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Abstract: In this work, we investigated a predator-prey model based on ecodemiology in which the
predator population was infected with a transmissible illness, and the time delay equaled the predator’s
gestation period. Predators can be divided into two separate groups: The ones that are infected and
the ones that are susceptible to infection. Assume that the infected predator’s sickness is thought to be
treatable. The explanations for the solutions’ positive invariance and the reason there are equilibria are
stated in the suggested system. We showed the boundedness of the system solutions. Additionally, the
local stability of every possible equilibrium point was investigated with respect to delayed as well as
non-delayed systems. Furthermore, time delay has been demonstrated to be essential for controlling
the dynamics of the system, and the periodic solutions were known to exist through Hopf bifurcation
in connection to gestation delay. Also, our finding showed that treatment for infected predators have
an influence on the dynamics of the system. Lastly, a computational simulation is used to verify the
conceptual inquiry’s conclusion.

Keywords: prey-predator; linear harvesting; gestation time delay; disease; treatment; numerical
simulations
Mathematics Subject Classification: 92D25, 92D40, 34D20, 37G15

1. Introduction

Predator-prey dynamic relationships are fundamental to both mathematics and biological ecology.
Due to the fundamental work of A. J. Lotka [1] and V. Volterra [2], the first predator-prey model
was developed and examined. Since then, a tremendous amount of effort has been completed, and it
continues to increase yearly. Many academics have been developed and studied mathematical models
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that consider the myriad complex interactions that take place between interacting species in recent
years [3–7].

Diseases are prevalent in nature, and most of diseases are spread by contact between members of
the same species or distinct species who are diseased and healthy. As a result, from an ecological
and mathematical perspective, comprehending the eco-epidemiological model is essential. One of the
most crucial aspects of epidemiology is the mathematical representation of disease transmission. In
the majority of epidemic models, the assumption is that disease transmission proceeds according to a
density-dependent rule. Several noteworthy investigations have been carried out about the influence of
infectious diseases on the dynamics of the population of prey and predators, in which the illness infects
the prey as well as in which the illness infects the predator (see e.g., [8–13].) In [11, 12], nonlinear
infection rate has been studied using Holling type III functional responses. Notable studies on illness in
populations of prey and predators at the same time have also been conducted in recent years [14–17]. It
has been well acknowledged that one way to lessen and completely eradicate illness in a population is
through treatments. Multiple studies have found different treatments for different infectious illnesses.
Managing the transmission of disease infection among both prey and predator species by therapy has
been studied in a prey-predator system in the past few years [18–20].

Considering lags in time happen in almost all biological circumstances, time-delayed models are
significantly more realistic. It makes more sense to assume that the time required for the predator
to complete the gestation period will cause the reproduction process to be delayed rather than
occurring immediately after its prey is consumed. By introducing temporal delays, the models display
more intricate responses and adopt a more pragmatic perspective on understanding the relationships
among prey and predator. Delay differential equations typically exhibit far more complex dynamics
in contrast to standard differential equations. Consequently, throughout time, investigations have
been conducted on more realistic models of interacting populations by introducing time delays into
biological models [21–25]. Many researchers created and studied delayed eco-epidemic models, in
which the illness infects the prey and as well as disease infection in the predator [26–30].

Our knowledge indicates that Hopf bifurcation is crucial to comprehending the system’s dynamic
character. Hopf bifurcation finds the parameter value at which the stability of a system suddenly
shifts and a periodic solution appears [31–34]. One of the main goals of the study is to determine if
the interior equilibrium is asymptotically stable and this condition reflects the possible equilibrium to
which the system will surely develop from any beginning condition.

The confluence of a transmissible sickness that is affecting predator populations with the temporal
lag is brought on by the predator’s gestation of Holling type III functional responses and also by
treatment of infected predator, which we are concerned about. The prey population is represented by
x(t), the susceptible predator population denoted by y(t), the infected predator population denoted by
z(t), and the treatable predator population is denoted by w(t) at a given time t. These presumptions are
made in order to create the intended model:

(A1) Assume that the prey species increases logistically with a natural growth rate r and an
environmental carrying capacity K in a lack of diseases and predators. Predator that is susceptible
or infected can eat prey and come up with a Holling type-II functional response in the process. In this
case, the half saturation constants for the susceptible predator and the infected predator, respectively,
are a1 and a2. The prey-predation coefficients in this case are m and n, respectively, with regard to the
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susceptible predator and the infected predator. As a result, the prey population’s differential equation
is as

dx
dt

= rx
(
1 −

x
K

)
−

mxy
a1 + x2 −

nxz
a2 + x2 . (1.1)

(A2) A straightforward mass action rule αyz that follows the spread of illness between the predator
groups. As determined by e1 and e2, respectively, the prey population’s conversion factors into
susceptible and infected predator populations. For susceptible and infected predator populations, we
assume proportional harvesting, with H1 = q1E1 and H2 = q2E2. Here, q1, q2 represent the catch-
ability coefficients for susceptible and infected predator species, and E1, E2 represent the harvesting
efforts for the respective susceptible and infected predator species. We also assume that τ be the
gestation delay of the susceptible and infected predator. As a result, the susceptible as well as infected
predator population’s differential equation is as

dy
dt

=
e1mx(t − τ)y(t − τ)

a1 + x2(t − τ)
− αyz − H1y + bw, (1.2)

dz
dt

=
e2nx(t − τ)z(t − τ)

a2 + x2(t − τ)
+ αyz − H2z − βzw. (1.3)

(A3) Treatment rate of infected predator is β, and b is the rate of infected predator that can only recover
through treatment. Also, c is the death rate of infected predator under treatment. The proposed system
demonstrated clearly in the schematic diagram (cf. Figure 1). As a result, the treatment population’s
differential equation is as

dw
dt

= βzw − bw − cw. (1.4)
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Figure 1. Schematic representation of the system (1.5).

We have the following mathematical delayed model based on the previously stated assumptions:

dx
dt

= rx
(
1 −

x
K

)
−

mxy
a1 + x2 −

nxz
a2 + x2 ,

dy
dt

=
e1mx(t − τ)y(t − τ)

a1 + x2(t − τ)
− αyz − H1y + bw, (1.5)

dz
dt

=
e2nx(t − τ)z(t − τ)

a2 + x2(t − τ)
+ αyz − H2z − βzw,

dw
dt

= βzw − bw − cw,

with inital conditions:

x(t) = φ1(t) ≥ 0, y(t) = φ2(t) ≥ 0, z(t) = φ3(t) ≥ 0, w(t) = φ4(t) ≥ 0 t ∈ [−τ, 0]. (1.6)

The current investigation is set up as follows: An eco-epidemic model has been built and explained
with introduction in Section 1. The positive invariance of the model’s solutions, as well as the viability
and validity of the equilibria, are covered in Section 2. The Hopf bifurcation’s existence and local
stability are covered in Section 3. The stability direction of the Hopf bifurcation analysis is examined
in Section 4. In Section 5, we present some numerical simulations to illustrate our hypothesis. Lastly,
the findings are given in Section 6.
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2. Basic properties of the model

In addition to the positivity invariance and boundedness of the solutions, this section describes the
equilibria of the delayed system (1.5).

2.1. Positive invariance

Proposition 1. Here is an a positive solution to the system (1.5) for the a positive starting condition
x(t) = φ1(t) ≥ 0, y(t) = φ2(t) ≥ 0, z(t) = φ3(t) ≥ 0, w(t) = φ4(t) ≥ 0 t ∈ [−τ, 0].

Proof. We are aware that the effectiveness of the system’s solutions determines whether populations
survive. The system (1.5) can be written as

dY
dt

= S (Y, t, τ) where, Y(t) = (y1(t), y2(t), y3(t), y4(t))T = (x(t), y(t), z(t),w(t))T
∈ R4

and S (Y, t, τ) is given by

S (Y, t, τ) =


S 1

S 2

S 3

S 4

 =


rx

(
1 − x

K

)
−

mxy
a1+x2 −

nxz
a2+x2

e1mx(t−τ)y(t−τ)
a1+x2(t−τ) − αxy − h1y + bw,

e2nx(t−τ)z(t−τ)
a2+x2(t−τ) + αyz − h1z − βzw

βzw − bw − cw.

 .
It is easy to confirm using system (1.5) that if Y(t) ∈ R4

+ is selected so that x = 0, y = 0, z = 0, and
w = 0, then

S i(Y)|yi=0,Y∈R4
+

= S i(0) ≥ 0 for i = 1, 2, 3, 4.

Each possible solution of the system (1.5) with starting values x(t) = φ1(t) ≥ 0, y(t) = φ2(t) ≥
0), z(t) = φ3(t) ≥ 0, w(t) = φ4(t) ≥ 0, t ∈ [−τ, 0], φi(t) ∈ R4

+ by using the lemma (cf. Kuang [35]), say
Y(t) = Y[t; U(0)] ∀ t > 0 , meaning that it stays positive over the whole region R4

+, ∀ t > 0.

2.2. Boundedness

Proposition 2. The total number of predators, prey, and treatable populations in the system (1.5) are
all still restricted from above.

Proof. Let X = (e1 + e2)x(t − τ) + y + z + w. For any η > 0, we have

dX
dt

+ ηX = (e1 + e2)rx(t − τ)
(
1 −

x(t − τ)
K

)
−

e2mx(t − τ)y(t − τ)
a1 + x2(t − τ)

−
e1nx(t − τ)z(t − τ)

a2 + x2(t − τ)
− H1y − H2z − cw + η

[
(e1 + e2)x(t − τ) + y + z

]
,

≤ (e1 + e2)rx(t − τ)
(
1 + η −

x(t − τ)
K

)
+ (η − H1)y + (η − H2)z + (η − c) w,

≤
K(η + 1)(e1 + e2)

4
+ (η − H1)y + (η − H2)z + (η − c) w.

Choosing sufficiently small η such that η < H1, η < H2, and η < c we get
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dX
dt

+ ηX ≤ M
(
=

K(η + 1)(e1 + e2)
4

)
.

By use of Gronwall’s inequality [36] application we get

0 ≤ X(t) ≤
M
η

(
1 − e−ηt) + X(0)e−ηt.

Consequently, t → ∞ =⇒ 0 < X(t) < M
η
. This suggests that any solutions for the system represented

by (1.5) are bounded.

2.3. Equilibria

The prey-predator model (1.5) has at least eight feasible and two infeasible equilibrium points.

(1) Trivial equilibrium point E0(0, 0, 0, 0) and equilibrium point E1(K, 0, 0, 0) to the system (1.5) are
always exist.

(2) Disease-free and treatment-free equilibrium point E±2
(
x±2 , y

±
2 , 0, 0

)
with x±2 are the positive roots of

H1x2 − e1mx + H1a1 = 0 and y±2 =
re1(K−x±2 )

KH1
. This is possible to reach the equilibrium point E2 if

H1 <
e1m
√

2a1
x2 < K. Here, without treatment disease does not exist between the predator.

(3) Healhy predator-free and treatment-free equilibrium point E±3
(
x±3 , 0, z

±
3 , 0

)
with x±3 are the positive

roots of H2x2 − e2nx + H2a2 = 0 and z±3 =
re2(K−x±3 )

KH2
. E3 is feasible if H2 <

e2n
√

2a2
and x±3 < K. Only

infected predator species coexisted with prey species without treatment in this instance.

(4) There exists an infeasible boundary equilibrium point, namely E4(x4, y4, z4,w4), where x4 =

0, y4 = H2
α
, z4 = −H1

α
, w4 = 0.

(5) Treatment-free equilibrium point E5 (x5, y5, z5, 0) where y5 = H2 x2−e2nx+H2a2
α(a2+x2) , z5 = −H1 x2+e1mx−H1a1

α(a1+x2) ,
and where x5 is the positive root of the equation

l55x5 + l54x4 + l53x3 + l52x2 + l51x + l50 = 0, (2.1)
where
l55 = rα, l44 = −Krα, l54 = r(a1+a2)α, l52 = K(mH2 − nH1) − rKα(a1 + a2),
l51 = ra1a2(e1 − e2), l50 = K(mH2a2 − nH1a1) − ra1a2Kα.

The equilibrium point E5 is feasible if (2.1) has at least one positive root with e2n > 2H2
√

a2 and
e1m > 2H1

√
a1. Maximum numbers of positive roots of the (2.1) in x5 are given in the following

Table 1.
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Table 1. Possibilities of multiple positive roots of the Eq (2.1).

Max. No.
of +ve
roots

sign of l55 sign of l54 sign of l53 sign of l52 sign of l51 sign of l50

4 + − + − + −

3 + − + − + +

3 + − + + + −

3 + − + + + +

(6) There exists another infeasible boundary equilibrium point, namely, E6(x6, y6, z6,w6), where x6 =

0, y6 = − H2b
H1β+αc , z6 = b+c

β
, w6 = −

H2(H1β+αb+αc)
β(H1β+αc) .

(7) The interior equilibrium point E∗ (x∗, y∗, z∗,w∗) with

y∗ =
1
α

(
H2 +

α(b + c) + β

b
−

e2nx∗

a2 + x∗2
−

e1mβx∗

b(a1 + x∗2)

)
,

z∗ =
b + c
β

,

w∗ =
1
b

(
H1 +

α(b + c)
b

−
e1mx∗

a1 + x∗2

)
and, here, x∗ is the positive solution of this equation:

L(x) = l77x7 + l76x6 + l75x5 + l74x4 + l73x3 + l72x2 + l71x + l70 = 0, (2.2)
with l77 = rbαβ, l76 = −rbKαβ, l75 = rbαβ (2a1 + a2) ,
l74 = Kβ (mH2b + mbα + mcα + mβH1 − rbα(2a1 + a2)) ,

l73 = β
(
rba1α(1 + 2a2) − βm2Ke1 − be2mn

)
,

l72 = Kbnα (b + c) + mKβ (a1 + a2) (βH1 + βH2 + αb + αc) − rbαβa1K (1 − 2a2) ,
l71 = ra2

1a2bαβ − Ke1a2m2β2 − bβe2mna1,

l70 = a1a2mKβ(bα + cα + bH1) + a1a2mKH2bβ + a1bαnK(b + c) − Ka2
1a2.

Here, E∗ is feasible if at least one positive root exists in L(x) above, y∗ and w∗ are
also positive numbers. Finding the precise condition under which E∗ becomes viable in
a system without an explicit expression and with additional complexity for the equilibrium
points is difficult. However, a numerical integration of system (2) offers important
information. Now if we chose parameters as follows: (r, k,m, n, e1, e2, a1, a2, b, c,H1,H2, α, β) =

(5, 1, 2.5, 1.2, 2.1, 1, 0.8, 1.1, 0.2, 0.1, 1.5, 1.4, 0.5, 0.1), then the system (1.5) has a positive
equilibrium point E∗(x∗, y∗, z∗,w∗) = (3.36, 6.97, 8.85, 1.01).

3. Analysis of local stability and bifurcations

At this portion, the local stability of each of the system’s seven potential equilibrium points—both
with and without delay—is investigated. Moreover, see the effect of the parameter τ on the
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system (1.5). First, we compute system (1.5)’s Jacobian matrix, which is provided by

JE =


a11 a12 a13 0

b21e−λτ a22 + b22e−λτ −αy b
b31e−λτ αz a33 + b33e−λτ −βz

0 0 βw a44

,
where

a11 = r
(
1 −

2x
K

)
−

my
(
a1 − x2

)
(
a1 + x2)2 −

nz
(
a2 − x2

)
(
a2 + x2)2 , a12 = −

mx
a1 + x2 ,

a13 = −
nx

a2 + x2 , b21 =
e1my(a1 − x2)

(a1 + x)2 , a22 = −H1 − αz, b22 =
e1mx

a1 + x2 ,

b31 =
e2nz

(
a2 − x2

)
(
a2 + x2)2 , a33 = αy − H2, b33 =

e2nx
a2 + x2 , a44 = βz − b − c

and where λ is the characteristic value obtained from the delayed system’s linearization.

Theorem 1. E0 to the system is always unstable.

Proof. At E0, the eigenvalues are λ01 = r > 0, λ02 = −h1 < 0, λ03 = −h2 < 0, and λ04 = −b − c < 0.
Therefore, E0 is always unstable.

Theorem 2. For any τ, E1(K, 0, 0, 0) to the system (1.5) is asymptotically stable if, and only if, e1mK
a1+K2 <

H1 and e2nK
a2+K2 < H2 are satisfied. It will be unstable otherwise.

Proof. The eigenvalues of JE1 are λ11 = −r, λ12 = −b − c

λ13 =
e1mK

a1 + K2 e−λ13τ − H1, (3.1)

λ14 =
e2nK

a2 + K2 e−λ14τ − H2. (3.2)

For τ = 0, the eigenvalues of JE1 are −r, − b− c, e1mK
a1+K2 −H1, and e2nK

a2+K2 −H2. Thus, for e1mK
a1+K2 < H1 and

e2nK
a2+K2 < H2, E1 to the system (1.5) is stable; if not, it will become unstable.

When τ , 0, an eigenvalue λ11 = −r, λ12 = −b − c is unable to bring about stability in the system.
The locations of each of these Eqs (3.1) and (3.2)’ roots determine whether this equilibrium point
E1 is stable. Write λ13 = µ1 + iσ1 in Eq (3.1) and, following splitting it into its real and imaginary
components, we obtain

µ1 + H1 =
e1mK

a1 + K2 e−µ1τ cos(σ1τ), (3.3)

σ1 = −
e1mK

a1 + K2 e−µ1τ sin(σ1τ). (3.4)

Because the left-hand portion of the real component of (3.3) remains strictly greater than the righthand
side’s magnitude, µ1 must be negative if H1 >

e1mK
a1+K2 and µ1 ≥ 0. As a result, there must be a negative

real component at the roots of Eq (3.1). Likewise, we can demonstrate that there is a negative real
component for (3.2) if H2 >

e2nK
a2+K2 . Therefore, E1 is stable for all τ for H1 >

e1mK
a1+K2 and H2 >

e2nK
a2+K2 .

Otherwise, it will be unstable.

AIMS Mathematics Volume 10, Issue 6, 14657–14698.



14665

Theorem 3. Disease-free and treatment-free equilibrium point E2(x2, y2, 0, 0)
(i) when τ = 0, it is asymptotically stable to the system (1.5) for e2nx2

a2+x2
2
< H2 − αy2, A1 + A3 > 0, and

A2 + A4 > 0;
(ii) when τ , 0, the system (1.5) can undergo a Hopf-bifurcation if e2nx2

a2+x2
2
> H2 − αy2 and A2

2 − A2
4 < 0.

Proof. At E2(x2, y2, 0, 0), the eigenvalues of JE2 are λ21 = −b − c,

λ22 =
e2nx2

a2 + x2
2

e−λ22τ − H2 + αy2, (3.5)

and the other the two eigenvalues λ23 and λ24 consider the roots of this equation

λ2 + A1λ + A2 + (A3λ + A4) e−λτ = 0, (3.6)

where

A1 = H1 − r
(
1 −

2x2

K

)
+

my2

(
a1 − x2

2

)
(
a1 + x2

2

)2 , A2 = −rH1

(
1 −

2x2

K

)
+

mH1y2

(
a1 − x2

2

)
(
a1 + x2

2

)2

A3 = −
e1mx2

a1 + x2
2

, A4 = r
(
1 −

2x2

K

)
e1mx2

a1 + x2
2

.

When τ = 0, the eigenvalues of JE3 become λ21 = −b − c, λ22 = e2nx2
a2+x2

2
− H2 + αy2, and λ23 and λ24 are

the roots of the equation λ2 + (A1 + A3) λ + A2 + A4 = 0. Therefore, E2 will be asymptotically stable if
A1 + A3 > 0, A2 + A4 > 0 and e2nx2

a2+x2
2
< H2 − αy2; otherwise, it is unstable.

Take τ , 0. In order to ascertain the effect of the time delay τ on stability, we therefore study τ as
the bifurcation factor. In (3.5), we begin by looking for a purely imaginary root iσ2, σ2 ∈ R. After
splitting each of its real and imaginary components and removing τ, we obtain

σ2
2 =

(
e2nx2

a2 + x2
2

)2

− (H2 − αy2)2. (3.7)

Then, from (3.7) σ2 ∈ R if e2nx2
a2+x2

2
> H2 − αy2. Once more, searching in (3.6) for a purely imaginary

root iσ3, σ3 ∈ R, we have divided the expression into its real and imaginary components, removing τ.
Then,

σ4
3 + (A2

1 − A2
3 − 2A2)σ2

3 + A2
2 − A2

4 = 0, (3.8)

where, A2
1 − A2

3 − 2A2 = H2
1 +

r
(
1 −

2x2

K

)
−

my2

(
a1 − x2

2

)
(
a1 + x2

2

)2


2

−
m2e2

1x2
2(

a1 + x2
2

)2 ,

A2
2 − A2

4 =

mH1y2

(
a1 − x2

2

)
(
a1 + x2

2

)2 − rh1

(
1 −

2x2

K

)
2

−

[
r
(
1 −

2x
K

)
e1mx2

a1 + x2
2

]2

.

We can see that if A2
2−A2

4 < 0, then there is a positive real root of (3.8). Consequently, adding a temporal
delay to the model may cause a Hopf-bifurcation, which we shall demonstrate using MATLAB in the
numerical simulation section.
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Theorem 4. Treatment and healthy predator-free equilibrium point E3(x3, 0, z3, 0)
(i) when τ = 0, it is asymptotically stable to the system (1.5) for e1mx3

a1+x2
3
< H1 + αz3, B1 + B3 > 0, and

B2 + B4 > 0;
(ii) when τ , 0, the system (1.5) can undergo a Hopf-bifurcation if e1mx3

a1+x2
3
> H1 + αz3 and B2

2 − B2
4 < 0.

Proof. At E2(x3, 0, z3, 0), the eigenvalues of JE3 are λ31 = −b − c,

λ32 =
e1mx3

a1 + x2
3

e−λ22τ − H1 − αz3, (3.9)

and other the two eigenvalues, λ33 and λ34, are the roots of the following equation

λ2 + B1λ + B2 + (B3λ + B4) e−λτ = 0, (3.10)

where

B1 = H2 − r
(
1 −

2x3

K

)
+

nz3

(
a2 − x2

3

)
(
a2 + x2

3

)2 , B2 = −rH2

(
1 −

2x3

K

)
+

nH2z3

(
a2 − x2

3

)
(
a2 + x2

3

)2

B3 = −
e2nx3

a2 + x2
3

, B4 = r
(
1 −

2x2

K

)
e2nx3

a2 + x2
3

.

When τ = 0, the eigenvalues of JE3 become λ31 = −b − c, λ32 = e1mx3
a1+x2

3
− H1 − αz3, and λ33 and

λ34 are the roots of the equation λ2 + (B1 + B3) λ + B2 + B4 = 0. E3 gets asymptotic stability when
B1 + B3 > 0, B2 + B4 > 0, and e1mx3

a1+x2
3
< H1 + αz3; otherwise it is, unstable.

Take τ , 0. We now investigate τ as the bifurcation parameter in an attempt to determine the impact
of the time delay τ on stability. In (3.9), we begin by looking for a purely imaginary root iσ4, σ4 ∈ R.
After splitting it into its real and imaginary components and removing τ, we obtain

σ2
4 =

(
e1mx3

a1 + x2
3

)2

− (H1 + αz3)2. (3.11)

Then, from (3.11), σ4 ∈ R if e1mx3
a1+x2

3
> H1 + αz3. Once more, searching in (3.10) for a purely imaginary

root iσ5, σ5 ∈ R, we obtain it after dividing it into its real and imaginary components and removing τ,

σ4
5 + (B2

1 − B2
3 − 2B2)σ2

5 + B2
2 − B2

4 = 0. (3.12)

with B2
1 − B2

3 − 2B2 = H2
1 +

r
(
1 −

2x3

K

)
−

nz3

(
a2 − x2

3

)
(
a2 + x2

3

)2


2

−
n2e2

2x2
3(

a2 + x2
3

)2

B2
2 − B2

4 =

nH2z3

(
a2 − x2

3

)
(
a2 + x2

3

)2 − rh2

(
1 −

2x2

K

)
2

−

[
r
(
1 −

2x3

K

)
e2nx3

a2 + x2
3

]2

.

We can see that if B2
2 − B2

4 < 0, consequently, there is a real, positive root of (3.12). Consequently,
adding a temporal delay to the model may cause a Hopf-bifurcation, which we shall demonstrate using
MATLAB numerical simulation.
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Theorem 5. It is assumed that the conditions (D1), (D2), (D3) hold for system (1.5). Treatment-free
equilibrium point E5 (x5, y5, z5) is locally asymptotically stable when τ ∈ [0, τ0) and a Hopf-bifurcation
takes place when τ = τ0.

Proof. Our current objective is to look at how time delays affect the system in the absence of treatment.
The system’s characteristic equation at E5 may be written as

λ3 + d1λ
2 + d2λ + d3 +

(
d4λ

2 + d5λ + d6

)
e−λτ + (d7λ + d8) e−2λτ = 0, (3.13)

where d1 = H1 + H2 + α(z5 − y5) − r
(
1 −

2x5

K

)
+

my5

(
a1 − x2

5

)
(a1 + x2

5)2
+

nz5

(
a2 − (x∗)2

)
(
a2 + x2

5

)2 ,

d2 =

r
(
1 −

2x5

K

)
−

m
(
a1 − x2

5

)
y5

(a1 + x2
5)2

−
nz5

(
a2 − x2

5

)
(
a2 + x2

5

)2

 [α(y5 − z5) − (H1 + H2)
]

+ H1H2 + αz5(H2z5 − H1y5),

d3 =

r
(
1 −

2x5

K

)
−

my5

(
a1 − x2

5

)
(a1 + x2

2)2
−

nz5

(
a2 − x2

5

)
(
a5 + x2

5

)2

 [β(H1y5 − H2z5) − H1H2
]
,

d4 = −
e1mx5

a1 + x2
5

−
e2nx5

a + x2
5

,

d5 = r
(
1 −

2x5

K

) [
e1mx5

a1 + x2
5

+
e2nx5

a2 + x2
5

]
+

e1m(αy5 − H2)x5

a1 + x2
5

−
e2n(H1 + αz5)x5

a2 + x2
5

−

[
mnx5

(a2 + x2
5)(a1 + x2

5)

] e2y∗
(
a1 − x2

5

)
a1 + x2

5

+
e1z5

(
a2 − x2

5

)
a2 + x2

5

 ,
d6 =

[
mnx5

(a2 + x2
5)(a1 + x2)

] [ ((e1 − e2)αz5 − e2H1)αy∗

α + x∗
+

[
(e1 − e2)βy∗ − e1H2

]
z∗

a + bx∗ + c(x∗)2

×
(
a − c(x5)2

)]
+ r

(
1 −

2x5

K

) [
e2n(H1 + βz5)x5

a + bx∗ + cx2
5

−
e1m(βy5 − H2)x5

α + x5

]
,

d7 =
e1e2mnx2

5

(a1 + x2
5)(a2 + x2

5)
, d8 = −

re1e2mnx2
5z5 (K − 2x5)

K(a1 + x2
5)

(
a2 + x2

5

) .

Case 1: When τ = 0, then characteristic equation changes to

λ3 + (d1 + d4)λ2 + (d2 + d5 + d7)λ + d3 + d6 + d8 = 0. (3.14)

E5 is asymptotically stable when using the Routh-Hurwitz criteria on (3.14), provided that the
following is true (D1) : d1 + d4 > 0, d3 + d6 + d8 > 0, and (d1 + d4)(d2 + d5 + d7) − (d3 + d6 + d8) > 0.
It follows that these formulas cannot be used to infer the explicit parametric conditions required for
the asymptotic stability of the treatment-free equilibrium point E5. We shall demonstrate these results
using numerical simulations.
Case 2: Take τ > 0. Currently, we are attempting to identify a periodic solution with biological
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significance. We replace λ = iω(ω > 0) in (3.13) to obtain the periodic solution of (1.5). By comparing
both the real and imaginary portions, we obtain these equations:

(d6 − d4ω
2) cos(ωτ) + d5ω sin(ωτ) + d8 cos(2ωτ) + d7ω sin(2ωτ) = d1ω

2 − d3

(d6 − d4ω
2) sin(ωτ) − d5ω cos(ωτ) + d8 sin(2ωτ) − d7ω cos(2ωτ) = d2ω − ω

3

which gives

sin(ωτ) =
ω

[
d4ω

4 + {d1d5 − d6 − d4(d7 + d2)}ω2 + d6(d7 + d2) − d5(d3 + d8)
]

ω6 + (d2
1 − 2d2)ω4 + (d2

2 − 2d1d3 − d2
7)ω2 + d2

3 − d2
8

. (3.15)

cos(ωτ) =
(d5 − d1d4)ω4 + {d5(d7 − d2) − d4(d8 − d3) + d1d6}ω

2 + d6(d8 − d3)
ω6 + (d2

1 − 2d2)ω4 + (d2
2 − 2d1d3 − d2

7)ω2 + d2
3 − d2

8

. (3.16)

After squaring and adding (3.15) and (3.16), we obtain
ω12 + t5ω

10 + t4ω
8 + t3ω

6 + t2ω
4 + t1ω

2 + t0 = 0, (3.17)
t5 = 2d2

1 − 4d2 − d2
4,

t4 =
(
d2

1 − 2d2

)2
− 2

(
d2

2 − 2d1d3 − d2
7

)
− (d5 − d1d4)2 + 2d4 (d6 + d4(d7 + d2) − d1d5) ,

t3 = 2
(
d2

3 − d2
8

)
+ 2

(
d2

1 − 2d2

) (
d2

2 − 2d1d3 − d2
7

)
− [d6 + d4(d7 + d2) − d1d5]2

− 2d4 [d6(d7 + d2) − d5(d3 + d8) − 2 (d5 − d1d4)] [d5(d7 − d2) + d4(d3 − d8) + d1d6] ,

t2 =
{
(d2

2 − 2d1d3 − d2
7)
}2

+ 2
(
d2

1 − 2d2

) (
d2

3 − d3
8

)
− {d5(d7 − d2) + d4(d3 − d8) + d1d6}

2

− 2 {d1d5 − d6 − d4(d7 + d2)} {d6(d7 + d2) − d5(d3 + d8)} − 2d6 (d5 − d1d4) (d8 − d3) ,

t1 = 2
(
d2

2 − d2
7 − 2d1d3

) (
d2

3 − d2
8

)
− 2d6 (d8 − d3) {d5(d7 − d2) + d4(d3 − d8) + d1d6} ,

− {d6(d7 + d2) − d5(d3 + d8)}2 ,
t0 = d4

3 + d4
8 − 2d2

3d2
8 − d2

6(d3 − d8)2.

(D2) : ω0 is taken to be a positive root of Eq (3.17). Then from (3.15) and (3.16), we have

τk =
1
ω0

arctan

ω0

[
d4ω

4
0 + {d1d5 − d6 − d4(d7 + d2)}ω2

0 + d6(d7 + d2) − d5(d3 + d8)
]

(d5 − d1d4)ω4
0 + {d5(d7 − d2) − d4(d8 − d3) + d1d6}ω

2
0 + d6(d8 − d3)

 +
2kπ
ω0

,

k = 0, 1, 2, 3...

We will now investigate the transversality condition of the Hopf bifurcation. When (3.13) is
differentiated with regard to τ, it yields

dλ
dτ

[
2d4λ + d5 + (3λ2 + 2d1λ + d2)eλτ − d7e−λτ + τ

{
(λ3 + d1λ + d2λ

2 + d3)eλτ − (d7λ + d8)e−λτ
}]

= λ
{
(d7λ + d8)e−λτ − (λ3 + d1λ

2 + d2λ + d3)eλτ
}

= λ
{
2(d7λ + d8)e−λτ − (d4λ

2 + d5λ + d6)eλτ
}

which leads to
(
dλ
dτ

)−1

=
2d4λ + d5 + (3λ2 + 2d1λ + d2)eλτ + d7e−λτ

λ
{
2(d7λ + d8)e−λτ − (d4λ2 + d5λ + d6)eλτ

} − τ
λ
.
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Following basic yet typical computations, we obtain

<

[
dλ
dτ

]−1

λ=iω0,τ=τ0

=
C1C3 + C2C4

C2
3 + C2

4

, where

C1 = 2p1σ0 cosω0τ0 − (3ω2
0 − p2 − p7) sinω0τ0 + 2p4ω0,

C2 = (3ω2
0 − p2 − p7) cosω0τ0 + 2p1ω0 sinω0τ0 − p5,

C3 = ω0

{
2p8 cosω0τ0 + 2p7ω0 sinω0τ0 + p4ω

2
0 + p6

}
,

C4 = ω0 {2p7ω0 cosω0τ0 − 2p8 sinω0τ0 − p5ω0} .

However, the sign of
[

d(<(λ))
dτ

]
λ=iω0,τ=τ0

is the same as the sign of<
[

dλ
dτ

]
λ=iω0,τ=τ0

. Thus, the transversality

condition<
[

dλ
dτ

]
λ=iω0,τ=τ0

> 0 holds only when (D3) : C1C3 + C2C4 > 0.
Therefore, the treatment-free equilibrium point E5 is locally asymptotically stable when τ ∈

[0, τ0) , and a Hopf-bifurcation occurs at the equilibrium point E5 when τ = τ0 if the conditions:
(D1), (D2), (D3) are fulfilled.

Our current objective is to examine the impact of time delay on the fluctuating behavior of
system (1.5) at the interior equilibrium point E∗ (x∗, y∗, z∗,w∗), given the presence of prey, predator,
disease, and treatment. The system’s characteristic equation at E∗ written as

λ4 + p1λ
3 + p2λ

2 + p3λ + p4 +
(
p5λ

3 + p6λ
2 + p7λ + p8

)
e−λτ +

(
p9λ

2 + p10λ + p11

)
e−2λτ = 0,

(3.18)

where

p1 = H1 + H2 − b − c + βz∗ + α(z∗ − y∗) − r
(
1 −

2x∗

K

)
+

my∗(a1 − x2)
(α + x∗)2 +

nz∗
(
a2 − (x∗)2

)
(
a2 + x∗2

)2 ,

p2 =

r (
1 −

2x
K

)
−

my
(
a1 − x2

)
(
a1 + x2)2 −

nz
(
a2 − x2

)
(
a2 + x2)2

 [−H1 − αz∗ + αy∗ − H2 + βz∗ − b − c
]

− (H1 + αz)(αy∗ − H2 + βz∗ − b − c) + (αy∗ − H2)(βz∗ − b − c) + α2y∗z∗ + β2w∗z∗,

p3 =

r (
1 −

2x∗

K

)
−

my∗
(
a1 − x∗2

)
(
a1 + x∗2

)2 −
nz∗

(
a2 − x∗2

)
(
a2 + x∗2

)2

 [H1αy∗ − H2αz∗ − h1h2 − β
2w∗z∗

+ (βz∗ − b − c) (αy∗ − αz∗ − H1 − H2)
]
+ (βz∗ − b − c) (H1αy∗ − H2αz∗ − H1H2)

+ βz∗2 (β(H1 + αz∗) − bα) ,

p4 =

r (
1 −

2x
K

)
−

my
(
a1 − x2

)
(
a1 + x2)2 −

nz
(
a2 − x2

)
(
a2 + x2)2

 [(βz∗ − b − c)(H1H2 + H2αz∗ − H1αy∗)

−H1bβw∗z∗
]

p5 = −
e1mx∗

a1 + x∗2
−

e2nx∗

a2 + x∗2
,

p6 =

βz∗ − b − c + αy∗ − H2 + r
(
1 −

2x∗

K

)
−

my∗
(
a1 − x∗2

)
(
a1 + x∗2

)2 −
nz∗

(
a2 − x∗2

)
(
a2 + x∗2

)2

 ( e2nx∗

a2 + x∗2
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+
e1mx∗

a1 + x∗2

)
+

e1m2x∗y∗(a1 − x∗2)
(a1 + x∗2)3 +

e2n2x∗z∗
(
a2 − x∗2

)
(
a2 + x∗2

)3

p7 =

r (
1 −

2x
K

)
−

my
(
a1 − x2

)
(
a1 + x2)2 −

nz
(
a2 − x2

)
(
a2 + x2)2

 [e2nx(H1 + αz − βz + b + c)
a2 + x2

−
e1mx(αy + H2 + βz − b − c)

a1 + x2

]
−

e1mx
[
β2zw + (αy − H2)(βz − b − c)

]
a1 + x2

+
e2nx(H1 + αz)(βz − b − c)

a2 + x2 −
mx

a1 + x2

[
e1my(a1 − x2)(βz − b − c + αy − H2)

(a1 + x)2

+
e2nz

(
a2 − x2

)
αy(

a2 + x2)2

 − nx
a2 + x2

e2nz
(
a2 − x2

)
(βz − b − c − H1 − αz)(
a2 + x2)2 −

e1my(a1 − x2)αz
(a1 + x)2


p8 =

r (
1 −

2x
K

)
−

my
(
a1 − x2

)
(
a1 + x2)2 −

nz
(
a2 − x2

)
(
a2 + x2)2


e1mx

[
(αy − H2)(βz − b − c) + β2zw

]
a1 + x2

−
e2nx(βz − b − c)(H1 + αz)

a2 + x2

]
−

e1my(a1 − x2)αz
(a1 + x)2 +

e2nz
(
a2 − x2

)
(H1 + αz)(

a2 + x2)2


×

(
nx(βz − b − c)

a2 + x2

)
+

mx
a1 + x2

e1my(a1 − x2)
[
(αy − H2)(βz − b − c) + β2zw

]
(a1 + x)2

+
e2nz

(
a2 − x2

) [
bβw + αy(βz − b − c)

](
a2 + x2)2


p9 =

e1e2mnx∗2(
a1 + x∗2

) (
a2 + x∗2

)
p10 = −

e1e2mnx∗2(
a1 + x∗2

) (
a2 + x∗2

) r (
1 −

2x∗

K

)
−

my∗
(
a1 − x∗2

)
(
a1 + x∗2

)2 −
nz∗

(
a2 − x∗2

)
(
a2 + x∗2

)2 − βz∗ − b − c


−

mne1e2x∗2(
a1 + x∗2

) (
a2 + x∗2

) [
nz∗(a2 − x∗2)

a2 + x∗2
+

my∗(a1 − x∗2)
a1 + x∗2

]
p11 =

(
e1mx∗(βz∗ − b − c)

a1 + x∗2

) (
e2nx∗

a2 + x∗2

) (
r −

2rx∗

K

)
.

Case 1: When τ = 0, the characteristic equation becomes

λ4 + (p1 + p5)λ3 + (p2 + p6 + p9)λ2 + (p3 + p7 + p10)λ + p4 + p8 + p11 = 0. (3.19)

Using the Routh-Hurwitz criteria on the aforementioned Eq (3.19), E∗ exhibits asymptotic stability
provided that the subsequent condition is satisfied (H(i)) : p1 + p4 > 0, p3 + p6 + p8 > 0 and (p1 +

p4)(p2 + p5 + p7) − (p3 + p6 + p8) > 0.
Case 2: Taking τ > 0, and we investigate the effects of time delay τ on stability. We are currently
trying to find a biologically meaningful periodic response. For the existence of a periodic solution of
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system (1.5), we substitute λ = iσ(σ > 0) in (3.18) and obtain the following pair of transcendental
equations:

P1 cos(στ) + P2 sin(στ) + P3 cos(2στ) + P4σ sin(2στ) = P5

− P1 sin(στ) + P2 cos(στ) − P3 sin(2στ) + P4 cos(2στ) = P6

where P1 = p8 − p6σ
2, P2 = p7σ − p5σ

3, P3 = p11 − σ
2 p9, P4 = σp10, P5 = p1σ

3 − p3σ,

P6 = p2σ
2 − σ4 − p4

which gives

sin(στ) =
P1P3 + P1P5 + P2P4 + P2P6

P2
5 + P2

6 − P2
3 − P2

4

and cos(στ) =
P1P4 − P1P6 + P2P5 − P2P3

P2
5 + P2

6 − P2
3 − P2

4

. (3.20)

Squaring and adding the above equations we get
σ16 + l7σ

14 + l6σ
12 + l5σ

10 + l4σ
8 + l3σ

6 + l2σ
4 + l1σ2 + l0 = 0, (3.21)

l7 = 2
(
p2

1 − 2p2

)
− p2

5,

l6 =
(
p2

1 − 2p2

)2
− (p6 − p5 p10)2

− 2p5 (p3 p6 − p8 p10 − p6 p10 + p7 p2 − p7 p9 + p4 p5 + p5 p11)

+ 2
(
p2

2 + 2p4 − 2p1 p3 − p2
9

)
l5 = 2

(
p2

3 − 2p2 p4 + 2p11 p9 − p2
10

)
+ 2

(
p2

1 − 2p2

) (
p2

2 + 2p4 − 2p1 p3 − p2
9

)
− 2 (p6 − p5 p10) (p6 p9 − p2 p6 + p5 p3 − p5 p10 − p7 p1 − p8) − 2p5 (p1 p6 − p7 − p5 p2 − p5 p9)

− (p3 p6 − p8 p10 − p6 p10 + p7 p2 − p7 p9 + p4 p5 + p5 p11)2

l4 =
(
p2

2 + 2p4 − 2p1 p3 − p2
9

)2
+ 2

(
p2

1 − 2p2

) (
p2

3 − 2p2 p4 + 2p11 p9 − p2
10

)
+ 2

(
p2

4 − p2
11

)
− (p6 p9 − p2 p6 + p5 p3 − p5 p10 − p7 p1 − p8)2

− 2p5 (p8 p10 − p7 p4 − p7 p11)

− 2 (p6 − p5 p10) (p2 p8 − p8 p9 + p4 p6 − p3 p7 − p6 p11 + p7 p10)

− 2 (p3 p6 − p8 p10 − p6 p10 + p7 p2 − p7 p9 + p4 p5 + p5 p11) (p1 p6 − p7 − p5 p2 − p5 p9)

l3 = 2
(
p2

1 − 2p2

) (
p2

4 − p2
11

)
+ 2

(
p2

2 + 2p4 − 2p1 p3 − p2
9

) (
p2

3 − 2p2 p4 + 2p11 p9 − p2
10

)
− 2 (p6 p9 − p2 p6 + p5 p3 − p5 p10 − p7 p1 − p8) (p2 p8 − p8 p9 + p4 p6 − p3 p7 − p6 p11 + p7 p10)

− 2 (p3 p6 − p8 p10 − p6 p10 + p7 p2 − p7 p9 + p4 p5 + p5 p11) (p8 p10 − p7 p4 − p7 p11)

− 2 (p6 − p5 p10) (p11 p8 − p8 p4) − (p1 p6 − p7 − p5 p2 − p5 p9)2 ,

l2 =
(
p2

3 − 2p2 p4 + 2p11 p9 − p2
10

)2
− 2 (p1 p6 − p7 − p5 p2 − p5 p9) (p8 p10 − p7 p4 − p7 p11)

− 2
(
p2

2 + 2p4 − 2p1 p3 − p2
9

) (
p2

4 − p2
11

)
− (p2 p8 − p8 p9 + p4 p6 − p3 p7 − p6 p11 + p7 p10)2

− 2 (p6 p9 − p2 p6 + p5 p3 − p5 p10 − p7 p1 − p8) (p11 p8 − p8 p4)

l1 = 2
(
p2

3 − 2p2 p4 + 2p11 p9 − p2
10

) (
p2

4 − p2
11

)
− (p8 p10 − p7 p4 − p7 p11)2

− 2 (p2 p8 − p8 p9 + p4 p6 − p3 p7 − p6 p11 + p7 p10) (p11 p8 − p8 p4)

l0 =
(
p2

4 − p2
11

)2
− (p11 p8 − p8 p4)2 .
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(H(ii)) : It is assumed that σ∗ is a positive root of Eq (3.21).
Then, from (3.20), we have

τk =
1
σ∗

arctan
[
P1P3 + P1P5 + P2P4 + P2P6

P1P4 − P1P6 + P2P5 − P2P3

]
σ=σ∗

+
2kπ
σ∗

, k = 0, 1, 2, 3...

We will now investigate the transversality condition of the Hopf bifurcation. When (3.18) is
differentiated with regard to τ, it yields(

dλ
dτ

)−1

=
4λ3 + 3l1λ

2 + 2l2λ + l3 +
(
3l5λ

2 + 2l6λ + l7

)
e−λτ + (2l9λ + l10) e−2λτ

λ
[(

l5λ3 + l6λ2 + l7λ + l8
)

e−λτ +
(
l9λ2 + l10λ + l11

)
e−2λτ] −

τ

λ
.

We get <
[
dλ
dτ

]−1

λ=iσ∗,τ=τ∗

=
E1E3 + E2E4

E2
1 + E2

2

,

where
E1 = (p8σ∗ − p6σ

3
∗) cosσ∗τ∗ + (p7σ

2
∗ − p5σ

4
∗) sinσ∗τ∗ − 2p10σ

2
∗ cos 2σ∗τ∗ + (p11σ∗ − 2p9σ

3
∗) sin 2σ∗τ∗,

E2 = (p6σ
3
∗ − p8σ∗) cosσ∗τ∗ + (p5σ

4
∗ − p7σ

2
∗) sinσ∗τ∗ + 2(p9 + σ3

∗ + p11σ∗) cos 2σ∗τ∗ + 2p10σ
2 sin 2στ,

E3 = p3 − 3p1σ
2
∗ + (p7 − 3p5σ

2
∗) cosσ∗τ∗ + 2p6σ∗ sinσ∗τ∗ + p10 cos 2σ∗τ∗ + 2p9σ∗ sin 2σ∗τ∗,

E4 = 2p2σ∗ − 4σ3
∗ + 2p6σ∗ cosσ∗τ∗ + (3p5σ

2
∗ − p7) sinσ∗τ∗ + 2p9σ∗ cos 2σ∗τ∗ − p10 sin 2σ∗τ∗.

Therefore, the transversality condition <
[

dλ
dτ

]
λ=iσ0,τ=τ0

> 0 holds as if (H(iii)) : E1E3 + E2E4 > 0.
Here τ0 = τk|k=0.

Thus, we can state the following theorem.

Theorem 6. Let us assume that for system (1.5), the conditions (H(i)), (H(ii)), (H(iii)) satisfy. When
τ ∈ [0, τ∗), the interior equilibrium point E∗ is locally asymptotically stable; when τ = τ∗, a Hopf-
bifurcation takes place at the equilibrium point E∗.

4. Direction and stability of Hopf-bifurcation

The circumstances under which the system experiences Hopf-bifurcation for the time delay τ at
various equilibrium points were determined in the preceding section.In this section, we use the center
manifold theorem and normal form theory in accordance with Hassard’s idea [38] to compute the
direction, stability, and period of the bifurcated periodic solutions at τ = τ∗.

Assuming τ = τ∗ + µ, µ ∈ R, the Hopf bifurcation value of system (1.5) is µ = 0. If we rescale the
time delay t → ( t

τ
), we may rewrite system (1.5) as

ṡ(t) = Lµst + F(µ,wt), (4.1)

where s(t) = (s1(t), s2(t), s3(t), s4(t))T ∈ R4, st(ψ) = s(t +ψ) and Lµ : C → R4, F : R×C → R4 are given
by

Lµst = (τ∗ + µ)


a11 a12 a13 0
0 a22 −αy∗ b
0 αy∗ a33 −βz
0 0 βz a44




s1t(0)
s2t(0)
s3t(0)
s4t(0)


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+ (τ∗ + µ)


0 0 0 0

b21 b22 0 0
b31 0 b33 0
0 0 0 0




s1t(−1)
s2t(−1)
s3t(−1)
s4t(−1)

 , (4.2)

F(µ, st) = (τ∗ + µ)


f1s2

1t(0) + f2s1t(0)s2t(0) + f3s1t(0)w3t(0) + . . .

g1s2
1t(−1) + g2s1t(−1)s2t(−1) + g3s2t(0)w3t(0) + . . .

h1s2
1t(−1) + h2s1t(−1)s3t(−1) + h3s2t(0)w3t(0) + . . .

j1s3t(0)s4t(0) + j2s2
1t(0)s2t(0) + . . .

 ,
where,

f1 = −
2r
K

+
2mxy

(
3a1 − x2

)
(
a1 + x2)3 +

2nxz
(
3a2 − x2

)
(
a2 + x2)3 , f2 = −

m
(
a1 − x2

)
(
a1 + x2)2 ,

f3 = −
n
(
a1 − x2

)
(
a2 + x2)2 , f4 =

2mxy
(
3a1 − x2

)
(
a1 + x2)3 , f5 =

2nxz
(
3a2 − x2

)
(
a2 + x2)3

f6 =
my

[(
a1 + x2

)
(a1 − x) − 2x2 (3a1 − x)

]
(
a1 + x2)4 +

nz
[(

a2 + x2
)

(a2 − x) − 2x2 (3a2 − x)
]

(
a2 + x2)4

g2 =
e1m

(
a1 − x2

)
(
a1 + x2)2 , g1 = −

2e1mxy
(
3a1 − x2

)
(
a1 + x2)3 , g4 = −

2e1mx
(
3a1 − x2

)
(
a1 + x2)3

g5 = −
e1my (a1 − x)(

a1 + x2)3 +
2e1myx2

(
3a1 − x2

)
(
a1 + x2)3 , g3 = −α, h2 =

e2n
(
a2 − x2

)
(
a2 + x2)2

h1 = −
2e2mxz

(
3a2 − x2

)
(
a2 + x2)3 , h5 = −

2e2nx
(
3a2 − x2

)
(
a2 + x2)3 , h3 = α, h4 = −β

h6 = −
e2nz (a2 − x)(

a2 + x2)3 +
2e2nzx2

(
3a2 − x2

)
(
a2 + x2)3 , j1 = β.

The elements of a 4 × 4 matrix η(ψ, µ), ψ ∈ [−1, 0] are of limited variation function, and as per the
Riesz representation theorem [37], they exist such as

Lµφ =

∫ 0

−1
dη(ψ, µ)φ(θ), for φ ∈ C = C([−1, 0],R4). (4.3)

Essentially, we have a choice

η(ψ, µ) = (τ∗ + µ)


a11 a12 a13 0
0 a22 −αy∗ b
0 αz∗ a22 −βw∗

0 0 βz∗ a44

 δ(ψ) + (τ∗ + µ)


0 0 0 0

b21 b22 0 0
b31 0 b33 0
0 0 0 0

 δ(ψ + 1). (4.4)

In this case the Dirac delta function is denoted by δ.
For φ ∈ C([−1, 0],R4), define

B(µ)φ =

 dφ(ψ)
dψ , − 1 ≤ ψ < 0∫ 0

−1
dη(ψ, µ)φ(ψ), ψ = 0

(4.5)
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Q(µ)φ =

0 − 1 ≤ ψ < 0,
f (µ, φ) ψ = 0.

(4.6)

After that, the differential equation will be the same as (1.5).

ṡ(t) = Bµst + Q(µ)st, where vt(ψ) = v(t + ψ), ψ ∈ [−1, 0]. (4.7)

For θ ∈ C1([0, 1], (R4)∗), we define

B∗θ(u) =

−dθ(u)
du 0 < u ≤ 1,∫ 0

−1
dηT (u, 0)θ(−u) u = 0.

(4.8)

For φ ∈ C([0, 1],R4) and θ ∈ C1([0, 1], (R4)∗), define a bilinear inner product

< θ, φ >= θ̄(0)φ(0) −
∫ 0

−1

∫ ψ

ξ=0
θT (ξ − ψ)dη(ψ)φ(ξ)dξ, (4.9)

where η(ψ) = η(ψ, 0), B = B(0), and B∗ are adjoint operators. The eigenvalues of B(0) are ±iσ∗τ∗,
which implies that they are also eigenvalues of B∗. It is simple to confirm that the vectors q(ψ) =

(1, α1, β1, γ1)T eiσ∗τ∗ψ (ψ ∈ [−1, 0]) and q∗(s) = 1
D (1, α∗1, β

∗
1, γ

∗
1)T eiσ∗τ∗s (s ∈ [−1, 0]) are the eigenvectors

of B(0) and B∗ corresponding to the eigenvalues iσ∗τ∗ and −iσ∗τ∗, respectively. Then, B(0)q(ψ) =

iτ∗σ∗q(ψ). Additionally it follows from the definition of B(0) in (4.4), (4.5), (4.7) that we have

τ∗


iσ∗ − a11 −a12 −a13 0
−b21e−iσ∗τ∗ iσ∗ − a22 − b22e−iσ∗τ∗ αy∗ b
−b31e−iσ∗τ∗ −αz∗ iσ∗ − a33 − b33e−iσ∗τ∗ −βz∗

0 0 βw∗ a44

 q(0) =


0
0
0
0

 .
Then we obtain

α1 =
−a13b21(iσ∗ − a44)e−iσ∗τ∗ + (iσ∗ − a11) (iσ∗αy∗ − a44αy∗ − bβw∗)

a12 (iσ∗αy∗ − a44αy∗ − bβw∗) + a13(iσ∗ − a44)(a22 + b22e−iσ∗τ∗ − iσ∗)
,

β1 =
a12b21e−iσ∗τ∗ + (a11 − iσ∗) (iσ∗α − a22 − b22e−σ∗τ∗)

a12 (iσ∗αy∗ − a44αy∗ − bβw∗) + a13(iσ∗ − a44)(a22 + b22e−iσ∗τ∗ − iσ∗)
.

γ1 =
βw∗

[
a12b21e−iσ∗τ∗ + (a11 − iσ∗) (iσ∗α − a22 − b22e−σ∗τ∗)

]
a12 (iσ∗αy∗ − a44αy∗ − bβw∗) + a13(iσ∗ − a44)(a22 + b22e−iσ∗τ∗ − iσ∗)

.

According to the B∗ definition, we may also compute α∗1, β
∗
1, γ

∗
1. We must ascertain the value of D in

order to guarantee that < q∗(s), q(ψ) >= 1 and < q∗(s), q̄(ψ) >= 0. Thus, we get from < q∗(s), q(ψ) >=

1,

D̄ =1 + α1ᾱ
∗
1 + β1β̄

∗
1 + γ1γ̄

∗
1 + τ∗e−iσ∗τ∗

(
b21ᾱ

∗
1 + b31β̄

∗
1 + b22α1ᾱ

∗
1 + b33ββ̄

∗
1

)
.

Using a calculation procedure resembling to that of Song and Wei [39] and the algorithm outlined in
Hassard [38] to derive the features of Hopf-bifurcation, we obtain

g20 =
2τ∗
D̄

[
f1 + α1 f2 + β1 f3 + ᾱ∗1

(
g1e−2iσ∗τ∗ + g2α1e−2iσ∗τ∗ + g3α1β1

)
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+ β̄∗1

(
h1e−2iσ∗τ∗ + h2β1e−2iσ∗τ∗ + h3α1β1 + c4γβ

)
+ γ̄∗1d0011γ1β1

]
,

g11 =
τ∗

D̄

[
f3(β1 + β̄1) + ᾱ∗1

(
2g1 + g2(α1 + ᾱ1) + g3(ᾱ1β1 + α1β̄1)

)
+ β̄∗1

(
2h1 + h2(β1 + β̄1) + h3(ᾱ1β1 + αβ̄1) + h4(γ̄1β1 + γ1β̄1)

)
+ 2 f1 + f3(α1 + ᾱ1) + d0011(γ̄1β1 + γ1β̄1)γ̄∗1

]
,

g02 =
2τ∗
D̄

[
f1 + ᾱ1 f2 + β̄1 f3 + ᾱ∗1

(
g1e2iσ∗τ∗ + g2ᾱ1e2iσ∗τ∗ + g3ᾱ1β̄1

)
+ β̄∗1

(
h1e2iσ∗τ∗ + h2β̄1e2iσ∗τ∗ + h3ᾱ1β̄1 + h4γ̄1β̄1

)
+ d0011γ̄1β̄1

]
,

g21 =
2τ∗
D̄

[
3 f6 + f4 (2α1 + ᾱ1) + f5

(
2β1 + β̄1

)
+ f1

(
2W (1)

11 (0) + W (1)
20 (0)

)
+ f2

(
W (2)

11 (0) +
1
2

W (2)
20 (0) +

1
2
ᾱ1W (1)

20 (0) + α1W (1)
11 (0)

)
+ f3

(
W (3)

11 (0) +
1
2

W (3)
20 (0) +

1
2
β̄1W (1)

20 (0) + β1W (1)
11 (0)

)
+ᾱ∗1

(
(g4 (ᾱ1 + 2α1) + g5) e−iσ∗τ∗ + g1

(
eiσ∗τ∗W (1)

20 (−1) + 2e−iσ∗τ∗W (1)
11 (−1)

))
+ᾱ∗1g2

(
e−iσ∗τ∗

(
W (2)

11 (−1) + α1W (1)
11 (−1)

)
+

1
2

eiσ∗τ∗
(
W (2)

20 (−1) + ᾱ1W (2)
20 (−1)

))
+ᾱ∗1g3

(
α1W (3)

11 (0) +
1
2
ᾱ1W (3)

20 (0) + β1W (2)
11 (0) +

1
2
β̄1W (2)(0)

20

)
+h1

(
eiσ∗τ∗W (1)

20 (−1) + 2e−iσ∗τ∗W (1)
11 (−1)

)
+

(
h5

(
β̄1 + 2β1

)
+ 3β̄∗1h6

)
e−iσ∗τ∗

+β̄∗1h2

(
e−iσ∗τ∗

(
W (3)

11 (−1) + β1W (1)
11 (−1)

)
+

1
2

eiσ∗τ∗
(
W (3)

20 (−1) + β̄1W (2)
20 (−1)

))
+β̄∗1h3

(
α1W (3)

11 (0) +
1
2
ᾱ1W (3)

20 (0) + β1W (2)
11 (0) +

1
2
β̄1W (2)

20

)

+β̄∗1h4

(
γ1W (3)

11 (0) +
1
2
γ̄1W (3)

20 (0) + β1W (4)
11 (0) +

1
2
β̄1W (4)

20

)
+γ̄∗1d0110

(
γ1W (3)

11 (0) +
1
2
γ̄1W (3)

20 (0) + β1W (4)
11 (0) +

1
2
β̄1W (4)

20

)]
.

where W20(θ) =
ig20

σ∗τ∗
q(0)eiθσ∗τ∗ +

iḡ02

3σ0τ∗
q̄(0)e−iθσ∗τ∗ + J1e2iθσ∗τ∗ ,

W11(θ) = −
ig11

σ∗τ∗
q(0)eiθσ∗τ∗ +

iḡ11

σ∗τ∗
q̄(0)e−iθσ∗τ∗ + J2,

J1 = (J1
1 , J

2
1 , J

3
1 , J

4
1)T , and J2 = (J1

2 , J
2
2 , J

3
2 , J

4
1)T , where of them is a constant vector in R4. Following

computation, we obtain J1 = 2K−1
1 K2 and J2 = 2K−1

3 K4 with

K1 =


2iσ∗ − a11 −a12 −a13 0
−b21e−2iσ∗τ∗ 2iσ0 − a22 − b22e−σ∗τ∗ −αy∗ −b
−b31e−2iσ∗τ∗ αz∗ 2iσ∗ − a33 − b33e−σ∗τ∗ βz∗

0 0 −βz∗ 2iσ∗ − a44

 ,
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K2 =


f1 + α1 f2 + β1 f3

g1e−2iσ∗τ∗ + g2α1e−2iσ∗τ∗ + g3α1β1

h1e−2iσ∗τ∗ + h3β1e−2iσ∗τ∗ + h4α1β1 + h2γβ

j1γ1β1

 ,

K3 =


−a11 −a12 −a13 0
−b21 −a22 − b22 −βy∗ −b
−b31 αz∗ −a33 − b33 βz∗

0 0 −βz∗ −a44

 ,

K4 =


2 f1 + f2(α1 + ᾱ1) + f3(β1 + β̄1)

2g1 + g2(α1 + ᾱ1) + g3(ᾱ1β1 + αβ̄1)
2h1 + h3(β1 + β̄1) + h4(ᾱ1β1 + αβ̄1) + h2(γ̄1β1 + γ1β̄1)

j1(γ̄1β1 + γ1β̄1)

 .
The parameters and delay may therefore be used to represent each gi j. As a result, we determine the
following values:

R1(0) =
i

2τ∗σ∗

(
g11g20 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

ν1 = −
< {R1(0)}
< {λ′(τ∗)}

,

ν2 = 2< (R1(0)) ,

T2 = −
= {R1(0)} + η1=(λ

′

(τ∗))
τ∗σ∗

.

Theorem 7. If ν1 > 0(ν1 < 0), then the Hopf bifurcation in system (1) is supercritical (subcritical). If
ν2 < 0(ν2 > 0), then the bifurcating periodic solutions are stable (unstable). If T2 > 0 (T2 < 0), then
the bifurcating periodic solutions increase (decrease).

5. Numerical simulation

In this part, we use the four sets of parameter values R1, R2, and R3 to conduct some numerical
simulations that validate and expand upon our analytical findings.

Take starting point x(0) = 1, y(0) = 1, z(0) = 1, w(0) = 1 with the set of parameters values
R1=(r, k,m, n, e1, e2, a1, a2, b, c,H1,H2, α, β) = (5, 1, 2.5, 1.2, 2.1, 1, 0.8, 1.1, 0.2, 0.1, 1.5, 1.4, 0.5, 0.1).
The disease-free and treatment-free equilibrium point E2(0.25, 1.30, 0, 0) is obtained for that
combination of factors. Additionally, meet the requirements in Theorem 3.3, and we’ll be able to
determine the crucial time delay of τ∗ = 0.22, at which a Hopf-bifurcation emerges itself. Accordingly,
for τ = 0.1(< 0.22 = τ∗) (see Figure 1), the system (1.5) is asymptotically stable at E1, while for
τ = 0.3 > (> 0.22 = τ∗) (see Figure 2), it gets unstable. For the set of parameters values R1, the
parameteric bifurcation diagram for vulnerable predator and prey populations is shown in Figure 3,
and it illustrates how the system evolves when τ’s numerical values fluctuate within [0.2, 0.25]. It
suggests that the dynamics of the system will fluctuate via a Hopf bifurcation point at τ = 0.22 if we
raise the value of the τ parameter. Now with τ = 0.3, the system (1.5) becomes stable when we increase
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the parameter H1 while maintaining the values of the remaining factors as in R1, as demonstrated in
Figure 4. However, when we raise H1 even more, the healthy predator vanishes and only the existence
of prey species is shown in Figure 5. Additionally, we have a critical value of factor τ for every single
value of H1(< 2.1).

Now, if we replace the values of the parameters n = 2.2,H2 = 0.5 in R1 with starting point x(0) =

1, y(0) = 1, z(0) = 1, w(0) = 1, we get the helathy predator-free and treatment-free equilibrium
point E3(0.266, 0, 1.952, 0). Additionally, we meet the requirements of Theorem 3.4, and we’ll be
able to determine the crucial time delay of τ∗ = 1.09, at which a Hopf-bifurcation manifests itself.
Accordingly, for τ = 1.05(< 1.09 = τ∗) (see Figure 6), the system (1.5) is asymptotically stable at
E3, and for τ = 1.5(> 1.09 = τ∗) (see Figure 7), it gets unstable. For the set of parameters values R1
with n = 2.2, the parameteric bifurcation diagram for the populations of infected predators and prey
is shown in Figure 8. It illustrates how the system evolves when the numerical values of τ fluctuate
within [1.05, 1.14]. It suggests that the behaviour of the model will fluctuate via a Hopf bifurcation
point at τ∗ = 1.09 if we raise the value of the τ parameter. The system (1.5) becomes stable if we
take τ = 0.2 and increase the value of the parameter H2 while maintaining the values of the remaining
factors at the same level as in R1 with n = 2.2. This will cause the sick predator to gradually disappear
from the system and leave only healthy predators and prey. Here, the 0.05 ≤ H2 < 0.7 system becomes
stable and only sick predator and prey species are present, which is similar to the Figure 6. After
0.7 < h2 < 1.11, then prey, healthy, and sick predator are only present but if we increase then sick
predator vanishes and only healthy predator and prey species are survived which is similar to the
Figure 1.

Take starting point x(0) = 1, y(0) = 1, z(0) = 1, w(0) = 1 with the set of parameters values
R2=(r, k,m, n, e1, e2, a1, a2, b, c,H1,H2, α, β) = (5, 1, 2.5, 2.2, 2.1, 1.8, 1.2, 1.1, 1, 0.5, 1, 0.51, 0.5, 1).
We obtain the treatment-free equilibrium point E5(0.138, 0.945, 0.53, 0) for this combination of
parameters R2. Additionally, meet the requirements of Theorem 3.5, and we’ll be able to determine
the crucial time delay of τ = 0.53, at which a Hopf-bifurcation exhibits itself. Accordingly, for
τ = 0.1 < 0.135 (see Figure 9) the system (1.5) is asymptotically stable at E5, and for τ = 0.2 > 0.135
(see Figure 10), it becomes unstable. For the set of parameters values R2, the parameteric bifurcation
diagram for susceptible, infected, and prey predator populations is shown in Figure 11. It illustrates
how the system evolves when τ’s numerical values fluctuate within [0.09, 0.15]. It suggests that the
behavior of the model will fluctuate via a Hopf bifurcation point at τ = 0.115 if we raise the value of
the τ parameter.

Lastly, taking initial point x(0) = 1, y(0) = 1, z(0) = 1, w(0) = 1 with the set of parameters values
R3=(r, k,m, n, e1, e2, a1, a2, b, c,H1,H2, α, β) = (5, 1, 2.5, 1.2, 2.1, 1, 0.8, 1.1, 0.2, 0.1, 1.5, 1.4, 0.5, 0.1).
There is an interior equilibrium point E∗(0.227, 0.5, 1.5, 0.4) for this combination of values.
Additionally, meet the requirements in Theorem 3.3, and we’ll be able to determine the critical delay
of τ = 0.61, at which a Hopf-bifurcation displays itself. Accordingly, the system (1.5) is unstable if
τ = 1 > 0.61 (see Figure 13) and asymptotically stable at E∗ for τ = 0.5 < 0.61 (see Figure 12).
For the set of parameters values R3, the parameteric bifurcation diagram for all populations is shown
in Figure 14, and it displays the way the system evolves when τ’s numerical values fluctuate within
[0.57, 0.66]. It suggests that the behavior of the system will fluctuate via a Hopf bifurcation point at
τ = 0.58 if we raise the value of the τ parameter. Given τ = 1, increasing the value of the component
α while maintaining the values of the remaining factors as in R3 results in a Hopf-bifurcation, with

AIMS Mathematics Volume 10, Issue 6, 14657–14698.



14678

α∗ = 1.05 serving as the crucial value of α. Figure 15 illustrates the stable state of the system (1.5)
when the quantity of α is further increased. Figure 16 illustrates the unstable state of the system when
the value of α = 0.5 is decreased. Furthermore, we demonstrate that by substituting this value for the
parameter α = 0.05, β = 2 in R3, we can increase system chaos by increasing the gestation time delay
value, as shown in Figure 17, or decrease it to see less chaotic behavior, as in Figure 18. Figure 19
shows the parameteric bifurcation diagram for all populations for the set of parameters values R3 with
α = 0.05, β = 2. It illustrates how the system gets more chaotic as τ’s numerical values increase from
τ = 0.43. Again decreament in the value of the parameter of gestation time delay system becomes
stable. To verify the chaotic nature of the system (1.5), we calculate the maximum Lyapunov exponent
at τ = 2.1 using the approach developed by Wolf et al. [40] (see Figures 20 and 21).
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Figure 2. (a) Time series solution and, (b) parametric graph of the system (5) about the
disease and treatment-free equilibrium point E2 that is locally asymptotically stable when
τ = 0.1(< 0.22 = τ∗) with set of parameter values in R1.
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Figure 3. The settings are the same as in Figure 1, with the exception that τ = 0.3(> 0.22 =

τ∗), then E2 loses its stability. Here, (b) and (a) denote the phase and oscillation patterns of
the population, respectively.
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Figure 4. Diagram illustrating the prey and susceptible predator populations’ bifurcation in
terms of delay with respect to the bifurcating parameter, τ.
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Figure 5. The settings are the same as in Figure 2, with the exception that H1 = 2.1(> 1.78 =

H12), then E2 becomes locally asymptotically stable. Here, (a) time series solution and, (b)
parametric graph of the system (5).

AIMS Mathematics Volume 10, Issue 6, 14657–14698.



14681

(a)
0 50 100 150 200 250 300 350 400 450 500

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

S
p

e
c
ie

s

 

 

Prey

Susceptible Predator

Infected Predator

Treatment

(b)
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

−0.2
0

0.2
0.4

0.6
0.8

1
1.2

0

0.2

0.4

0.6

0.8

1

 

 Prey (x)Susceptible Predator (y)

 

In
fe

c
te

d
 P

re
d
a
to

r 
(z

)

Delay τ = 0.3

Figure 6. The settings are the same as in Figure 2, with the exception that H1 = 4.5(> 1.78 =

H12) resulting in healthy predator vanishes only when prey species survived. Here, (a) time
series solution and; (b) parametric graph of the system (5).
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Figure 7. The settings are the same as in Figure 1, with the exception that n = 2.2, h2 =

0.5, then about the healthy predator-free and treatment-free equilibrium point E3 is locally
asymptotically stable when τ = 1.05(< 1.09 = τ∗). Here, (a) time series solution and, (b)
parametric graph of the system (5).
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Figure 8. The settings are the same as in Figure 5, then about the healthy predator-free and
treatment-free equilibrium point E3 loses its stability when τ = 1.5(< 1.09 = τ∗3). Here, (b)
and (a) denote the phase and oscillation patterns of the population, respectively.
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Figure 9. Diagram illustrating how the populations of infected predators and prey split
according to the bifurcating parameter, τ, in terms of delay.
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Figure 10. (a) Time series solution and, (b) parametric graph of the system (5) about how the
treatment-free equilibrium point E5 is locally asymptotically stable when τ = 0.1(< 0.135 =

τ0) with set of parameter values in R2.
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Figure 11. The settings are the same as in Figure 7, with the exception that τ = 0.2(>
0.135 = τ0), then E5 loses its stability. Here, (b) and (a) denote the phase and oscillation
patterns of the population, respectively.
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Figure 12. The bifurcation diagram represents the relationship between the populations of
susceptible predators, infected predators, and prey with respect to τ, the bifurcating parameter
for the delay factor.
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Figure 13. (a) and (b) time series solution and, (c) parametric graph of the system (1.5) about
the interior equilibrium point E∗ is locally asymptotically stable when τ = 0.5(< 0.61 = τ∗)
with set of parameter values in R3.
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Figure 14. The settings are the same as in Figure 9, with the exception that τ = 1(> 0.61 =

τ∗), then interior equilibrium E∗ loses its stability. Here, (b) and (a) denote the phase and
oscillation patterns of the population, respectively.
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Figure 15. Bifurcation diagram for system (1.5) in relation to the bifurcating parameter, τ,
for the delay parameter.
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Figure 16. The settings are the same as in Figure 10, with the exception that α = 1.2(>
1.05 = α∗), then E∗ becomes locally asymptotically stable. Here, (a) time series solution
and, (b) parametric graph of the system (5).
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Figure 17. The settings are the same as in Figure 10, with the exception that α = 0.5(<
1.05 = α∗), then E∗ loses its stability. Here, (b) and (a) denote the phase and oscillation
patterns of the population, respectively.
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Figure 18. Considering the parameters value in R3 with the exception that α = 0.05, β = 2
for τ = 2.1 system (1.5) becomes chaotic.
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Figure 19. The settings are the same as in Figure 13. If we decrese the value of the gestation
time delay, then chaotic behave becomes diminises. Again decreament in the value of the
parameter of gestation time delay system becomes stable.
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Figure 20. Maximum Lyapunov exponent of the system (1.5) at τ = 2.1. Parameters
are taken from R3. The positive values of the maximum Lyapunov exponent confirm the
existence of chaotic oscillation.
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Figure 21. Bifurcation diagram for system (1.5) in relation to the bifurcating parameter,
τ, for the delay parameter. It illustrates that the system gets more chaotic as τ’s numerical
values increase from τ = 0.43.
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6. Conclusions

In the current study, we have examined the structure and functioning of a prey-predator model in
which predator species are harvested while infection spread occurs solely among the predators. A time
delay is used to indicate gestation delay of the predators with Holling type III functional responses
and also the infected predator population is treated. We came up with the presence of equilibria
and gave their positive conditions for the suggested delayed model (1.5). Additionally, we provided
boundedness for the delayed model’s solution (1.5). There are seven potential nonnegative equilibria in
this prey-predator model, and we also present a thorough examination of the stability of each potential
nonnegative equilibria. Trivial equilibrium is inherently unstable among them since it requires the
existence of either prey species or both predator and prey species at first. By using Theorem 3.2, we
can observe that if the rates at which susceptible and infected predators are harvested exceed e1mK

a1+K2 and
e2nK

a2+K2 , respectively, then the predator-free and treatment-free equilibrium point is feasible as well as
asymptotically stable.

A disease-free and treatment-free equilibrium point can only be feasible if the carrying capacity
of the prey species exceeds the density of the prey population and the harvesting rate of susceptible
predators is below a certain threshold. It has been shown in Theorem 3.3 that the disease-free and
treatment-free equilibrium must meet a number of requirements in order to be locally asymptotically
stable. Furthermore, it has been demonstrated that the time delay τ may, in some circumstances,
destabilize the system’s (1.5) equilibrium point that is free of sickness and treatment, leading to
population fluctuations. Hopf-bifurcation of the system (1.5) is seen, and when the time delay is
sufficiently small, the system is shown to be locally asymptotically stable. In this instance, the at-risk
predator and prey may cohabit in an ideal, stable condition free from the threat of illness, which is
crucial to the predator’s harvesting model. The system’s stability (1.5) depends on time delay when
we raise the pace at which susceptible predators are harvested. However, if susceptible predators are
harvested too much, healthy predators may disappear from the habitat, leaving only prey species, which
is undesirable for predator harvesting which is shown in Figure 4.

Only when the prey species’ carrying capacity surpasses the prey population density and the
harvesting rate of infected predators falls below a specific threshold can a healthy predator-free and
treatment-free equilibrium point become feasible. Theorem 3.4 has demonstrated the conditions
that must be satisfied for the healthy predator-free and treatment-free equilibrium to be locally
asymptotically stable. Moreover, it is shown that the time delay τ can, under some conditions, cause
population fluctuations by destabilising the system’s (1.5) equilibrium point, which is free of healthy
predator and treatment. The system (1.5) exhibits hopf-bifurcation and, with a small enough time delay,
it is demonstrated to be locally asymptotically stable. With a fixed time delay and a set of parameters,
the system becomes stable when the infected predator harvesting rate is between 0.5 and 0.7. Only
sick predators and prey species remain present. However, if the infected predator harvesting rate is
increased, the sick predator disappears and only healthy predators and prey species remain, which is
the ideal situation for harvesting.

It has been demonstrated that utilizing Table 1 to determine the treatment-free equilibrium point
is only possible under specific circumstances. Theorem 3.5 demonstrates the conditions that must
be satisfied for the treatment-free equilibrium to be locally asymptotically stable. Furthermore, it is
demonstrated that, in some circumstances, the time delay τ can lead to population fluctuations by
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upsetting the system’s (1.5) equilibrium point, which is unaffected by treatments. It is shown that, with
small enough time delays, the system (1.5) is locally asymptotically stable and shows hopf-bifurcation.
The necessary and sufficient conditions for the stability and instability of the interior equilibrium in
both the presence and absence of gestation time delays are already established. The time delay τ

plays a crucial role in controlling the behavior of the suggested system for interior equilibrium. For
the model system (1.5), Hopf bifurcation takes place when the time delay passes the critical value τ∗.
It is found that, when the time delay value is properly low, system (1.5) is locally asymptotically
stable. In this scenario, the densities of the four species—the diseased predator population, the
healthy predator population, the prey population, and the recovered population—will trend toward
stabilization, meaning that the illness can be contained and the populations of the three species will
be in an optimal, stable condition. Also, the infection rate α leads to fluctuations in the population
and destabilizes the system’s interior equilibrium point (1.5). In addition, we demonstrate that by
substituting this value for the parameter α = 0.05, β = 2 in R3, the system becomes less chaotic
as Figure 13 illustrates. Conversely, if the gestation time delay is decreased, the chaotic behavior
increases. Once more, a decline in the gestation time delay system’s parameter value leads to
stability. Research has been done on the dynamics of predator-prey relationships, the consequences
of infectious illnesses propagating across predator populations, the management of diseased predators,
and gestational time delays (cf. [18–20] ). These studies investigated the existence of Hopf bifurcation
and the local asymptotic stability of the coexistence equilibrium, with the delay serving as the
bifurcation parameter. The local asymptotic stability of border equilibrium, disease-free equilibrium,
and axial equilibrium has received little attention. In this paper, we investigated the existence and
local asymptotic stability of all feasible equilibriums from a mathematical perspective, to the optimum
of our understanding. We looked at the possibility of a Hopf bifurcation in relation to the temporal
delay caused by gestation and other characteristics. Finally, we would like to point out that our work
instantly offers a precise hypothesis to be tested by empirical methods. We hope that these findings will
spur experimental eco-epidemiologists to gather actual data in order to validate the theories generated
during this investigation. Constructive critique and theoretical and experimental efforts are anticipated
to elucidate the true mechanisms behind eco-epidemiology.
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