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Abstract: In this study, we aimed to derive analytical solutions for a system of nonlinear time-

fractional Navier–Stokes equations in Cartesian coordinates by employing the residual power series 

method. Moreover, we showed that the 𝜙-Caputo fractional derivative describes these equations in 

time, enabling the Riemann-Liouville, Hadamard, and Katugampola fractional derivatives to be 

generalized into a unified form. Additionally, we provide results for certain cases that are given in the 

literature. Therefore, the solutions obtained for the time-fractional Navier–Stokes equations are 

presented graphically in the Caputo–Hadamard sense. 
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1. Introduction 

As known in the literature, an important field of applied mathematics is fractional calculus, which 

studies differential operators and integrals with non-integer powers. Moreover, due to its wide variety 

of proven applications, fractional calculus has gained increasing interest from many researchers, such 

as in physics, electrochemistry, mathematical biology, fluid mechanics, and others. As such, many 

authors have presented basic works covering various aspects of fractional calculus, such as Herrmann [1], 

Kiryakova [2], Miller and Ross [3], Kilbas et al. [4], Podlubny [5], Alqahtani et al. [6], Zuo et al. [7,8], 

and so on. In addition, the approach for solving differential  equations of any real order is explained, 

along with the diverse applications  of these methods in multiple domains. However, several analytical  

and approximate methods have been developed to solve fractional  differential equations, like the 

homotopy analysis method [9–11], modified simple equation method [12], reduced differential 

transform method [13,14], and many other approaches. Notably, in 2013, the residual power  series 

(RPS) method, invented by the mathematician Omar Abu Arqoub, was used to determine the 

coefficients of the power series solutions for first and second-order fuzzy differential equations [15]. 

Power series solutions for linear and nonlinear equations can be constructed with no linearization, 

perturbation, or discretization, which is intuitive and reliable. The RPS method is being used to address 

nonlinear ordinary and partial differential equations of different forms and orders. Furthermore, this 

method offers a simple way to guarantee the convergence of the series solution. Additionally, it can be 

applied directly to the given problem by selecting the appropriate initial estimate. Also, it has been 

effectively applied in several studies, such as in [16], where Jaber and Ahmad used it to find the 

solution of the two-dimensional nonlinear  time-fractional Navier–Stokes  equation, which is a 

nonlinear partial  differential equation that describes the dynamics of viscous fluids, recording the 

relationship  between external forces applied to the fluid velocity and the fluid pressure [17,18]. Moreover, 

many researchers have dealt with finding analytical solutions for Navier–Stokes type systems, which 

have contributed greatly to solving a significant part of real-life problems, particularly, in the context 

of addressing practical fluid dynamics problems (for instance, see Baranovskii [19,20]). 

The time-fractional Navier–Stokes equations have been extensively investigated. Many authors 

have made great contributions in this regard, including El-Shahed and Salem [21], who extended the 

classical Navier–Stokes equation by substituting the first-time  derivative with a Caputo fractional  

derivative of an order 𝛼, where 0 < 𝛼 ≤ 1. However, numerical approximations have been suggested 

for a class of Navier–Stokes equations involving fractional time derivatives by Zhang and Wang [22]. 

Furthermore, Sawangtong et al. [23] solved the two-dimensional fractional time Navier–Stokes 

equation using the RPS method, where the fractional derivative used in their research was the 

Katugambola derivative in the sense of Caputo. In this study, we apply the 𝜙 -Caputo fractional 

derivative to solve the time-fractional Navier–Stokes equation using the residual RPS method. This 

approach is selected because, for specific values of 𝜙, the 𝜙-Caputo fractional derivative generalizes 

the Riemann-Liouville, Hadamard, and Katugampola fractional derivatives into a unified form. In 

other words, we focus on how to derive analytical solutions for a system of nonlinear fractional-time 

Navier–Stokes equations in Cartesian coordinates using the fractional derivative 𝜙 as a differential 

operator. This is crucial for generalizing the fractional derivatives of Riemann-Liouville, Hadamard, 

and Katugampola into a single formulation. The proposed method offers solutions in the form of 

rapidly converging series with easy-to-compute components, showing exceptional agreement with 

exact solutions, as demonstrated by numerical results. Moreover, it decreases the computational effort 
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in comparison to traditional methods, positioning the RPS method as a highly effective and  efficient 

tool  for solving both linear and nonlinear  fractional partial  differential equations. Additionally, we 

present the results through an example with varying fractional orders to illustrate the outcomes. 

Furthermore, we provide graphical representations of the solutions to these  problems when the 

Caputo–Hadamard fractional  derivative is applied. For further significant works, we direct the reader 

to references [24,25] on fractional calculus, [26–29] for the fractional Navier–Stokes equation, and [30–

32] on Caputo–Hadamard fractional differential equations. 

This work is structured  as follows. In Section 2, we present specific findings related to fractional 

calculus, which are used in the research details. In Section 3, we present a new approach to the RPS 

method. In Section 4, we introduce a generalization of the solutions to the fractional Navier–Stokes 

equation by applying the 𝜙-Caputo fractional derivative. Section 5 is devoted to a study related to the 

application of the RPS method to the Navier–Stokes equation with initial conditions. The manuscript 

concludes with final remarks. 

2. Preliminaries 

In this section, we review key definitions and properties from the theory of fractional calculus, 

which are utilized throughout this paper. 

Definition 2.1 ([6,33]). Let 𝑓 be an integrable function defined as 𝐼 = [𝑎, 𝑏], in relation to another 

function 𝜙 of an order 𝛼, such that 𝜙 ∈ 𝐶1(𝐼) is a growing function, 𝜙′(𝑡) ≠ 0 for each t ∈ I, and 

𝛼 > 0. The left fractional integral of 𝑓 is defined as: 

ℐ𝑎
𝛼;𝜙[𝑓(𝑥, 𝑡)] =

1

𝛤(𝛼)
∫ 𝜙′(𝜇)(𝜙(𝑡) − 𝜙(𝜇))

𝛼−1𝑡

𝑎
𝑓(𝑥, 𝜇)𝑑𝜇.    (2.1) 

ℐ𝑎
0;𝜙[𝑓(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡).         (2.2) 

Theorem 2.1 ([33]). Let 𝛼 > 0, 𝑚 ∈ ℕ , 𝐼  be the interval −∞ ≤ 𝑎 < ∞,  and 𝑓, 𝜙 ∈ 𝐶𝑚(𝐼)  two 

functions, where 𝜙 is increasing and 𝜙′(𝑡) ≠ 0, for all 𝑡 ∈ 𝐼. The left 𝜙-Caputo fractional derivative 

of 𝑓 of an order 𝛼 is given by: 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙[𝑓(𝑥, 𝑡)]1 = ℐ𝑎

𝑚−𝛼;𝜙
(

1

𝜙′(𝑡)

𝜕

𝜕𝑡
)

𝑚

𝑓(𝑥, 𝑡),     (2.3) 

such that 𝑚 = [𝛼] + 1 for 𝛼 ∉ ℕ, 𝑚 = 𝛼 for 𝛼 ∈ ℕ. 

We utilize the shortened notation to make the notation simpler. 

𝑓[𝑚];𝜙(𝑥, 𝑡) = (
1

𝜙′(𝑡)

𝜕

𝜕𝑡
)

𝑚

𝑓(𝑥, 𝑡).       (2.4) 

In the event that 𝜙(𝑡) = 𝑡, the Caputo fractional derivative is obtained in [34], while the Caputo–

Hadamard fractional derivative is obtained if 𝜙(𝑡) = 𝑙𝑛(𝑡) in [31]. 

Theorem 2.2 ([31]). Let ℜ(α) ≥ 0, 𝑚 = [ℜ(α)] + 1. If 𝑓 ∈ 𝐶𝛿
𝑚([𝑎, 𝑏]), with (0 < 𝑎 < 𝑏 < ∞), and 

𝐴𝐶𝛿
𝑚([𝑎, 𝑏]) = {𝑔: [𝑎, 𝑏] → ℂ: 𝛿𝑚−1𝑔(𝑥) ∈ 𝐴𝐶[𝑎, 𝑏], 𝛿 = 𝑥

𝑑

𝑑𝑥
},   (2.5) 

then 𝒟𝑡
𝐶

𝑎
𝛼;𝑙𝑛(𝑡) 

𝑓(𝑡) exist everywhere on [𝑎, 𝑏]: 
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𝒟𝑡
𝐶

𝑎
𝛼;𝑙𝑛(𝑡)

𝑓(𝑡) =
1

𝛤(𝑛−𝛼)
∫ (𝑙𝑛

𝑡

𝜉
)

𝑚−𝛼−1𝑡

𝑎
(𝑡

𝑑

𝑑𝑡
)

𝑚

𝑓(𝜉)
𝑑𝜉

𝜉
.   (2.6) 

Lemma 2.1 ([31]). Let 𝑓 ∈ 𝐴𝐶𝑚([𝑎, 𝑏]), and 𝛼 ∈ ℂ, then 

ℐ𝑎
𝛼;𝑙𝑛(𝑡)

𝒟𝑡
𝐶

𝑎
𝛼;𝑙𝑛(𝑡)

𝑓(𝑡) = 𝑓(𝑡) − ∑
𝛿𝑘𝑓(𝑎)

𝑘!
(𝑙𝑛

𝑡

𝑎
)

𝑘
𝑛−1
𝑘=0 .     (2.7) 

Theorem 2.3 ([31]). Let 𝑓 ∈ 𝐶𝑚([𝑎, 𝑏]), and 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝜂 > 0, then 

1) 𝑓(𝑡) = (𝜙(𝑡) − 𝜙(𝑎))
𝜂−1

, 𝑡ℎ𝑒𝑛 ℐ𝑎
𝛼;𝜙[𝑓(𝑡)] =

𝛤(𝛼)

𝛤(𝛼+𝜂)
(𝜙(𝑡) − 𝜙(𝑎))

𝛼+𝜂−1
,  (2.8) 

2) ℐ𝑎
𝛼;𝜙

𝒟𝑡
𝐶

𝑎
𝛼;𝜙[𝑓(𝑥, 𝑡)] = 𝑓(𝑥, 𝑡) − ∑

𝑓[𝑘],𝜙(𝑥,𝑎)

𝑘!
(𝜙(𝑡) − 𝜙(𝑎))

𝑘
.𝑛−1

𝑘=0      (2.9) 

3. Residual power series (RPS) method 

In this section, we discuss the RPS method through a new approach. 

Definition 3.1. A power series representation of the form 

∑ 𝐻𝑚
∞
𝑚=0 (𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
= 𝐶0 + 𝐶1(𝜙(𝑡) − 𝜙(𝑎))

𝛼
+ 𝐶2(𝜙(𝑡) − 𝜙(𝑎))

2𝛼
+ ⋯, (3.1) 

is called a fractional  power series around 𝑎, such that t is a variable, 𝐻𝑚
′ 𝑠 are constants called the 

coefficients of the series, where 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, and 𝜙(𝑡) ≥ 𝜙(𝑎). 

Theorem 3.1. Suppose that f has a fractional power series (FPS) representation at 𝜙(𝑎) of the form 

𝑓(𝑡) = ∑ 𝐻𝑚

∞

𝑚=0
(𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
, 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝜙(𝑎) ≤ 𝜙(𝑡) ≤ 𝜙(𝑎) + ℛ.     (3.2) 

If 𝑓(𝑡), 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑓(𝑡) ∈ 𝐶[𝜙(𝑎), 𝜙(𝑎) + ℛ]  where 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

∈ 𝐶[𝜙(𝑎), 𝜙(𝑎) + ℛ]  for 𝑚 = 1, 2,3, …, 

then the coefficients 𝐻𝑚 in the equation will take the form 

𝐻𝑚 =
𝒟𝑡

𝐶
𝑎
𝑚𝛼;𝜙

𝑓(𝑎)

𝛤(𝑚𝛼 + 1)
, 

𝑤ℎ𝑒𝑟𝑒 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

= 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

. 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

… 𝒟𝑡
𝐶

𝑎
𝛼;𝜙(𝑚 − 𝑡𝑖𝑚𝑒𝑠),    (3.3) 

with ℛ is the radius of convergence. 

Theorem 3.2. A  power series of the form ∑ 𝑓𝑚(𝑡)∞
𝑚=0 (𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
 is called a multiple FPS 

about 𝜙(𝑡) = 𝜙(𝑎) of the form 

𝑢(𝑥, 𝑡) = ∑ 𝑓𝑚(𝑥)∞
𝑚=0 (𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
, 𝑥 ∈ 𝐼, 𝜙(𝑎) ≤ 𝜙(𝑡) ≤ 𝜙(𝑎) + ℛ.  (3.4) 

If 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

𝑢(𝑥, 𝑡), 𝑚 = 0,1,2,3, … are continuous on 𝐼 × (𝜙(𝑎), 𝜙(𝑎) + ℛ), then 
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𝑓𝑚(𝑥) =
𝒟𝑡

𝐶
𝑎
𝑚𝛼;𝜙

𝑢(𝑥,𝑡)

𝛤(𝑚𝛼+1)
,        (3.5) 

where 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

=
𝜕𝑚𝛼

𝜕𝑡
=

𝜕𝛼

𝜕𝑡
.

𝜕𝛼

𝜕𝑡
…

𝜕𝛼

𝜕𝑡
(𝑚 − 𝑡𝑖𝑚𝑒𝑠),  and ℛ = 𝑚𝑖𝑛𝐶∈𝐼 ℛ𝐻  with ℛ𝐻  is the radius of 

convergence of the FPS ∑ 𝑓𝑚(𝐻)∞
𝑚=0 (𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
. 

It is evident from the last theorem that a𝑚 + 1 dimensional function can be obtained in the same 

way as the following corollary 𝜙(𝑡) = 𝜙(𝑎). 

Corollary 3.1. Suppose that 𝑢(𝑥, 𝑦, 𝑡) has a multiple FPS representation at 𝜙(𝑡) = 𝜙(𝑎) of the form: 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑚(𝑥, 𝑦)
∞

𝑚=0
(𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
, 

(𝑥, 𝑦) ∈ 𝐼1 × 𝐼2, 𝜙(𝑎) ≤ 𝜙(𝑡) ≤ 𝜙(𝑎) + ℛ.      (3.6) 

If 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑡), 𝑚 = 0,1,2,3, … are continuous on 𝐼1 × 𝐼2 × (𝜙(𝑎), 𝜙(𝑎) + ℛ), then 

𝑓𝑚(𝑥, 𝑦) =
𝒟𝑡

𝐶
𝑎
𝑚𝛼;𝜙

𝑢(𝑥,𝑦,𝑡)

𝛤(𝑚𝛼+1)
,       (3.7) 

where 𝒟𝑡
𝐶

𝑎
𝑚𝛼;𝜙

=
𝜕𝑚𝛼

𝜕𝑡
=

𝜕𝛼

𝜕𝑡
.

𝜕𝛼

𝜕𝑡
…

𝜕𝛼

𝜕𝑡
(𝑚 − 𝑡𝑖𝑚𝑒𝑠), and ℛ = 𝑚𝑖𝑛𝐶∈𝐼1×𝐼2

ℛ𝐻,𝐾 in which ℛ𝐻,𝐾 is the 

radius of convergence of the FPS ∑ 𝑓𝑚(𝐻, 𝐾)∞
𝑚=0 (𝜙(𝑡) − 𝜙(𝑎))

𝑚𝛼
. 

4. Generalization of the solutions of the  fractional Navier–Stokes equation  using the 𝝓-Caputo 

fractional derivative 

In this section, we apply the RPS method for solving  the  Navier–Stokes equation for the  nonlinear 

two-dimensional time fractional 𝜙-Caputo fractional derivative in the following form: 

For every (𝑥, 𝑦, 𝑡) ∈ (0, 𝑎] × (0, 𝑏] × (0, 𝑇], for any positive constants 𝑎, 𝑏, 𝑎𝑛𝑑 𝑇, 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑡) + 𝑅𝑒(𝑢(𝑥, 𝑦, 𝑡). 𝛻)𝑢(𝑥, 𝑦, 𝑡) = 𝛻2𝑢(𝑥, 𝑦, 𝑡) − 𝛻𝑃,  (4.1a) 

𝛻. 𝑢(𝑥, 𝑦, 𝑡) = 0, Ω × (0, 𝑇],      (4.1b) 

𝑢(𝑥, 0, 𝑡) = 𝑢(𝑦, 𝑡), 𝑜𝑛 𝛤𝑟𝑖𝑔𝑖𝑑 × (0, 𝑇], is the boundary conditions,  (4.2) 

𝑢(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦), in Ω, is the initial conditions, Ω ⊆ ℝ2,   (4.3) 

where 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

 signifies the 𝜙-Caputo fractional  derivative of the fractional order 𝛼 with 0 < 𝛼 ≤
1, Ω ⊆ ℝ2, 𝑜𝑛 𝛤𝑟𝑖𝑔𝑖𝑑 is the rigid part of the boundary 𝛤, 𝑢 and 𝑣 are the fluid velocity components 

along the 𝑥 and 𝑦 axis (ms−1), 𝑡 is the time (s), 𝑃 = 𝑃(𝑥, 𝑦, 𝑡) is the fluid pressure function (Pa), 

and 𝑅𝑒 is Reynolds's number. 

Equation (4.4), is expressed as follows in Cartesian coordinates based on 𝑥, 𝑦, and 𝑧: 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑧, 𝑡) + 𝑅𝑒𝑢
𝜕𝑢

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑢

𝜕𝑦
+ 𝑅𝑒𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑃

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2) ,   (4.4a) 
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𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑣(𝑥, 𝑦, 𝑧, 𝑡) + 𝑅𝑒𝑢
𝜕𝑣

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑣

𝜕𝑦
+ 𝑅𝑒𝑤

𝜕𝑣

𝜕𝑧
= −

𝜕𝑃

𝜕𝑦
+ (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 +
𝜕2𝑣

𝜕𝑧2) ,   (4.4b) 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑤(𝑥, 𝑦, 𝑧, 𝑡) + 𝑅𝑒𝑢
𝜕𝑤

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑤

𝜕𝑦
+ 𝑅𝑒𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑃

𝜕𝑧
+ (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 +
𝜕2𝑤

𝜕𝑧2 ).  (4.4c) 

From Eq (4.4), 2𝐷 Navier–Stokes equations of fractional order, may be written as: 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑢

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑃

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) ,  (4.5a) 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑣(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑣

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑃

𝜕𝑦
+ (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) ,  (4.5b) 

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦, 𝑡) +

𝜕𝑣

𝜕𝑦
(𝑥, 𝑦, 𝑡) = 0,         (4.6) 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢𝑏, (𝐵𝐶);  𝑢(𝑥, 𝑦, 0) = 𝑓𝑖(𝑥, 𝑦), (𝐼𝐶).     (4.7) 

According to the RPS approach, the solution for system (4.5) is a FPS about the beginning 

point 𝜙(𝑡) = 0. 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑚(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,      (4.8a) 

𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑔𝑚(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,      (4.8b) 

𝑃(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
.      (4.8c) 

The starting criteria (4.7) are satisfied by u and v, and they can be rewritten as: 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦),         (4.9a) 

𝑣(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦).         (4.9b) 

As a result, we may get the first estimate of 𝑢 and 𝑣 as: 

𝑢0(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦) = 𝑓(𝑥, 𝑦),       (4.10a) 

𝑣0(𝑥, 𝑦, 0) = 𝑓0(𝑥, 𝑦) = 𝑔(𝑥, 𝑦).       (4.10b) 

Therefore, Eqs (4.8a) and (4.8b) could be rewritten as: 

𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑚(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,     (4.11a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦) + ∑ 𝑔𝑚(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
.     (4.11b) 

Since there are no initial conditions for 𝑃, we move the index m from 0 to 1 in order to become 

𝑃(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚−1(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚−1)𝛼+1)
.      (4.11c) 

We use 𝑢𝑖 , 𝑣𝑖 and 𝑃𝑖 to represent the 𝑖 − th truncated series of 𝑢𝑖 , 𝑣𝑖 and 𝑃𝑖, respectively, in the 

next step: 

𝑢𝑖(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦) + ∑ 𝑓𝑚(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,     (4.12a) 
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𝑣𝑖(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦) + ∑ 𝑔𝑚(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,    (4.12b) 

𝑃𝑖(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚−1(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚−1)𝛼+1)
,      (4.12c) 

for 𝑖 = 1,2,3, …. 

For Eq (4.5), we define the residual functions 𝑅𝑒𝑠𝑢 and 𝑅𝑒𝑠𝑣 as follows: 

𝑅𝑒𝑠𝑢 = 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑢

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑢

𝜕𝑦
+

𝜕𝑃

𝜕𝑥
− (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) ,   (4.13a) 

𝑅𝑒𝑠𝑣 = 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑣(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑣

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑣

𝜕𝑦
+

𝜕𝑃

𝜕𝑦
− (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) .   (4.13b) 

The i-th truncated residual functions are thus 

𝑅𝑒𝑠𝑢𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

𝑢𝑖(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢𝑖
𝜕𝑢𝑖

𝜕𝑥
+ 𝑅𝑒𝑣𝑖

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑃𝑖

𝜕𝑥
− (

𝜕2𝑢𝑖

𝜕𝑥2
+

𝜕2𝑢𝑖

𝜕𝑦2
) ,   (4.14a) 

𝑅𝑒𝑠𝑣𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

𝑣𝑖(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢𝑖
𝜕𝑣𝑖

𝜕𝑥
+ 𝑅𝑒𝑣𝑖

𝜕𝑣𝑖

𝜕𝑦
+

𝜕𝑃𝑖

𝜕𝑦
− (

𝜕2𝑣𝑖

𝜕𝑥2
+

𝜕2𝑣𝑖

𝜕𝑦2
) ,   (4.14b) 

Based on [35–37], 𝑙𝑖𝑚
𝑖→∞

𝑅𝑒𝑠𝑖 = 𝑅𝑒𝑠(𝑥, 𝑦, 𝑡),  and 𝑅𝑒𝑠(𝑥, 𝑦, 𝑡) = 0  for each 𝜙(𝑡) ∈ [𝜙(𝑎), 𝜙(𝑎) +

𝑅]  and 𝑥, 𝑦 ∈ ℝ,  with 𝑅  is a non -negative real number representing the radius of convergence. 

Hence, 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑅𝑒𝑠(𝑥, 𝑦, 𝑡) = 0. Given that a constant function’s fractional derivative in the Caputo 

sense is zero, the fractional derivative 𝒟𝑡
𝐶

𝑎
𝑟𝛼;𝜙

  of  𝑅𝑒𝑠(𝑥, 𝑦, 𝑡)  and  𝑅𝑒𝑠𝑖(𝑥, 𝑦, 𝑡)  are correspond 

to 𝜙(𝑡) = 𝜙(𝑎) for each 𝑖 = 0,1,2, …. 
If we set 𝜙(𝑎) = 0, and 𝑟 = 𝑖 − 1, we get 

𝒟𝑎
(𝑖−1)𝛼;𝜙

𝑡
𝐶 𝑅𝑒𝑠𝑢𝑖

(𝑥, 𝑦, 0) = 0,       (4.15a) 

𝒟𝑎
(𝑖−1)𝛼;𝜙

𝑡
𝐶 𝑅𝑒𝑠𝑣𝑖

(𝑥, 𝑦, 0) = 0.       (4.15b) 

Now, we use the RPS technique to obtain the form of the coefficients  𝑓𝑚(𝑥, 𝑦) ,  𝑔𝑚(𝑥, 𝑦) , 

or ℎ𝑚−1(𝑥, 𝑦), where 𝑚 = 1,2,3, … 𝑖 in Eq (4.5). 

First, we enter the i-th shortened u, v, and P series into Eq (4.14). Second, we determine the 

formula for the fractional derivative of 𝒟𝑎
(𝑖−1)𝛼;𝜙

𝑡
𝐶  for both 𝑅𝑒𝑠𝑢𝑖

(𝑥, 𝑦, 𝑡)  and 𝑅𝑒𝑠𝑣𝑖
(𝑥, 𝑦, 𝑡) ,where 

𝑖 = 1, 2, 3, …. Last, we solve the algebraic system (4.14) that was acquired. 

5. Application of the RPS method on the Navier–Stokes equation with initial conditions 

In this section, we apply the RPS method shown above to a classical test problem from [38,39] 

and turn it into a fractional one by substituting a fractional derivative of order 0 < 𝛼 ≤ 1for the first 

time derivative. Afterward, we discuss the graphics and numerical results. System (4.5) in which 0 ≤

𝑥, 𝑦 ≤ 𝜋 is the subject of our problem, and the initial conditions are 

𝑢(𝑥, 𝑦, 0) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦),       (5.1a) 

𝑣(𝑥, 𝑦, 0) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦).       (5.1b) 
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The boundary conditions are 

𝑢(𝑥, 0, 𝑡) = 0,         (5.2a) 

𝑣(0, 𝑦, 𝑡) = 0.         (5.2b) 

The following approach will be used by the RPS method: 

Assume that the following is how the problem is resolved. 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑓𝑚(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,      (5.3a) 

𝑣(𝑥, 𝑦, 𝑡) = ∑ 𝑔𝑚(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,      (5.3b) 

𝑃(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚−1(𝑥, 𝑦)∞
𝑚=0

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,     (5.3c) 

with initial conditions (5.1), we can get the initial guess for 𝑚 = 0. Since the pressure has no beginning 

condition, we obtain 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) + ∑ 𝑓𝑚(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,   (5.4a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) + ∑ 𝑔𝑚(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,   (5.4b) 

𝑃(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚−1(𝑥, 𝑦)∞
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚−1)𝛼+1)
.      (5.4c) 

The abbreviated series of the suggested solutions will now be built as follows: 

𝑢𝑖(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛 (𝑦) + ∑ 𝑓𝑚(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,  (5.5a) 

𝑣𝑖(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) + ∑ 𝑔𝑚(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
,   (5.5b) 

𝑃𝑖(𝑥, 𝑦, 𝑡) = ∑ ℎ𝑚−1(𝑥, 𝑦)𝑖
𝑚=1

(𝜙(𝑡)−𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚−1)𝛼+1)
,      (5.5c) 

The residual functions are going to be defined by 

𝑅𝑒𝑠𝑢 = 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑢(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑢

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑢

𝜕𝑦
+

𝜕𝑃

𝜕𝑥
− (

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2) ,  (5.6a) 

𝑅𝑒𝑠𝑣 = 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑣(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢
𝜕𝑣

𝜕𝑥
+ 𝑅𝑒𝑣

𝜕𝑣

𝜕𝑦
+

𝜕𝑃

𝜕𝑦
− (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) ,  (5.6b) 

The i-th truncated residual functions are thus 

𝑅𝑒𝑠𝑢𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

𝑢𝑖(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢𝑖
𝜕𝑢𝑖

𝜕𝑥
+ 𝑅𝑒𝑣𝑖

𝜕𝑢𝑖

𝜕𝑦
+

𝜕𝑃𝑖

𝜕𝑥
− (

𝜕2𝑢𝑖

𝜕𝑥2 +
𝜕2𝑢𝑖

𝜕𝑦2 ) ,   (5.7a) 

𝑅𝑒𝑠𝑣𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

𝑣𝑖(𝑥, 𝑦, 𝑡) + 𝑅𝑒𝑢𝑖
𝜕𝑣𝑖

𝜕𝑥
+ 𝑅𝑒𝑣𝑖

𝜕𝑣𝑖

𝜕𝑦
+

𝜕𝑃𝑖

𝜕𝑦
− (

𝜕2𝑣𝑖

𝜕𝑥2
+

𝜕2𝑣𝑖

𝜕𝑦2
) ,   (5.7b) 

Substituting Eq (5.5) in Eq (5.7) gives 
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𝑅𝑒𝑠𝑢𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

(∑ 𝑓𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

−𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) ∑
𝜕𝑓𝑚

𝜕𝑥

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

+ 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) ∑ 𝑓𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

+𝑅𝑒 (∑ 𝑓𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) (∑

𝜕𝑓𝑚

𝜕𝑥

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

+ 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) ∑
𝜕𝑓𝑚

𝜕𝑦

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

−𝑅𝑒 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) ∑ 𝑔𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

+𝑅𝑒 (∑ 𝑔𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) (∑

𝜕𝑓𝑚

𝜕𝑦

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

+ ∑
𝜕ℎ𝑚−1

𝜕𝑥

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚 − 1)𝛼 + 1)
 

−2 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) − 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) 

− (∑
𝜕2𝑓𝑚

𝜕𝑥2
𝑖
𝑚=1 ×

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
+ ∑

𝜕2𝑓𝑚

𝜕𝑦2
𝑖
𝑚=1 ×

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
),  (5.8a) 

𝑅𝑒𝑠𝑣𝑖
= 𝒟𝑡

𝐶
𝑎
𝛼;𝜙

(∑ 𝑔𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

−𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) ∑
𝜕𝑔𝑚

𝜕𝑥

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

+ 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) ∑ 𝑓𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

+𝑅𝑒 (∑ 𝑓𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) (∑

𝜕𝑔𝑚

𝜕𝑥

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) ∑
𝜕𝑔𝑚

𝜕𝑦

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
 

− 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) ∑ 𝑔𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
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+𝑅𝑒 (∑ 𝑔𝑚

𝑖

𝑚=1

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) (∑

𝜕𝑔𝑚

𝜕𝑦

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼 + 1)
) 

+ ∑
𝜕ℎ𝑚−1

𝜕𝑦

𝑖

𝑚=1
×

(𝜙(𝑡) − 𝜙(𝑎))
(𝑚−1)𝛼

𝛤((𝑚 − 1)𝛼 + 1)
 

+2 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) − 𝑅𝑒 𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) 

− (∑
𝜕2𝑔𝑚

𝜕𝑥2
𝑖
𝑚=1 ×

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
+ ∑

𝜕2𝑔𝑚

𝜕𝑦2
𝑖
𝑚=1 ×

(𝜙(𝑡)−𝜙(𝑎))
𝑚𝛼

𝛤(𝑚𝛼+1)
).  (5.8b) 

For i=1. The truncated series (5.5) after setting i=1 is 

𝑢1(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛 (𝑦) + 𝑓1(𝑥, 𝑦)
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
,    (5.9a) 

𝑣1(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) + 𝑔1(𝑥, 𝑦)
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
,     (5.9b) 

𝑃1(𝑥, 𝑦, 𝑡) = ℎ0(𝑥, 𝑦).           (5.9c) 

The first residual functions must then be found by substituting Eq (5.9) in Eq (5.8) as follows: 

𝑅𝑒𝑠𝑢1
= 𝑓1 −𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑓1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑓1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒𝑓1

𝜕𝑓1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
+ 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)

𝜕𝑓1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−𝑅𝑒 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑔1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 𝑅𝑒𝑔1

𝜕𝑓1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
+

𝜕ℎ0

𝜕𝑥
 

−2 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) − 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) 

− (
𝜕2𝑓1

𝜕𝑥2

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
+

𝜕2𝑓1

𝜕𝑦2

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
).        (5.10a) 

𝑅𝑒𝑠𝑣1
= 𝑔1 −𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑔1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+ 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑓1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒𝑓1

𝜕𝑔1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
+ 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)

𝜕𝑔1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑔1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 𝑅𝑒𝑔1

𝜕𝑔1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
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+
𝜕ℎ0

𝜕𝑦
+ 2 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) − 𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) 

− (
𝜕2𝑔1

𝜕𝑥2

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
+

𝜕2𝑔1

𝜕𝑦2

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
).       (5.10b) 

The truncated residual functions at 𝜙(𝑡) = 0 are then computed to obtain: 

𝑅𝑒𝑠𝑢1
= 𝑓1 −2𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) − 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) +

𝜕ℎ0

𝜕𝑥
,  (5.11a) 

𝑅𝑒𝑠𝑣1
= 𝑔1 +2𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) − 𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) +

𝜕ℎ0

𝜕𝑦
,  (5.11b) 

and by Eq (4.14), we know that 

𝑅𝑒𝑠𝑢1
(𝑥, 𝑦, 0) = 0,  𝑅𝑒𝑠𝑣1

(𝑥, 𝑦, 0) = 0.     (5.12) 

When we solve these equations for 𝑓1 and 𝑔1, we obtain: 

𝑓1 = 2𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) + 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) −
𝜕ℎ0

𝜕𝑥
,   (5.13a) 

𝑔1 = −2𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) + 𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) −
𝜕ℎ0

𝜕𝑦
.   (5.13b) 

Now, to determine ℎ0, we apply the following boundary conditions: 

𝑢1(𝑥, 0, 𝑡) = 0, 𝑣1(0, 𝑦, 𝑡) = 0.       (5.14) 

Using the boundary conditions (5.14), we obtain the following by substituting Eq (5.13) in Eq (5.9): 

𝜕ℎ0

𝜕𝑥
= 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥),        (5.15a) 

𝜕ℎ0

𝜕𝑦
= 𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦).        (5.15b) 

By integrating Eq (4.15a) with respect to x, we obtain: 

ℎ0(𝑥, 𝑦) = −
𝑅𝑒

4
𝑐𝑜𝑠(2𝑥) + 𝑐(𝑦).       (5.16) 

Then, the function 

𝑐(𝑦) = −
𝑅𝑒

4
𝑐𝑜𝑠(2𝑦).         (5.17) 

After entering this equation into Eq (5.16), we obtain: 

ℎ0(𝑥, 𝑦) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)).     (5.18) 

Consequently, the final forms of the functions f and g are as follows: 

𝑓1 = 2𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦),        (5.19a) 

𝑔1 = −2𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦).        (5.19b) 

Finally, the following is the first estimated RPS solution: 

𝑢1(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) sin(𝑦) + 2𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
,  (5.20a) 
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𝑣1(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) −2𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
,  (5.20b) 

𝑃1(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)).      (5.20c) 

For i=2. The truncated series (5.5), after setting i=2, is 

𝑢2(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) + 𝑓1
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
+ 𝑓2

(𝜙(𝑡)−𝜙(𝑎))
2𝛼

𝛤(2𝛼+1)
,  (5.21a) 

𝑣2(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) +𝑔1
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
) + 𝑔2

(𝜙(𝑡)−𝜙(𝑎))
2𝛼

𝛤(2𝛼+1)
,  (5.21b) 

𝑃2(𝑥, 𝑦, 𝑡) = ℎ0 + ℎ1
(𝜙(𝑡)−𝜙(𝑎))

𝛼

𝛤(𝛼+1)
.          (5.21c) 

Therefore, the following residual truncated functions can be obtained by substituting these equations 

into Eq (5.8) as: 

𝑅𝑒𝑠𝑢2
= 𝑓1 +𝑓2

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
− 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑓1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−𝑅𝑒𝑐𝑜𝑠(𝑥)𝑠𝑖 𝑛(𝑦)
𝜕𝑓2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑓1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒𝑓1

𝜕𝑓1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
+ 𝑅𝑒𝑓1

𝜕𝑓2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
 

+𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑓2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑓2

𝜕𝑓1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
 

+𝑅𝑒𝑓2

𝜕𝑓2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤2(𝛼 + 1)
+ 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)

𝜕𝑓1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
𝜕𝑓2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
− 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑔1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

+𝑅𝑒𝑔1

𝜕𝑓1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
+ 𝑅𝑒𝑔1

𝜕𝑓2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
 

−𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑔2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑔2

𝜕𝑓1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
 

+𝑅𝑒𝑔2

𝜕𝑓2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤2(2𝛼 + 1)
− 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) 

−2 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) +
𝜕ℎ0

𝜕𝑥
+

𝜕ℎ1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−
𝜕2𝑓1

𝜕𝑥2

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
−

𝜕2𝑓2

𝜕𝑥2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
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−
𝜕2𝑓1

𝜕𝑦2

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
−

𝜕2𝑓2

𝜕𝑦2

(𝜙(𝑡)−𝜙(𝑎))
2𝛼

𝛤(2𝛼+1)
,           (5.22a) 

𝑅𝑒𝑠𝑣2
= 𝑔1 +𝑔2

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
− 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑔1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−𝑅𝑒𝑐𝑜𝑠(𝑥)𝑠𝑖 𝑛(𝑦)
𝜕𝑔2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
 

+ 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑓1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 𝑅𝑒𝑓1

𝜕𝑔1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
 

+𝑅𝑒𝑓1

𝜕𝑔2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑓2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
 

+𝑅𝑒𝑓2

𝜕𝑔1

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑓2

𝜕𝑔2

𝜕𝑥

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤2(2𝛼 + 1)
 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
𝜕𝑔1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)

𝜕𝑔2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
 

−𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦)𝑔1

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 𝑅𝑒𝑔1

𝜕𝑔1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤2(𝛼 + 1)
 

+𝑅𝑒𝑔1

𝜕𝑔2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
− 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑔2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
 

+𝑅𝑒𝑔2

𝜕𝑔1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(𝛼 + 1)𝛤(2𝛼 + 1)
+ 𝑅𝑒𝑔2

𝜕𝑔2

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤2(2𝛼 + 1)
 

−𝑅𝑒 𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) + 2 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) +
𝜕ℎ0

𝜕𝑦
+

𝜕ℎ1

𝜕𝑦

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−
𝜕2𝑔1

𝜕𝑥2

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
−

𝜕2𝑔2

𝜕𝑥2

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
−

𝜕2𝑔1

𝜕𝑦2

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
 

−
𝜕2𝑔2

𝜕𝑦2

(𝜙(𝑡)−𝜙(𝑎))
2𝛼

𝛤(2𝛼+1)
.              (5.22b) 

Next, applying operator 𝒟𝑡
𝐶

𝑎
𝛼;𝜙

 into Eq (5.22), and then substituting 𝜙(𝑡) = 0, we get 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑅𝑒𝑠𝑢2
(𝑥, 𝑦, 0) = 𝑓2 −𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑓1

𝜕𝑥
+ 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦) 𝑓1 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
𝜕𝑓1

𝜕𝑦
− 𝑅𝑒 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦)𝑔1 −

𝜕2𝑓1

𝜕𝑥2
−

𝜕2𝑓1

𝜕𝑦2
+

𝜕ℎ1

𝜕𝑥
, (5.23a) 

𝒟𝑡
𝐶

𝑎
𝛼;𝜙

𝑅𝑒𝑠𝑣2
(𝑥, 𝑦, 0) = 𝑔2 −𝑅𝑒𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)

𝜕𝑔1

𝜕𝑥
+ 𝑅𝑒 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑓1 

+𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
𝜕𝑔1

𝜕𝑦
− 𝑅𝑒 𝑠𝑖𝑛(𝑥) 𝑠𝑖𝑛(𝑦)𝑔1 −

𝜕2𝑔1

𝜕𝑥2 −
𝜕2𝑔1

𝜕𝑦2 +
𝜕ℎ1

𝜕𝑦
. (5.23b) 
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Based on Eq (4.15), then 

𝒟𝑎
𝛼;𝜙

𝑡
𝐶 𝑅𝑒𝑠𝑢2

(𝑥, 𝑦, 0) = 0,        (5.24a) 

𝒟𝑎
𝛼;𝜙

𝑡
𝐶 𝑅𝑒𝑠𝑣2

(𝑥, 𝑦, 0) = 0.        (5.24b) 

This fact enables us to obtain the initial formulas of 𝑓2 and 𝑔2 by inserting 𝑓1 and 𝑔1 and their partial 

derivatives in Eq (5.23) as: 

𝑓2 = −4𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥) − 4 𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑦) −
𝜕ℎ1

𝜕𝑥
,    (5.25a) 

𝑔2 = −4𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦) + 4 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦) −
𝜕ℎ1

𝜕𝑦
.    (5.25b) 

To determine ℎ1, we need to apply the following boundary conditions: 

𝑢2(𝑥, 0, 𝑡) = 0,  𝑣2(0, 𝑦, 𝑡) = 0.      (5.26) 

By replacing Eq (5.25) with Eq (5.22), and then applying the boundary conditions to the resulting 

equations, we obtain: 

𝜕ℎ1

𝜕𝑥
= −4𝑅𝑒𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥),       (5.27a) 

𝜕ℎ1

𝜕𝑦
= −4𝑅𝑒𝑠𝑖𝑛(𝑦) 𝑐𝑜𝑠(𝑦).       (5.27b) 

The integration of Eq (5.27) with regard to 𝑥 provides 

ℎ1(𝑥, 𝑦) = 𝑅𝑒 𝑐𝑜𝑠(2𝑥) + 𝑐(𝑦).     (5.28) 

Then, the function 

𝑐(𝑦) = 𝑅𝑒 𝑐𝑜𝑠(2𝑦).        (5.29) 

After entering this equation into Eq (5.28), we obtain: 

ℎ1(𝑥, 𝑦) = 𝑅𝑒(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)).    (5.30) 

Consequently, the final forms of the functions 𝑓2 and 𝑔2 are as follows: 

𝑓2 = −4𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦),       (5.31a) 

𝑔2 = 4𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦).       (5.31b) 

Finally, the following is the first estimated RPS solution: 

𝑢2(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) + 2𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)
(𝜙(𝑡) − 𝜙(𝑎))

𝛼

𝛤(𝛼 + 1)
 

−4 𝑐𝑜𝑠(𝑥) sin(𝑦)
(𝜙(𝑡)−𝜙(𝑎))

2𝛼

𝛤(2𝛼+1)
,        (5.32a) 

𝑣2(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) −2𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
(𝜙(𝑡) − 𝜙(𝑎))

𝛼

𝛤(𝛼 + 1)
 

+4 𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑦)
(𝜙(𝑡)−𝜙(𝑎))

2𝛼

𝛤(2𝛼+1)
,       (5.32b) 
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𝑃2(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) + 𝑅𝑒(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦))

(𝜙(𝑡)−𝜙(𝑎))
𝛼

𝛤(𝛼+1)
. (5.32c) 

Our time-fractal problem can be solved by repeating the same process for 𝑖 = 3, 4, 5,… as: 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) [1 − 2
(𝜙(𝑡) − 𝜙(𝑎))

𝛼

𝛤(𝛼 + 1)
+ 4

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
− 8

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(2𝛼 + 1)
+ 16

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤(4𝛼 + 1)
+ ⋯ ] 

= −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) [∑
(−2(𝜙(𝑡)−𝜙(𝑎))

𝛼
)

𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ]            (5.33a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) [1 − 2
(𝜙(𝑡) − 𝜙(𝑎))

𝛼

𝛤(𝛼 + 1)
+ 4

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
− 8

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
+ 16

(𝜙(𝑡) − 𝜙(𝑎))
4𝛼

𝛤(4𝛼 + 1)
+ ⋯ ] 

= 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) [∑
(−2(𝜙(𝑡)−𝜙(𝑎))

𝛼
)

𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ] ,           (5.33b) 

𝑃(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) [1 − 4

(𝜙(𝑡) − 𝜙(𝑎))
𝛼

𝛤(𝛼 + 1)
+ 16

(𝜙(𝑡) − 𝜙(𝑎))
2𝛼

𝛤(2𝛼 + 1)
− 64

(𝜙(𝑡) − 𝜙(𝑎))
3𝛼

𝛤(3𝛼 + 1)
+ ⋯ ] 

= −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) [∑

(−4(𝜙(𝑡)−𝜙(𝑎))
𝛼

)
𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ].        (5.33c) 

This solution leads us to conclude that Eq (5.33) contains two important special cases. 

Initially, assuming 𝜙(𝑡) = 𝑡 (this is the fractional integral of Riemann–Liouville) and 𝑎 = 0. 

The exact solution in this case is as follows: 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) [∑
(−2𝑡𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ] ,     (5.34a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) [∑
(−2𝑡𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ],      (5.34b) 

𝑃(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) [∑

(−4𝑡𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ],   (5.34c) 

which is in full agreement with the results acquired by Sawangtong et al. [23] using the generalized 

Shehu residual power series. This solution leads us to the conclusion that Eq (5.34) has two significant 

special instances. Initially, assuming that 𝜙(𝑡) =
𝑡𝜌

𝜌
 (Katugampola fractional derivative in the sense 

of Caputo) and 𝑎 = 0, the exact solution in this case is as follows: 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) [∑
(−2

𝑡

𝜌𝛼

𝜌𝛼
)

𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ] ,     (5.35a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) [∑
(−2

𝑡

𝜌𝛼

𝜌𝛼
)

𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ],     (5.35b) 

𝑃(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) [∑

(−4
𝑡

𝜌𝛼

𝜌𝛼
)

𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ],   (5.35c) 
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and are alike in agreement with the solutions found by Sawangtong et al. [23] using the generalized 

Shehu residual power series. On the other hand, if 𝜙(𝑡) = 𝑙𝑛(𝑡) and 𝑎 = 1 (we have the Hadamard 

fractional integral), Eq (5.34) yields a solution that becomes: 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦) [∑
(−2(𝑙𝑛 𝑡)𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ] .    (5.36a) 

The Mittag–Leffler function enables us to express the above answer in closed form as: 

Based on the Hadamard derivative in the sense of Caputo (4.5), along with IC (5.1) and BC (5.2), 

the analytical solutions 𝑢 and 𝑣 of the two-dimensional time fractional Navier–Stokes equation, as 

well as the fluid pressure, are thus provided by: 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) [∑
(−2(𝑙𝑛 𝑡)𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ],     (5.36b) 

𝑃(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦)) [∑

(−4(𝑙𝑛 𝑡)𝛼)𝑖

𝛤(𝑖𝛼+1)
∞
𝑖=0 ].  (5.36c) 

𝑢(𝑥, 𝑦, 𝑡) = −𝑐𝑜𝑠(𝑥) 𝑠𝑖 𝑛(𝑦)𝐸𝛼(−2(𝑙𝑛 𝑡)𝛼),     (5.37a) 

𝑣(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝑥) 𝑐𝑜 𝑠(𝑦) 𝐸𝛼(−2(𝑙𝑛 𝑡)𝛼),      (5.37b) 

𝑃(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(𝑐𝑜𝑠(2𝑥) + 𝑐𝑜𝑠(2𝑦))𝐸𝛼(−4(𝑙𝑛 𝑡)𝛼).   (5.37c) 

6. Results and discussion 

In the following, we present the graphical fadings of the nonlinear two-dimensional time 

fractional equation solution Navier–Stokes Eq (4.5), with IC (5.1) and BC (5.2), under the Caputo-

Hadamard memory. We demonstrate the plots of the three solutions 𝑢, 𝑣 and 𝑃 for the solutions at 

α = 0.95, 0.75, 0.55, 0.35 , where  𝑥, 𝑦 ∈ [0, 𝜋], 𝑡 ∈ [1,2]  and the Reynold’s number 𝑅𝑒 = 40  are 

shown in Figures 1–4. In Figure 1, it can be seen from those figures that 𝑢(𝑥, 𝑦, 𝑡) and 𝑃(𝑥, 𝑦, 𝑡) are 

generally growing as t grows, even though the increase decreases as 𝛼  increases. The second 

component of velocity, 𝑣(𝑥, 𝑦, 𝑡), where 𝑥 =
𝜋

4
, has numerical results that indicate that it decreases as 

𝑡 grows, but it becomes less decreasing, as 𝛼 increases. In Figure 2, it is observed that 𝑣(𝑥, 𝑦, 𝑡) 

and 𝑃(𝑥, 𝑦, 𝑡) grow generally with 𝑥 up to 𝑥 =
𝜋

2
 and gradually decrease starting from 𝑥 =

𝜋

2
. For the 

second component of the velocity, 𝑢(𝑥, 𝑦, 𝑡), with 𝑥 =
𝜋

4
, numerical results indicate that it decreases 

with the growth of y up to 𝑦 =
𝜋

2
, and then grows generally with increasing 𝑦. The numerical results 

for the first component of velocity 𝑢(𝑥, 𝑦, 𝑡) of the fractional Navier–Stokes equation obtained by the 

RPS method are shown in Figure 3, for a range of values of 𝑡, 𝑥, and with 𝑦 =
𝜋

4
. It is evident from 

those figures that  𝑢(𝑥, 𝑦, 𝑡)  generally increases as  𝑡  and 𝑥  increase, but decreases as  𝛼  increases. 

Finally, for the pressure in Figure 4, where 𝑦 =
𝜋

4
, it is shown that 𝑃(𝑥, 𝑦, 𝑡) increases around 𝑥 =

𝜋

4
, 

and then decreases when 𝑥 𝑎𝑛𝑑 𝑡 increase, where this increase decreases with increasing 𝛼. 
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Figure 1. The graphs of Eq (5.36) of different values of parameters 𝑡 ∈ [1,2], 𝛼 𝑤𝑖𝑡ℎ 𝑎 =

1, 𝛼 = 1, 0.95, 0.75, 0.55, 0.35. 

 

Figure 2. The graphs of Eq (5.36) for different values of parameters 𝑥, 𝑦 ∈
[0, 𝜋], 𝛼 𝑤𝑖𝑡ℎ 𝑎 = 1, 𝛼 = 1, 0.95, 0.75, 0.55, 0.35.  
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Figure 3. The surface shows the  behavior of solution 𝑢(𝑥, 𝑦, 𝑡) of the application using 

Eq (5.36) with respect to t  and 𝑥  with 𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.75, 𝛼 = 0.55, 𝑦 =
𝜋

4
, 𝑅𝑒 = 40. 

  

  

Figure 4. The surface shows the behavior of solution 𝑃(𝑥, 𝑦, 𝑡) of the application using 

Eq (5.36) with respect to t  and 𝑥  with  𝛼 = 1, 𝛼 = 0.95, 𝛼 = 0.75, 𝛼 = 0.55, 𝑦 =
𝜋

4
, 𝑅𝑒 = 40.  
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7. Conclusions 

In this paper, we present an analytical solution to the proposed problem of the time-fractional 

Navier–Stokes equation using the RPS method within the fractional derivative (𝜙-Caputo). These 

equations are described in time, enabling the generalization of the Riemann–Liouville, Hadamard, and 

Katugampola fractional derivatives into a unified form. In addition, we demonstrate the results through 

an example with different fractional orders of 𝛼, illustrating the outcomes. Moreover, we provide 

graphical representations of the solutions to these problems when the Caputo–Hadamard fractional 

derivative is utilized, noting that Matlab is used to generate these graphs. Moreover, this method 

reduces the amount of computational work compared to traditional methods. We hope that this work 

will serve as a step in extending the applications of the RPS method to solve fractional problems with 

boundary conditions at infinity, an area in which we expect this method to be very applicable. 

Moreover, the values of 𝛼 of the Hadamard derivative affect the velocity magnitude of the fluid flow, 

as shown in the graphical results section. 

Author contributions 

O.B. and A.M.A: Methodology, Investigation, Formal analysis, Data curation, conceptualization, 

Writing-review and editing; O.B: writing-original draft, Visualization; A.M.A: Supervision, Funding 

acquisition. All authors have read and agreed to the published version of the manuscript. 

Use of Generative-AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Conflict of interest 

The authors declare that they have no conflicts of interest. 

References 

1. R. Herrmann, Fractional calculus: an introduction for physicists, Singapore: World Scientific 

Publishing Company, 2011. https://doi.org/10.1142/8072 

2. V. S. Kiryakova, Generalized fractional calculus and applications, Pitman research notes in 

mathematics series, Longman Scientific & Technical, Harlow, 1994. 

3. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential 

equations, John Willey & Sons, 1993. 

4. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential 

equations, Vol. 204, Elsevier, 2006. 

5. I. Podlubny, Fractional differential equations calculus, an introduction to fractional derivatives, 

fractional differential equations, to methods of their solution and some of their applications, Vol. 

198, New, York: Academic, Press, 1999. 

6. A. M. Alqahtani, H. Mihoubi, Y. Arioua, B. Bouderah, Analytical solutions of time-fractional 

Navier–Stokes equations employing homotopy Perturbation–Laplace transform method, Fractal 

Fract., 9 (2024), 23. https://doi.org/10.3390/fractalfract9010023 

https://doi.org/10.1142/8072
https://doi.org/10.3390/fractalfract9010023


15495 

AIMS Mathematics  Volume 10, Issue 7, 15476–15496. 

7. J. Zuo, C. Liu, C. Vetro, Normalized solutions to the fractional Schrödinger equation with 

potential, Mediterr. J. Math., 20 (2023), 216. https://doi.org/10.1007/s00009-023-02422-1 

8. J. Zuo, T. An, G. Ye, Z. Qiao, Nonhomogeneous fractional p-Kirchhoff problems involving a 

critical nonlinearity, Electron. J. Qual. Theory Differ. Eq., 41 (2019), 1–15. 

https://doi.org/10.14232/ejqtde.2019.1.41 

9. T. Öziş, D. Ağırseven, He’s homotopy perturbation method for solving heat-like and wave-like 

equations with variable coefficients, Phys. Lett. A, 372 (2008), 5944–5950. 

https://doi.org/10.1016/j.physleta.2008.07.060 

10. R. M. Jena, S. Chakraverty, Solving time-fractional Navier–Stokes equations using homotopy 

perturbation Elzaki transform, SN. Appl. Sci., 1 (2019), 16. https://doi.org/10.1007/s42452-018-

0016-9 

11. S. J. Liao, Beyond perturbation: introduction to the homotopy analysis method, 1 Ed., New York: 

Chapman and Hall/CRC Press, 2003. https://doi.org/10.1201/9780203491164 

12. G. Bakicierler, S. Alfaqeih, E. Mısırlı, Application of the modified simple equation method for 

solving two nonlinear time-fractional long water wave equations, Rev. Mex. Fís., 67 (2021), 1–7. 

https://doi.org/10.31349/revmexfis.67.060701 

13. R. Abazari, B. Soltanalizadeh, Reduced differential transform method and its application on 

Kawahara equations, Thai J. Math., 11 (2000), 199–216. 

14. Y. Keskin, G. Oturanc, The Reduced differential transform method: a new approach to fractional 

partial differential equations, Nonlinear Sci. Lett. A, 1 (2010), 207–217. 

15. O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized 

differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. 

16. K. K. Jaber, R. S. Ahmad, Analytical solution of the time fractional Navier–Stokes equation, Ain 

Shams Eng. J., 9 (2018), 1917–1927. https://doi.org/10.1016/j.asej.2016.08.021 

17. A. Arafa, G. Elmahdy, Application of residual power series method to fractional coupled physical 

equations arising in fluids flow, Int. J. Differ. Equ., 10 (2018), 7692849. 

https://doi.org/10.1155/2018/7692849 

18. T. Ogawa, S. V. Rajopadhye, M. E. Schooner, Energy decay for a weak solution of the Navier–

Stokes equation with slowly varying external forces, Energy J. Funct. Anal., 144 (1997), 325–

358. https://doi.org/10.1006/jfan.1996.3011 

19. E. S. Baranovskii, Exact solutions for non-isothermal flows of second grade fluid between parallel 

plates, Nanomaterials, 13 (2023), 1409. https://doi.org/10.3390/nano13081409 

20. E. S. Baranovskii, Analytical unsteady poiseuille flow of a second grade fluid with slip boundary 

conditions, Polymers, 16 (2024), 179. https://doi.org/10.3390/polym16020179 

21. M. El-Shahed, A. Salem, On the generalized Navier–Stokes equations, Appl. Math. Comput., 156 

(2004), 287–293. https://doi.org/10.1016/j.amc.2003.07.022 

22. J. Zhang, J. Wang, Numerical analysis for Navier–Stokes equations with time fractional 

derivatives, Appl. Math. Comput., 336 (2018), 481–489. 

https://doi.org/10.1016/j.amc.2018.04.036 

23. W. Sawangtong, P. Dunnimit, B. Wiwatanapataphe, P. Sawangtong, An analytical solution to the 

time fractional Navier–Stokes equation based on the Katugampola derivative in Caputo sense by 

the generalized Shehu residual power series approach, Partial Differ. Equ. Appl. Math., 11 (2024), 

100890. https://doi.org/10.1016/j.padiff.2024.100890 

24. T. M. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications 

in mechanics, vibrations and diffusion processes, John Wiley & Sons, Inc., 2014. 

https://doi.org/10.1002/9781118577530 

https://doi.org/10.1007/s00009-023-02422-1
https://doi.org/10.14232/ejqtde.2019.1.41
https://doi.org/10.1016/j.physleta.2008.07.060
https://doi.org/10.1007/s42452-018-0016-9
https://doi.org/10.1007/s42452-018-0016-9
https://doi.org/10.1201/9780203491164
https://doi.org/10.31349/revmexfis.67.060701
https://doi.org/10.1016/j.asej.2016.08.021
https://doi.org/10.1155/2018/7692849
https://doi.org/10.1006/jfan.1996.3011
https://doi.org/10.3390/nano13081409
https://doi.org/10.3390/polym16020179
https://doi.org/10.1016/j.amc.2003.07.022
https://doi.org/10.1016/j.amc.2018.04.036
https://doi.org/10.1016/j.padiff.2024.100890
https://doi.org/10.1002/9781118577530


15496 

AIMS Mathematics  Volume 10, Issue 7, 15476–15496. 

25. C. G. Eliana, E. C. De Oliveira, Fractional versions of the fundamental theorem of calculus, Appl. 

Math., 4 (2013), 23–33. https://doi.org/10.4236/am.2013.47A006 

26. S. R. Bistafa, On the development of the Navier-Stokes equation by Navier, Rev. Bras. Ensino 

Fís., 40 (2017), e2603. https://doi.org/10.1590/1806-9126-rbef-2017-0239 

27. V. B. L. Chaurasia, D. Kumar, Solution of the time-fractional Navier–Stokes equation, Gen. Math. 

Notes, 4 (2011), 49–59. 

28. C. Dou, Z. Zhao, Analytical solution to 1D compressible Navier-Stokes equations, J. Func. 

Spaces, 2021 (2021), 6. https://doi.org/10.1155/2021/6339203 

29. H. Mihoubi, A. M. Alqahtani, Y. Arioua, B. Bouderah, T. Tayebi, Homotopy perturbation ρ- 

Laplace transform approach for numerical simulation of fractional Navier–Stokes equations, 

Contemp. Math., 6 (2025), 1–29. https://doi.org/10.37256/cm.6320255978 

30. F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional 

derivatives, Adv. Differ. Equ., 142 (2012), 8. https://doi.org/10.1186/1687-1847-2012-142 

31. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, On Caputo modification of the Hadamard 

fractional derivatives, Adv. Differ. Equ., 2014 (2014), 10. https://doi.org/10.1186/1687-1847-

2014-10 

32. A. M. Alqahtani, H. Mihoubi, Analytical solutions for fractional Black-Scholes European option 

pricing equation by using Homotopy perturbation method with Caputo fractional derivative, Math. 

Model. Eng. Prob., 12 (2025), 1562–1570. https://doi.org/10.18280/mmep.120510 

33. R. Almeida, A Caputo fractional derivative of a function with respect to another function, 

Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. 

https://doi.org/10.1016/j.cnsns.2016.09.006 

34. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and 

applications, Gordon and Breach Science Publishers, 1993. 

35. A. M. Alqahtani, A. Shukla, Computational analysis of multi-layered Navier–Stokes system by 

Atangana–Baleanu derivative, Appl. Math. Sci. Eng., 32 (2024), 2290723. 

https://doi.org/10.1080/27690911.2023.2290723 

36. R. Company, L. Jódar, J. R. Pintos, A numerical method for European Option Pricing with 

transaction costs nonlinear equation, Math. Comput. Model., 50 (2009), 910–920. 

https://doi.org/10.1016/j.mcm.2009.05.019 

37. R. K. Gazizov, N. H. Ibragimov, Lie symmetry analysis of differential equations in finance, 

Nonlinear Dyn., 17(1998), 387–407. https://doi.org/10.1023/A:1008304132308 

38. P. Amster, C. G. Averbuj, M. C. Mariani, Stationary solutions for two nonlinear Black–Scholes 

type equations, Appl. Numer. Math., 47 (2003), 275–280. https://doi.org/10.1016/S0168-

9274(03)00070-9 

39. R. M. Jena, S. Chakraverty, Solving time-fractional Navier–Stokes equations using homotopy 

perturbation Elzaki transform, SN. Appl. Sci., 1 (2019), 16. https://doi.org/10.1007/s42452-018-

0016-9 

©2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.4236/am.2013.47A006
http://dx.doi.org/10.1590/1806-9126-rbef-2017-0239
https://doi.org/10.1155/2021/6339203
https://doi.org/10.37256/cm.6320255978
https://doi.org/10.1186/1687-1847-2012-142
https://doi.org/10.1186/1687-1847-2014-10
https://doi.org/10.1186/1687-1847-2014-10
https://doi.org/10.18280/mmep.120510
https://doi.org/10.1016/j.cnsns.2016.09.006
https://doi.org/10.1080/27690911.2023.2290723
https://doi.org/10.1016/j.mcm.2009.05.019
https://doi.org/10.1023/A:1008304132308
https://doi.org/10.1016/S0168-9274(03)00070-9
https://doi.org/10.1016/S0168-9274(03)00070-9
https://doi.org/10.1007/s42452-018-0016-9
https://doi.org/10.1007/s42452-018-0016-9

