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Abstract: Let X, be a finite set. We consider two types of sequences of restricted partitions of
X,, namely, the number of order consecutive partitions of X,, into k parts, denoted N,.(n, k) and the
sequence T'(n, k) of the number of order-consecutive partition sequences of X, with k parts. This last
sequence is also the number of locally convex topologies consisting of k£ nested open sets defined on
a totally ordered set of cardinality n. Although all the main results apply to both sequences, we will
focus on T'(n, k). We prove that the generating polynomials of these sequences have real negative roots.
A central limit theorem and a local limit theorem are also proved for 7'(n, k). Many other relations with
Fibonacci and Lucas numbers are also given.
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1. Introduction

Let X,, be an n—element set. A partition 7 = (A, A,, ...,A;) of the set X,, is a collection of non-

I

empty subsets (A,-)f=1 of X, such that A; ﬂA j=¢fori+# jand X = UA,-. The A; are called blocks
i=1

or parts of the partition. From now on, X,, = {1, 2, ..., n}. A partition is called consecutive if each part

consists of consecutive numbers in X,,. A partition is an order-consecutive sequence if the parts (A;)'_,
can be labelled B;, B>, ..., B; such that Ule B; is a set of consecutive integers for each i = 1,2, ..., 1.
Partitions are ubiquitous in the field of operations research; due to their effectiveness in solving many
problems linked to scheduling, factoring, and other practical questions. The total set of partitions has
an exponential cardinality (Bell numbers, denoted B,). For this and due to the cost, it is imperative to
select just a subset of partitions and focus on its study to find optimal ones. Many types of partitions
are considered in the literature, among them, the consecutive, the ordered consecutive, and the nested
partitions, and the ordered consecutive sequences. The number of such partitions were studied by
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Hwang and Mallows in [1]. The following formulas for these sequences are as follows (see [1] for
details):

Nq(n, k) = (’;:}), the number of consecutive partitions of X, in k parts.

Nn(n, k) = %(kfl)(’;), the number of nested partitions of X,, into k parts.

k-1

N,.(n, k) = EO (Zk”__jl_z)(Zk_Jf_z), the number of order consecutive partitions of X, into k parts.

T(n, k) = kz;(—l)k‘l‘j (k;l)(’”ij_l), the number of order consecutive partition sequences of X,, into k
parts; this i]s also the number of convex topologies defined on the chain X = {1, 2, ..., n} having k non
empty nested opensets ¢ # U; S U, & ... & Uy = X, see [2].

The sequence T'(n, k) appeared recently in [3], as coefficients of some homogeneous polynomials.
Many combinatorial significations are supplied in Strehl’s paper.

The sequences N.(n, k), Ny(n,k) and N,.(n,k) were extended to graphs see [4]. The numbers

Ny(n, k) are well known and named after Narayana. Also, they are extensively studied and linked

n

to the famous Catalan numbers C,, since C,, = >, Ny(n, k). Curiously, and despite their importance in
k=1

operation research and combinatorics, the other remaining sequences are not well investigated. The

sequences T(n,k) and Tc(n) = ), T(n,k) have a certain analogy with the Stirling numbers of the
k=1
second kind and the Bell numbers, yet they are not as well studied (algebraically) as the Stirling’s and

the Bell’s. In this paper, we show that all these sequences are log-concave, in fact, we will show that
the generating polynomials associated with the sequences 7' (n, k) and N,.(n, k) have only real zeros.
Unlike the results in [5], the zeros of the considered polynomials in this paper are given explicitly.
Although all the results apply for the sequence N,.(n, k) too, we will focus on the sequence T (n, k).
Using a version of a Lindeberg’s Theorem, we prove that 7'(n, k) (as well as N,.(n, k))) is asymptotically
normal.

2. Preliminaries

In this section, we recall some definitions and facts about polynomials and unimodal sequences.
From now on, unless the mention of the contrary, all sequences considered in this paper are real and
positive. A sequence (a j)?:o is said to be unimodal , if there exist integers ko, ki, (ko < k;) such that

g < ay < .. < Apy = Apgr1 = oo = Afy > Qg1 = ... 2 Ay,

The integers ko < j < k; where the maximum is reached are the modes of the sequence (a;)’._,.
The sequence (a,)’_ is log-concave if

a? >ajja,, forl <j<n-1.
A real sequence (a j)’}:o is said to be with no internal zeros (NIZ for short), if i < j,a; # 0, a; #
0 then a; # O for every /,i < [ < j. A NIZ log-concave sequence is obviously unimodal, but the

converse is not true. The sequence 1, 1, 4, 5, 4, 2,1 is unimodal but not log-concave. Note the
importance of the NIZ property: the sequence 0O, 1, 0, 0, 2, 1 is log-concave but not unimodal. A
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real polynomial is unimodal (log-concave, symmetric, respectively) provided that the sequence of its
coeflicients is unimodal (log-concave, symmetric, respectively).

If inequalities in the log-concavity definition are strict, then the sequence is called strictly log-
concave (SLC for short), and in this case, it has at most two consecutive modes. The following result
may be helpful in proving unimodality:

n
Theorem 2.1. (Newton) If the polynomial Za jxj associated with the real sequence (a j)?:o (not
Jj=0
necessarily positive) has only real zeros, then
+1n—-j+1
2>I T DI g for1<j<n—1. @.1)
J n-—j
If the sequence (a;)’_, in the previous theorem is positive, then it is SLC, and then it has at most
two consecutive modes. Also, in this case a theorem of Darroch [6] determines the modes up to unity:

Theorem 2.2. If the polynomial Z a jxj associated with the positive sequence (a j)?:o has only real
Jj=0
zeros then every mode kyof the sequence (a j)?:o satisfies

{Z?:l jaj| <k < {Z?:] ja!}-

Z?:o aj Z'}:o ai

For a proof of this theorem, see [6].

3. The real rootedness of the polynomials

In this section, we prove that the polynomial Q,(x) = 3 a(n,k)x*! has only real zeros, where
k=1
a(n,k)is T(n, k) or N,.(n, k).

n

Theorem 3.1. The polynomial Q,(x) = Y, T(n,k)x*"! has only real zeros. Also, all the roots are
k=1
in [—1,0]. More precisely, we have

(+ DT (Vo T+ Vo + (Var 1= o)
2 .

- i fk=1\(n+2j—1
_ k=il
Twm‘zkl)J(j)( 2) }

J=0

On(x) =

Proof. Let

and consider

0,(x) = Z T(n, k).
k=1

Let us evaluate

fe =) 00"

n>1
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We have

fe) =) 007!

n>1

n=1 k=1 j=0

S kmjr (K= 1\ 4oi o) n+2j-
g S el

k=1 j=0 n=0

Using the well known formula
N o
S e
i m (1 _ t)m+1

we obtain

& k-1 2%
_ k= j-1 “1_-2j
flx2) = Z Z(_l) ! ( j )Xk 2 j(l — )2

k>1 j=0

e (Y

l)zn+2j—l'

_ 1 S k—j—1 k-1 k—1 1
‘(1—@22(_1) ] ( j )x (1 -2

1

k=1 j=0
_ 1 k-1 k-1 S _ j(k_l)
‘(1—z);( v ]Zf( D\ oo
_ Z(—l)k—lxk-l(l— ! )k_1
(1-2) 4 (1-27
~ 1 (_x+ X )k—l
(-2 k=1 (1-2)
1 1
1= (1+x-7%5)
-z

T1 -2+ D2+ (1 + 02

The roots z;, z» of the quadratic equation 1 — 2(x + 1)z + (1 + x)z* are given by

x+1xVx+ D) x+1x VA

achy x+1 x4+
So, we have the decomposition
(1-2 _ 1-z
1-2x+1Dz+ (A +x022  (x+DE-21)Z-2)

1 (1 ! )
2+ D\z-z (z-2)

AIMS Mathematics
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1 1 1 1
= + X
2(x+1—ﬂ)[l—ﬁ] 20x+ 1+ x/Z)[l——xgj)jK]
Expand the right-hand side about z = 0 to get

f =) 002"

n>1

_ 1 (x+ 1)z ) : 1 ( (x + Dz )
2(x+1—\/Z);(x+l—\/Z +2(x+1+\/Z);x+1+\/Z

_ 1 Z( (x+ 1)z ) 1+ 1 Z( (x+ 1)z )’”.
2+ 1= VA S \x+1- VA 2+ 1+ VA S \x+ 1+ VA

The coeflicients of z*~!, 0,(x) is given by

0.03) = 1 ( (x+ 1) )”‘1+ 1 ( (x+1) )”‘1
Y x4+ 1 - VA) \x+1- VA 2x+1+ VA) \x+1+ VA
n—1 n—1
_ 1 ((x+ Dx+1+ \/Z)) s 1 ((x+ Dx+1- \/Z))
2x+1 - VA) (x+1)2-A 2x+ 1+ VA) (x+1)2-A

1 n—-1 1 n—1
TR SA AR SRS T A

1 n 1 n
B 2((x+1)2—A)(x+1+ va) +2((x+1)2—A)(x+1_ va)

Al VA + e+ 1= VA (4 1+ V@ D+ (o 1= Vo DY

2x+ 1) 2(x+ 1)
e+ 1+ VA + (x+ 1 - VA
2x+ 1)
(Vx+ D' (Vx+ T+ Vo' + (Vx+ 1= o))
B 2(x+ 1)
(Va+ D)'F (W T+ V0" + (Va+ 1= V)
> .

This is the wanted expression of Q,. This means that 0, has —1 as a zero of multiplicity L*2*]. For the
remaining zeros of Q,, we solve the equation Q,(x) = 0, with x # —1:

(Va+ 1T+ VO + (Va+ 1= VD"
- -

(VEF T+ V& = ~(VE T - Vo,

0,

this is equivalent to

or

(\/x+1+\/)_c)"__1 — [1+ e

= =

( VX + 1 — \/)_C)n x+1

n
] =—1= e(2k+l)m’
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Now, the previous relation may be written

1+ £ +1)mi
(T__l?):a%”,OSkSn—L

x+1

Solving this last equation, we obtain

exp((2k+l)m) tan2 ((2k2-+;ll)7r) 0 pe \‘n B 1|
-xk = - = — B < <|——].
1 +exp (—(2]‘;1)’”) 1 + tan? (—(Zk;n 1)") 2
This proves that Q,, has (n — 1) real zeros and are inside [—1, 0]. O

Here are some corollaries from the previous theorem:

Corollary 3.2. Forn > 2, we have
Qni1(0) = 2(x + DQn(x) — (x + D Q-1 (),
with Q1(x) =1, Or(x) =2x+ 1.
The following result may be deduced from the previous one.

Lemma 3.3. The sequence T (n, k) satisfies T(n, k) = 2T(n — 1,k) + 2T(n — 1,k — 1) —=T(n - 2,k) —
Tn—2,k—1),withT2,1)=1, T12,2) =2and T(n,k) =0, ifn <0ork > n.

In the following result, we give the explicit value of the polynomial H,(x).

Theorem 3.4. The polynomial H,(x) = ¥, N,.(n + 1,k + 1)x* has only real zeros, namely, we have

(x+1+ V0)"+(x+1-x)"

H,(x) = >
Proof. Let
=317
J=0 J
then
Nyc(n, 1) = b(n, 2l - 2).
Put

&M:ZMMW.

120
To find the explicit form of the polynomial H,(x), we compute the generating function

g(r,2) = > By(x)2.

n>0

Substitute b(n, ) by its values, we get

o SETN b

n>1 >0 j>0
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So,

and

Now

So,

So,

Dy (N

20 >0 n>1

oz - -\ .. 27
‘(1—@2"]2( j )x NEEE

>0 120

4 ; I—Jj\( xz \/
:(I_Z)]Zz;‘x}z( J )(l—z)

>0

(2
Z ; 1-z
x/ <

(1—2) ‘=0 (l—ﬂ)ﬁ—l

1-z

B 4 ( X’z )j
_(l—z—xz)j_ l1-z-xz

Z 1

(1-z-xz7) 1 - 2=
1-z—xz
1

B 1—z(1+x+x%)

1

,2) = = E 1+ x+x%)"7",
88 = T ey - 2 P
g(-x,2) = 1 = S —x Py

’ 1 -z(1-x+x?) ’

n=0

g(=x,2) + g(x, z).

f2) = ) Hy(02" = 5

n>0

H,(x%) =

B,(x) + B,(—x) (1 +x+ )+ (1 -x+x)"

2 2

(I+x+ vVo)"+0+x— Vx)»

H,(x) = >

Obviously H, has only real zeros, and the theorem is proved.

The following result follows directly from the previous theorem.

Corollary 3.5. For everyn > 1, we have

H,(x) = 2(x + DH(x) — (2 + x + DH,_(x), with Hy = 1,H;(x) = x + 1.

From the previous corollary, we deduce

AIMS Mathematics
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Corollary 3.6. The sequence N,.(n, k) satisfies the recursion
Noc(na k) = 2N()c(n - l,k) + 2Noc(n - Lk - 1) - Noc(n - 2,k) - Noc(n - 2,k - 1) - Noc(” - 2,k - 2)

With N,.(2,1) = N,.(2,2) = 1, and N,.(n,k) =0, ifn <0 or k > n.
Proof. Use the recursion in the previous corollary. m|
Another immediate result, by setting x = 1 in H,(x) is

Corollary 3.7. The total number of ordered consecutive partitions is given by

341
N,o(n+1) = ; .

As a consequence of Theorem 3.1, the sequence T'(n, k) is log-concave and thus unimodal, with a
peak or a plateau with at most 2 elements. These modes are determined up to unity in

Theorem 3.8. Every mode ky of the sequence T (n, k) satisfies
1+ V2 o V2 Ll
IS Y el | RR e

0,(1)
0,(1)

Proof. Let us evaluate

For this, we have:

(e DI (Ve T+ o+ (Ve T = Vi)

Qn(x): 2 s
and
. (3-1) @+ DI ((Va+ T+ Vo' + (Va1 - V)
X) =
" 2
n(x+ 1) . e
So,
2 (V2+ 1)+ (V2= 1))
0,(1) = > ,
and ) (V3 73
1) 2" (V2 + 1Y + (V2 = 1) =
Q;(1)=(2) (P (Pm1) a2 (V241 = (V2-1y).
2 42

This yields
o) _n-2 n((VZ+ 1) = (V2 - 1y)

Qn(l)_ 4 2\/5((\/§+1)n+(\/§_1)n)

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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Leta = .414213..., then

\V2n n((\/§+1)"—(\/§_1)") B V2n (1 - a") S \/zn_

> = > 1.
4 2\/5((\/§+1)n+(\/§_1)n) 4 (1+a) 4

Finally we get

<1l

Q,(1) (n=2  2n
o.h) "4 "4

This means that every mode k of the sequence T (n, k) satisfies

n—2+\/§n < k< n—2+\/§n
4 4 | =7 4 4 |

This completes the proof. O

Remark 3.9. The mode must be shifted by 1 if we follow [3] and make the convention T(0,0) = 1.
4. Some identities and congruence relations

The coefficients of Q,(x) are combinatorial sums. For small values of k, computations are

straightforward, for example, T'(n,2) = @ — 1. The following formulas are not easy to see without

the explicit form of Q,(x), or a bit of effort to transform these sums to special values of hypergeometric
functions.

Corollary 4.1. The following formulas hold for every n > 3
n—1 1\ (42 i B
D) <2
J:
n-2 e\ (a2 i .
2) _zo(—1)"*2ff("j2)( ) =230 - 4),
i

3 BTN = 200w = 350+ 32,

2j
Proof. We have

n DT (Va T+ VO (Va1 = V)
Qu(0) = ) T(n, hx'™" = .
j=1

2

Note that sums 1-3 are just 7'(n, k) for n — 2 < k < n. So, these values are just the three first values of
the coeflicients of polynomial

n ) 1
Q0 = ) Tnn—j+x " =x"'P, (})
=1

x+ DT (Vr+ T+ 1)+ (Vx+1-1y)
2

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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Now,
n—1 .
Z(_l)n—l_]’(l’l—' 1)(1’1 + 2] - 1) _ Q;(O) — 2n—1.
= J 2j

rr’ ()
The second and third summations are respectively Q’’(0) and % m|

For the sake of completeness, we give the exponential generating functions of the sequences (Q,),
and (H,),.

Theorem 4.2. The exponential generating functions of the sequences Q, and H, are given by

- Q,,(x)zn _ e cosh(z Vx(x + 1))

o n! x+1

(o] Hn

$ B0 o
n!

n=0

with the convention Qy(x) = 1.

Before giving another result connecting 7'(n, k) and the sequences of Fibonacci, Lucas Pell, and
Pell-Lucas, let us recall some definitions.

Definition 4.3. The Fibonacci and Lucas polynomials F,(x), L,(x) are given by

Fo(x) = 1 ((x+ x2+4)n_(x— x2+4]n]
Y=o | B > )
L,,(x):(x+ x2+4] +[x— x2+4)'

2 2

The definitions of Fibonacci, Lucas, Pell and Pell-Lucas sequences, as well as their explicit formulas
are given below

Definition 4.4.

Fo=0, Fi=1,andforn>2, F,=F,. + F,_,,
Ly=2,L =1, andforn>2, L,=L, + L,,.

Pell and Pell-Lucas sequences are defined by

P, =, P,=2,andforn>2, P, =2P, |+ P,_»,
q1 =1, go=3, and forn > 2, q, = 2q,—1 + qu->.

The explicit formulas of these numbers are given by

el -9)

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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L, :(1 +2\/§) +(1_2\/§) . 4.2)
The Pell and Pell-Lucas are given by
1 n n
Pn=533«1+v§)—(1—v§)y (4.3)
g =5 ((1+ V) + (1= V2)). (44

Now, let us write the polynomial Q,(x) as a function of F,(x) or L,(x):

ey () o

0.((x/2)%) =

2n=lA/x2 4 4
Furthermore y
212 + 4T Fu(x)if n =2k + 1,

2y _
On((x/2)7) = { 21732 + 4)'7 Ly(x) if n = 2k.

Also, we can deduce
5'721F, ifn =2k + 1,

2y _
0.((1/2)7) = { 5'721nL, if n = 2k.

The appearance of the Fibonacci sequence F, in the context of convex topologies was already noted
in [2]; in fact, the cardinal of a basis of convex open sets is a Fibonacci number.

In the following theorem, we give many identities connecting the numbers 7'(n, k) and Fibonacci,
Lucas, Pell, and Pell-Lucas numbers.

Theorem 4.5. We have the following identities
) 27 gy if n =21,
DX T, )=
=l 2Py ifn=20+1,
5'Fei3

ifn=21+1,

2) X T(n, =" =
j=1 51 L,

if n =21,
5\ .
n Z Foiq ifn=2/+1,
3) X T(n, a7+ = 1(5\""!
= 5 (Z) LZI ifn= 21,

4) 3 T(n, (=127 = g,
=1

J=

5) S T(n, )8! = 32,

J=1

6) 3, T(n, )80/ =

J=1

9n—2
L n s
) 6

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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(=1)"™122755" [ if n = 2k,
7) 3 T(n, j)(~81y" =

j=1
255"y if no= 2k + 1,
) 2"§'T L if n = 2k,
8) Y T(n,n—j+ 4! =

j=1

ISTF, if n= 2k + 1,
9 Y T(n, H(=5)"" = (=1)""'2" 7Ly,

J=1

Proof. For the first relation let x = 1 in Q,(x). For the second relation, letting x = 4, and noting that

3

2+ \/5):(1 12\/5] we get
L L 57 1+ v5)" nl—\/§3"
;T(n,])4f _T[( 5 )+(—1)[ 5 .

The result follows by examining the two cases n = 2/ and n = 2/ + 1. The other results are obtained
similarly. O

Remark 4.6. The values

3 T, -1y = (5) cos ().
Z 4 6

JZ:: T(n, H(=1)/7127*" = (%)2 cos (%)

Z T(n, j)(=1)/71377 1477+ = 27+ ¢og ("3—")

=

mean that the —%, —% are respectively zeros of the polynomial Q, for n = 6k + 3, 4k + 2, meanwhile
—}L is never a zero for the polynomial Q,,.
In [7], many identities involving Fibonacci and Lucas numbers are proved combinatorially. It would

be nice to do the same with the relations in the previous theorem .
At the end of this section, we give some congruence relations satisfied by the considered sequences.

Theorem 4.7. Let p be an odd prime number. We have the following congruences
Cl) N()c(p, k) =0 mod (p), for 2 < k < pTH
b) Noe (P, p7+1) =1 mod (p)
= 1
C) Noc(p + 1’ k) =0 mod (p), for 2 < k < %
d) Noe(p) =1 mod (p).
€) Noc(p + 1) =2 mod (p)

Proof. Use the explicit formulas of N,.(p, k) and N,.(p). O

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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Theorem 4.8. Let p be an odd prime. We have the following congruences
T(p,k) = (-1 mod (p), for 1 <k < p.
T(p-1,k) = (-1)*" mod (p), for 1 <k < 2.
T(p— 1,%) =0 mod (p); p=>T7.
T(p+1,k)=0 mod (p), for 2 <k <2
T(p)=1 mod (p).

Proof. Use the explicit formula of T'(n, k), and the fact that p | (’J’.), 1<j<p-1 m|

5. Asymptotic normality of the sequence 7' (n, k)

n
A positive real sequence a(n, k);_,, with A, = 3 a(n, k) # 0, is said to satisfy a central limit theorem
k=0

(or is asymptotically normal) with mean y, and variance o2 if

“(Z’ B nyr f e di

lim sup =0. (5.1

n—-+oo xeR

0<k<pt,+xoy
The sequence satisfies a local limit theorem on B C R ; with mean y, and variance o’ﬁ if

onan, u, + x0,)
A,

X2
lim sup - Qr) e T = 0. (5.2)

n—-+oo XGB

Recall the following result (see Bender [8]).

Theorem 5.1. Let (g,).>1 be a sequence of real polynomials; with only real negative zeros. The

1
sequence of the coefficients of the (g,).>1 satisfies a central limit theorem; with u, = g”ﬁl; nd
8n
” ’ ’ 2
1 | 1
2 = 8 (D) + &) (gn( )) provided that lim o2 = +oo. If, in addition, the sequence of the

coefficients of each g, is with no internal zeros; then the sequence of the coefficients satisfies a local
limit theorem on R.

Generally speaking, a central limit theorem for a sequence of random variables gives (5.1).
Relation (5.2) is then deduced under the condition that the sequence has no internal zeros (see [8]).
Relation (5.1) is nothing than simple (or pointwise) convergence. We have the following result

Theorem 5.2. The sequence T (n, k) satisfies a central limit and a local limit theorem on R, with mean

ORI
"Tom 4

and variance

> _ [Q;’(n L2 (Q;<1>)2) _e+Vy
"Tlem T e\ 6 "

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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Proof. In order to prove that the sequence T'(n, k) is asymptotically normal, let us evaluate

0, QD) (Q;<1>)2
0.0 " 0. \a.()) )

Since

(4-1) G+ DE2((Va+ T+ Vay + (Va+ 1 - Vi)'

Q0,(x) = 5
n(x+ 1)1 n _ .
* v (e T Vo = (Ve 1= ),

then Q, is given by

(2-1)(2-2)x+ DI (Va+ T+ Vo' + (Vx+ 1= V")

0,0 = 5
. n(4- 1)+ DI ((Va+ T+ Vo' = (Va+ 1 - Vo))
4x(x+ 1)
n(t-1) G+ 1
Pl e et U e T )
n(x+ DE (Ve + T+ Vo' + (Vx+ 1 - Vo)
" 8x(x+1) )

After simplification, we get

(2-1)(2-2)x+ DFP(Va+ T+ Vo' + (Vo + 1= V")

Q,(x) = 5
n(4- 1)+ DI ((Va+ T+ Vo' = (Va+ 1 - VX))
' SNreEay
@ DO DT Ry - (VIR T - VR
8(x(x + 1))2
. n(x+ DI (Ve + T+ Vo' + (Vx+ 1 - Vo)
8x(x+1) '
Now set
A= (V2+ 1) +(V2-1), B,=(V2+ 1) = (V2 - 1)
This yields

Q;(l)_n—2+ nB, _n—2+\/§nB,,_n—2+\/§an
0.1) 4 2+24, 4 44, 4 44,
For the remaining, we have

. n(2-1)2272B, 3,031 29514
SRR R RO L S
2 2 242 16V2 16
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Furthermore
Q,/(1) (% - 1)(% - 2) 2074, + "(%_;)\2;723" _ 3;162'\%; B, + milm
0.(1) =YY
_G-1G6-2) nG-YB e,
4 2V2A,  16v24, 8

Now, let us evaluate o2

062 08 e am2,

o, = -+ - +—+
4 2124, 8v24, 8 4 44,
n—2+\/§an2
4 4A,

_(=D@-4 n@-2)B, 3B, n n-2 V2B, (n-2)
16 424,  8V2A, 8 4 44, 4
_(\/Ean]Q_(n—z)(\/ian]

4A, 2 4A,
(m=-2)(n—-4) N 2n*> 4n-8 (n-2)> N n(n-2)B, 3nB, N \/ian
B 16 16 16 16 4\2A, 824, 44,
n—2 \/§an \/§an ?
2 4A, 4A,
_n2+n—2+ nin-2) 3n n—2\/§n+\/§n B, \/annz
8 4V2  8v2 2 4 4 A, 4A,

_n2+n—2+ 2n(n—-2) 3n 2n(n—2)+ \/En]Bn (\/ian)z
8 8vV2  8V2  8V2 4

_n2+n—2 3n . 4n )Bn (\/Ean)z
8 8v2 842/ Ax 4A,

_n2+n—2+ n B, n’B:

-8 8§v2A, 8A2

n? B2\ =n 1\B, 1

S T PR I T

s\ " a2)7s\' T R)a,

n 1\ Q++D

1+ —|= 22V,

N 16

For n large enough, we see that 02 — +o0, and this proves the theorem. O

~

8

By Theorem 5.1, and because all the T'(n, k) are non-zero, we have a local limit theorem, from
which we deduce the

AIMS Mathematics Volume 10, Issue 4, 10187-10203.
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Corollary 5.3. Let T, = 1m;?X {T'(n,k)}. Then we have the approximation of the maximum element of
<k<n
T(n, k)

Q2+ V2

2nr

T;

0

Remark 5.4. The same remarks apply for the sequence N,.(n, k), by the same approach, we can obtain
a limit and a local theorem for N,.(n, k).

6. Conclusions

In this paper, we proved that the generating polynomials associated with two sequences of restricted
partitions have only real zeros. Our focus was essentially on the number of order consecutive partition
sequences. The explicit form of the polynomials and the real- rooted property allow us to prove a
probabilistic limit theorem, as well as some identities relating the elements of these sequences with
some famous combinatorial sequences, such as Fibonacci and Lucas numbers.
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