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Abstract: Let Xn be a finite set. We consider two types of sequences of restricted partitions of
Xn, namely, the number of order consecutive partitions of Xn into k parts, denoted Noc(n, k) and the
sequence T (n, k) of the number of order-consecutive partition sequences of Xn with k parts. This last
sequence is also the number of locally convex topologies consisting of k nested open sets defined on
a totally ordered set of cardinality n. Although all the main results apply to both sequences, we will
focus on T (n, k). We prove that the generating polynomials of these sequences have real negative roots.
A central limit theorem and a local limit theorem are also proved for T (n, k). Many other relations with
Fibonacci and Lucas numbers are also given.
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1. Introduction

Let Xn be an n–element set. A partition π = (A1, A2, ..., Al) of the set Xn is a collection of non-

empty subsets (Ai)l
i=1 of Xn such that Ai

⋂
A j = ϕ for i , j, and X =

l⋃
i=1

Ai. The Ai are called blocks

or parts of the partition. From now on, Xn = {1, 2, ..., n}. A partition is called consecutive if each part
consists of consecutive numbers in Xn. A partition is an order-consecutive sequence if the parts (Ai)l

i=1
can be labelled B1, B2, ..., Bl such that

⋃l
i=1 Bi is a set of consecutive integers for each i = 1, 2, ..., l.

Partitions are ubiquitous in the field of operations research; due to their effectiveness in solving many
problems linked to scheduling, factoring, and other practical questions. The total set of partitions has
an exponential cardinality (Bell numbers, denoted Bn). For this and due to the cost, it is imperative to
select just a subset of partitions and focus on its study to find optimal ones. Many types of partitions
are considered in the literature, among them, the consecutive, the ordered consecutive, and the nested
partitions, and the ordered consecutive sequences. The number of such partitions were studied by
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Hwang and Mallows in [1]. The following formulas for these sequences are as follows (see [1] for
details):
Nc(n, k) =

(
n−1
k−1

)
, the number of consecutive partitions of Xn in k parts.

NN(n, k) = 1
n

(
n

k−1

)(
n
k

)
, the number of nested partitions of Xn into k parts.

Noc(n, k) =
k−1∑
j=0

(
n−1

2k− j−2

)(
2k− j−2

j

)
, the number of order consecutive partitions of Xn into k parts.

T (n, k) =
k−1∑
j=0

(−1)k−1− j
(

k−1
j

)(
n+2 j−1

2 j

)
, the number of order consecutive partition sequences of Xn into k

parts; this is also the number of convex topologies defined on the chain X = {1, 2, ..., n} having k non
empty nested open sets ϕ , U1 ⫋ U2 ⫋ ... ⫋ Uk = X, see [2].

The sequence T (n, k) appeared recently in [3], as coefficients of some homogeneous polynomials.
Many combinatorial significations are supplied in Strehl’s paper.

The sequences Nc(n, k),NN(n, k) and Noc(n, k) were extended to graphs see [4]. The numbers
NN(n, k) are well known and named after Narayana. Also, they are extensively studied and linked

to the famous Catalan numbers Cn, since Cn =
n∑

k=1
NN(n, k). Curiously, and despite their importance in

operation research and combinatorics, the other remaining sequences are not well investigated. The

sequences T (n, k) and Tc(n) =
n∑

k=1
T (n, k) have a certain analogy with the Stirling numbers of the

second kind and the Bell numbers, yet they are not as well studied (algebraically) as the Stirling’s and
the Bell’s. In this paper, we show that all these sequences are log-concave, in fact, we will show that
the generating polynomials associated with the sequences T (n, k) and Noc(n, k) have only real zeros.
Unlike the results in [5], the zeros of the considered polynomials in this paper are given explicitly.
Although all the results apply for the sequence Noc(n, k) too, we will focus on the sequence T (n, k).
Using a version of a Lindeberg’s Theorem, we prove that T (n, k) (as well as Noc(n, k))) is asymptotically
normal.

2. Preliminaries

In this section, we recall some definitions and facts about polynomials and unimodal sequences.
From now on, unless the mention of the contrary, all sequences considered in this paper are real and

positive. A sequence (a j)n
j=0 is said to be unimodal , if there exist integers k0, k1, (k0 ≤ k1) such that

a0 ≤ a1 ≤ . . . < ak0 = ak0+1 = . . . = ak1 > ak1+1 ≥ . . . ≥ an.

The integers k0 ≤ j ≤ k1 where the maximum is reached are the modes of the sequence (a j)n
j=0.

The sequence (a j)n
j=0 is log-concave if

a2
j ≥ a j−1a j+1, for 1 ≤ j ≤ n − 1.

A real sequence (a j)n
j=0 is said to be with no internal zeros (NIZ for short), if i < j, ai , 0, a j ,

0 then al , 0 for every l, i ≤ l ≤ j. A NIZ log-concave sequence is obviously unimodal, but the
converse is not true. The sequence 1, 1, 4, 5, 4, 2,1 is unimodal but not log-concave. Note the
importance of the NIZ property: the sequence 0, 1, 0, 0, 2, 1 is log-concave but not unimodal. A
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real polynomial is unimodal (log-concave, symmetric, respectively) provided that the sequence of its
coefficients is unimodal (log-concave, symmetric, respectively).

If inequalities in the log-concavity definition are strict, then the sequence is called strictly log-
concave (SLC for short), and in this case, it has at most two consecutive modes. The following result
may be helpful in proving unimodality:

Theorem 2.1. (Newton) If the polynomial
n∑

j=0

a jx j associated with the real sequence (a j)n
j=0 (not

necessarily positive) has only real zeros, then

a2
j ≥

j + 1
j

n − j + 1
n − j

a j−1a j+1, for 1 ≤ j ≤ n − 1. (2.1)

If the sequence (a j)n
j=0 in the previous theorem is positive, then it is SLC, and then it has at most

two consecutive modes. Also, in this case a theorem of Darroch [6] determines the modes up to unity:

Theorem 2.2. If the polynomial
n∑

j=0

a jx j associated with the positive sequence (a j)n
j=0 has only real

zeros then every mode k0of the sequence (a j)n
j=0 satisfies⌊∑n

j=1 ja j∑n
j=0 a j

⌋
≤ k0 ≤

⌈∑n
j=1 ja j∑n
j=0 a j

⌉
.

For a proof of this theorem, see [6].

3. The real rootedness of the polynomials

In this section, we prove that the polynomial Qn(x) =
n∑

k=1
a(n, k)xk−1 has only real zeros, where

a(n, k) is T (n, k) or Noc(n, k).

Theorem 3.1. The polynomial Qn(x) =
n∑

k=1
T (n, k)xk−1 has only real zeros. Also, all the roots are

in [−1, 0]. More precisely, we have

Qn(x) =
(x + 1)

n−2
2

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n)
)

2
.

Proof. Let

T (n, k) =
k−1∑
j=0

(−1)k− j−1
(
k − 1

j

)(
n + 2 j − 1

2 j

)
,

and consider

Qn(x) =
n∑

k=1

T (n, k)xk−1.

Let us evaluate
f (x, z) =

∑
n≥1

Qn(x)zn−1.
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We have

f (x, z) =
∑
n≥1

Qn(x)zn−1

=
∑
n≥1

∑
k≥1

k−1∑
j=0

(−1)k− j−1
(
k − 1

j

)(
n + 2 j − 1

2 j

)
xk−1

 zn−1

=
∑
k≥1

k−1∑
j=0

(−1)k− j−1
(
k − 1

j

)
xk−1z−2 j

∑
n≥0

(
n + 2 j − 1

2 j

)
zn+2 j−1.

Using the well known formula ∑
i

(
i
m

)
ti =

tm

(1 − t)m+1 ,

we obtain

f (x, z) =
∑
k≥1

k−1∑
j=0

(−1)k− j−1
(
k − 1

j

)
xk−1z−2 j z2 j

(1 − z)2 j+1

=
1

(1 − z)

∑
k≥1

k−1∑
j=0

(−1)k− j−1
(
k − 1

j

)
xk−1 1

(1 − z)2 j

=
1

(1 − z)

∑
k≥1

(−1)k−1xk−1
k−1∑
j=0

(−1) j

(
k − 1

j

)
1

(1 − z)2 j

=
1

(1 − z)

∑
k≥1

(−1)k−1xk−1
(
1 −

1
(1 − z)2

)k−1

=
1

(1 − z)

∑
k≥1

(
−x +

x
(1 − z)2

)k−1

=
1

(1 − z)
1(

1 + x − x
(1−z)2

)
=

1 − z
1 − 2(x + 1)z + (1 + x)z2 .

The roots z1, z2 of the quadratic equation 1 − 2(x + 1)z + (1 + x)z2 are given by

z1,2 =
x + 1 ±

√
x(x + 1)

x + 1
=

x + 1 ±
√
∆

x + 1
.

So, we have the decomposition

(1 − z)
1 − 2(x + 1)z + (1 + x)z2 =

1 − z
(x + 1)(z − z1)(z − z2)

= −
1

2(x + 1)

(
1

z − z1
+

1
(z − z2)

)
AIMS Mathematics Volume 10, Issue 4, 10187–10203.



10191

=
1

2(x + 1 −
√
∆)

 1

1 − (x+1)z
x+1−

√
∆

 + 1

2(x + 1 +
√
∆)

 1

1 − (x+1)z
x+1+

√
∆

 .
Expand the right-hand side about z = 0 to get

f (x, z) =
∑
n≥1

Qn(x)zn−1

=
1

2(x + 1 −
√
∆)

∑
n≥1

(
(x + 1)z

x + 1 −
√
∆

)n−1

+
1

2(x + 1 +
√
∆)

∑
n≥1

(
(x + 1)z

x + 1 +
√
∆

)n−1

=
1

2(x + 1 −
√
∆)

∑
n≥1

(
(x + 1)z

x + 1 −
√
∆

)n−1

+
1

2(x + 1 +
√
∆)

∑
n≥1

(
(x + 1)z

x + 1 +
√
∆

)n−1

.

The coefficients of zn−1, Qn(x) is given by

Qn(x) =
1

2(x + 1 −
√
∆)

(
(x + 1)

x + 1 −
√
∆

)n−1

+
1

2(x + 1 +
√
∆)

(
(x + 1)

x + 1 +
√
∆

)n−1

=
1

2(x + 1 −
√
∆)

 (x + 1)(x + 1 +
√
∆)

(x + 1)2 − ∆

n−1

+
1

2(x + 1 +
√
∆)

 (x + 1)(x + 1 −
√
∆)

(x + 1)2 − ∆

n−1

=
1

2(x + 1 −
√
∆)

(
x + 1 +

√
∆
)n−1
+

1

2(x + 1 +
√
∆)

(
x + 1 −

√
∆
)n−1

=
1

2((x + 1)2 − ∆)

(
x + 1 +

√
∆
)n
+

1
2((x + 1)2 − ∆)

(
x + 1 −

√
∆
)n

=
(x + 1 +

√
∆)n + (x + 1 −

√
∆)n

2(x + 1)
=

(x + 1 +
√

x(x + 1)n + (x + 1 −
√

x(x + 1))n

2(x + 1)

=
(x + 1 +

√
∆)n + (x + 1 −

√
∆)n

2(x + 1)

=
(
√

x + 1)n
(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n)
)

2(x + 1)

=
(
√

x + 1)
n−2

2

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n)
)

2
.

This is the wanted expression of Qn. This means that Qn has −1 as a zero of multiplicity ⌊
n−1

2 ⌋. For the
remaining zeros of Qn, we solve the equation Qn(x) = 0, with x , −1:

(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n

2
= 0,

this is equivalent to
(
√

x + 1 +
√

x)n = −(
√

x + 1 −
√

x)n,

or
(
√

x + 1 +
√

x)n

(
√

x + 1 −
√

x)n
= −1 ⇐⇒

1 +
√ x

x+1

1 −
√ x

x+1

n

= −1 = e(2k+1)πi.
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Now, the previous relation may be written1 +
√ x

x+1

1 −
√ x

x+1

 = e
(2k+1)πi

n , 0 ≤ k ≤ n − 1.

Solving this last equation, we obtain

xk =
exp

(
(2k+1)πi

n

)
1 + exp

(
(2k+1)πi

n

) = − tan2
(

(2k+1)π
2n

)
1 + tan2

(
(2k+1)π

2n

) , 0 ≤ k ≤
⌊
n − 1

2

⌋
.

This proves that Qn has (n − 1) real zeros and are inside [−1, 0]. □

Here are some corollaries from the previous theorem:

Corollary 3.2. For n ≥ 2, we have

Qn+1(x) = 2(x + 1)Qn(x) − (x + 1)Qn−1(x),

with Q1(x) = 1, Q2(x) = 2x + 1.

The following result may be deduced from the previous one.

Lemma 3.3. The sequence T (n, k) satisfies T (n, k) = 2T (n − 1, k) + 2T (n − 1, k − 1) − T (n − 2, k) −
T (n − 2, k − 1), with T (2, 1) = 1, T (2, 2) = 2 and T (n, k) = 0, if n ≤ 0 or k > n.

In the following result, we give the explicit value of the polynomial Hn(x).

Theorem 3.4. The polynomial Hn(x) =
n∑

k=0
Noc(n + 1, k + 1)xk has only real zeros, namely, we have

Hn(x) =
(x + 1 +

√
x)n + (x + 1 −

√
x)n

2
.

Proof. Let

b(n, l) =
k−1∑
j=0

(
n − 1
l − j

)(
l − j

j

)
,

then
Noc(n, l) = b(n, 2l − 2).

Put
Bn(x) =

∑
l≥0

b(n, l)xl.

To find the explicit form of the polynomial Hn(x), we compute the generating function

g(x, z) =
∑
n≥0

Bn(x)zn.

Substitute b(n, l) by its values, we get

g(x, z) =
∑
n≥1

∑
l≥0

∑
j≥0

(
n − 1
l − j

)(
l − j

j

)
xlzn
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= z
∑
j≥0

∑
l≥0

(
l − j

j

)
xl

∑
n≥1

(
n − 1
l − j

)
zn−1

=
z

(1 − z)

∑
j≥0

x j
∑
l≥0

(
l − j

j

)
xl− j zl− j

(1 − z)l− j

=
z

(1 − z)

∑
j≥0

x j
∑
l≥0

(
l − j

j

) ( xz
1 − z

)l− j

=
z

(1 − z)

∑
j≥0

x j

(
xz

1−z

) j(
1 − xz

1−z

) j+1

=
z

(1 − z − xz)

∑
j≥0

(
x2z

1 − z − xz

) j

=
z

(1 − z − xz)
1

1 − x2z
1−z−xz

=
1

1 − z(1 + x + x2)
.

So,

g(x, z) =
1

1 − z(1 + x + x2)
=

∑
n≥0

(1 + x + x2)nzn,

and

g(−x, z) =
1

1 − z(1 − x + x2)
=

∑
n≥0

(1 − x + x2)nzn.

Now

f (x, z) =
∑
n≥0

Hn(x)zn =
g(−x, z) + g(x, z)

2
.

So,

Hn(x2) =
Bn(x) + Bn(−x)

2
=

(1 + x + x2)n + (1 − x + x2)n

2
.

So,

Hn(x) =
(1 + x +

√
x)n + (1 + x −

√
x)n

2
.

Obviously Hn has only real zeros, and the theorem is proved. □

The following result follows directly from the previous theorem.

Corollary 3.5. For every n ≥ 1, we have

Hn+1(x) = 2(x + 1)Hn(x) − (x2 + x + 1)Hn−1(x), with H0 = 1,H1(x) = x + 1.

From the previous corollary, we deduce

AIMS Mathematics Volume 10, Issue 4, 10187–10203.
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Corollary 3.6. The sequence Noc(n, k) satisfies the recursion

Noc(n, k) = 2Noc(n − 1, k) + 2Noc(n − 1, k − 1) − Noc(n − 2, k) − Noc(n − 2, k − 1) − Noc(n − 2, k − 2).

With Noc(2, 1) = Noc(2, 2) = 1, and Noc(n, k) = 0, if n ≤ 0 or k > n.

Proof. Use the recursion in the previous corollary. □

Another immediate result, by setting x = 1 in Hn(x) is

Corollary 3.7. The total number of ordered consecutive partitions is given by

Noc(n + 1) =
3n + 1

2
.

As a consequence of Theorem 3.1, the sequence T (n, k) is log-concave and thus unimodal, with a
peak or a plateau with at most 2 elements. These modes are determined up to unity in

Theorem 3.8. Every mode k0 of the sequence T (n, k) satisfies1 +
√

2
4

 n +
1
2

 ≤ k0 ≤


1 +

√
2

4

 n +
1
2

 .
Proof. Let us evaluate

Q
′

n(1)
Qn(1)

.

For this, we have:

Qn(x) =
(x + 1)

n
2−1

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2
,

and

Q
′

n(x) =

(
n
2 − 1

)
(x + 1)

n
2−2

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2

+
n(x + 1)

n
2−1

4
√

x(x + 1)

(
(
√

x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)
.

So,

Qn(1) =
2

n−2
2

(
(
√

2 + 1)n + (
√

2 − 1)n
)

2
,

and

Q
′

n(1) =

(
n−2

2

)
2

n−2
2 −1

(
(
√

2 + 1)n + (
√

2 − 1)n
)

2
+

n2
n−2

2

4
√

2

(
(
√

2 + 1)n − (
√

2 − 1)n
)
.

This yields
Q
′

n(1)
Qn(1)

=
n − 2

4
+

n
(
(
√

2 + 1)n − (
√

2 − 1)n
)

2
√

2
(
(
√

2 + 1)n + (
√

2 − 1)n
) .
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Let a = .414213..., then

√
2n
4
≥

n
(
(
√

2 + 1)n − (
√

2 − 1)n
)

2
√

2
(
(
√

2 + 1)n + (
√

2 − 1)n
) = √2n

4
(1 − an)
(1 + an)

≥

√
2n
4
− 1.

Finally we get ∣∣∣∣∣∣Q
′

n(1)
Qn(1)

−

n − 2
4
+

√
2n
4

∣∣∣∣∣∣ ≤ 1.

This means that every mode k0 of the sequence T (n, k) satisfiesn − 2
4
+

√
2n
4

 ≤ k0 ≤

n − 2
4
+

√
2n
4

 .
This completes the proof. □

Remark 3.9. The mode must be shifted by 1 if we follow [3] and make the convention T (0, 0) = 1.

4. Some identities and congruence relations

The coefficients of Qn(x) are combinatorial sums. For small values of k, computations are
straightforward, for example, T (n, 2) = n(n+1)

2 − 1. The following formulas are not easy to see without
the explicit form of Qn(x), or a bit of effort to transform these sums to special values of hypergeometric
functions.

Corollary 4.1. The following formulas hold for every n ≥ 3

1)
n−1∑
j=0

(−1)n−1− j
(

n−1
j

)(
n+2 j−1

2 j

)
= 2n−1,

2)
n−2∑
j=0

(−1)n−2− j
(

n−2
j

)(
n+2 j−1

2 j

)
= 2n−3(3n − 4),

3)
n−3∑
j=0

(−1)n−3− j
(

n−3
j

)(
n+2 j−1

2 j

)
= 2n−6(9n2 − 35n + 32).

Proof. We have

Qn(x) =
n∑

j=1

T (n, j)x j−1 =
(x + 1)

n−2
2

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2
.

Note that sums 1–3 are just T (n, k) for n − 2 ≤ k ≤ n. So, these values are just the three first values of
the coefficients of polynomial

Qr
n(x) =

n∑
j=1

T (n, n − j + 1)x j−1 = xn−1Pn

(
1
x

)

=
(x + 1)

n−2
2

(
(
√

x + 1 + 1)n + (
√

x + 1 − 1)n
)

2
.
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Now,
n−1∑
j=0

(−1)n−1− j

(
n − 1

j

)(
n + 2 j − 1

2 j

)
= Qr

n(0) = 2n−1.

The second and third summations are respectively Qr
n
′(0) and

Qr
n
′′(0)
2
. □

For the sake of completeness, we give the exponential generating functions of the sequences (Qn)n

and (Hn)n.

Theorem 4.2. The exponential generating functions of the sequences Qn and Hn are given by

∞∑
n=0

Qn(x)
n!

zn =
ez(x+1) cosh(z

√
x(x + 1))

(x + 1)
,

∞∑
n=0

Hn(x)
n!

zn = ex+1 cosh(
√

xz),

with the convention Q0(x) = 1.

Before giving another result connecting T (n, k) and the sequences of Fibonacci, Lucas Pell, and
Pell-Lucas, let us recall some definitions.

Definition 4.3. The Fibonacci and Lucas polynomials Fn(x), Ln(x) are given by

Fn(x) =
1

√
x2 + 4

 x +
√

x2 + 4
2

n

−

 x −
√

x2 + 4
2

n ,
Ln(x) =

 x +
√

x2 + 4
2

n

+

 x −
√

x2 + 4
2

n

.

The definitions of Fibonacci, Lucas, Pell and Pell-Lucas sequences, as well as their explicit formulas
are given below

Definition 4.4.

F0 = 0, F1 = 1, and for n ≥ 2, Fn = Fn−1 + Fn−2,

L0 = 2, L1 = 1, and for n ≥ 2, Ln = Ln−1 + Ln−2.

Pell and Pell-Lucas sequences are defined by

P1 =, P2 = 2, and for n ≥ 2, Pn = 2Pn−1 + Pn−2,

q1 = 1, q2 = 3, and for n ≥ 2, qn = 2qn−1 + qn−2.

The explicit formulas of these numbers are given by

Fn =
1
√

5

1 +
√

5
2

n

−

1 −
√

5
2

n , (4.1)
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Ln =

1 +
√

5
2

n

+

1 −
√

5
2

n

. (4.2)

The Pell and Pell-Lucas are given by

Pn =
1

2
√

2

((
1 +
√

2
)n
−

(
1 −
√

2
)n)
, (4.3)

qn =
1
2

((
1 +
√

2
)n
+

(
1 −
√

2
)n)
. (4.4)

Now, let us write the polynomial Qn(x) as a function of Fn(x) or Ln(x):

Qn((x/2)2) =
(x2 + 4)

n−1
2

((
x−
√

x2+4
2

)n
+ (−1)n

(
x−
√

x2+4
2

)n)
2n−1
√

x2 + 4
.

Furthermore

Qn((x/2)2) =
{

21−n(x2 + 4)
n−1

2 Fn(x) if n = 2k + 1,
21−n(x2 + 4)

n−2
2 Ln(x) if n = 2k.

Also, we can deduce

Qn((1/2)2) =
{

5
n−1

2 21−nFn if n = 2k + 1,
5

n−2
2 21−nLn if n = 2k.

The appearance of the Fibonacci sequence Fn in the context of convex topologies was already noted
in [2]; in fact, the cardinal of a basis of convex open sets is a Fibonacci number.

In the following theorem, we give many identities connecting the numbers T (n, k) and Fibonacci,
Lucas, Pell, and Pell-Lucas numbers.

Theorem 4.5. We have the following identities

1)
n∑

j=1
T (n, j) =


2l−1q2l if n = 2l,

2lP2l+1 if n = 2l + 1,

2)
n∑

j=1
T (n, j)4 j−1 =


5lF6l+3

2
if n = 2l + 1,

5l−1L6l

2
if n = 2l,

3)
n∑

j=1
T (n, j)4− j+1 =


(
5
4

)l

F2l+1 if n = 2l + 1,

1
2

(
5
4

)l−1

L2l if n = 2l,

4)
n∑

j=1
T (n, j)(−1)n− j2 j−1 = qn ,

5)
n∑

j=1
T (n, j)8 j−1 = 3n−2q2n ,

6)
n∑

j=1
T (n, j)80 j−1 =

9n−2

2
L6n ,
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7)
n∑

j=1
T (n, j)(−81) j−1 =


(−1)n−122n−55

n−2
2 L6k if n = 2k,

22n−55
n−1

2 F6n if n = 2k + 1,

8)
n∑

j=1
T (n, n − j + 1)4 j−1 =


2n5

n−2
2 Ln if n = 2k,

2n−15
n−1

2 Fn if n = 2k + 1,

9)
n∑

j=1
T (n, j)(−5) j−1 = (−1)n−12n−3L3n.

Proof. For the first relation let x = 1 in Qn(x). For the second relation, letting x = 4, and noting that

(2 ±
√

5) =
1 ±

√
5

2

3

we get

n∑
j=1

T (n, j)4 j−1 =
5

n−2
2

2

1 +
√

5
2

3n

+ (−1)n

1 −
√

5
2

3n .
The result follows by examining the two cases n = 2l and n = 2l + 1. The other results are obtained
similarly. □

Remark 4.6. The values

n∑
j=1

T (n, j)(−1) j−14− j+1 =

(
3
4

) n−2
2

cos
(nπ

6

)
,

n∑
j=1

T (n, j)(−1) j−12− j+1 =

(
1
2

) n
2

cos
(nπ

4

)
,

n∑
j=1

T (n, j)(−1) j−13 j−14− j+1 = 2−n+1 cos
(nπ

3

)
,

mean that the −1
2 , −

1
4 are respectively zeros of the polynomial Qn for n = 6k + 3, 4k + 2, meanwhile

−1
4 is never a zero for the polynomial Qn.

In [7], many identities involving Fibonacci and Lucas numbers are proved combinatorially. It would
be nice to do the same with the relations in the previous theorem .

At the end of this section, we give some congruence relations satisfied by the considered sequences.

Theorem 4.7. Let p be an odd prime number. We have the following congruences
a) Noc(p, k) ≡ 0 mod (p), for 2 ≤ k ≤ p+1

2 .

b) Noc

(
p, p+1

2

)
≡ 1 mod (p).

c) Noc(p + 1, k) ≡ 0 mod (p), for 2 ≤ k ≤ p+1
2 .

d) Noc(p) ≡ 1 mod (p).
e) Noc(p + 1) ≡ 2 mod (p).

Proof. Use the explicit formulas of Noc(p, k) and Noc(p). □
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Theorem 4.8. Let p be an odd prime. We have the following congruences
T (p, k) ≡ (−1)k−1 mod (p), for 1 ≤ k ≤ p.
T (p − 1, k) ≡ (−1)k−1 mod (p), for 1 ≤ k ≤ p+1

2 .

T
(
p − 1, p+3

2

)
≡ 0 mod (p); p ≥ 7.

T (p + 1, k) ≡ 0 mod (p), for 2 ≤ k ≤ p+1
2 .

T (p) ≡ 1 mod (p).

Proof. Use the explicit formula of T (n, k), and the fact that p |
(

p
j

)
, 1 ≤ j ≤ p − 1. □

5. Asymptotic normality of the sequence T (n, k)

A positive real sequence a(n, k)n
k=0,with An =

n∑
k=0

a(n, k) , 0, is said to satisfy a central limit theorem

(or is asymptotically normal) with mean µn and variance σ2
n if

lim
n−→+∞

sup
x∈R

∣∣∣∣∣∣∣ ∑
0≤k≤µn+xσn

a(n, k)
An

− (2π)−1/2
∫ x

−∞

e−
t2
2 dt

∣∣∣∣∣∣∣ = 0. (5.1)

The sequence satisfies a local limit theorem on B ⊆ R ; with mean µn and variance σ2
n if

lim
n−→+∞

sup
x∈B

∣∣∣∣∣σna(n, µn + xσn)
An

− (2π)−1/2e−
x2
2

∣∣∣∣∣ = 0. (5.2)

Recall the following result (see Bender [8]).

Theorem 5.1. Let (gn)n≥1 be a sequence of real polynomials; with only real negative zeros. The

sequence of the coefficients of the (gn)n≥1 satisfies a central limit theorem; with µn =
g
′

n(1)
gn(1)

and

σ2
n =

g
′′

n(1)
gn(1)

+
g
′

n(1)
gn(1)

−

(
g
′

n(1)
gn(1)

)2 provided that lim
n−→+∞

σ2
n = +∞. If, in addition, the sequence of the

coefficients of each gn is with no internal zeros; then the sequence of the coefficients satisfies a local
limit theorem on R.

Generally speaking, a central limit theorem for a sequence of random variables gives (5.1).
Relation (5.2) is then deduced under the condition that the sequence has no internal zeros (see [8]).
Relation (5.1) is nothing than simple (or pointwise) convergence. We have the following result

Theorem 5.2. The sequence T (n, k) satisfies a central limit and a local limit theorem on R, with mean

µn =
Q
′

n(1)
Qn(1)

≈
(1 +

√
2)

4
n

and variance

σ2
n =

Q
′′

n(1)
Qn(1)

+
Q
′

n(1)
Qn(1)

−

(
Q
′

n(1)
Qn(1)

)2 ≈ (2 +
√

2)
16

n.
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Proof. In order to prove that the sequence T (n, k) is asymptotically normal, let us evaluateQ
′′

n(1)
Qn(1)

+
Q
′

n(1)
Qn(1)

−

(
Q
′

n(1)
Qn(1)

)2 .
Since

Q
′

n(x) =

(
n
2 − 1

)
(x + 1)

n
2−2

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2

+
n(x + 1)

n
2−1

4
√

x(x + 1)

(
(
√

x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)
,

then Q
′′

n , is given by

Q
′′

n(x) =

(
n
2 − 1

) (
n
2 − 2

)
(x + 1)

n
2−3

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2

+
n
(

n
2 − 1

)
(x + 1)

n
2−2

(
(
√

x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)

4
√

x(x + 1)

+

n
(

n
2 − 1

)
(x + 1)

n
2 −2

4
√

x(x + 1)
−

n(2x + 1)(x + 1)
n
2−1

8(x(x + 1))
3
2

 ((√x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)

+
n2(x + 1)

n
2−1

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

8x(x + 1)
.

After simplification, we get

Q
′′

n(x) =

(
n
2 − 1

) (
n
2 − 2

)
(x + 1)

n
2−3

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

2

+
n
(

n
2 − 1

)
(x + 1)

n
2−2

(
(
√

x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)

2
√

x(x + 1)

−
n(2x + 1)(x + 1)

n
2−1

8(x(x + 1))
3
2

(
(
√

x + 1 +
√

x)n − (
√

x + 1 −
√

x)n
)

+
n2(x + 1)

n
2−1

(
(
√

x + 1 +
√

x)n + (
√

x + 1 −
√

x)n
)

8x(x + 1)
.

Now set
An = (

√
2 + 1)n + (

√
2 − 1)n, Bn = (

√
2 + 1)n − (

√
2 − 1)n.

This yields
Q
′

n(1)
Qn(1)

=
n − 2

4
+

nBn

2
√

2An

=
n − 2

4
+

√
2nBn

4An
=

n − 2
4
+

√
2nBn

4An
.

For the remaining, we have

Q′′n (1) =
(n
2
− 1

) (n
2
− 2

)
2

n
2−4An +

n
(

n
2 − 1

)
2

n
2−2Bn

2
√

2
−

3n2
n
2−1

16
√

2
Bn +

n22
n
2−1An

16
.
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Furthermore

Q′′n (1)
Qn(1)

=

(
n
2 − 1

) (
n
2 − 2

)
2

n
2−4An +

n( n
2−1)2

n
2 −2Bn

2
√

2
− 3n2

n
2 −1

16
√

2
Bn +

n22
n
2 −1An
16

2
n
2−2An

=

(
n
2 − 1

) (
n
2 − 2

)
4

+
n
(

n
2 − 1

)
Bn

2
√

2An

−
6nBn

16
√

2An

+
n2

8
.

Now, let us evaluate σ2
n:

σ2
n =

(
n
2 − 1

) (
n
2 − 2

)
4

+
n
(

n
2 − 1

)
Bn

2
√

2An

−
3nBn

8
√

2An

+
n2

8
+

n − 2
4
+

√
2nBn

4An

−

n − 2
4
+

√
2nBn

4An

2

=
(n − 2) (n − 4)

16
+

n (n − 2) Bn

4
√

2An

−
3nBn

8
√

2An

+
n2

8
+

n − 2
4
+

√
2nBn

4An
−

(
n − 2

4

)2

−

 √2nBn

4An

2

−

(
n − 2

2

)  √2nBn

4An


=

(n − 2) (n − 4)
16

+
2n2

16
+

4n − 8
16

−
(n − 2)2

16
+

n (n − 2) Bn

4
√

2An

−
3nBn

8
√

2An

+

√
2nBn

4An

−

(
n − 2

2

)  √2nBn

4An

 −  √2nBn

4An

2

=
n2 + n − 2

8
+

n (n − 2)

4
√

2
−

3n

8
√

2
−

n − 2
2

√
2n
4
+

√
2n
4

 Bn

An
−

 √2nBn

4An

2

=
n2 + n − 2

8
+

2n (n − 2)

8
√

2
−

3n

8
√

2
−

2n(n − 2)

8
√

2
+

√
2n
4

 Bn

An
−

 √2nBn

4An

2

=
n2 + n − 2

8
+

(
−

3n

8
√

2
+

4n

8
√

2

)
Bn

An
−

 √2nBn

4An

2

=
n2 + n − 2

8
+

n

8
√

2

Bn

An
−

n2B2
n

8A2
n

=
n2

8

(
1 −

B2
n

A2
n

)
+

n
8

(
1 +

1
√

2

)
Bn

An
−

1
4

≃
n
8

(
1 +

1
√

2

)
=

(2 +
√

2)
16

n.

For n large enough, we see that σ2
n −→ +∞, and this proves the theorem. □

By Theorem 5.1, and because all the T (n, k) are non-zero, we have a local limit theorem, from
which we deduce the
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Corollary 5.3. Let Tk0 = max
1≤k≤n
{T (n, k)}. Then we have the approximation of the maximum element of

T (n, k)

Tk0 ≃
(2 +

√
2)n− 1

2

√
2nπ

.

Remark 5.4. The same remarks apply for the sequence Noc(n, k), by the same approach, we can obtain
a limit and a local theorem for Noc(n, k).

6. Conclusions

In this paper, we proved that the generating polynomials associated with two sequences of restricted
partitions have only real zeros. Our focus was essentially on the number of order consecutive partition
sequences. The explicit form of the polynomials and the real- rooted property allow us to prove a
probabilistic limit theorem, as well as some identities relating the elements of these sequences with
some famous combinatorial sequences, such as Fibonacci and Lucas numbers.
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