AIMS Mathematics, 10(6): 15012-15024.
DOI: 10.3934/math.2025673
AIMS Mathematics Received: 24 April 2025

Revised: 18 June 2025

Accepted: 24 June 2025
https://www.aimspress.com/journal/Math Published: 30 June 2025

Research article

Local L® norm estimates for the gradient solutions of variational
inequalities arising from the mortgage problems

Qingjun Zhao*
School of Economics and Management, Chongqing Normal University, Chongqing 401331, China
* Correspondence: Email: zhaoqingjun 977@163.com.

Abstract: This paper investigates local estimates for the spatial gradient of solutions to variational
inequalities within the framework of a parabolic Kirchhoft operator, which arises from mortgage
problems. By utilizing the integral inequality for the gradient of the solutions derived in this study,
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1. Introduction

This paper examines a class of variational inequality problems arising from American option pricing
within the framework of parabolic Kirchhoff operators, denoted as

max{Ly, Yo — ¢} = 0in Qr,
¥(-,0) =y¢oinQ, (D
Y =0inoQ x (0, T),

where the non-negative constant p satisfies conditions p > 2 and

Ly = 0y — (1 + W] )iV (") + f. (2)

Here, we also define the non-negative constants @ and g such that

f=ay, 3)
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and Q are bounded open regions in the Euclidean space Ry, with the boundary denoted by 9. The
initial value i for the variational inequality problem (1) satisfies the condition

o € CHQ) N W, (Q).

The variational inequality problem is commonly encountered in contract pricing issues in finance,
particularly in the context of installment payments for real estate purchases. Suppose an investor
is interested in a property but lacks sufficient funds; in this case, they might consider acquiring the
property through an installment payment plan. To simplify this model, let’s assume the investor makes
a down payment of $0. Consequently, the market value of the loan contract can be represented as

max{HC,, fo — C4} = 0inR, x (0, T), @
Ca(S,0)=0inR,,
where |
HC, =0,Cy + 55252355(7A +rS3sCus — rCy + fo. 5)

Here, the parameter € represents the volatility of the property value, while r denotes the risk-free
interest rate in the market. The variable f; indicates the remaining repayment amount that the investor
is required to pay. First, since the property price S fluctuates in response to market information, the
investor is naturally concerned about the extent of the fluctuations in dsC4. Excessive volatility could
lead the investor to a state of insolvency. Additionally, real estate transactions often incur costs such as
deed tax and stamp duty. Evidence suggests that the volatility € in formula (5) is frequently related to
0sC4. The well-known Leland model expresses the volatility € as

82 = 8(2) (1 + Le x sign(lagCAlpagCA)) s (6)

where g, represents the long-term volatility level, and the non-negative constant Le is the Leland factor
determined by the ratio of trading frequency to transaction costs, which is not elaborated here. This has
a structure similar to the parabolic operator (2). These factors form the motivation for the variational
inequality research presented in this paper.

Model (4) carries sound financial implications. When HC4 = 0: The condition C,4 — fy > 0 indicates
that housing price fluctuations have driven the market value of the loan contract C4 above the originally
agreed-upon remaining repayment balance f;. This suggests that investors would benefit from early
repayment to terminate the contract. When HC, < 0: The equality C4 = f, implies that the market
value of the loan contract C, aligns with the future repayment cash flows f. In this scenario, retaining
the loan is optimal, as early repayment offers no financial advantage and would instead forfeit liquidity.

The existence of solutions to variational inequalities is a common area of study and forms the
foundation for many analytical works. Peng et al. [3] explored the existence of a nonlinear
evolutionary variational-hemivariational inequality, where the parabolic operator in the variational
inequality involves both convex subdifferentials and Clarke subdifferentials, which are related to
the time derivative of the unknown function. By considering the differentiability and generalized
convexity assumptions of some multiple integral functionals, Treanta et al. [4] introduced the existence
of solutions to vector-type variational control inequalities, which depend on certain uncertainty
parameters. Based on nonlinear elastic constitutive equations, Zhang et al. [5] introduced the
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corresponding system of partial differential equations and variational inequalities, and within the
framework of variational inequalities, proved and analyzed the existence and uniqueness of solutions
to such models, as well as the approximation properties of finite element numerical solutions. Wu
et al. investigated the existence and stability of solutions to a class of fuzzy fractional differential
variational inequalities, which involve coupled modeling through variational inequalities and fuzzy
fractional derivatives [6]. By introducing a two-parameter problem in the involved mappings and
constraints, they established existence results for the parameterized fuzzy fractional differential
variational inequality (PFFDVI). It is important to note that the inequalities in variational inequalities
often impede the study of solution existence. Research on the existence of solutions is commonly
found in non-degenerate parabolic equations [7,8] and systems of parabolic equations [9,10].

Norm estimates for the gradient of solutions are also commonly studied in initial boundary value
problems for parabolic equations and systems of parabolic equations [11-16]. Li [11] investigated
the near-boundary W?9 regularity of the solution set for fully nonlinear parabolic inequalities in
bounded open regions, generalizing the results from [12]. In contrast, Zhang and Dong [10] focused
solely on the interior estimates of the solution set for fully nonlinear parabolic inequalities. The
work [13] established estimates for the weighted mixed norm and endpoint regularity of the maximum
regularity for discrete parabolic equations under initial boundary value problems. Meanwhile, Das [14]
demonstrated local Holder regularity for weak solutions of mixed local-nonlocal parabolic equations,
specifically regarding the existence and estimation of the L™ norm of the gradient. Wang [15] derived
new gradient estimates for positive solutions of the weighted p-Laplace heat equation under bounded
m-Bakry-Emery curvature using a regularization process. Currently, there is relatively limited literature
on gradient estimates for solutions of variational inequalities, with a few references available for
readers [16].

The parabolic Kirchhoff operator is a class of differential operators that combines parabolic
equations with Kirchhoff-type nonlinear terms. Its framework incorporates an energy function of
solutions, which is commonly used to describe dynamic processes with nonlocal effects [6]. The
existence of solutions to initial-boundary value problems for parabolic Kirchhoff operators has been
investigated by Chen and Zhou [17], while the existence of solutions to corresponding variational
inequalities has been analyzed by Wu et al. [6]. Numerous additional studies have been conducted
on parabolic equations and variational inequalities; for further reading, interested readers may refer
to [18,19].

This paper investigates the L™ norm estimate for the gradient of solutions to a class of variational
inequality problems. These problems arise from American option pricing and are framed within the
parabolic Kirchhoft operator architecture. By applying the energy inequality for the gradient of the
solution together with the Caffarelli-Kohn—Nirenberg (C-K-N) inequality, we derive a recursive energy
estimate for the gradient. This allows us to construct an upper bound for the L*-norm of the gradient,
which is expressed in terms of the analytical norm of the solutions L”-norm.

2. Preliminary knowledge and main results

Before presenting the main results of this paper, we first introduce the Banach spaces
LP(Q) = {f|f is measurable in Q, ||fll.r) = flfl”dx < oo},
Q
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W'(Q) = (f1f is measurable in Q, |V fllwir) = Ifllr@) + IV fllr) < oo},

If f € W(Q) and f = 0ondQ hold, we say that f € Wé’p (). These results can be found in [3,4].
Furthermore, we will need two additional useful lemmas. Lemma 2.1 can be found in [15,16], and
we use it to analyze the recursive inequalities for the gradient structure of the solution space of the
variational inequality (1), thereby obtaining the boundedness of the corresponding L™ norm of the
solution’s gradient. Lemma 2.2 is found in [14], and we use it to construct the recursive inequalities
for the gradient structure of the solution space mentioned earlier.

Lemma 2.1. Assume that a certain sequence {Z,,n = 0, 1,2, - - -} satisfies

Zi < CV'Z).

Then Z, — O0asn — oo holds if and only if Zy < C ~lap-1f “2, where C, b, and « are all non-negative
constants, and @ € (0, 1).

Lemma 2.2. (Caffarelli-Kohn—Nirenberge inequality) For any ¢ € LP(Q7) N L(Q), there exists a
non-negative constant C¢_g_y, which depends only on N and p, such that

P

N+q N

f f |:ﬁ|p(N)dxdt§CC_K_N( f IVzﬁI”dxdt)(esssup f IVz/llqu) .
Qr Qr te(0,7) JQ

The existence of a generalized solution to problem (1) has been extensively studied in the
literature [16], and will not be repeated here. Suppose (xo,%) € €. This paper investigates
the L* norm estimate for the gradient of the solution to the variational inequality (1) in the local
cylindrical region

O(k,0) = O(«, Bl(x0, 19)) = O, X Es = {x|x — xo| < k} X (to — 6, 1o). (7)

In many traditional studies, the energy inequality for ¢ is used (see Lemma 3.1), and after discarding
certain non-negative terms, we obtain

Y € L7 (Qr). (8)

By utilizing the comparison principle, the variational inequality (1) also satisfies [16]

¥ < Wolle=@), Y(x, 1) € Qr. )

Additionally, based on (16) and applying Holder’s inequality, along with Lemmas 2.1 and 2.2, we
obtain the following result regarding the boundedness of the L* norm for [20], which will be used in
the subsequent analysis.

Lemma 2.3. For any O(k, 9) C Qp, there exists a non-negative constant C that depends solely on p, N,
and ||y||w, such that the solution ¢ of the variational inequality (1) satisfies

IVYllz=0wsy < C.

Throughout the paper, we present the following two main results.
Theorem 2.4. Assuming o € (0, 1), for any fixed non-negative constants € > 0 and p > 2, the solution
to the variational inequality (1) satisfies

2e
2/ 2 E/p
IDY|| 2= 0rcosy) < 648CZ/fK_N(P /K ) (S(U]g) l//) Wl e 0k.6))-
K,
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Assuming o € (0,1), by using formula (9) to scale sup ¥ up to |[}o|l, we can conclude from
0(x.6)

Theorem 2.4 that for any O(k,d) C Q, there exists a non-negative constant C that depends solely
on p, N, Cc_g_n, and ||p|| such that

DYl 00x.00y) < ClIVLr0k.0))- (10)
Note p > 2, so that when ffc)(x 5 |WlPdxdt > 1,

( f f |¢|dedr)Ps( f f |¢|dedz)2. (11)
O(k,6) O(x,0)

When f fO(K 5 l|Pdxdt < 1, by choosing parameters 2/p and (p — 2)/p, it is easy to obtain

( f f |¢p|"dxdt)p < Z( f f |¢|dedt)2 L2 (12)
O(k.6) p O(k.6) p

using Young’s inequality. Therefore, based on the above analysis, we can obtain the following result.
Corollary 2.5. There exists a non-negative constant C that depends only on N, p, @, Cc_g_p,, and

[l¥oll such that
2
Vli0orsy < c( f f lepdxdt) .
O(k,0)

Continuing to examine the variational inequality (4) for American option pricing, we aim to validate
the main results of this paper. The American option, modeled by variational inequality (4), allows
investors to exercise the option at any point in time during the option’s lifespan [0, T'] to realize a
profit. In contrast, a European option only permits investors to decide whether to exercise the option
at a single point in time, specifically at 7. According to reference [2], the value of the European
option satisfies

{ HCE:OinRer(O,T), (13)
Ce(S,0) = (S — K),inR,.
Numerous studies have provided pricing results for European options, which is
Ce(S,1) = SN(dy) — Kexp{—r(T - D}N(d>),
where N(-) is the cumulative distribution function of the standard normal distribution, and
. InS —InK + (r + 1&)(T - t)’d2 _ InS —InK + (r — 1&)(T - t)'
T -t T -1t

Further calculations reveal that [1,2]

TEOD - v, (14)

It is important to note that American options can be exercised at any point in time during the option’s
lifespan [0, T'], while European options allow for a decision to exercise only once at time 7. This
implies that Cg(S, 1) is more sensitive to the risk asset price S than C4(S, 1), specifically:

6CA(S,t)' B 8CE(S,t)‘ ~
HS S B

IN(d))| < 1.

From the above expression, it is clear that Theorem 2.4 and Corollary 2.5 are indeed valid.
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3. Integral inequalities involving  and Vi

We first examine the integral inequalities for the solution . Choose a test function ¢ =
Y p(x)™n(t) , where the truncation functions satisfy p € C*(®,) and n € C*(Zs), and additionally,

0<p<1in®,,0<n<1inE;. (15)

Furthermore, y satisfies the boundary conditions p = 0in d0®,, and 1 holds on the left side of the time
interval Z; satisfying n(ty — 6) = 0. Using the Holder and Young inequalities, and by analogy with the
proof in [16], we can derive the following integral inequality for the solution .

Lemma 3.1. Assume that ¢ is the solution to the variational inequality (1). For any t € &5, m > 0, and
p > 2, there exists a non-negative constant C, depending only on m and p, such that

sup | ™ p™ InHdx + f " VP p" ndxde < T, + T, (16)
t€Es JO, O(x,0)
where

1=p

2+ 1y f f Y " |V plPdxdt, T, = f f Y™ om0 mldxds.
p O(k,5) O(x,0)

Next, we analyze the integral inequalities involving the gradient of the solution Vi in order to obtain
additional energy estimates. Let o € (0, 1) be an undetermined constant such that

H]Z

1-0 5 6+1—0’
K, 0, =0
2n 2n

K, = OK + 0. 17)

For convenience, we alsoset ®, = 0, , 5, = 55, and O, = 0, X E,, and it is easy to observe that
Oy = O(k, 6), Ox = O(0ok, 06). (18)
Furthermore, we divide O,, into two parts:
A ={(x,1) € O,|Ly < 0} and A, = {(x, 1) € O,|Ly = 0}.

From (1), we know that when (x, 7) € A; holds, ¥ = ¥ follows. Based on the assumption i, it is easy
to obtain

Vi € L¥(Ay). (19)

The remainder of this paper considers the case A,. Let v = |Vy|, multiply both sides of VL = 0 by
©n, and integrate over O, yielding

f f 0,V X p,dxdt + f (L + W11 ) VAV V) X g, dxdr = f f Vf X gudxdt, (20)
n Oy

n

where
©On = P(V - /ln+l)1-:)—_1 ngnﬁa é/n = I{(x,t)eO,,Ivzan}- (21)
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Here, 1, = 1-5; L2, where 1 is a non-negative undetermined constant. We first analyze the second term
on the left-hand side of (20). By applying integration by parts, we easily obtain

ll fo,, V(div(r" 2 Vi) X g dxdr = — | f div(v?2Vy)V,dxdt
=—p(p— 12 [ [ v 2lAuPv - 2,007 X prmydxdt
~(p=Dp? [ 5, v 2110 = )0 % ol Vp,dds.

Here, we make use of ¢,le, = 0, at which point f: V(div(v?2VY)) X @,le,df = 0. By performing

integration transformations on f fo 0,V X ¢,dxdt and f fo V(div(v?72Vy)) X ¢,dxdt, and applying
inequalities such as Holder’s and Young’s inequalities, we obtain the following result.
Lemma 3.2. Assuming v = |V, forany n = 1,2,3,---, we have

(p—)

supf v =41’ X pPnhdx + ff V(v — ,,+1) |2Xp5n§dxdtsﬂ3+n4+ﬂ5, (22)

tex

where

I =p f f O = Au)h X pPnP 10 maldxde, T1y = p f f IVFI X (v = )" X pPPdadt,
0, (O

s = f VI I > A1) X P2 VPP dadt.

2p-1

In Lemma 3.2, we aim to incorporate several results concerning the gradient of the truncation

function. We assume that i, is a truncation factor on ©,,; that not only satisfies the conditions related

to ¢ in (15) but also meets the requirements that i, is zero on the boundary of ®,,,;. Furthermore, for
everyn =0,1,2,---, the following holds:

n+2

pn(x) = 1100, [Vp,| £ ——— (23)
i (1-o0)x

We further assume that 77, is a truncation function on Z,,;, which not only satisfies (15) but also

vanishes at ty — 6,. Moreover, for every n = 0, 1,2, ..., the following holds:
n+2
W(X) = 1in 5, [Vi,| € ————. 24
() = 1inZ,, [V < = (24)

Using Holder’s inequality and Young’s inequality,

pf Jo VA 0= 205" X plnidxde

25
<[ VAP X > Apd X phafdnde + E2 [ [ = Al x plnbdsdr. )

Note that when p > 2, L 2_;) % follows. Therefore, by Lemma 3.2 and (15), we can obtain
f v =24, xphntdx < pY,Vt € 5, (26)
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and

f f IV = Au)iP X plfdads < 27, 27)
Oll

where

(28)

T =T+ T2+, To=pt [ VAP X Ty > A, )dxdr,
Ty=22 [ [ (= Aun)idadr, Ty = 252 [ 003074 x Iy > 4, )dxd.

At the end of this section, we examine a reverse estimate for a higher-order L” norm. Let 7 > 0 be set;
the choice of this parameter plays a crucial role in the results presented in this paper. By applying the
Caffarelli-Kohn—Nirenberg inequality to f fo (v = A1),V dxdt, we obtain

f f (v = A1) X pPPyPP P 0 dxdr < Coogoy X T X (IT)T, (29)
0,
where

M = f f IV = A x plPyPdxdt, TI; = esssup f | = Ae)?? X p2Pt P,
(O n

tes,

Substituting (26) and (27) into (29), we arrive at the following result.
Lemma 3.3. For any 7 > 0, there exists

f f (v = Ap)?? X PPl P40 dxds < 2Cc gy T (30)

Note that the left side of the above expression is of order p(1 + 7) with respect to (v — 4,41); , while
the right side is of order p with respect to (v — 4,41)+ and of order 3p — 4 with respect to v. Clearly,
by choosing 7 sufficiently large, one can use the lower-order norms of (v — 4,1)+ and v to estimate the
higher-order energy norm (v — A,41)+.-

4. Estimates for the supremum bound of Vi
We continue to refine the estimates of f fo v = e )?? X pP 0?2049 dxds in Lemma 3.3 by

utilizing Lemma 4.1. To do this, we need to estimate the three non-negative terms Y, 1, and T3
in (28). Using Lemma 4.1, it is straightforward to observe that the third term in (28) satisfies

22n+4 2 2(p-2)
T3 < 5 (sup v) ff v x v > A,,1}dxdt. (31

K

Similarly, the second term in Eq (28) satisfies

2I’l
Ty < 6” f f VX I{y > Ay }dxdr, (32)
Oy
Next, we analyze the first term in Eq (28). From (9), we can obtain

Ty < ap” @ ol f f WX Iy > AyerJddr. (33)
0O,
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For the sake of convenience in the discussion, we define
X, = f (v — A,V dxdr. (34)
Op

Note that when v > A,,,1, we have (v — A,,41)+ > # in O,, which leads us to
2(n+l)p
[ [ 1> avarar < == [ [ - aavar = 2000, (35)
n On

On the other hand, by utilizing A, = A, 2 2n+1 1 , we can similarly apply the analytical approach from [20,
Eq (7.5)], which gives us

2n+l -2 p 1
ff (91 - ﬂn)zd)(fdl > ff eip (1 - 1—) Igiz,lanXdl‘ > — ff eiplgiz,lanXdl.
On On 2n+ _1 + " On

Consequently, we obtain

ff VX I{v > A, }dxdt < 2"PX,,. (36)
Oy
Therefore, we substitute (31)—(34), and (36) into the right-hand side of T, yielding
~ on 72n+4 2 2(p-2)
T < [app—lqpnwonqu b, 7” TR (sup v) )2"!’)(". 37)
K 0,

Combining this expression with Lemma 3.3, we obtain a more refined estimate for
GRS K )2 X PP 2040 d xdt, which is

ffo |(v—/ln+1)£/2 % p/2 p/2|2(1”)dxdt

22pn(1 +Q’)Xn1+T.

n

, 2Ap-2\ 147 (38)
< ZCc_K_N16”T(ap”“q”llwollé’é"’” +24 ’K’—z(sgp V) )

Proof of Theorem 2.4. We first construct an upper bound for X,,; using (38) and the previously
established Lemma 3.3. Note that O, D O, holds and that , = 1in O, is satisfied, which allows us
to easily obtain

Xpet < [ Jo, 10 = 20024, Pdxdr

= = 39
< (f fon (v - /1n+1)f/2§n|2(1”)dxdf)HT X (f fon Ivz/lnﬂdxdl) v ©9)

1
1

using Holder’s inequality. Note that we constructed an upper bound for ( fo v > /ln+1}dxdt) o
using (35). Substituting this into (39) readily reveals

1
Xmﬁ(ffKW%mﬂ%WmMﬂ x 20+ 0P P TR X, T (40)
0,
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Finally, substituting the estimate for [ fo (v = A )P X 0P 240 d xdr from (38) into the previous
expression yields

Ce_x-n p p2 2(p-2) . .
X <327 ——— (ap”‘lq”||wo||€§"‘” + =+ —z(sup v) )8"" X APTEX, R (41)
(1-o0) 0 «\o,

To simplify the results, we define

2(p=2) P
(s&p v) > max{—, ap"q'IlpollS k), (42)
such that (41) can be reduced to
» Cok-n w2 n 1+ 7=
Xy < 64p m(sup v) 8 x X, T, (43)
Consequently, according to Lemma 2.1, in order to achieve X,, — 0 as n — oo, it is sufficient to choose

—1 ~1

64 2 —(1+a7") B B =2(p-2)(1+7t7") .,

Xp < (ﬁ) CC(—]IJZI\;) sup V) 8_p(1+T h AP,
—0)K

n

Note that Oy = O(«, d) and X, = fo ) vPdxdt, and when « is sufficiently small,
2(p-2) |
(sup v) > ap” ¢ ol
Oy

always holds. Therefore, we choose

Ly 2+ 64p> \ 7 ,
R S B L W

At this point, X,, — 0 as n — oo holds, and by combining this with O,, = O(ok, 06), we can derive

sup v< A 45)
O(ok,00)

Thus, we have completed the proof of Theorem 2.4.
5. Conclusions

This paper examines a class of variational inequality boundary value problems governed by
Kirchhoff operators, specifically the variational inequality (1), which arises from the analysis of the
value of American contingent claims in finance. We attempt to estimate the infinite norm of the
gradient of the solution to variational inequality (1) in local regions. This result helps financial
scholars characterize the sensitivity of the value of American contingent claims with respect to the
value of risky assets. Using the integral inequality (Lemma 3.2) of the gradient of the solution to
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variational inequality (1) in a cylindrical region O, applying the Caffarelli-Kohn-Nirenberg inequality,
we construct an estimate for

2 2 212(1
f f (v = 2D X plP PP P d .
O,

Subsequently, we use this to construct a pushforward inequality for fOn (v — A,)%dxdr. Finally, by
choosing the parameter A, we complete the infinite norm estimate of the gradient v of the solution
to variational inequality (1).

This paper restricts p > 2; if p € (1,2), obtaining formula (31) becomes challenging. Similarly,
formulas (11) and (12) no longer hold, as they likewise rely on the condition p > 2. Additionally, a
must be non-negative; otherwise, Lemma 3.1 may become more complex in form. If this condition is
omitted, there will be considerable uncertainty when handling T’} in formulas (28) and (33). In future
research, we will attempt to overcome these limitations.
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