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1. Introduction

As known in the literature, an important field of applied mathematics is fractional calculus, which
studies differential operators and integrals with non-integer powers. Moreover, due to its wide variety
of proven applications, fractional calculus has gained increasing interest from many researchers, such
as in physics, electrochemistry, mathematical biology, fluid mechanics, and others. As such, many
authors have presented basic works covering various aspects of fractional calculus, such as Herrmann [1],
Kiryakova [2], Miller and Ross [3], Kilbas et al. [4], Podlubny [5], Algahtani et al. [6], Zuo et al. [7,8],
and so on. In addition, the approach for solving differential equations of any real order is explained,
along with the diverse applications of these methods in multiple domains. However, several analytical
and approximate methods have been developed to solve fractional differential equations, like the
homotopy analysis method [9-11], modified simple equation method [12], reduced differential
transform method [13,14], and many other approaches. Notably, in 2013, the residual power series
(RPS) method, invented by the mathematician Omar Abu Arqoub, was used to determine the
coefficients of the power series solutions for first and second-order fuzzy differential equations [15].
Power series solutions for linear and nonlinear equations can be constructed with no linearization,
perturbation, or discretization, which is intuitive and reliable. The RPS method is being used to address
nonlinear ordinary and partial differential equations of different forms and orders. Furthermore, this
method offers a simple way to guarantee the convergence of the series solution. Additionally, it can be
applied directly to the given problem by selecting the appropriate initial estimate. Also, it has been
effectively applied in several studies, such as in [16], where Jaber and Ahmad used it to find the
solution of the two-dimensional nonlinear time-fractional Navier—Stokes equation, which is a
nonlinear partial differential equation that describes the dynamics of viscous fluids, recording the
relationship between external forces applied to the fluid velocity and the fluid pressure [17,18]. Moreover,
many researchers have dealt with finding analytical solutions for Navier—Stokes type systems, which
have contributed greatly to solving a significant part of real-life problems, particularly, in the context
of addressing practical fluid dynamics problems (for instance, see Baranovskii [19,20]).

The time-fractional Navier—Stokes equations have been extensively investigated. Many authors
have made great contributions in this regard, including El-Shahed and Salem [21], who extended the
classical Navier—Stokes equation by substituting the first-time derivative with a Caputo fractional
derivative of an order a, where 0 < a < 1. However, numerical approximations have been suggested
for a class of Navier—Stokes equations involving fractional time derivatives by Zhang and Wang [22].
Furthermore, Sawangtong et al. [23] solved the two-dimensional fractional time Navier—Stokes
equation using the RPS method, where the fractional derivative used in their research was the
Katugambola derivative in the sense of Caputo. In this study, we apply the ¢-Caputo fractional
derivative to solve the time-fractional Navier—Stokes equation using the residual RPS method. This
approach is selected because, for specific values of ¢, the ¢-Caputo fractional derivative generalizes
the Riemann-Liouville, Hadamard, and Katugampola fractional derivatives into a unified form. In
other words, we focus on how to derive analytical solutions for a system of nonlinear fractional-time
Navier—Stokes equations in Cartesian coordinates using the fractional derivative ¢ as a differential
operator. This is crucial for generalizing the fractional derivatives of Riemann-Liouville, Hadamard,
and Katugampola into a single formulation. The proposed method offers solutions in the form of
rapidly converging series with easy-to-compute components, showing exceptional agreement with
exact solutions, as demonstrated by numerical results. Moreover, it decreases the computational effort
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in comparison to traditional methods, positioning the RPS method as a highly effective and efficient
tool for solving both linear and nonlinear fractional partial differential equations. Additionally, we
present the results through an example with varying fractional orders to illustrate the outcomes.
Furthermore, we provide graphical representations of the solutions to these problems when the
Caputo—Hadamard fractional derivative is applied. For further significant works, we direct the reader
to references [24,25] on fractional calculus, [26-29] for the fractional Navier—Stokes equation, and [30—
32] on Caputo—Hadamard fractional differential equations.

This work is structured as follows. In Section 2, we present specific findings related to fractional
calculus, which are used in the research details. In Section 3, we present a new approach to the RPS
method. In Section 4, we introduce a generalization of the solutions to the fractional Navier—Stokes
equation by applying the ¢-Caputo fractional derivative. Section 5 is devoted to a study related to the
application of the RPS method to the Navier—Stokes equation with initial conditions. The manuscript
concludes with final remarks.

2. Preliminaries
In this section, we review key definitions and properties from the theory of fractional calculus,

which are utilized throughout this paper.

Definition 2.1 ([6,33]). Let f be an integrable function defined as 1 = [a, b], in relation to another
function ¢ of anorder a, suchthat ¢ € C*(I) is a growing function, ¢'(t) # 0 foreach t €1, and
a > 0. The left fractional integral of f is defined as:

T 00 0] = s 1 ' (0600 — $G0) ™ £ k. @n

39 (x, O] = f(x, 0). 2.2)

Theorem 2.1 ([33]). Let « > 0,m €N, [ be the interval —oo < a < o, and f, ¢ € C"™(I) two
functions, where ¢ is increasing and ¢'(t) # 0, forallt € 1. The left ¢-Caputo fractional derivative
of f ofan order a is given by:

1 9

DIPIf(x, O)]1 = 704 (ma)mf(x, t), (2.3)

such that m = [a] + 1 fora € NN m =a for a € N.
We utilize the shortened notation to make the notation simpler.

1 9

fimbo (x,t) = (ma)m f(x,t). (2.4)

In the event that ¢(t) = t, the Caputo fractional derivative is obtained in [34], while the Caputo—
Hadamard fractional derivative is obtained if ¢(t) = In(t) in [31].

Theorem 2.2 ([31]). Let R(a) = 0,m = [R(o)] + 1. If f € C§*([a,b]), with (0 < a < b < ), and

ACP([a, b)) = {g:[a,b] - €:6™ ' g(x) € AC[a,b],6 = x=—}, 2.5)
then $D; tn(® f(t) exist everywhere on |[a,b]:
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DIOf) = [t ()" (12)" F O % 26)
Lemma 2.1 ([31]). Let f € AC™([a, b]), and a € C, then
JEOCDENOL (1) = £(1) - Thms TEO (1n)' @)
Theorem 2.3 ([31]). Let f € C™([a,b]), andm —1 < a <m,m € N,n > 0, then
D £ = (1)~ $@)" " then 1P [F(O)] = ro ($(0) — (@), (2.8)
2) IEPEDI [ (x, )] = £(x,6) — EpzA U ED (g1) - p())" (2.9)

3. Residual power series (RPS) method

In this section, we discuss the RPS method through a new approach.

Definition 3.1. 4 power series representation of the form

3% o Ho ((0) — d(@)™ = Co + C1(d(0) — p(@)" + C(d(D) — p(@)* + -, (3.1)

is called a fractional power series around a, such that t is a variable, Hy,s are constants called the
coefficients of the series, where 0 <n—1<a <n,n €N, and ¢(t) = ¢(a).

Theorem 3.1. Suppose that f has a fractional power series (FPS) representation at ¢(a) of the form
FO=" Hn(6® - p@)™
m=0
where0 <n—1<a<n,¢(a) < p(t) < ¢p(a) +R. (3.2)

IFF@®), SDEPF(0) € Clgp(a), p(a) + R] where SDI'™® € Clp(a), p(a) + R] for m=1,2,3, ...

then the coefficients H,, in the equation will take the form

by Dy f(a)
™ I'ma+1)’
where SDI"*® = ¢p®® CpBP  CD®P (1 _ times), (3.3)

with R is the radius of convergence.

Theorem 3.2. A4 power series of the form Ym_q fm(t) (¢(t) — ¢(a))ma is called a multiple FPS
about ¢(t) = ¢p(a) of the form
u(x,t) = Bico fn () (90 — d(@) " x €L p(@ < PO < p(@+ R (34

If %D;na;d)u(x, t),m =0,1,2,3, ... are continuous on 1 X (¢p(a),p(a) + R), then
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Cpyma;p
_ {D, u(x,t)
fn(X) = =5 (3.5)
; ama  gx gx o . . . . .
where CtD;na'd) =T T ...E(m — times), and R = minge; Ry with Ry is the radius of

convergence of the FPS Yo _o fm (H) (qb(t) - qb(a))ma.

1t is evident from the last theorem that am + 1 dimensional function can be obtained in the same
way as the following corollary ¢ (t) = ¢(a).

Corollary 3.1. Suppose that u(x,y,t) has a multiple FPS representation at ¢ (t) = ¢p(a) of the form:
w0 =Y o) (B0 - @)™,
m=0
(x,y) €L X I, p(a) < p(t) < ¢p(a) + R. (3.6)

If CtD;na;d)u(x, y,t),m = 0,1,2,3, ... are continuous on I; X I, X (¢p(a),p(a) + R), then

Cma;p
_ 1D, u(x,y,t)
fm(x'y) - F(ma+1) ) (3'7)
; oma 9% 9% ¢ , , . , .
where Ct@;na’d) =T ...E(m — times), and R = mingey, x1,Rux in which Ry is the

radius of convergence of the FPS Y _o fmn (H,K) (¢(£) — ¢(a))ma.

4. Generalization of the solutions of the fractional Navier—Stokes equation using the ¢-Caputo
fractional derivative

In this section, we apply the RPS method for solving the Navier—Stokes equation for the nonlinear
two-dimensional time fractional ¢-Caputo fractional derivative in the following form:
Forevery (x,y,t) € (0,a] x (0,b] X (0,T], for any positive constants a, b,and T,

cDEPu(x,y,t) + Re(u(x, y, t). Mu(x, v, t) = V2u(x,y,t) — VP, (4.1a)

V.u(x,y,t) =0, Qx(0,T], (4.1b)
u(x,0,t) = u(y,t),on L;giq X (0,T], is the boundary conditions, 4.2)
u(x,v,0) = fo(x,y), in Q, is the initial conditions, Q S R?, 4.3)

where §D; a4 signifies the ¢-Caputo fractional derivative of the fractional order ¢ with 0 < a <
1,Q S R?% 0n I.igiq 1s the rigid part of the boundary I, u and v are the fluid velocity components
along the x and y axis (ms™?1), t is the time (s), P = P(x,y,t) is the fluid pressure function (Pa),
and Re is Reynolds's number.

Equation (4.4), is expressed as follows in Cartesian coordinates based on x,y, and z:
ou _ _op (azu a%u az_u),

C 4P Ju u
iD, " u(x,y,z,t) + Reu o + Rev 3y + Rew - o

(4.4a)
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cped 9\ pow?” 4 Rew? = 00 (P O o
D, v(x,y,2,t) + Reu——+ Rev 5y TRewz =—7+ (ax2 t5 622)' (4.4b)
Cont;P ow ow ow _ op 2w 9% w = 932w
D, w(x,y,z,t) + Reu o, T Rev 3y + Rew — = —— (ax2 37 az2)' (4.4¢)
From Eq (4.4), 2D Navier—Stokes equations of fractional order, may be written as:
oped Ou | popdi 0P, (Pu Pu
D, "u(x,y,t) + Reu =+ Rev 3y = ox + (ax2 6y2)' (4.5a)
opes 00 pepdl _ 0P, (v 9%
iD, " v(x,y,t) + Reu o, T Rev 3 = oy + (ax2 ayZ)’ (4.5b)
du v
F™ (x,y,t) + 7 (x,y,t) =0, (4.6)
u(x,y,t) = ub,(BC); u(x,y,0) = fi(x,y), (1C). 4.7)

According to the RPS approach, the solution for system (4.5) is a FPS about the beginning
point ¢(t) = 0.

% ¢O)-p@)™"
U6,y ) = Bipo fin( ) 2L (4.82)
o ¢O-p@)™"
v(x,y,t) = Y=o Im (X, ¥) %, (4.8b)
% ¢O-p@)™
P(x,y,8) = Sipcg (i, y) LD (4.8¢)
The starting criteria (4.7) are satisfied by u and v, and they can be rewritten as:
u(x,y,0) = f(x,y), (4.9a)
v(x,y,0) = g(x,y). (4.9b)
As aresult, we may get the first estimate of u and v as:
uo(x,y,O) :fo(x,y):f(x,y), (4103)
vo(x,y,O) =f0(x,y)=g(x,y). (410b)
Therefore, Eqs (4.8a) and (4.8b) could be rewritten as:
% ¢®)-p@)™
ulx,y,t) = f(,y) + Xm=1 frm (%, y)( F(maflg , (4.11a)
o ©-p@)™
v(x,y,t) = g(,y) + Xm=19m(x,y) @O-d@) (4.11b)

r(ma+1)

Since there are no initial conditions for P, we move the index m from 0 to 1 in order to become

(m-1)a

()-¢(a))
r(m-1a+1)

P(t,y,6) = 58y hny (,9) 2 (@.11¢)

We use u;, v; and P; to represent the i — th truncated series of u;, v; and P;, respectively, in the
next step:

) (p(®)-p(a@) ™
r(ma+1)

ui (6, y, 1) = f(,¥) + They fin(x,y , (4.12a)
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- p(O-¢(@)™"
vi(,y,6) = g(x, ) + Xm=19m(x, ¥) % (4.12b)
(m-1)a
i P()-¢(a)
PG, 8) = B i () B (4.12¢)
for i =1,2,3,....
For Eq (4.5), we define the residual functions Res, and Res, as follows:
_ cpa 0 | oy O (Pu 0%
Res, = D, " u(x,y,t) + Reu 5. T Rev %y + - (6x2 + ayZ)’ (4.13a)
_cpad 00 | pop® 4 O (P 9
Res, = {D, " v(x,y,t) + Reu - T Rev % + 3y (6x2 ayZ)' (4.13b)
The i-th truncated residual functions are thus
_ o ou; ou; , OP; o%u; = 9%y
Resy, = ¢DI%u;i(x,y,t) + Reu; F Rev; r +-- (Wzl ayzl)' (4.14a)
_ b ov; ov;  apP; 2%v;  0%v;
Res,, = (D% v;(x,y,t) + Rey; — T Rev; a_yl +3 (?21 ayzl)' (4.14b)

Based on [35-37], lim Res; = Res(x,y,t), and Res(x,y,t) =0 for each ¢(t) € [¢p(a),p(a) +
1—>00

R] and x,y € R, with R is a non -negative real number representing the radius of convergence.
Hence, $D, ;¢Res(x, y,t) = 0. Given that a constant function’s fractional derivative in the Caputo

CNTAD
tDa

sense is zero, the fractional derivative of Res(x,y,t) and Res;(x,y,t) are correspond

to ¢(t) = ¢(a) foreach i =0,1,2, ...
Ifwesetgp(a) =0, and r =i — 1, we get

D™V Res,, (x,y,0) = 0, (4.15a)

D% Res, (x,,0) = 0. (4.15b)

Now, we use the RPS technique to obtain the form of the coefficients f,,(x,y), gm(x,¥y),
or h,,_1(x,y), where m = 1,2,3,...i in Eq (4.5).

First, we enter the i-th shortened u, v, and P series into Eq (4.14). Second, we determine the
formula for the fractional derivative of CtDC(li_l)a; ? for both Resui(x, y,t) and Res,, (x,y,t),where
i =1,2,3,.... Last, we solve the algebraic system (4.14) that was acquired.

5. Application of the RPS method on the Navier—Stokes equation with initial conditions

In this section, we apply the RPS method shown above to a classical test problem from [38,39]
and turn it into a fractional one by substituting a fractional derivative of order 0 < a < 1for the first
time derivative. Afterward, we discuss the graphics and numerical results. System (4.5) in which 0 <
x,y < m 1is the subject of our problem, and the initial conditions are

u(x,y,0) = —cos(x) sin(y), (5.1a)
v(x,y,0) = sin(x) cos(y). (5.1b)
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The boundary conditions are
u(x,0,t) =0,
v(0,y,t) = 0.
The following approach will be used by the RPS method:

Assume that the following is how the problem is resolved.

u(x) Y t) = 27?1:0 fm(x:y

v(x, Y t) = 27?1:0 gm(x' 3’)

P(,Y,t) = X2 by (,9) 2

(5.2a)
(5.2b)
(p(O-p(@)™"
) r(ma+1) '’ (5.32)
(p®)-p(@) ™"
r(ma+1) '’ (5.3b)
(t)_¢(a)) : (53C)

r(ma+1)

with initial conditions (5.1), we can get the initial guess for m = 0. Since the pressure has no beginning

condition, we obtain

u(x,y,t) = —cos(x) sin(y) +Xn-=

v(x,y,t) =sin(x)cos(y) + Ym=1

) (p(O-p@)™"

P(x,y,t) = $2 By (2, 9) 2

The abbreviated series of the suggested solutions will now be

(Y, £) = —cos(x) sin () + Niney fin (0, 9) 2

vi(x,y,t) = sin(x) cos(y) + L=

Pi(x' Y t) = 2£n=1 hm—l(xt y)

The residual functions are going to be defined by

Res,
Res, = D% v (x,y,t) + Reuz—z +

The i-th truncated residual functions are thus

. ou:
Res,, cD*Pu;(x,y,t) + Rey; % + Rev;
Res,, = D& Py, (x,y,t) + Reu; % + Rev

Substituting Eq (5.5) in Eq (5.7) gives

AIMS Mathematics

Cnad ou du
D, u(x,y,t) + Reu o + Rev ™ +

(6 Y) (5.4a)
g, y) PE (5:4b)
(m-1)
?E&Z’fiiiif - (40
built as follows:
9 (63) %, (5.5b)
(m-1)
S 520
el i B
Revg—; + g—i - (% giy;}), (5.6b)
ii;_v;iJraa_I;i_ (%’2 f;zy”z) (5.7b)
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et [N (p(6) — (@)™
Resy, = tDq ( m=1fm F'(ma+1)

NCOK p(a))™"
r'ma+1)

—Recos(x) sin(y) Z ax
(p(0) — p(@)™

+ Resin(x) sin(y) Zl =1fm

r(ma+1)
(Y OIOT(5 2 e
+ Resin(x) cos(y) Zm ) ay (qb(;Zma -|(-a1)))
~Recos()0s() Y. g “”fﬂ;ﬁi“f} -
e OB (5 28 00000

(m-1a

L Ohyy (1) - ¢(a))
+Zm=1 Ox % F((m—l)a+1)

—2 cos(x) sin(y) — Re sin(x) cos(x)

0% fm (¢(t>—¢(a>) %fm _ (pO-9@)™"
(Zm 1 gx2 r(ma+1) Zm 1 gy2 X r(ma+1) > (5.8a)

e [N (p(®) — p(@)™
Resy, = D <Zm=1gm I'(ma +1)

Ogm (9 - p(a))™"
m=1 ax r'ma+1)

(p(®) — (@)™
I'(ma+1)

C @@= e@)N (N 9gm (90 — p@)™
+Re (Zmzlfm I'ma+1) Zmzl O0x 'ma+1)
Ogm (90 - p(@)™
m=1 ay I'(ma +1)

(p(®) — p(@)™
'ma+1)

—Recos(x) sin(y) z

+ Recos(x) cos(y) Zl =1fm

+Re sin(x) cos(y) Z

i
— Resin(x) sin(y) Z Im
m=1

Volume 10, Issue 7, 15476—15496.
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L (0@ = @)™\ (N 0gm | (90 — (@)™
+Re (Zm=lgm r(ma+1) Zm:l dy % Ir'ma+1)

(m-1a

+zi Ohm_1 _ (9(t) = ¢(a))

met 0y r(m—Da+1)

+2 sin(x) cos(y) — Re sin(y) cos(y)

(vi  %gm  (6O-9@)™" i 9%gm (¢(t)—¢(a))m“>
(Zm:l x2 X r(ma+1) + Lm=1 dy? X r(ma+1) ) (5.8b)

For i=1. The truncated series (5.5) after setting i=1 is

(6, ,6) = —cos(x) sin () + £ (x,y) LLEEO) (5.92)
v1(x,y,t) = sin(x) cos(y) + g1(x,y) %, (5.9b)
Pi(x,y,t) = ho(x, y). (5.9¢)

The first residual functions must then be found by substituting Eq (5.9) in Eq (5.8) as follows:

Res,, = fi —Recos(x) sin(y) % (¢(I€)(;f§c)l))

(p(®) — p(@)”

+Re sin(x) sin(y) fi Fa+ D
of, () = p(@)™* of, (9(®) — p(@)"
+Ref, I e + Resin(x) cos(y) W F@+ D)
_ a a ] . 2a oh
—Re cos(x) cos(y) g4 (('b (It")(a: fgc)l)) + Reg, % (('b (15)2 (ocd-)l-(g) + axo

—2 cos(x) sin(y) — Re sin(x) cos(x)

_ (62f1 (p(O-9@)* | 8%f; (¢<t)—¢(a))“>
dx2 r(a+1) dy? r(a+1)

(5.10a)

T

(p(t) — p(a))”
'a+1)

+ Recos(x) cos(y) fi

39, (¢(®) — p(@)™ 39, (p(t) — p(@))"

R
+ eflax r2(a+1) dy T'(a+1)

() - p(@)" 291 (6() — (@)’
ra+D R e+ D)

+ Resin(x) cos(y)

—Re sin(x) sin(y) g1
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oh
+ a_yo + 2 sin(x) cos(y) — Resin(y) cos(y)
_ <62g1 (p(-¢@)“ | 9%g1 (¢(t)—¢(a))“>
0x2 r'(a+1) ay? r'(a+1)

The truncated residual functions at ¢(t) = 0 are then computed to obtain:
Res,, = f1 —2cos(x) sin(y) — Resin(x) cos(x) + %,
Res, = g, +2sin(x) cos(y) — Resin(y) cos(y) + Z—,;’,
and by Eq (4.14), we know that
Res,, (x,y,0) = 0, Res, (x,y,0) = 0.

When we solve these equations for f; and g,, we obtain:

fi = 2cos(x) sin(y) + Resin(x) cos(x) — %'

g1 = —2sin(x) cos(y) + Resin(y) cos(y) — 2—’;0.
Now, to determine h,, we apply the following boundary conditions:

u,(x,0,t) =0,v,(0,y,t) = 0.

(5.10b)

(5.11a)

(5.11b)

(5.12)

(5.13a)

(5.13b)

(5.14)

Using the boundary conditions (5.14), we obtain the following by substituting Eq (5.13) in Eq (5.9):

9 — Resin(x) cos(x),
dx
‘2—’;" = Resin(y) cos(y).

By integrating Eq (4.15a) with respect to x, we obtain:
ho(x,y) = — %cos(Zx) +c(y).
Then, the function
c(y) =— %cos(Zy).
After entering this equation into Eq (5.16), we obtain:
ho(x,y) = — % (cos(2x) + cos(2y)).
Consequently, the final forms of the functions f'and g are as follows:
fi = 2cos(x) sin(y),
g1 = —2sin(x) cos(y).
Finally, the following is the first estimated RPS solution:

(p(®)-¢p(@)”

uy (x,y,t) = —cos(x) sin(y) + 2cos(x) sin(y) r(a+1)

)

(5.15a)

(5.15b)

(5.16)

(5.17)

(5.18)

(5.19a)
(5.19b)

(5.20a)
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. o (p(-¢@)"
v1(x,y,t) = sin(x) cos(y) —2sin(x) cos(y) )
Pi(x,y,t) =— % (cos(2x) + cos(2y)).
For i=2. The truncated series (5.5), after setting i=2, is

(O)-p(@)*"
r2a+1)

Pp(D)-p(@)”
r'(a+1)

+ £,

u,(x,y,t) = —cos(x) sin(y) + fl(

p(D-p(@)" (O)-(@)*"
( ) 1 g, )

UZ('X' yJ t) = Sln(x) Cos(y) +g1 F(a+1) F(2a+1)

r(a+1)

P,(x,y,t) = hy + hy

(5.20b)

(5.20¢c)

(5.21a)

(5.21b)

(5.21¢c)

Therefore, the following residual truncated functions can be obtained by substituting these equations

into Eq (5.8) as:

(p(®) — p(@)” of. (p(t) — p(a))”

Resy, = f1 +f> e+l Recos(x) si n(y)a rat D
9 _ 2a B a
~Recos(x)sin(y) 2 (¢$)(2aﬁ(‘;;) + Resin(x) sin(y) f, (4’(;)(“ f’g‘;))

0f (D) — @)™ 0fr (¢~ p@)™
Hehay rrarn N ax Tt Dra+ D

(60 9@ 05 (9@~ p(@)™
r2a+1) o Tat DI 2a + 1)

of (e — @)™ ofy (6(t) — p(@)"
+Ref, F [+ 1) + Re sin(x) cos(y)a @+ D

3f, () — p(@)™

+Resin(x) sin(y) f>

(p(®) — p(@))"

+Re sin(x) cos(y) E rat1) — Recos(x) cos(y) g1

'a+1)

0f (00) — @)™ . 3f (¢ = p@)™
9y I2@+1) €915y T(a + DI 2a + 1)

(p(0) — p(@))™ of, (p(t) — p(@)™
+ Reg, —
I'(2a+ 1) €92 5y T(a + DI 2a + 1)

3f, (9(®) — p(@)™
29y I2?2Qa+1)

Ohg , Ohy (6(6) = ¢(a))”
Jx  Ox ra+1)

EEACOR O MK ACIOR IO
0x2  T(a+1) 0x?  T'Qa+1)

+Reg

—Recos(x) cos(y) g,

+Reg

— Re sin(x) cos(x)

—2cos(x) sin(y) +
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0% (60-0@)®  92f; (9(-¢(@)"
dy? r'(a+1) dy? ra+1)

(p(®) — p(@)” o 0g1 (9 — p(@)"
Flatrn  Recossin) 5 =—Frr3 7

39, () — p(@)™"
dx ra+1)

((®) — p(@)" 99, (6(8) — p(a))™
ra+D RN T T 1

+Rep, 202 (p(t) — p(@)™ (p(6) — p(@)™
N Tla+ DI 2a + 1) r2a+1)

g1 () — (@)™ 39, () — p(@)™
tRef ox I'(a+ DIrQa+1) +Ref ox T?Qa+1)

9 _ a 9 _ 2a
+Re sin(x) cos(y) 6?/1 (qb(lt“)(a _(fgo)l)) + Re sin(x) cos(y) 6?12 (¢(IE)(205¢-)|-(63)

(5.22a)

Res,, = g1 +9>

—Recos(x)sin(y)

+ Recos(x) cos(¥) f1

+ Recos(x) cos(y) f;

() — p(a@)” 39, (p(0) — p(a@))™
ra+ R T et

(6(6) — (@)™
ra+1)

—Re sin(x) sin(y) g,
g, (p(®) — p(@)™"
Yoy r(a+ DrQa+1)

g1 (o) — p(@)™
29y '(a+ DIrQRa+1)

+Reg — Re sin(x) sin(y) g,

39, (p(0) — p(@)™
29y TI?2Qa+1)

Ohg , Ohy (6(6) = ¢(@)”
dy  dy 'a+1)

0%, (0(0) = (@) 929, (0 — 9(@)" 9%g: (6(1) — p(@)"
0x? I'a+1) d0x? r'Qa+1) dy? r'a+1)

+Reg + Reg

—Resin(y) cos(y) + 2 sin(x) cos(y) +

_0%g; (6()-9(@)*"
dy? rQa+1)

(5.22b)
Next, applying operator ¢Dj’ ? into Eq (5.22), and then substituting ¢(t) = 0, we get

CnGP _ . afl . ,

D, Res,,(x,y,0) = f, —Recos(x) sin(y) Fm + Resin(x) sin(y) f

0%fi  9*fy | Ohy
0x2 dy? ox "’

+Re sin(x) cos(y) % — Recos(x) cos(y)g, — (5.23a)

. 0
C,:Z):f’d)Res,,2 (x,y,0) = g, —Recos(x) sin(y) % + Re cos(x) cos(y) fi

2 2
+Re sin(x) cos(y) 2—9}11 — Re sin(x) sin(y)g, — 9%91 _9%91 + LGN

ot (5.23b)
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Based on Eq (4.15), then
‘DS ? Res,, (x,7,0) =0, (5.24a)
¢DIPRes,, (x,y,0) = 0. (5.24b)

This fact enables us to obtain the initial formulas of f, and g, by inserting f; and g; and their partial
derivatives in Eq (5.23) as:

fo = —4Resin(x) cos(x) — 4 cos(x) sin(y) — %, (5.25a)
g> = —4Resin(y) cos(y) + 4 sin(x) cos(y) — Z—l;. (5.25b)

To determine h,, we need to apply the following boundary conditions:
u,(x,0,t) =0, v,(0,y,t) = 0. (5.26)

By replacing Eq (5.25) with Eq (5.22), and then applying the boundary conditions to the resulting
equations, we obtain:

o _ _

Fa 4Resin(x) cos(x), (5.27a)
Z—’;l = —4Resin(y) cos(y). (5.27b)

The integration of Eq (5.27) with regard to x provides
h,(x,y) = Re cos(2x) + c(y). (5.28)
Then, the function
c(y) = Recos(2y). (5.29)
After entering this equation into Eq (5.28), we obtain:
h,(x,y) = Re(cos(2x) + cos(2y)). (5.30)
Consequently, the final forms of the functions f, and g, are as follows:
fo = —4cos(x) sin(y), (5.31a)
g2 = 4sin(x) cos(y). (5.31b)

Finally, the following is the first estimated RPS solution:

(p(t) — p(@))"

u,(x,y,t) = —cos(x) sin(y) + 2cos(x) sin(y)

I'a+1)
—4 cos(x) sin(y) %, (5.32a)
v,(x,y,t) = sin(x) co s(y) —2sin(x) cos(y) (d) (;)(;fgc)l))
+4 sin(x) cos(y) M, (5.32b)

r2a+1)

AIMS Mathematics Volume 10, Issue 7, 15476-15496.



15490

Py(x,y,t) = — % (cos(2x) + cos(2y)) + Re(cos(2x) + cos(2y)) % (5.32¢)
Our time-fractal problem can be solved by repeating the same process for i = 3,4,5,... as:
~ . (@) - @) . ($®) —¢@)™ _(p(® - @)™  (¢(©) - p@)"
uley,t) = —cos(x) sin(y) [1 BT TS Y e+ 8 r@ard T T@a+D
= —cos(x) sin(y) [E?}:o W] (5.33a)
o (6@ —¢@)"  (6@®) —¢@)™ _(d® - @)™ (¢©) - p@)"™
v(x,y,t) = sin(x) co s(y) [1—2 F@+ 1) +4 rZatD -8 rZatD +16 FGa+ D) +
= sin(x) cos(y) [ 2o (_2(4;(&%;41(:))“)] , (5.33b)
a 2a 3a
P(x,y,t) = — Ii—e(cos(Zx) +cos(2y)) [1 -4 (¢(;)(;f§‘;)) +16 (d)(;)( 2_a ‘i((g) - 64 (¢(Ft)(3_a (Z(‘B) + ]
= —%e (cos(2x) + cos(2y)) [ 2o W] (5.330)

This solution leads us to conclude that Eq (5.33) contains two important special cases.
Initially, assuming ¢(t) = t (this is the fractional integral of Riemann—Liouville) and a = 0.
The exact solution in this case is as follows:

. o (—2t%)t
u(x,y,t) = —cos(x) sin(y) [Zi=om , (5.34a)
. o (—2t%)!
v(x,3,6) = sin(x) co s [ L0 romrpy ) (5.34b)
— Re [ee] (_4‘ta)i
P(x,y,t) =— " (cos(2x) + cos(2y)) [Zi=o F(ia+1)]’ (5.34c)

which is in full agreement with the results acquired by Sawangtong et al. [23] using the generalized
Shehu residual power series. This solution leads us to the conclusion that Eq (5.34) has two significant

p . .
special instances. Initially, assuming that ¢(t) = % (Katugampola fractional derivative in the sense

of Caputo) and a = 0, the exact solution in this case is as follows:

e Py
u(x,y,t) = —cos(x) sin(y) Zﬁo% : (5.35a)
. . ()
v(x,y, ) = sin(x) cos() | Zizoria | (5.35b)
Re o (_4p%pa)i
P(x,y,t) = —T(cos(Zx) + cos(2y)) 20 TGasD) | (5.35¢)
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and are alike in agreement with the solutions found by Sawangtong et al. [23] using the generalized
Shehu residual power series. On the other hand, if ¢(t) = In(t) and a = 1 (we have the Hadamard
fractional integral), Eq (5.34) yields a solution that becomes:

o (—2(lnt)°‘)‘]
=0 r(ia+1) I°

u(x,y, t) = —cos(x) sin(y) [Z (5.36a)
The Mittag—Leffler function enables us to express the above answer in closed form as:

Based on the Hadamard derivative in the sense of Caputo (4.5), along with IC (5.1) and BC (5.2),
the analytical solutions u and v of the two-dimensional time fractional Navier—Stokes equation, as
well as the fluid pressure, are thus provided by:

v(x,,8) = sin(x) co s(¥) |22, %} (5.36b)
P(x,y,t) = — % (cos(2x) + cos(2y)) [Z?io—(_;((il;lﬁ?i] (5.36¢)
u(x,y,t) = —cos(x) sin(y)E,(—2(lnt)%), (5.37a)
v(x,y,t) = sin(x) cos(y) E,(—2(Int)%), (5.37b)
P(x,y,t) = — == (cos(2x) + cos(2y)) Eo(—4(In )®). (5.37¢)

6. Results and discussion

In the following, we present the graphical fadings of the nonlinear two-dimensional time
fractional equation solution Navier—Stokes Eq (4.5), with IC (5.1) and BC (5.2), under the Caputo-
Hadamard memory. We demonstrate the plots of the three solutions u,v and P for the solutions at
a = 0.95,0.75,0.55,0.35, where x,y € [0,7],t € [1,2] and the Reynold’s number Re = 40 are
shown in Figures 1-4. In Figure 1, it can be seen from those figures that u(x, y, t) and P(x,y, t) are
generally growing as ¢ grows, even though the increase decreases as a increases. The second
component of velocity, v(x, y, t), where x = %, has numerical results that indicate that it decreases as

t grows, but it becomes less decreasing, as a increases. In Figure 2, it is observed that v(x,y,t)
and P(x,y,t) grow generally with x up to x = g and gradually decrease starting from x = g For the
second component of the velocity, u(x,y, t), withx = %, numerical results indicate that it decreases
with the growth of yup toy = g and then grows generally with increasing y. The numerical results
for the first component of velocity u(x, y, t) of the fractional Navier—Stokes equation obtained by the
RPS method are shown in Figure 3, for a range of values of t, x, and with y = %. It is evident from

those figures that u(x,y,t) generally increases as t and x increase, but decreases as a increases.
s

Finally, for the pressure in Figure 4, where y = " it is shown that P(x, y, t) increases around x = %,

and then decreases when x and t increase, where this increase decreases with increasing «.
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Figure 1. The graphs of Eq (5.36) of different values of parameters t € [1,2], a witha =

-0,06 -+

2)

{0,084 -

u(miy

0,10 -

2)

-0,12+4 -+

v(x,m/4

-0,14 +

-0,16 -+

$0,10- -

y T y y
00 05 10 15 20 25 30 35

y

T T y
00 05 10 15 20 25 30 35

u T T T T T
00 05 10 15 20 25 30 35

Figure 2. The graphs of Eq (5.36) for different values of parameters x,y €
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Figure 3. The surface shows the behavior of solution u(x,y,t) of the application using
Eq (5.36) with respect tot and x with a =1, =0.95,a = 0.75,a = 0.55, y =
=, Re = 40.

o =095

Figure 4. The surface shows the behavior of solution P(x,y,t) of the application using
Eq (5.36) with respect to t and x with a =1, = 0.95,a = 0.75,a = 0.55, y =
=, Re = 40.

AIMS Mathematics Volume 10, Issue 7, 15476-15496.



15494

7. Conclusions

In this paper, we present an analytical solution to the proposed problem of the time-fractional
Navier—Stokes equation using the RPS method within the fractional derivative (¢-Caputo). These
equations are described in time, enabling the generalization of the Riemann-Liouville, Hadamard, and
Katugampola fractional derivatives into a unified form. In addition, we demonstrate the results through
an example with different fractional orders of «, illustrating the outcomes. Moreover, we provide
graphical representations of the solutions to these problems when the Caputo—Hadamard fractional
derivative is utilized, noting that Matlab is used to generate these graphs. Moreover, this method
reduces the amount of computational work compared to traditional methods. We hope that this work
will serve as a step in extending the applications of the RPS method to solve fractional problems with
boundary conditions at infinity, an area in which we expect this method to be very applicable.
Moreover, the values of a of the Hadamard derivative affect the velocity magnitude of the fluid flow,
as shown in the graphical results section.
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