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1. Introduction

This paper examines a class of variational inequality problems arising from American option pricing
within the framework of parabolic Kirchhoff operators, denoted as

max{Lψ, ψ0 − ψ} = 0 in ΩT ,

ψ( · , 0) = ψ0 in Ω,

ψ = 0 in ∂Ω × (0,T ),
(1)

where the non-negative constant p satisfies conditions p ≥ 2 and

Lψ = ∂tψ − (1 + ||ψ||
p
Lp(Ω))div(|ψ|p−1ψ) + f . (2)

Here, we also define the non-negative constants α and q such that

f = αψq, (3)
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and Ω are bounded open regions in the Euclidean space RN , with the boundary denoted by ∂Ω. The
initial value ψ0 for the variational inequality problem (1) satisfies the condition

ψ0 ∈ C1(Ω) ∩W1,p
0 (Ω).

The variational inequality problem is commonly encountered in contract pricing issues in finance,
particularly in the context of installment payments for real estate purchases. Suppose an investor
is interested in a property but lacks sufficient funds; in this case, they might consider acquiring the
property through an installment payment plan. To simplify this model, let’s assume the investor makes
a down payment of $0. Consequently, the market value of the loan contract can be represented as{

max{HCA, f0 −CA} = 0 in R+ × (0,T ),
CA( S , 0) = 0 in R+,

(4)

where
HCA = ∂tCA +

1
2
ε2S 2∂S S CA + rS ∂S CA − rCA + f0. (5)

Here, the parameter ε represents the volatility of the property value, while r denotes the risk-free
interest rate in the market. The variable f0 indicates the remaining repayment amount that the investor
is required to pay. First, since the property price S fluctuates in response to market information, the
investor is naturally concerned about the extent of the fluctuations in ∂S CA. Excessive volatility could
lead the investor to a state of insolvency. Additionally, real estate transactions often incur costs such as
deed tax and stamp duty. Evidence suggests that the volatility ε in formula (5) is frequently related to
∂S CA. The well-known Leland model expresses the volatility ε as

ε2 = ε2
0
(
1 + Le × sign(|∂S CA|

p∂S CA)
)
, (6)

where ε0 represents the long-term volatility level, and the non-negative constant Le is the Leland factor
determined by the ratio of trading frequency to transaction costs, which is not elaborated here. This has
a structure similar to the parabolic operator (2). These factors form the motivation for the variational
inequality research presented in this paper.

Model (4) carries sound financial implications. When HCA = 0: The condition CA− f0 ≥ 0 indicates
that housing price fluctuations have driven the market value of the loan contract CA above the originally
agreed-upon remaining repayment balance f0. This suggests that investors would benefit from early
repayment to terminate the contract. When HCA ≤ 0: The equality CA = f0 implies that the market
value of the loan contract CA aligns with the future repayment cash flows f0. In this scenario, retaining
the loan is optimal, as early repayment offers no financial advantage and would instead forfeit liquidity.

The existence of solutions to variational inequalities is a common area of study and forms the
foundation for many analytical works. Peng et al. [3] explored the existence of a nonlinear
evolutionary variational-hemivariational inequality, where the parabolic operator in the variational
inequality involves both convex subdifferentials and Clarke subdifferentials, which are related to
the time derivative of the unknown function. By considering the differentiability and generalized
convexity assumptions of some multiple integral functionals, Treanta et al. [4] introduced the existence
of solutions to vector-type variational control inequalities, which depend on certain uncertainty
parameters. Based on nonlinear elastic constitutive equations, Zhang et al. [5] introduced the
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corresponding system of partial differential equations and variational inequalities, and within the
framework of variational inequalities, proved and analyzed the existence and uniqueness of solutions
to such models, as well as the approximation properties of finite element numerical solutions. Wu
et al. investigated the existence and stability of solutions to a class of fuzzy fractional differential
variational inequalities, which involve coupled modeling through variational inequalities and fuzzy
fractional derivatives [6]. By introducing a two-parameter problem in the involved mappings and
constraints, they established existence results for the parameterized fuzzy fractional differential
variational inequality (PFFDVI). It is important to note that the inequalities in variational inequalities
often impede the study of solution existence. Research on the existence of solutions is commonly
found in non-degenerate parabolic equations [7,8] and systems of parabolic equations [9,10].

Norm estimates for the gradient of solutions are also commonly studied in initial boundary value
problems for parabolic equations and systems of parabolic equations [11–16]. Li [11] investigated
the near-boundary W2,δ regularity of the solution set for fully nonlinear parabolic inequalities in
bounded open regions, generalizing the results from [12]. In contrast, Zhang and Dong [10] focused
solely on the interior estimates of the solution set for fully nonlinear parabolic inequalities. The
work [13] established estimates for the weighted mixed norm and endpoint regularity of the maximum
regularity for discrete parabolic equations under initial boundary value problems. Meanwhile, Das [14]
demonstrated local Hölder regularity for weak solutions of mixed local-nonlocal parabolic equations,
specifically regarding the existence and estimation of the L∞ norm of the gradient. Wang [15] derived
new gradient estimates for positive solutions of the weighted p-Laplace heat equation under bounded
m-Bakry-Émery curvature using a regularization process. Currently, there is relatively limited literature
on gradient estimates for solutions of variational inequalities, with a few references available for
readers [16].

The parabolic Kirchhoff operator is a class of differential operators that combines parabolic
equations with Kirchhoff-type nonlinear terms. Its framework incorporates an energy function of
solutions, which is commonly used to describe dynamic processes with nonlocal effects [6]. The
existence of solutions to initial-boundary value problems for parabolic Kirchhoff operators has been
investigated by Chen and Zhou [17], while the existence of solutions to corresponding variational
inequalities has been analyzed by Wu et al. [6]. Numerous additional studies have been conducted
on parabolic equations and variational inequalities; for further reading, interested readers may refer
to [18,19].

This paper investigates the L∞ norm estimate for the gradient of solutions to a class of variational
inequality problems. These problems arise from American option pricing and are framed within the
parabolic Kirchhoff operator architecture. By applying the energy inequality for the gradient of the
solution together with the Caffarelli–Kohn–Nirenberg (C-K-N) inequality, we derive a recursive energy
estimate for the gradient. This allows us to construct an upper bound for the L∞-norm of the gradient,
which is expressed in terms of the analytical norm of the solutions Lp-norm.

2. Preliminary knowledge and main results

Before presenting the main results of this paper, we first introduce the Banach spaces

Lp(Ω) = { f | f is measurable in Ω, || f ||Lp(Ω) =

∫
Ω

| f |pdx < ∞},
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W1,p(Ω) = { f | f is measurable in Ω, ||∇ f ||W1,p(Ω) = || f ||Lp(Ω) + ||∇ f ||Lp(Ω) < ∞}.

If f ∈ W1,p(Ω) and f = 0 on ∂Ω hold, we say that f ∈ W1,p
0 (Ω). These results can be found in [3,4].

Furthermore, we will need two additional useful lemmas. Lemma 2.1 can be found in [15,16], and
we use it to analyze the recursive inequalities for the gradient structure of the solution space of the
variational inequality (1), thereby obtaining the boundedness of the corresponding L∞ norm of the
solution’s gradient. Lemma 2.2 is found in [14], and we use it to construct the recursive inequalities
for the gradient structure of the solution space mentioned earlier.
Lemma 2.1. Assume that a certain sequence {Zn, n = 0, 1, 2, · · · } satisfies

Zn+1 ≤ CbnZ1+α
n .

Then Zn → 0 as n → ∞ holds if and only if Z0 ≤ C−1/αb−1/α2
, where C, b, and α are all non-negative

constants, and α ∈ (0, 1).
Lemma 2.2. (Caffarelli–Kohn–Nirenberge inequality) For any ψ ∈ Lp(ΩT ) ∩ Lq(Ω), there exists a
non-negative constant CC−K−N , which depends only on N and p, such that∫ ∫

ΩT

|ψ|p
(N+q)

N dxdt ≤ CC−K−N

(∫ ∫
ΩT

|∇ψ|pdxdt
) (

esssup
t∈(0,T )

∫
Ω

|∇ψ|qdx
) p

N

.

The existence of a generalized solution to problem (1) has been extensively studied in the
literature [16], and will not be repeated here. Suppose (x0, t0) ∈ ΩT . This paper investigates
the L∞ norm estimate for the gradient of the solution to the variational inequality (1) in the local
cylindrical region

O(κ, δ) = O(κ, θ|(x0, t0)) = Θκ × Ξδ = {x ||x − x0| < κ } × (t0 − δ, t0). (7)

In many traditional studies, the energy inequality for ψ is used (see Lemma 3.1), and after discarding
certain non-negative terms, we obtain

ψ ∈ Lp(ΩT ). (8)

By utilizing the comparison principle, the variational inequality (1) also satisfies [16]

ψ ≤ ||ψ0||L∞(Ω),∀(x, t) ∈ ΩT . (9)

Additionally, based on (16) and applying Hölder’s inequality, along with Lemmas 2.1 and 2.2, we
obtain the following result regarding the boundedness of the L∞ norm for [20], which will be used in
the subsequent analysis.
Lemma 2.3. For any O(κ, δ) ⊂ ΩT , there exists a non-negative constant C that depends solely on p, N,
and ||ψ0||∞, such that the solution ψ of the variational inequality (1) satisfies

||∇ψ||L∞(O(κ,δ)) ≤ C.

Throughout the paper, we present the following two main results.
Theorem 2.4. Assuming σ ∈ (0, 1), for any fixed non-negative constants ε > 0 and p ≥ 2, the solution
to the variational inequality (1) satisfies

||Dψ||L∞(O(σκ,σδ)) ≤ 64εCε/p
C−K−N

(
p2

/
κ2

)ε/p(
sup
O(κ,δ)

ψ

)2ε

||ψ||Lp(O(κ,δ)).
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Assuming σ ∈ (0, 1), by using formula (9) to scale sup
O(κ,δ)

ψ up to ||ψ0||∞, we can conclude from

Theorem 2.4 that for any O(κ, δ) ⊂ ΩT , there exists a non-negative constant C that depends solely
on p, N, CC−K−N , and ||ψ0||∞ such that

||Dψ||L∞(O(σκ,σδ)) ≤ C||ψ||Lp(O(κ,δ)). (10)

Note p ≥ 2, so that when
∫ ∫

O(κ,δ)
|ψ|pdxdt ≥ 1,(∫ ∫
O(κ,δ)
|ψ|pdxdt

) 1
p

≤

(∫ ∫
O(κ,δ)
|ψ|pdxdt

) 1
2

. (11)

When
∫ ∫

O(κ,δ)
|ψ|pdxdt ≤ 1, by choosing parameters 2/p and (p − 2)/p, it is easy to obtain(∫ ∫

O(κ,δ)
|ψ|pdxdt

) 1
p

≤
2
p

(∫ ∫
O(κ,δ)
|ψ|pdxdt

) 1
2

+
p − 2

p
. (12)

using Young’s inequality. Therefore, based on the above analysis, we can obtain the following result.
Corollary 2.5. There exists a non-negative constant C that depends only on N, p, α, CC−K−N ,, and
||ψ0||∞ such that

||∇ψ||L∞(O(σκ,σδ)) ≤ C
(∫ ∫

O(κ,δ)
|ψ|pdxdt

) 1
2

.

Continuing to examine the variational inequality (4) for American option pricing, we aim to validate
the main results of this paper. The American option, modeled by variational inequality (4), allows
investors to exercise the option at any point in time during the option’s lifespan [0,T ] to realize a
profit. In contrast, a European option only permits investors to decide whether to exercise the option
at a single point in time, specifically at T . According to reference [2], the value of the European
option satisfies {

HCE = 0 in R+ × (0,T ),
CE(S , 0) = (S − K)+ in R+.

(13)

Numerous studies have provided pricing results for European options, which is

CE(S , t) = S N(d1) − K exp{−r(T − t)}N(d2),

where N( · ) is the cumulative distribution function of the standard normal distribution, and

d1 =
ln S − ln K + (r + 1

2ε
2)(T − t)

√
T − t

, d2 =
ln S − ln K + (r − 1

2ε
2)(T − t)

√
T − t

.

Further calculations reveal that [1,2]
∂CE(S , t)

∂S
= N(d1). (14)

It is important to note that American options can be exercised at any point in time during the option’s
lifespan [0,T ], while European options allow for a decision to exercise only once at time T . This
implies that CE(S , t) is more sensitive to the risk asset price S than CA(S , t), specifically:∣∣∣∣∣∂CA(S , t)

∂S

∣∣∣∣∣ ≤ ∣∣∣∣∣∂CE(S , t)
∂S

∣∣∣∣∣ = |N(d1)| ≤ 1.

From the above expression, it is clear that Theorem 2.4 and Corollary 2.5 are indeed valid.
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3. Integral inequalities involving ψ and ∇ψ

We first examine the integral inequalities for the solution ψ. Choose a test function φ =

ψmρ(x)m+1η(t) , where the truncation functions satisfy ρ ∈ C∞(Θκ) and η ∈ C∞(Ξδ), and additionally,

0 ≤ ρ ≤ 1 in Θκ, 0 ≤ η ≤ 1 in Ξδ. (15)

Furthermore, ψ satisfies the boundary conditions ρ = 0 in ∂Θκ, and η holds on the left side of the time
interval Ξδ satisfying η(t0 − δ) = 0. Using the Hölder and Young inequalities, and by analogy with the
proof in [16], we can derive the following integral inequality for the solution ψ.
Lemma 3.1. Assume that ψ is the solution to the variational inequality (1). For any t ∈ Ξδ, m > 0, and
p ≥ 2, there exists a non-negative constant C, depending only on m and p, such that

sup
t∈Ξδ

∫
Θκ

ψm+1ρm+1η(t)dx +

∫ ∫
O(κ,δ)

ψm−1|∇ψ|pρmηdxdt ≤ Π1 + Π2, (16)

where

Π1 =
m1−p

p
(m + 1)p+1

∫ ∫
O(κ,δ)

ψp+m−1ρmη|∇ρ|pdxdt, Π2 =

∫ ∫
O(κ,δ)

ψm+1ρm+1|∂tη|dxdt.

Next, we analyze the integral inequalities involving the gradient of the solution ∇ψ in order to obtain
additional energy estimates. Let σ ∈ (0, 1) be an undetermined constant such that

κn = σκ +
1 − σ

2n κ, δn = σδ +
1 − σ

2n δ. (17)

For convenience, we also set Θn = Θκn , Ξn = Ξδn , and On = Θn × Ξn, and it is easy to observe that

O0 = O(κ, δ), O∞ = O(σκ, σδ). (18)

Furthermore, we divide On into two parts:

A1 = {(x, t) ∈ On|Lψ < 0} and A2 = {(x, t) ∈ On|Lψ = 0}.

From (1), we know that when (x, t) ∈ A1 holds, ψ = ψ0 follows. Based on the assumption ψ0, it is easy
to obtain

∇ψ ∈ L∞(A1). (19)

The remainder of this paper considers the case A2. Let v = |∇ψ|, multiply both sides of ∇Lψ = 0 by
ϕn, and integrate over On, yielding∫ ∫

On

∂t∇ψ × ϕndxdt +

∫ ∫
On

(1 + ||ψ||
p
Lp(Ω))∇(div(vp−2∇ψ)) × ϕndxdt =

∫ ∫
On

∇ f × ϕndxdt, (20)

where
ϕn = p(v − λn+1)p−1

+ × ρp
nη

p
n , ζn = I{(x,t)∈On |v≥kn+1}. (21)
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Here, λn = λ− 1
2nλ, where λ is a non-negative undetermined constant. We first analyze the second term

on the left-hand side of (20). By applying integration by parts, we easily obtain∫ ∫
On
∇(div(vp−2∇ψ)) × ϕndxdt = −

∫ ∫
On

div(vp−2∇ψ)∇ϕndxdt
= −p(p − 1)2

∫ ∫
On

vp−2|∆ψ|2(v − λn)p−2
+ × ρ

p
nη

p
ndxdt

−(p − 1)p2
∫ ∫

On
vp−2|∆ψ|(v − λn)p−1

+ × ρ
p−1
n η

p
n∇ρndxdt.

Here, we make use of ϕn|Θn = 0, at which point
∫

Ξn
∇(div(vp−2∇ψ)) × ϕn|Θndt = 0. By performing

integration transformations on
∫ ∫

On
∂t∇ψ × ϕndxdt and

∫ ∫
On
∇(div(vp−2∇ψ)) × ϕndxdt, and applying

inequalities such as Hölder’s and Young’s inequalities, we obtain the following result.
Lemma 3.2. Assuming v = |∇ψ|, for any n = 1, 2, 3, · · · , we have

sup
t∈Ξn

∫
Θn

(v − λn+1)p × ρp
nη

p
ndx +

(p − 1)2

2p

∫ ∫
On

|∇(v − λn+1)
1
2 p
+ |

2 × ρp
nη

p
ndxdt ≤ Π3 + Π4 + Π5, (22)

where

Π3 = p
∫ ∫

On

(v − λn+1)p
+ × ρ

p
nη

p−1
n |∂tηn|dxdt, Π4 = p

∫ ∫
On

|∇ f | × (v − λn+1)p−1
+ × ρp

nη
p
ndxdt,

Π5 =
p2

2(p − 1)

∫ ∫
On

v3p−4 × I{v > λn+1} × ρ
p−2
n |∇ρn|

2ηp
ndxdt.

In Lemma 3.2, we aim to incorporate several results concerning the gradient of the truncation
function. We assume that ψn is a truncation factor on Θn+1 that not only satisfies the conditions related
to ψ in (15) but also meets the requirements that ψn is zero on the boundary of Θn+1. Furthermore, for
every n = 0, 1, 2, · · · , the following holds:

ρn(x) = 1 in Θκn , |∇ρn| ≤
2n+2

(1 − σ)κ
. (23)

We further assume that ηn is a truncation function on Ξn+1, which not only satisfies (15) but also
vanishes at t0 − δn. Moreover, for every n = 0, 1, 2, . . . , the following holds:

ηn(x) = 1 in Ξn, |∇ηn| ≤
2n+2

(1 − σ)δ
. (24)

Using Hölder’s inequality and Young’s inequality,

p
∫ ∫

On
|∇ f | × (v − λn+1)p−1

+ × ρ
p
nη

p
ndxdt

≤ pp−1
∫ ∫

On
|∇ f |p × I{v > λn+1} × ρ

p
nη

p
ndxdt +

p−1
p

∫ ∫
On

(v − λn+1)p
+ × ρ

p
nη

p
ndxdt.

(25)

Note that when p ≥ 2, (p−1)2

2p ≥ 1
2 follows. Therefore, by Lemma 3.2 and (15), we can obtain∫

Θn

(v − λn+1)p × ρp
nη

p
ndx ≤ pΥ,∀t ∈ Ξn (26)
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and ∫ ∫
On

|∇(v − λn+1)
1
2 p
+ |

2 × ρp
nη

p
ndxdt ≤ 2Υ, (27)

where  Υ = Υ1 + Υ2 + Υ3, Υ1 = pp−1
∫ ∫

On
|∇ f |p × I{v > λn+1}dxdt,

Υ2 =
2n p
δ

∫ ∫
On

(v − λn+1)p
+dxdt, Υ3 =

22n+4 p2

κ2

∫ ∫
On

v3p−4 × I{v > λn+1}dxdt.
(28)

At the end of this section, we examine a reverse estimate for a higher-order Lp norm. Let τ > 0 be set;
the choice of this parameter plays a crucial role in the results presented in this paper. By applying the
Caffarelli–Kohn–Nirenberg inequality to

∫ ∫
On
|(v − λn+1)p/2

+ ζn|
2(1+τ)dxdt, we obtain∫ ∫

On

|(v − λn+1)p/2
+ × ρ

p/2
n ηp/2

n |
2(1+τ)dxdt ≤ CC−K−N × Π6 × (Π7)τ, (29)

where

Π6 =

∫ ∫
On

|∇(v − λn+1)p/2
+ × ρ

p/2
n ηp/2

n |
2dxdt, Π7 = esssup

t∈Ξn

∫
Θn

|(v − λn+1)p/2
+ × ρ

p/2
n ηp/2

n |
2dx.

Substituting (26) and (27) into (29), we arrive at the following result.
Lemma 3.3. For any τ > 0, there exists∫ ∫

On

|(v − λn+1)p/2
+ × ρ

p/2
n ηp/2

n |
2(1+τ)dxdt ≤ 2CC−K−NΥ1+τ. (30)

Note that the left side of the above expression is of order p(1 + τ) with respect to (v − λn+1)+ , while
the right side is of order p with respect to (v − λn+1)+ and of order 3p − 4 with respect to v. Clearly,
by choosing τ sufficiently large, one can use the lower-order norms of (v − λn+1)+ and v to estimate the
higher-order energy norm (v − λn+1)+.

4. Estimates for the supremum bound of ∇ψ

We continue to refine the estimates of
∫ ∫

On
|(v − λn+1)p/2

+ × ρ
p/2
n η

p/2
n |

2(1+τ)dxdt in Lemma 3.3 by
utilizing Lemma 4.1. To do this, we need to estimate the three non-negative terms Υ1, Υ2, and Υ3

in (28). Using Lemma 4.1, it is straightforward to observe that the third term in (28) satisfies

Υ3 ≤
22n+4 p2

κ2

(
sup
On

v
)2(p−2) ∫ ∫

On

vp × I{v > λn+1}dxdt. (31)

Similarly, the second term in Eq (28) satisfies

Υ2 ≤
2n p
δ

∫ ∫
On

vp × I{v > λn+1}dxdt. (32)

Next, we analyze the first term in Eq (28). From (9), we can obtain

Υ1 ≤ αpp−1qp||ψ0||
p(q−1)
∞

∫ ∫
On

vp × I{v > λn+1}dxdt. (33)
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For the sake of convenience in the discussion, we define

Xn =

∫ ∫
On

(v − λn)p
+dxdt. (34)

Note that when v > λn+1, we have (v − λn+1)+ >
λ

2n+1 in On, which leads us to∫ ∫
On

I{v > λn+1}dxdt ≤
2(n+1)p

λp

∫ ∫
On

(v − λn)p
+dxdt = 2(n+1)pλ−pXn. (35)

On the other hand, by utilizing λn = λn+1
2n+1−2
2n+1−1 , we can similarly apply the analytical approach from [20,

Eq (7.5)], which gives us∫ ∫
On

(θi − λn)p
+dxdt ≥

∫ ∫
On

θi
p

(
1 −

2n+1 − 2
2n+1 − 1

)p

+

Iθi≥λn+1dxdt ≥
1

2np

∫ ∫
On

θi
pIθi≥λn+1dxdt.

Consequently, we obtain ∫ ∫
On

vp × I{v > λn+1}dxdt ≤ 2npXn. (36)

Therefore, we substitute (31)–(34), and (36) into the right-hand side of Υ, yielding

Υ ≤

αpp−1qp||ψ0||
p(q−1)
∞ +

2n p
δ

+
22n+4 p2

κ2

(
sup
On

v
)2(p−2) 2npXn. (37)

Combining this expression with Lemma 3.3, we obtain a more refined estimate for∫ ∫
On
|(v − kn+1)p/2

+ × ψ
p/2
n η

p/2
n |

2(1+τ)dxdt, which is∫ ∫
On
|(v − λn+1)p/2

+ × ψ
p/2
n η

p/2
n |

2(1+τ)dxdt

≤ 2CC−K−N161+τ

αpp−1qp||ψ0||
p(q−1)
∞ +

p
δ

+
p2

κ2

(
sup
On

v
)2(p−2)1+τ

22pn(1+α)Xn
1+τ.

(38)

Proof of Theorem 2.4. We first construct an upper bound for Xn+1 using (38) and the previously
established Lemma 3.3. Note that On ⊃ On+1 holds and that ζn = 1 in On+1 is satisfied, which allows us
to easily obtain

Xn+1 ≤
∫ ∫

On
|(v − λn+1)p/2

+ ζn|
2dxdt

≤
(∫ ∫

On
|(v − λn+1)p/2

+ ζn|
2(1+τ)dxdt

) 1
1+τ
×

(∫ ∫
On

Iv≥λn+1dxdt
) τ

1+τ
(39)

using Hölder’s inequality. Note that we constructed an upper bound for
(∫

On
I{v > λn+1}dxdt

) 1
1+τ

using (35). Substituting this into (39) readily reveals

Xn+1 ≤

(∫ ∫
On

|(v − λn+1)p/2
+ ζn|

2(1+τ)dxdt
) 1

1+τ

× 2(n+1)pλ−p τ
1+τ Xn

τ
1+τ . (40)
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Finally, substituting the estimate for
∫ ∫

On
|(v − λn+1)p/2

+ × ψ
p/2
n η

p/2
n |

2(1+τ)dxdt from (38) into the previous
expression yields

Xn+1 ≤ 32p2 CC−K−N

(1 − σ)2

αpp−1qp||ψ0||
p(q−1)
∞ +

p
δ

+
p2

κ2

(
sup
On

v
)2(p−2) 8pn × λ−p τ

1+τ Xn
1+ τ

1+τ . (41)

To simplify the results, we define(
sup
On

v
)2(p−2)

≥ max{
κ2

δ
, αpp−3qp||ψ0||

p(q−1)
∞ κ2}, (42)

such that (41) can be reduced to

Xn+1 ≤ 64p2 CC−K−N

(1 − σ)2κ2

(
sup
On

v
)2(p−2)

8pn × Xn
1+ τ

1+τ . (43)

Consequently, according to Lemma 2.1, in order to achieve Xn → 0 as n→ ∞, it is sufficient to choose

X0 ≤

(
64p2

(1 − σ)2κ2

)−(1+α−1)

C−(1+τ−1)
C−K−N

(
sup
On

v
)−2(p−2)(1+τ−1)

8−p(1+τ−1)2

λp.

Note that O0 = O(κ, δ) and X0 =
∫

O(κ,δ)
vpdxdt, and when κ is sufficiently small,

(
sup
On

v
)2(p−2)

≥ αpp−3qp||ψ0||
p(q−1)
∞ κ2

always holds. Therefore, we choose

λ = 8(1+τ−1)2
(

sup
O(κ,δ)

v
)2(1+τ−1) p−2

p

C
1+τ
τp

C−K−N

(
64p2

(1 − σ)2κ2

) 1+τ
τp

(∫
O(κ,δ)

vpdxdt
) 1

p

. (44)

At this point, Xn → 0 as n→ ∞ holds, and by combining this with O∞ = O(σκ, σδ), we can derive

sup
O(σκ,σδ)

v ≤ λ. (45)

Thus, we have completed the proof of Theorem 2.4.

5. Conclusions

This paper examines a class of variational inequality boundary value problems governed by
Kirchhoff operators, specifically the variational inequality (1), which arises from the analysis of the
value of American contingent claims in finance. We attempt to estimate the infinite norm of the
gradient of the solution to variational inequality (1) in local regions. This result helps financial
scholars characterize the sensitivity of the value of American contingent claims with respect to the
value of risky assets. Using the integral inequality (Lemma 3.2) of the gradient of the solution to
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variational inequality (1) in a cylindrical region On applying the Caffarelli–Kohn–Nirenberg inequality,
we construct an estimate for ∫ ∫

On

|(v − λn+1)p/2
+ × ρ

p/2
n ηp/2

n |
2(1+τ)dxdt.

Subsequently, we use this to construct a pushforward inequality for
∫

On
(v − λn)p

+dxdt. Finally, by
choosing the parameter λ, we complete the infinite norm estimate of the gradient v of the solution
to variational inequality (1).

This paper restricts p ≥ 2; if p ∈ (1, 2), obtaining formula (31) becomes challenging. Similarly,
formulas (11) and (12) no longer hold, as they likewise rely on the condition p ≥ 2. Additionally, α
must be non-negative; otherwise, Lemma 3.1 may become more complex in form. If this condition is
omitted, there will be considerable uncertainty when handling Υ1 in formulas (28) and (33). In future
research, we will attempt to overcome these limitations.
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