 (the same for T ′).

The set of couplings between T and T ′ is called C(T,T ′). Note that, thanks to (C3), (C1) can be
replaced by # max πT (C) = # max πT ′(C) = 1.

Similarly to mappings, each couple in C is associated to a cost, and ∥ C ∥∞ is defined as the highest
of such costs. In [38] it is proven that dI(T,T ′) ≤∥ C ∥∞ for all couplings C.

Define the following functions as in [38]:

• Define φT
C : VT → VT so that φT

C(x) = min{v ∈ VT | v > x and #Λ(v) , 0}. Note that since the set
{v ∈ VT | v > x} is totally ordered, φT

C(x) is well-defined;

• Similarly, define δT
C : VT → VT , defined as δT (x) = min{v ∈ VT | v ≥ x and v ∈ πT (C)};
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• Set γC
T : VT − DT

C → VT ′ to be:

γC
T (x) =

arg min{hT ′(w) | (v,w) ∈ C, v < x}, if #{hT ′(w) | (v,w) ∈ C, v < x} > 0
∅, otherwise.

If #{hT ′(w) | (v,w) ∈ C, v < x} > 0, by (G), γC
T (x) is uniquely defined. Moreover, γC

T (φC
T (x)) is

well-defined for any v ∈ VT ;

• Lastly, set ηT
C(x) := γT

C(φT
C(x)).

To lighten the notation, when clear from the context, we may omit subscripts and superscripts. The
costs of the elements a coupling are defined in [38] as follows:

• If (x, y) ∈ C, costC(x) =| hT (x) − hT ′(y) |;

• If x < πT (C), we have two different scenarios:

– If #Λ(x) = 0, then costC(x) = max{(hT (φ(x)) − hT (x)) /2, hT ′(η(x)) − hT (x)};

– If #Λ(x) > 1, we have costC(x) =| hT (x) − hT ′(w) | with (δ(x),w) ∈ C;

– zero otherwise.

Lastly, Remark 3, Theorems 1 and 3 [38] show that C induces

αC : Dπ0(X· ) → Dπ0(Y· ) and βC : Dπ0(Y· ) → Dπ0(X· )

such that
costC(v) =| hπ0(Y· )(αC(v)) − hπ0(X· )(v) |

for any v ∈ VT , and
costC(w) =| hπ0(X· )(βC(w)) − hπ0(Y· )(w) |

for any w ∈ VT ′ .

Main body of the proof: We now want to establish relations between mappings between TrK((T, hT ))
and TrK((T ′, hT ′)), with K > max hT ,max hT ′ , and couplings between (T, hT ) and (T ′, hT ′). When
working with TrK((T, hT )) and TrK((T ′, hT ′)), we can apply the following corollary of Proposition 2.

Corollary 3. Given (T,wT ) and (T ′,wT ′) weighted trees, if rT and rT ′ are of order 1, there exist a
minimizing mapping M with # max M = 1.

Consider a minimizing mapping M ∈ M2(T,T ′) with # max M = 1. Thanks to Lemma 1, we have
that a ∈ πT (M) implies #ΛT

M(a) , 1 (the same for T ′). In fact, (C4) is equivalent to having no vertices
of degree two after deletions and ghostings. This means that CM := {(a, b) ∈ M | a ∈ VT and b ∈ VT ′}

is a coupling.
Conversely, given a minimizing coupling C, the set

MC := C ∪ {(a,D) | a < πT (C) and #ΛT
C(a) , 1}

∪ {(D, b) | b < πT ′(C) and #ΛT ′
C (b) , 1}
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∪ {(a,G) | a < πT (C) and #ΛT
C(a) = 1}

∪ {(G, b) | b < πT ′(C) and #ΛT ′
C (b) = 1}

is a mapping. Clearly, MCM = M and CMC = C.
Now, we prove the following lemma.

Lemma 2. Let f : [a,K] → [b,K] be a monotone function such that f (K) = K, K ∈ R. For every
{x1 < . . . < xn+1 = K} ⊂ [a,K]:

max
i=1,...,n+1

d( f (xi), xi) ≤
n∑

i=1

| d(xi, xi+1) − d( f (xi), f (xi+1)) | (B.1)

Proof. For every i = 1, . . . , n + 1, set vi = f (xi) − xi, and consider m ∈ {1, . . . , n + 1} such that
| f (xm) − xm |= max | f (xi) − xi |.

Then, we can find εi, i = 1, . . . , n + 1 such that:

v1 =vm + ε1

v2 =vm + ε1 + ε2

. . .

vi =vm +

i∑
j=1

ε j

. . .

vn+1 =vm +

n+1∑
j=1

ε j.

Using εi, we can rewrite Equation (B.1), which we need to prove, as:

| vm |≤

n∑
i=1

| xi − f (xi) − (xi+1 − f (xi+1)) |=
n∑

i=1

| vi − vi+1 |=

n∑
i=1

| εi+1 | .

Clearly, by construction, we have:
ε1 ≤ 0.

Moreover, since f (xn+1) = xn+1, we have vn+1 = 0. Thus, vm+
∑n+1

j=1 ε j = 0,which means −vm =
∑n+1

j=1 ε j.
This implies:

| vm |=|

n+1∑
j=1

ε j |≤|

n+1∑
j=2

ε j |≤

n∑
i=1

| εi+1 | .

□

Consider now a leaf l ∈ LT and take ζl = {p ∈ VT | v ≥ l}. Consider the interval [hT (l),K]. The map
v ∈ ζl 7→ hT (v) gives a 1 : 1 correspondence between ζl and a finite collection of points in [hT (l),K].
We define f (hT (v)) = hπ0(Y· )(αC(v)) for v ∈ ζl − {rT }, and f (K) = K. Note that αC is constructed such
that αC(v) = w if (v,w) ∈ C. Thus, f (hT (v)) ≤ K for v ∈ ζl.
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We extend f on [hT (l),K] via linear interpolation. Since αC is monotone wrt the partial order on
Dπ0(X· ), then f is monotone on [hT (l),K].

Now, consider T and apply on it all the deletions and ghostings which involve points which are not
in ζl. We call {v1 = l < . . . < vn+1 = rT } the coupled points in ζl. Then:

| hT (vi) − hT (vi+1) − f (hT (vi)) − f (hT (vi+1)) |≤ costMC ([vi, vi+1] 7→ [αC(vi), αC(vi+1)]), (B.2)

with costMC ([vi, vi+1] 7→ [αC(vi), αC(vi+1)]) being the cost of the edits associated to points vi ≤ p ≤ vi+1

and αC(vi) ≤ q ≤ αC(vi+1). In fact, we have equality in Eq (B.2) if there are no deletions for any p ∈ VT

such that vi ≤ p ≤ vi+1 and any q ∈ VT ′ such that αC(vi) ≤ q ≤ αC(vi+1). Otherwise, the total cost of the
deletions and shrinking exceeds | hT (vi) − hT (vi+1) − f (hT (vi)) − f (hT (vi+1)) | since:

| n1 + n2 − (n3 + n4) |≤ n1 + n3+ | n2 − n4 |

for any n1, . . . , n4 ∈ R≥0. Lastly, note that | hT (vi) − f (hT (vi)) |= costC(v).
By Lemma 2, we have:

max costC(vi) =max hT (vi) − f (hT (vi))

≤

n∑
i=1

| hT (vi) − f (hT (vi)) + f (hT (vi+1) − hT (vi+1) |

≤costMC ([l, rT ] 7→ [w, rT ′])

(B.3)

with (v,w) ∈ MC and v = min ζl ∩ πT (C).
Conclusion: Let ∥ C ∥∞= costC(x). WLOG x ∈ VT . Then, x ∈ ζl for some l ∈ LT . By applying Eq
(B.3), we obtain the result.
Proof of Proposition 6:

In the following proof, we employ display posets, which are introduced in the proof of Theorem 3.
ConsiderM(π0(X· )) and π0(Xn· ) such that T = M(π0(X· )) and Tn = M(π0(Xn· )). Note that we

may often deliberately confuse merge trees and AMTs to lighten the notation.
Take any ε > 0, and then take N such that dI(T,Tn) ≤ ε for every n > N. Let T ′n := S2ε(Tn).

Clearly, we always have dI(Tn,T ′n) = 2ε. Suppose that supn∈N size(T ′n) = +∞. If this is the case, for
every K > 0, there is a merge tree Tn, with more than K leaves v such that i2ε

π0(Xn· )
(v) (more precisely,

(i2ε
π0(Xn· )

)hTn (v)(v)) is a leaf for T ′n and, thus, hTn(parent(v))−hTn(v) > 2ε. We now show that if K is bigger

than the number of leaves of T , we obtain a contradiction as, in order to have dI(T,Tn) ≤ ε, we cannot
contract edges which are longer than 2ε.

More formally, let α, β be ε-compatible maps between T and Tn. We know they exist as dI(T,Tn) ≤
ε. These natural transformations, as mentioned in the proof of Theorem 3, induce order preserving
maps between display posets. In particular:

Dα : Dπ0(X· ) → DSε(π0(Xn· )),
Dβ : Dπ0(Xn· ) → DSε(π0(X· )).

Note that T ′n = S2ε(π0(Xn· )) = Sε(Sε(π0(Xn· ))) and, in particular, Sε(π0(Xn· )) cannot have less leaves
than T ′n.
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Since T has less leaves than T ′n and of Sε(π0(Xn· )), we claim that there exist v,w leaves of Tn, with
t = hTn(w) and t′ = hTn(v), such that:

1) (iε
π0(Xn· )

)t(w) and (iε
π0(Xn· )

)t′(v) are leaves ofSε(π0(Xn· )), and (i2ε
π0(Xn· )

)t(w) and (i2ε
π0(Xn· )

)t′(v) are leaves

of T ′n;

2) hTn(parent(v)) − t′ > 2ε and hTn(parent(w)) − t > 2ε;

3) Dβ((w, t)) ≤ Dβ((v, t′)).

We already know that 1) and 2) need to be satisfied for some leaves. Not being able to find two such
leaves which also satisfy 3) would imply T having at least K leaves.

Since Dβ((w, t)) ≤ Dβ((v, t′)), we have Dα(Dβ((w, t)) ≤ Dα(Dβ((v, t′)). By definition, we know that
Dα(Dβ((v, t′)) = (Xt′≤t′+2ε(v), t′ + 2ε). In particular, this means that (v, t′), (w, t′) ≤ (Xt′≤t′+2ε(v), t′ + 2ε).
This is absurd because we have found a point on the abstract merge tree (associated to) Tn, which is
a common ancestor of both v and w and whose height differs from the ones of v and w by exactly 2ε.
However, we know that the edges (v, parent(v)) and (w, parent(w)) are both longer than 2ε.

Thus, supn>N size(T ′n) = K for some K ∈ R such that K ≤ size(T ). WLOG we can suppose
K = size(T ). Since d is finitely stable, for some C > 0, we have:

d(T,T ′n) ≤ C · 2KdI(T,T ′n) ≤ C · 2K(dI(T,Tn) + dI(Tn,T ′n))
= C · 2K(dI(T,Tn) + ε).

Thus, by choosing ε such that:
max{2ε, 2KCε} ≤ δ,

we obtain the thesis.
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