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Abstract: This work investigates the event-triggered control (ETC) problem for stochastic
nonlinear systems with intermittent control (IC) and state quantization. ETC, state quantization,
and aperiodically intermittent control (APIC) are incorporated into the control scheme to reduce the
computational cost and communication load. Within the APIC framework, two control strategies are
considered to examine their interactions: state quantization before event triggering (QbE) and state
quantization after event triggering (QaE). Additionally, the Zeno phenomenon is avoided in the design
of two static event-triggered mechanisms (ETMs). The known input-to-state stability (ISS) control
law is supported by the system. Finite-time stability (FTS) and finite-time contraction stability (FTCS)
are implemented. Each strategy guarantees the system’s stability, and the appropriate scheme can be
chosen by adjusting the length of the control interval. The effectiveness of the proposed ETC method
is demonstrated through two numerical simulations.
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1. Introduction

Due to human interference and environmental noise, stochastic disturbances increase the complexity
and unpredictability of system dynamics [1]. Since the stochastic effects of the system are taken into
account, the dynamics of industrial processes can be characterized more precisely. In recognition
of this, stochastic nonlinear systems have drawn more attention and been thoroughly examined by
numerous academics from a variety of disciplines, including mechanical systems, economics, and
bioengineering [2–6].

The majority of stability-related issues are managed by state feedback, which necessitates constant
decision-making and state observation on the part of the controller. This operation has limits and is
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costly for real-world applications. In order to conserve resources, time-triggered control in conjunction
with event-triggered control (ETC) is suggested as a transmission or communication technique. Time-
triggered control, as a traditional control scheme, has a preset control transmission and control time,
but it often leads to an inefficient use of communication width and computational resources, so an
effective alternative, ETC, is proposed on this basis [7–9]. Because ETC maintains the necessary
closed-loop performance while updating control only when the state of the system at a given moment
is above the threshold of the predetermined triggering mechanism, it further improves communication
efficiency. A key concern in ETC design is ensuring a positive lower bound, which is the minimum
time interval between consecutive events. Without this constraint, an infinite number of triggers
could occur in a finite time, leading to undesirable Zeno behavior. In recent years, there has been a
continuous increase in research related to ETC. For instance, [10] investigated the exponential stability
of stochastic nonlinear systems using double-event-triggering mechanisms. In [11], the design of
event-triggered control schemes for nonlinear systems subject to external disturbances and dynamic
uncertainties was investigated. Despite these advancements, the ETC still has limitations, and further
resource optimization remains an important research direction.

Intermittent control (IC) was first proposed as a discontinuous control method and has
attracted increasing attention [12–17]. For example, [14] investigated the input-to-state stability of
stochastic nonlinear systems under different event-triggering mechanisms—continuous, dynamic, and
periodic—in combination with IC, providing valuable insights for further research. Unlike continuous
control, fully controlling these systems in real-world applications is impractical, as it would impose a
heavy communication burden on the controller and waste resources; therefore, the emergence of IC is
of great significance. IC divides each control interval into ‘working time’ with operational control and
‘rest time’ without operational control. Additionally, IC limits the amount of transmitted information
and extends the lifespan of the control equipment by allowing control signals to be applied only at
predetermined time intervals. Periodically intermittent control (PIC) and aperiodically intermittent
control (APIC) are two classifications of IC that depend on whether the control interval and control
periods are fixed. However, the conditions might be conservative because PIC’s control and free
intervals must be fixed. The advantage of APIC is that it is no longer necessary to fix the length
of the working time and rest time, which increases the randomness of the control intervals and
therefore has a good application prospect. Therefore, with the advantages of APIC, many scholars
have combined ETC with APIC to achieve better research results [18–21]. Reference [20] realized
finite-time stabilization of nonlinear delayed systems under impulsive disturbance by designing time-
triggered aperiodic intermittent control with event-triggered aperiodic intermittent control.

Quantization strategies as a control scheme not only ensure sufficient accuracy but also reduce
the amount of transmitted information [22–26]. Quantizers perform a discontinuous mapping from a
continuous space to a finite set. However, due to the precision and range limitations of quantization,
numerical discrepancies arise between the behavior of the ideal system and the calculated values.

The concept of stability studies the asymptotic behavior of states that tend to infinity with time.
However, a state’s properties in the finite time domain must be considered in practical engineering,
so finite-time stability (FTS) has been widely studied as one of the concepts describing the state in
the finite time domain [27–34]. FTS due to the transient properties in the finite time sense can be
divided into two categories of concepts: one is for a given initial value of the upper bound with a
finite time interval, which is maintained within a finite time domain within another larger threshold
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value. The second concept states that the system’s state reaches equilibrium in finite time. To avoid
confusion, only the first concept is considered in this paper. However, finite-time stabilization alone is
insufficient. A more practical approach is finite-time contraction stabilization (FTCS), which not only
ensures boundedness but also requires that the system’s state at the termination time must remain within
a smaller bound compared with the initial upper limit. This makes FTCS particularly relevant for real-
world applications. In [35,36], FTS is investigated in a stochastic sense, where, unlike stochastic finite-
time stability under probability [37, 38], such stability has states under expectation. Reference [39]
investigated the FTS of linear systems combined with state quantization.

However, little research has focused on nonlinear stochastic systems that integrate these three
aspects, since stochastic state fluctuations are a primary cause of the system’s instability and poor
performance. Therefore, using ETC with APIC, and combining ETC with APIC and state quantization
enables a more effective assessment of a system’s performance through well-designed triggering
mechanisms while conserving control resources.

On the basis of the motivation and inspiration of the abovementioned research, this paper presents
the FTS and FTCS of stochastic nonlinear systems with two ETMs under APIC. The control system
follows established ISS control laws and provides two settings for QbE and QaE, where paired
quantizers are taken into consideration. By integrating ETC with quantization control, the approach
aims to minimize the communication overhead. The Zeno phenomenon, in which the control is
updated infinitely in finite time, is then avoided by designing a static ETM. In addition, aperiodically
intermittent controllers are introduced to reduce the computational burden on controllers and mitigate
reliance on continuous transmission. There are relatively few papers on stochastic nonlinear systems in
ETC with IC to achieve FTS, so the theoretical results of our study are of interest. The results show that
(1) under APIC, both ETMs significantly reduce the number of trigger events, and the control interval
length can be adjusted according to the specific objectives of the ETMs; (2) both ETMs can achieve
FTS and FTCS of stochastic nonlinear systems, and the relevant sufficient conditions are obtained.
Therefore, the main innovation of this paper lies in the combination of intermittent state quantization
and an event-triggered mechanism, which further reduces the computational costs and communication
burdens. Compared with [14, 26], this paper employs an aperiodically intermittent controller to further
alleviate the controller’s burden and achieve finite-time stability. In contrast to [20, 39], this work
extends the general nonlinear system to a stochastic nonlinear system setting and employs intermittent
quantization control to achieve finite-time stability and Lyapunov stability.

The rest of the paper is structured as follows: Section 2 describes the model and provides
background information, Section 3 presents the primary results, Section 4 provides numerical
examples, and finally, Section 5 summarizes the key conclusions and outlines directions for future
research.

Notations: In the whole paper, we have used N to represent the set of natural numbers, R+ =
[0,+∞) denotes the set of positive real numbers. V(x, t) ∈ C2,1 denotes the family of all non-negative
functions in Rd × [0,+∞) and is quadratically continuously differentiable with respect to x and once
continuously differentiable with respect to t. E(·) stands for the expectation operator. IA(x) represents
the characteristic function. When x ∈ A, IA(x) = 1, and when x < A, IA(x) = 0. DefineZ+ as the set
of positive integers and N as the set of integers.
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2. Model description and preliminaries

Let (Ω,F ,Pr{·}) be a complete probability space with a filtration {Ft}t≥0 that meets the normal
conditions. Study the following nonlinear stochastic system, which has a dynamical expression of the
form

dx(t) = ( f (x(t), t) + u(t))dt + g(x(t), t)dω(t) (2.1)

on t ≥ 0 with the initial state x(t0) = x0, where x(t) ∈ Rn, f , g ∈ Rn × R+ → R
n and satisfies

f (0, t) = g(0, t) = 0, where u(t) ∈ Rn is control input and ω(t) is defined as an n-dimensional Wiener
process on the probability space satisfying the general conditions. Next, we define the intermittent
control law as follows:

u(t) =

α(q(x(tm,i))), t ∈ [tm,i, tm,i+1) ∩ [tm, tm + sm) ,
0 , t ∈ [tm + sm, tm+1) ,

(2.2)

which is affected by state quantization and is event-triggered, where [tm, tm+1) represents the m + 1th
control period, [tm, tm + sm) represents the m + 1th working interval, and [tm + sm, tm+1) represents the
rest interval; tm,i is the time at which the ith event is activated in the m+1th work interval. This strategy
has the advantage of allowing the controller to work for a while and then take a break to lessen the
strain on communication. α : Rn → Rn stands for the controller function. Thus, with an intermittent
control law u(t), the system’s dynamic can be represented as follows:

dx(t) =

( f (x(t), t) + u(t))dt + g(x(t), t)dω(t), t ∈ [tm,i, tm,i+1) ∩ [tm, tm + sm) ,
f (x(t), t)dt + g(x(t), t)dω(t) , t ∈ [tm + sm, tm+1) ,

(2.3)

where q : Rn → Ξ, n ∈ Z+ represents the logarithmic quantization function, Ξ is a discrete set of
quantization values, and {tm,i} indicates a time series consisting of the instant of event triggering. Next,
we give a number of significant assumptions.

Assumption 2.1. [18] There are two constants θ, ω, satisfying 0 < θ < ω and for k = 1, 2, 3 . . ., such
that the following holds true: infk(sk) = θ > 0 ,

supk(tk+1 − tk) = ω < +∞ .

Remark 2.1. Here, θ is the minimum work interval and ω − θ is the maximum rest interval, where
the duration of the work interval will not be less than θ and the duration of the rest interval will not
be greater than ω − θ . This prevents the controller from exerting control for long periods of time and
ensures that the work interval alternates with the rest interval. The framework of the APIC strategy is
shown in Figure 1.

Figure 1. Framework of intermittent control.
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Assumption 2.2. [22, 39] The logarithmic quantizer q(·) is defined as follows:

q(v) =


ξi, i f 1

1+δξi < v ≤ 1
1−δξi ,

0, i f v = 0 ,
−q(−v), i f v < 0 ,

where q(v), v ∈ R, without taking the finite quantization level into account Ξ = {±ξ : ξi =
ρiξ0; i ∈ N} ∪ {0}; 0 < ρ < 1; and ξ0 > 0, where δ = 1−ρ

1+ρ ∈ (0, 1) is linked to the quantizer
density ρ and is referred to as the sector bound. If q is a logarithmic quantization function and
q(x) = Γ[q(ζx,1), q(ζx,2), · · · , q(ζx,n)]T , where ζx = Γ−1x = [ζx,1, ζx,2, · · · , ζx,n]T , x ∈ Rn. The nature
of the quantizer is as follows:

|q(x) − x| ≤ δ|x| .

Assumption 2.3. The following equation holds true for every x, x ∈ Rn, t ∈ R+, assuming there are
positive constants L1, L2, and L3 :

(i) | f (x, t)| ≤ L1|x| , |g(x, t)| ≤ L2|x| ,

(ii) |α(x) − α(x)| ≤ L3|x − x| .

Assumption 2.4. Positive definite functions V(x, t) ∈ C2,1(Rn × R+;R+) exist that are continuously
differentiable in x twice and in t once. Positive variables c1, c2 also exist, so that for every x ∈ Rn, the
equation that follows holds:

c1|x|2 ≤ V(x, t) ≤ c2|x|2. (2.4)

The operator LV(x, t) is defined by

LV(x, t) ≤ φ(t)V(x, t) , (2.5)

where φ(t) = φ1 > 0 for t ∈ [tm + sm, tm+1), φ(t) = φ2 < 0 for t ∈ [tm, tm + sm), and dV(x, t) =
LV(x, t)dt + Vx(x, t)dω(t).

Assumption 2.5. [16] A positive definite function V(x, t) ∈ C2,1(Rn × R+) and a positive constant L4

exist, such that any x ∈ Rn ∂V(x,t)
∂x ≤ L4|x| holds.

Definition 2.1. For the given constants T, ε1, and ε2 with 0 < ε1 < ε2 and any trajectory x(t), if there
is a control law such that E|x0| ≤ ε1 implies E|x(t)| ≤ ε2, t ∈ [0,T ], then the system (2.3) is called FTS
with respect to (w.r.t)(T, ε1, ε2).

Definition 2.2. For the given constants T, ε1, ε2, ϱ, and τ, where 0 < ϱ < ε1 < ε2 and τ ∈ (0,T ), the
system (2.3) is FTCS with respect to (w.r.t)(T, ε1, ε2, ϱ, τ). If there is a control law such that E|x0| ≤ ε1

implies E|x(t)| ≤ ε2 for all t ∈ [0,T ], for all t ∈ [T − τ,T ], there is E|x(t)| ≤ ϱ.

Remark 2.2. (i) In Definition 2.1, all parameters ε1, ε2, and T are predesigned, and FTS indicates
that the average value of the states from the initial data of the systems is within a predetermined initial
bound and subsequently reaches another set bound after a finite amount of time. The FTS describes a
kind of boundedness of the state of the system, whose state trajectory is depicted in Figure 2a.
(ii) According to Definition 2.2, the trajectory of the system state reaches, within a small time interval
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[T − τ,T ] of the terminal time, another threshold ϱ that is smaller than the initial threshold, as shown
in Figure 2b. Thus, we can see that the conditions for FTCS are much more restrictive than FTS .

(a) (b)

Figure 2. FTS (w.r.t)(T, ε1, ε2) and FTCS (w.r.t)(T, ε1, ε2, ϱ, τ).

Lemma 2.1. [16] Consider stochastic nonlinear systems satisfying Assumptions 2.2, 2.4, and 2.5.
When t ∈ [t1, t2), assuming the existence of some positive constants β̂1 < 0, β̌1 > 0, and −β̂1 > β̌1 > 0,
for a positive definite function V(x(t), t), the following conditions are satisfied:

ELV(x(t), t) ≤ β̂1EV(x(t), t) + β̌1 sup
t1≤η<t2

EV(x(η), η) .

Then, we can derive
sup

t1≤η<t2
EV(x(η), η) = EV(x(t1), t1).

3. Main result

To further investigate the connection between state quantization and ETMs under APIC, we
designed the following two ETMs.

(I). QbE: If the system’s state is quantized before a trigger, the following ETM is available:

tm,i+1 = inf{t ≥ tm,i + ϵ ||q(x(tm,i)) − x(t)|2 ≥ λ|x(t)|2} . (3.1)

(II). QaE: If the system’s state is quantized after a trigger, the following ETM is available:

tm,i+1 = inf{t ≥ tm,i + ϵ ||(x(tm,i)) − x(t)|2 ≥ λ|x(t)|2} , (3.2)

where t0 = 0, ϵ, and λ are all constants, and (3.1) and (3.2) mean that the ETM will be suspended for
a period of time ϵ after execution; after that, it will continue to execute the current predesigned trigger
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mechanism until the next trigger threshold condition is met . Since the stopping time ϵ is set in the
ETM, the system (2.1) naturally avoids the Zeno behavior. Compared with traditional time-triggered,
the event-triggered strategy used can further increase the time interval between events on this basis,
due to the fact that the defined time sequence of event-triggered is determined by the current state of
the system, thus reducing the network’s communication burden. The description of ETM (3.1) and
ETM (3.2) can be represented by the block diagrams in Figures 3 and 4. In addition, the utilization of
APIC (2.2) can further save communication resources on this basis. Next, we give the following two
error estimates e1(t) = q(x(tm,i)) − x(t) and e2(t) = x(tm,i) − x(t).

Figure 3. Block diagram of the flow of the QbE scheme.

Figure 4. Block diagram of the flow of the QaE scheme.
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3.1. State quantization before ETC

Lemma 3.1. Under Assumptions 2.1–2.3, ϵ ≥ 0, 0 ≤ δ ≤ 1, and ϵ <
√

1
12L2

3(2δ2+1) exist, and for the

system (2.1), the following holds:

E|e1(t)|2 ≤ κ1E
∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ2E|x(t)|2 , (3.3)

where κ1 =
4(2δ2 + 1)(2ϵL2

1 + L2
2)

1 − 12ϵ2L2
3(2δ2 + 1)

, κ2 =
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ 4δ2 + λ .

Proof. For any fixed t, define the set of time series Λi = {γt = tm,i}, Λi,ϵ = {γt = tm,i, and t ≤ tm,i + ϵ}.
We estimate the error e1(t) in two separate cases.
Case 1: If t ∈ Λi \ Λi,ϵ , at this point, by ETM (3.1), we have |q(x(tm,i)) − x(t)|2 ≤ λ|x(t)|2 a.s.(almost
sure) on Λi \ Λi,ϵ , which implies

E(IΛi\Λi,ϵ |q(x(tm,i)) − x(t)|2) ≤ E(IΛi\Λi,ϵλ|x(t)|2)
≤ E(IΛi |x(t)|2) .

(3.4)

Case 2: If t ∈ Λi,ϵ , for the error e1(t), we have

E(IΛi,ϵ |q(x(tm,i)) − x(t)|2) ≤ 2E(IΛi,ϵ |q(x(tm,i)) − x(tm,i)|2) + 2E(IΛi,ϵ |x(tm,i) − x(t)|2)
≤ 2δ2E(IΛi,ϵ |x(tm,i)|2) + 2E(IΛi,ϵ |e2(t)|2)
≤ (4δ2 + 2)E(IΛi,ϵ |e2(t)|2) + 4δ2E(IΛi,ϵ |x(t)|2) .

(3.5)

Next, we estimate e2(t) conditional on ETM (3.1). Based on the system (2.3), we have

E(IΛi,ϵ |e2(t)|2) = E(IΛi,ϵ |

∫ t

tm,i
f (x(s), s) + u(s)ds +

∫ t

tm,i
g(x(s), s)dω(s)|2)

≤ 4E(|IΛi,ϵ

∫ t

tm,i
f (x(s), s)ds|2) + 4E(|IΛi,ϵ

∫ t

tm,i
u(s)ds|2)

+ 2E(|IΛi,ϵ

∫ t

tm,i
g(x(s), s)dω(s)|2) .

(3.6)

From Hölder’s inequality and Assumption 2.3, we get

E(|IΛi,ϵ

∫ t

tm,i
f (x(s), s)ds|2) ≤ ϵL2

1E(|IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) . (3.7)

From Assumptions 2.2 and 2.3

E(|IΛi,ϵ

∫ t

tm,i
u(s)ds|2) = E(|IΛi,ϵ

∫ t

tm,i
α(q(x(tm,i)))ds|2)

≤ ϵ2L2
3(EIΛi,ϵ |q(x(tm,i)) − x(tm,i) + x(tm,i) − x(t) + x(t)|2)

≤ 3ϵ2L2
3E(IΛi,ϵ |q(x(tm,i)) − x(tm,i)|2) + 3ϵ2L2

3E(IΛi,ϵ |x(tm,i) − x(t)|2)
+ 3ϵ2L2

3E(IΛi,ϵ |x(t)|2)
≤ (6ϵ2L2

3δ
2 + 3ϵ2L2

3)E(IΛi,ϵ |x(t)|2 + IΛi,ϵ |e2(t)|2) .

(3.8)
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Furthermore, from the Itô isometry and Assumption 2.3, we obtain

E(|IΛi,ϵ

∫ t

tm,i
g(x(s), s)dω(s)|2) ≤ L2

2E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) . (3.9)

Then, substituting (3.7), (3.8), and (3.9) into (3.6) yields

E(IΛi,ϵ |e2(t)|2) ≤ (4ϵL2
1 + 2L2

2)E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) + (24ϵ2L2

3δ
2 + 12ϵ2L2

3)E(IΛi,ϵ |x(t)|2)

+ (24ϵ2L2
3δ

2 + 12ϵ2L2
3)E(IΛi,ϵ |e2(t)|2) .

Since ϵ <
√

1
12L2

3(2δ2+1) , shifting the terms gives

E(IΛi,ϵ |e2(t)|2) ≤
4ϵL2

1 + 2L2
2

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) +

24ϵ2L2
3δ

2 + 12ϵ2L2
3

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ |x(t)|2) . (3.10)

Substituting the result of (3.10) into (3.5) gives

E(IΛi,ϵ |q(x(tm,i)) − x(t)|2) ≤ (4δ2 +
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

)E(IΛi,ϵ |x(t)|2)

+
4(2ϵL2

1 + L2
2)(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) .

(3.11)

Thus, combining (3.4) and (3.11), we get

E(IΛi |q(x(tm,i)) − x(t)|2) = E(IΛi,ϵ |q(x(tm,i)) − x(t)|2) + E(IΛi\Λi,ϵ |q(x(tm,i)) − x(t)|2)

≤
4(2ϵL2

1 + L2
2)(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds)

+ (4δ2 +
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ)E(IΛi |x(t)|2)

≤
4(2ϵL2

1 + L2
2)(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi

∫ tm,i+ϵ

tm,i
|x(s)|2ds)

+ (4δ2 +
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ)E(IΛi |x(t)|2) .

Therefore, when t ∈ [tm, tm + sm), there are up to ⌈ sm
ϵ
⌉ communication times on [tm, tm + sm), m ∈ N+.

As a result, we can arrive at

E|q(x(tm,i)) − x(t)|2 =
⌈

sm
ϵ ⌉∑

i=0

E(IΛi |q(x(tm,i)) − x(t)|2)

≤
4(2ϵL2

1 + L2
2)(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

⌈
sm
ϵ ⌉∑

i=0

E(IΛi

∫ tm,i+ϵ

tm,i
|x(s)|2ds)

+ (4δ2 +
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ)
⌈

sm
ϵ ⌉∑

i=0

E(IΛi |x(t)|2)
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=
4(2ϵL2

1 + L2
2)(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

E(
∫ tm,i+ϵ

tm,i
|x(s)|2ds)

+ (4δ2 +
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ)E(|x(t)|2) ,

let κ1 =
4(2δ2 + 1)(2ϵL2

1 + L2
2)

1 − 12ϵ2L2
3(2δ2 + 1)

, κ2 =
24ϵ2L2

3(2δ2 + 1)2

1 − 12ϵ2L2
3(2δ2 + 1)

+ 4δ2 + λ, we conclude that

E|e1(t)|2 ≤ κ1E
∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ2E|x(t)|2 ,

and the proof is completed. Next, we analyze the FTS and FTCS of the system (2.3) under APIC in
terms of ETM (3.1) with state quantization.

Theorem 3.1. Under Assumptions 2.1–2.5 and Lemmas 2.1 and 3.1, there are ϵ <
√

1
12L2

3(2δ2+1) and

some positive constants λ, ϵ, δ, ω, θ, µ̃1 that satisfy

−β̂1 > β̌1 > 0 , (3.12)

and
N(0, t)[φ1(ω − θ) − µ̃1θ] − ln c1ε

2
2 + ln c2ε

2
1 ≤ 0 , (3.13)

where N(0, t) delegates the number of the control period on (0,T ] and T , tn, β̌1 =
L3L4ϵ

2c1
κ1, and

β̂1 =
L3L4

2c1
κ2 +

L3L4

2c1
+ φ2, where κ1 and κ2 are the same as in Lemma 3.1. 0 < µ̃1 < µ1 and µ1 is the

sole positive real root of equation µ1 + β̌1eµ1∆1 + β̂1 = 0. The upper bound on the inter-event interval
can be expressed as sup

m,i∈N
{tm,i+1 − tm,i} ≤ ∆1. We can then claim that the system (2.1) is capable of FTS

(w.r.t)(T, ε1, ε2) under APIC with ETM (3.1).
Moreover, if for all t ∈ [T − τ,T ], there are

N(0, t)[φ1(ω − θ) − µ̃1θ] − ln c1ϱ
2 + ln c2ε

2
1 ≤ 0 . (3.14)

Then, we claim that system (2.1) is capable of FTCS (w.r.t)(T, ε1, ε2, ϱ, τ) under APIC with ETM (3.1).

Proof. For 0 < |x0| ≤ ε1, assume x(t) = x(t, 0, x0) is a solution of the system (2.2) at (0, x0), when
t ∈ [tm + sm, tm+1), from Assumption 2.4, we have

ELV(x(t), t) ≤ Eφ1V(x(t), t) . (3.15)

Integrating (3.15) over the interval [tm + sm, t) gives

EV(x(t), t) ≤ Eeφ1(t−tm−sm)V(x(tm + sm), tm + sm) . (3.16)

When t ∈ [tm, tm + sm), from Assumptions 2.4 and 2.5 and Condition (ii) in Assumption 2.2, we obtain

ELV(x(t), t) ≤ Eφ2V(x(t), t) + E
∂V(x, t)
∂x

|α(q(x(tm,i))) − αx(t)|

≤ φ2EV(x(t), t) +
L3L4

2
E(|x(t)|2 + |q(x(tm,i)) − x(t)|2) .

(3.17)
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Substituting the result of Lemma 3.1 into (3.17) yields

ELV(x(t), t) ≤ φ2EV(x(t), t) +
L3L4

2
E(|x(t)|2) +

L3L4

2
E(|q(x(tm,i)) − x(t)|2)

≤ φ2EV(x(t), t) +
L3L4

2
E(|x(t)|2) +

L3L4

2
E(κ1

∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ2|x(t)|2)

≤
L3L4

2c1
κ1E

∫ tm,i+ϵ

tm,i
V(x(s), s)ds + (

L3L4

2c1
κ2 +

L3L4

2c1
+ φ2)EV(x(t), t)

≤
L3L4ϵ

2c1
κ1 sup

tm,i≤η<tm,i+ϵ
EV(x(η), η) + (

L3L4

2c1
κ2 +

L3L4

2c1
+ φ2)EV(x(t), t) .

(3.18)

Substituting the result of Lemma 2.1, β̌1 =
L3L4ϵ

2c1
κ1, and β̂1 =

L3L4

2c1
κ2+

L3L4

2c1
+φ2 into Eq (3.18) yields

ELV(x(t), t) ≤ β̌1EV(x(tm,i), tm,i) + β̂1EV(x(t), t) . (3.19)

Further, let ż(t) = β̌1z(tm,i) + β̂1z(t) and y(t) = z(t)eµ̃1(t−tm,i) and assume that z(t) = EV(x(t), t). Since
z(tm,i) > 0, we assert that ϕ > 1 exists such that y(t) < ϕz(tm,i) . Otherwise, t > tm,i exists such that
y(t) > ϕz(tm,i), and we define t̂ = inf{t > tm,i|y(t) = ϕz(tm,i)}. Thus, we can derive y(t̂) = ϕz(tm,i), which
means that ẏ(t̂) ≥ 0. In this cases,

ẏ(t) = eµ̃1(t−tm,i)(µ̃1z(t) + ż(t))
= eµ̃1(t−tm,i)(µ̃1z(t) + β̌1z(tm,i) + β̂1z(t))
≤ µ̃1y(t) + β̂1y(t) + β̌1eµ̃1(t−tm,i)y(tm,i)
= (µ̃1 + β̂1)y(t) + β̌1eµ̃1(t−tm,i)y(tm,i) .

When t = t̂, the following equation holds:

ẏ(t̂) ≤ (µ̃1 + β̂1)y(t̂) + β̌1eµ̃1(t̂−tm,i)y(tm,i)

≤ (µ̃1 + β̂1 + β̌1eµ̃1(t̂−tm,i))y(t̂)
≤ (µ̃1 + β̂1 + β̌1eµ̃1(tm,i+1−tm,i))y(t̂)
≤ (µ̃1 + β̂1 + β̌1eµ̃1∆1)y(t̂) .

Next, we define ϑ(µ1) = µ1 + β̂1 + β̌1eµ1∆1 . We then have ϑ(µ1)′ and, by ϑ(0) < 0 and ϑ(−β̂1) > 0,
a unique positive root µ1 exists such that µ1 + β̂1 + β̌1eµ1∆1 = 0. Further, for 0 < µ̃1 < µ1, we have
µ̃1 + β̂1 + β̌1eµ̃1∆1 < 0. In summary, we conclude that ẏ(t̂) ≤ 0. This is contradictory to the above. Thus,
y(t) < ϕz(tm,i) holds. Therefore, when t ∈ [tm,i, tm,i+1) and when ϕ → 1 , by the comparison principle,
we have

EV(x(t), t) ≤ Ee−µ̃1(t−tm,i)V(x(tm,i), tm,i) . (3.20)

When t ∈ [tm, tm,1), Eq (3.20) becomes

EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm) .

If we let t = tm,1, then we have

EV(x(tm,1), tm,1) ≤ Ee−µ̃1(tm,1−tm)V(x(tm), tm) . (3.21)
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When t ∈ [tm,1, tm,2), we have

EV(x(t), t) ≤ Ee−µ̃1(t−tm,1)V(x(tm,1), tm,1) . (3.22)

Substituting (3.21) into (3.22) yields

EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm), t ∈ [tm,1, tm,2) . (3.23)

Suppose that the following equation still holds when t ∈ [tm,k, tm,k+1):

EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm), t ∈ [tm,k, tm,k+1) ,

and when t = tm,k+1

EV(x(tm,k+1), tm,k+1) ≤ Ee−µ̃1(tm,k+1−tm)V(x(tm,k+1), tm,k+1), t ∈ [tm,k, tm,k+1) . (3.24)

When t ∈ [tm,k+1, tm,k+2), we have

EV(x(t), t) ≤ Ee−µ̃1(t−tm,k+1)V(x(tm,k+1), tm,k+1) . (3.25)

Substituting (3.24) into (3.25) gives

EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm), t ∈ [tm,k+1, tm,k+2) . (3.26)

The assumption still holds when t ∈ [tm,k+1, tm,k+2). Hence, for any t ∈ [tm,i, tm,i+1) and 0 ≤ i ≤ ⌈ sm
ϵ
⌉, we

have EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm) holds true. Then for t ∈ [tm, tm+ sm), we still have EV(x(t), t) ≤
Ee−µ̃1(t−tm)V(x(tm), tm).

In summary, we have

EV(x(t), t) ≤ Ee−µ̃1(t−tm)V(x(tm), tm), t ∈ [tm, tm + sm),
EV(x(t), t) ≤ Eeφ1(t−tm−sm)V(x(tm + sm), tm + sm), t ∈ [tm + sm, sm+1),

for 0 ≤ t ≤ T , 0 < ε1 < ε2, and 0 < |x0| ≤ ε1.
When t ∈ [t0, t0 + s0), we have

EV(x(t), t) ≤ Ee−µ̃1(t−t0)V(x(t0), t0), (3.27)

and
EV(x(t0 + s0), t0 + s0) ≤ Ee−µ̃1 s0V(x(t0), t0), (3.28)

for t ∈ [t0 + s0, t1). Combining with (3.27) and (3.28), one has

EV(x(t), t) ≤ Eeφ1(t−t0−s0)V(x(t0 + s0), t0 + s0)
≤ Eeφ1(t−t0−s0)−µ̃1 s0V(x(t0), t0),

and
EV(x(t1), t1) ≤ Eeφ1(t1−t0−s0)−µ̃1 s0V(x(t0), t0). (3.29)
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When t ∈ [t1, t1 + s1), we have

EV(x(t), t) ≤ Ee−µ̃1(t−t1)V(x(t1), t1),

and
EV(x(t1 + s1), t1 + s1) ≤ Ee−µ̃1 s1V(x(t1), t1). (3.30)

For t ∈ [t1 + s1, t2), combining (3.27), (3.29), and (3.30), one has

EV(x(t), t) ≤ Eeφ1(t−t1−s1)V(x(t1 + s1), t1 + s1)
≤ Eeφ1(t−t1−s1)−µ̃1 s1V(x(t1), t1)
≤ Eeφ1(t−t1−s1+t1−t0−s0)−µ̃1(s0+s1)V(x(t0), t0),

and
EV(x(t2), t2) ≤ Eeφ1(t2−t1−s1+t1−t0−s0)−µ̃1(s0+s1)V(x(t0), t0). (3.31)

When t ∈ [t2, t2 + s2), we have

EV(x(t), t) ≤ Ee−µ̃1(t−t2)V(x(t2), t2),

and
EV(x(t2 + s2), t2 + s2) ≤ Ee−µ̃1 s2V(x(t2), t2). (3.32)

For t ∈ [t2 + s2, t3), combining (3.27), (3.31), and (3.32), one has

EV(x(t), t) ≤ Eeφ1(t−t2−s2)V(x(t2 + s2), t2 + s2)
≤ Eeφ1(t−t2−s2)−µ̃1 s2V(x(t2), t2)
≤ Eeφ1(t−t2−s2+t2−t1−s1+t1−t0−s0)−µ̃1(s0+s1+s2)V(x(t0), t0),

and
EV(x(t2), t2) ≤ Eeφ1(t3−t2−s2+t2−t1−s1+t1−t0−s0)−µ̃1(s0+s1+s2)V(x(t0), t0).

In the same way, for t ∈ [tn + sn, tn+1) and using Assumption 2.1, we have

EV(x(t), t) ≤ Ee
φ1[t−tn−sn+

n−1∑
i=0

(ti+1−ti−si)]−µ̃1
n∑

i=0
si
V(x(t0), t0)

≤ Ee
φ1[

n∑
i=0

(ti+1−ti−si)]−µ̃1
n∑

i=0
si
V(x(t0), t0)

≤ Ee(n+1)φ1(ω−θ)−(n+1)µ̃1θV(x(t0), t0)
≤ EeN(0,t)(φ1(ω−θ)−µ̃1θ)V(x(t0), t0) .

From Condition (2.4) in Assumption 2.4 and (3.13), we can derive

|x(t)|2 ≤
c2

c1
eN(0,t)(φ1(ω−θ)−µ̃1θ)|x0|

2

≤
c2

c1
ε2

1eN(0,t)(φ1(ω−θ)−µ̃1θ)

≤ ε2
2 ,

(3.33)
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which means that |x(t)| ≤ ε2, and thus E|x(t)| ≤ ε2 holds on [0,T ]. As described, it can be concluded
that the system (2.3) can achieve FTS on [0,T ]. The system (2.1) is FTS (w,r,t)(T, ε1, ε2) under
APIC (2.2) with ETM (3.1).

When t ∈ [T − τ,T ], if Condition (3.14) in Theorem 3.1 is satisfied, from (3.33) we have

|x(t)|2 ≤
c2

c1
eN(0,t)(φ1(ω−θ)−µ̃1θ)|x0|

2

≤
c2

c1
ε2

1eN(0,t)(φ1(ω−θ)−µ̃1θ)

≤ ϱ2 ,

(3.34)

which shows that |x(t)| ≤ ϱ, and thus E|x(t)| ≤ ϱ hold on t ∈ [T − τ,T ]. Then the system (2.1) can
achieve FTCS (w,r,t)(T, ε1, ε2, ϱ, τ) under APIC (2.2) with ETM (3.1).

The proof is complete.

3.2. State quantization after ETC

Lemma 3.2. Under Assumptions 2.1–2.3 and Lemma 3.1, ϵ ≥ 0, 0 ≤ δ ≤ 1, and ϵ <
√

1
12L2

3(2δ2+1)

exists, and for the system (2.1), the following holds:

E|e2(t)|2 ≤ κ3E
∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ4E|x(t)|2 , (3.35)

where κ3 =
2(2ϵL2

1 + L2
2)

1 − 12ϵ2L2
3(2δ2 + 1)

and κ4 =
12ϵ2L2

3(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ .

Proof. Similarly to Lemma 3.1, we discuss the same in two cases.
Case 1: If t ∈ Λi \Λi,ϵ , at this point, by ETM (3.2), we have |(x(tm,i)− x(t)|2 ≤ λ|x(t)|2 a.s. on Λi \Λi,ϵ ,

which implies
E(IΛi\Λi,ϵ |x(tm,i) − x(t)|2) ≤ E(IΛi\Λi,ϵλ|x(t)|2)

≤ E(IΛiλ|x(t)|2) .
(3.36)

Case 2: If t ∈ Λi,ϵ , using the results of (3.10) in Lemma 3.1, we have

E(IΛi,ϵ |e2(t)|2) ≤
4ϵL2

1 + 2L2
2

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ

∫ t

tm,i
|x(s)|2ds) +

12ϵ2L2
3(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi,ϵ |x(t)|2) . (3.37)

Thus, combining (3.36) and (3.37), we get

E(IΛi |x(tm,i) − x(t)|2) = E(IΛi,ϵ |x(tm,i) − x(t)|2) + E(IΛi\Λi,ϵ |x(tm,i) − x(t)|2)

≤
2(2ϵL2

1 + L2
2)

1 − 12ϵ2L2
3(2δ2 + 1)

E(IΛi

∫ tm,i+ϵ

tm,i
|x(s)|2ds)

+ (
12ϵ2L2

3(2δ2 + 1)

1 − 12ϵ2L2
3(2δ2 + 1)

+ λ)E(IΛi |x(t)|2) .

The latter steps of the proof are similar to those in Lemma 3.1, so we omit this part of the proof process.
In the end, we arrive at

E|e2(t)|2 ≤ κ3E
∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ4E|x(t)|2 .

The proof is complete.
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Theorem 3.2. Under Assumptions 2.1–2.5 and Lemmas 2.1 and 3.2, we have ϵ <
√

1
12L2

3(2δ2+1) and

some positive constants λ, ϵ, δ, ω, θ, µ̃2 that satisfy

−β̂2 > β̌1 > 0 , (3.38)

and

N(0, t)[φ1(ω − θ) − µ̃2θ] − ln c1ε
2
2 + ln c2ε

2
1 ≤ 0 , (3.39)

where N(0, t) delegates the number of the control period on (0,T ] and T , tk, β̌1 =
L3L4κ3ϵ(2δ2 + 1)

c1
,

β̂2 = φ2 +
L3L4

2c1
+

2δ2L3L4

c1
+

L3L4(2δ2 + 1)κ4
c1

, κ3, and κ4 are the same as in the Lemma 3.2. Moreover,

κ3 =
κ1

2δ2 + 1
, 0 < µ̃2 < µ2, where µ2 is the sole positive real root of the equation µ2 + β̌1eµ2∆2 + β̂2 = 0.

The upper bound on the execution time between events can be expressed as sup
m,i∈N
{tm,i+1 − tm,i} ≤ ∆2. We

then claim that the system (2.1) is capable of FTS (w.r.t)(T, ε1, ε2) under APIC with ETM (3.2).
Moreover, for all t ∈ [T − τ,T ], there are

N(0, t)[φ1(ω − θ) − µ̃2θ] − ln c1ϱ
2 + ln c2ε

2
1 ≤ 0 . (3.40)

Then, we claim that the system (2.1) is capable of FTCS (w.r.t)(T, ε1, ε2, ϱ, τ) under APIC with
ETM (3.2).

Proof. For 0 < |x0| ≤ ε1, assume that x(t) = x(t, 0, x0) is a solution of the system (2.2) at (0, x0). When
t ∈ [tm + sm, tm+1), from Assumption 2.4, we have

ELV(x(t), t) ≤ Eφ1V(x(t), t).

Integrating the equation above over the interval [tm + sm, t) gives

EV(x(t), t) ≤ Eeφ1(t−tm−sm)V(x(tm + sm), tm + sm) .

When t ∈ [tm, tm + sm), from Assumptions 2.2, 2.4, and 2.5 and Condition (ii) in Assumption 2.3, we
obtain

ELV(x(t), t) ≤ Eφ2V(x(t), t) + E
∂V(x, t)
∂x

|α(q(x(tm,i))) − αx(t)|

≤ φ2EV(x(t), t) +
L3L4

2
E(|x(t)|2 + |q(x(tm,i)) − x(t)|2)

≤ φ2EV(x(t), t) +
L3L4

2
E|x(t)|2 + L3L4E(|q(x(tm,i)) − x(tm,i)|2 + |x(tm,i) − x(t)|2)

≤ φ2EV(x(t), t) + (
L3L4

2
+ 2δ2L3L4)E|x(t)|2 + L3L4(2δ2 + 1)E|e2(t)|2 .

(3.41)

AIMS Mathematics Volume 10, Issue 4, 10062–10092.



10077

If we substitute the result of Lemma 3.2, the equation above becomes

ELV(x(t), t) ≤ φ2EV(x(t), t) + (
L3L4

2
+ 2δ2L3L4)E|x(t)|2

+ L3L4(2δ2 + 1)(κ3E
∫ tm,i+ϵ

tm,i
|x(s)|2ds + κ4E|x(t)|2)

≤ (φ2 +
L3L4

2c1
+

2δ2L3L4

c1
+

L3L4(2δ2 + 1)κ4
c1

)E|x(t)|2

+ L3L4κ3(2δ2 + 1)E
∫ tm,i+ϵ

tm,i
|x(s)|2ds

≤ (φ2 +
L3L4

2c1
+

2δ2L3L4

c1
+

L3L4(2δ2 + 1)κ4
c1

)EV(x(t), t)

+
L3L4κ3ϵ(2δ2 + 1)

c1
sup

tm,i≤η<tm+ϵ
V(x(η), η) .

(3.42)

Substituting the result of Lemma 2.1, β̌1 =
L3L4κ3ϵ(2δ2 + 1)

c1
, and β̂2 = φ2 +

L3L4

2c1
+

2δ2L3L4

c1
+

L3L4(2δ2 + 1)κ4
c1

into Eq (3.42) yields

ELV(x(t), t) ≤ β̌1EV(x(tm,i), tm,i) + β̂2EV(x(t), t).

The latter steps are omitted because they closely resemble those in Theorem 3.1.

Remark 3.1. The proofs of Theorems 3.1 and 3.2 rely on the upper bound condition of the execution
time between events. However, due to the arbitrariness of tm,i+1 − tm,i, determining the roots of the
equation µ1 + β̂1 + β̌1eµ1∆1 = 0 is not straightforward. Nevertheless, it can be seen from the equation
that if tm,i+1 − tm,i is larger, then the roots of the equation µ1 can be appropriately small to satisfy
0 < µ̃1 < µ1. Therefore, we have the existence of 0 < µ̃∗1 < µ1 ≤ µ

∗
1 for an arbitrary tm,i+1 − tm,i, whose

corresponding equation has the solution µ∗1, such that µ̃∗1 + β̂1 + β̌1eµ̃
∗
1∆1 < 0 holds.

Remark 3.2. Theorem 3.1 is obtained from the trigger mechanism (3.1) on the basis of the error
estimate (3.3), and Theorem 3.2 is obtained from the trigger mechanism (3.2) on the basis of the error
estimate (3.35). Since (3.1) is based on quantization first and then event-triggered determination, the
scheme is applicable to the overall quantization nature of the state trajectories, while (3.2) is based
on event-triggered of the system’s state and then realizing the quantization, which is more suitable for
exploring the local quantization nature of the state trajectories under intermittent control. Therefore,
according to (3.14) in Theorem 3.1, ϱ can be reduced with the change in θ by increasing θ, which can
better realize the ‘contraction’ in FTCS. By Eq (3.40) of Theorem 3.2, it can be seen that by decreasing
θ appropriately, ϱ can increase relatively with a change in θ, which makes it easier to achieve FTCS.
See Section 4 for details.

4. Numerical examples

This section illustrates our design approach using two examples of real process simulation and
numerical simulation.
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Example 1. Consider the following stochastic nonlinear system:

dx(t) = f (x(t), t)dt + g(x(t), t)dω(t) (4.1)

on t ≥ 0, where

f (x(t), t) =
[

x2(t)
−dx1(t) − csinx1(t) − ax2(t)

]
and

g(x(t), t) =
[

0
−(b + e)x2(t)

]
.

Consider the initial state x0 = (0.4, 0, 3)T , where x(t) denotes the system’s state vector and x1(t), x2(t)
are the state components of x(t). Parameters a = 0.08, b = 0.03, c = 0.01, d = 0.99, and e = 0.03. We
select the Lyapunov function V(x) = x2

1 + x2
2 + 0.1x1x2. Then we define the aperiodically intermittent

controller as follows:

u(t) =
[

0
−x1(tm,i) − x2(tm,i)

]
. (4.2)

Then, from Assumptions 2.2 and 2.5, we can obtain

| f (x(t), t)|2 ≤ x2
2(t) + 3d2x2

1(t) + 3c2x2
1(t) + 3a2x2

2(t);
|g(x(t), t)|2 ≤ (b + e)2x2

2(t);
|α(q(x(tm,i))) − α(x(t))|2 ≤ 2| − q(x1(tm,i)) + x1(t)|2 + 2| − q(x2(tm,i)) + x2(t)|2;
∂V(x, t)
∂x

≤ 2.1|x| .

Hence, according to Assumptions 2.3 and 2.5, we choose the appropriate parameters L1 = 1.8, L2 =

0.15, L3 = 1.42, and L4 = 2.1. Then, from Assumption 2.4, φ1 and φ2 can be set as 0.5 and −2.8.
Next, we select the appropriate parameters on the basis of the results of Lemma 3.1 and Theorem 3.1:
δ = 0.01, ϵ = 0.01, λ = 0.01, and ∆1 = 0.14. This makes it possible to calculate the roots of the
equation µ1 + β̌1eµ1∆1 + β̂1 = 0 in Theorem 3.1, selecting the appropriate µ̃1. Assume the maximum
control interval ω = 2.5 and the minimum working interval θ = 1.9. From Definitions 2.1 and 2.2, let
ε1 = 0.51 and ε2 = 0.55. Substituting into Eq (3.13) in Theorem 3.1 yields

−1.6665N(0, t) − ln 0.2723 + ln 0.2861 ≤ 0 , N(0, t) ≥ 1.

Further, by Definition 2.2, let ϱ = 0.07 and τ = 1, and use Formula (3.14) from Theorem 3.1

−1.6665N(0, t) − ln 0.0009 + ln 0.2861 ≤ 0 , N(0, t) ≥ 3.

In summary, we can see that the system is not only FTS (w.r.t)(7.3, 0.51, 0.55) when t ∈
[0, 7.3] under the aperiodically intermittent ETM (3.1) with state quantization, but is also FTCS
(w.r.t)(7.3, 0.51, 0.55, 0.07, 0.5) when t ∈ [6.8, 7.3] as shown in Figure 5. The state trajectory of the
system, the ETM (3.1), the state quantization trajectory, and the intermittent controller are shown in
Figures 6–9. As can be seen from Figures 5 and 6, the system (4.1) is not only FTCS but also has
Lyapunov stability. Figure 6 shows the intermittent state quantization curve trajectory implemented on
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the basis of Figure 5. The ETM (3.1) is represented by Figure 7. The controller (4.2) is represented by
Figure 8.

Similarly, we choose the maximum control interval ω = 2.5, the minimum working interval θ = 1.6,
and the other parameters are the same as in Theorem 3.1, then we can find the solution to equation
µ2 + β̌1eµ2∆2 + β̂2 = 0 in Theorem 3.2, selecting the appropriate µ̃2. Further we set ε1 = 0.51 and
ε2 = 0.55, replacing Eq (3.39) in Theorem 3.2 yields

−1.1381N(0, t) − ln 0.2723 + ln 0.2861 ≤ 0 , N(0, t) ≥ 1.

Further by Definition 2.2, let ϱ = 0.09 and τ = 1, use formula (3.40) from Theorem 3.2

−1.1381N(0, t) − ln 0.0109 + ln 0.2861 ≤ 0 , N(0, t) ≥ 3.

Therefore, it can be obtained that the system (4.1) is FTS (w.r.t)(7.3, 0.51, 0.55) when
t ∈ [0, 7.3] under aperiodically intermittent ETM (3.2) with state quantization and is FTCS
(w.r.t)(7.3, 0.51, 0.55, 0.09, 0.5) when t ∈ [6.8, 7.3], as shown in Figure 10. Figures 11–14 represent the
state quantization trajectory, the ETM (3.2), the intermittent controller, and the system state trajectory,
respectively. Similarly, as shown in Figures 10 and 14, it can be seen that in Theorem 3.2, the
system (4.1) is not only FTS but also has Lyapunov stability.

If we compare Figure 7 with Figure 12, it is clear that the number of ETM (3.1) communications
is 118 and the number of ETM (3.2) communications is 100. Thus by decreasing θ, the number of
communications is reduced to some extent. According to Remark 3.2, due to the different schemes of
the two ETMs, the first scheme is chosen if all the states of the system are to be quantized in a finite
time, and the second scheme is chosen if the states of the system are to be quantized in a certain part of
the system in a finite time, as shown in Figures 6 and 11. Since we use intermittent state quantization,
if the first scheme is chosen, θ can be increased appropriately to achieve better quantization. If the
second scheme is chosen, θ can be decreased appropriately as a way to reduce the work burden of the
controller and achieve a local quantization effect.

Furthermore, in Example 1, the number of communications under different control methods and
trigger mechanisms is investigated, as shown in Table 1, and it can be clearly seen that there is a
significant reduction in the number of communications under the effect of APIC and ETMs. In addition,
by adjusting the suspension time ϵ and the triggering parameter λ, the number of communications can
also be affected, as shown in Table 2.

Table 1. Number of communications with different control methods and trigger mechanisms.

Different trigger mechanisms Theorem 3.1 Theorem 3.2
Time-triggered mechanism 655 658

Continuous control
Event-triggered mechanism 128 122
Time-triggered mechanism 594 554

Intermittent control
Event-triggered mechanism 118 100
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Table 2. Number of communications with different parameters.

ϵ λ Theorem 3.1 Theorem 3.2
0.1 0.01 82 48
0.01 0.01 118 100
0.001 0.01 124 114
0.1 0.05 47 32
0.01 0.05 55 50
0.001 0.05 57 52
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Figure 5. FTS and FTCS of Theorem 3.1.
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Figure 6. The intermittent state quantization curve trajectory of Theorem 3.1.
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Figure 7. The extension of ETM (3.1).
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Figure 8. The intermittent controller of Theorem 3.1.
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Figure 9. State trajectories of the system in Theorem 3.1 to achieve Lyapunov stability.
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Figure 10. FTS and FTCS of Theorem 3.2.
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Figure 11. The intermittent state quantization curve trajectory of Theorem 3.2.

Figure 12. The extension of ETM (3.2).
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Figure 13. The intermittent controller of Theorem 3.2.
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Figure 14. State trajectories of the system in Theorem 3.2 to achieve Lyapunov stability.

Example 2. To further verify the validity of the proposed theory, we consider the following stochastic
nonlinear system whose parameters contain:

f (x(t), t) =
[
0.1sin(x1(t)) + 0.1x2(t) + 0.2u(t)

0.1x1(t) − 0.2x2(t)

]
and

g(x(t), t) =
[
0.1x1(t)

0

]
.

Where t ≥ 0, consider the initial state x0 = (0.5,−0, 5)T and x(t) is defined as the state vector and
x1(t), x2(t) as the state components of x(t). We select the Lyapunov function V(x) = 0.1x2

1 + 0.1x2
2.

Then we define the aperiodically intermittent controller as follows:

u(t) =
[
−2x1(t)

0

]
. (4.3)
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Similarly, according to Assumptions 2.3 and 2.5, we choose the appropriate parameters L1 = 0.6,
L2 = 0.11, L3 = 2.1, and L4 = 0.21. Then, from Assumption 2.4, φ1, φ2 can be set as 0.5 and −3.4. We
select the appropriate parameters according to the results of Lemma 3.1 and Theorem 3.1, δ = 0.01,
ϵ = 0.01, λ = 0.01, and ∆1 = 0.45. Similar to Example 1, we can also calculate the roots of equation
µ1+ β̌1eµ1∆1+ β̂1 = 0 according to the above parameters. Assume the maximum control interval ω = 2.5
and the minimum working interval θ = 2. From Definitions 2.1 and 2.2, let ε1 = 0.75 and ε2 = 0.8,
then substituting into Eq (3.13) in Theorem 3.1 yields

−1.5412N(0, t) − ln 0.0576 + ln 0.0619 ≤ 0 , N(0, t) ≥ 1.

Furthermore, by Definition 2.2, let ϱ = 0.083 and τ = 0.7, use formula (3.14) from Theorem 3.1

−1.5412N(0, t) − ln 0.0007 + ln 0.2861 ≤ 0 , N(0, t) ≥ 3.

In summary, we can see that the system is not only FTS (w.r.t)(8.5, 0.75, 0.8) when t ∈
[0, 8.5] under the aperiodically intermittent ETM (3.1) with state quantization, but also FTCS
(w.r.t)(8.5, 0.75, 0.8, 0.083, 0.7) when t ∈ [7.8, 8.5], as shown in Figure 15. The state trajectory of
the system, the ETM (3.1), the state quantization trajectory, and the intermittent controller are shown
in Figures 16–19. As can be seen from Figures 15 and 19, the system (4.1) is not only FTCS but
also has Lyapunov stability. Figure 16 shows the intermittent state quantization curve trajectory
implemented on the basis of Figure 15. The ETM (3.1) is represented by Figure 17. The controller (4.2)
is represented by Figure 18.

Similarly, choose the maximum control interval ω = 2.5 and the minimum working interval θ = 1.8,
and the other parameters are the same as in Theorem 3.1. Furthermore, we set ε1 = 0.75 and ε2 = 0.8,
and then replacing Eq (3.39) in Theorem 3.2 yields

−1.1658N(0, t) − ln 0.0576 + ln 0.2861 ≤ 0 , N(0, t) ≥ 1.

Furthermore, by Definition 2.2, let ϱ = 0.15 and τ = 0.8, and use formula (3.40) from Theorem 3.2

−1.1381N(0, t) − ln 0.0109 + ln 0.2861 ≤ 0 , N(0, t) ≥ 3.

Therefore, it can be seen that the system (4.1) is FTS (w.r.t)(7.8, 0.75, 0.8) when t ∈

[0, 7.8] under aperiodically intermittent ETM (3.2) with state quantization and is FTCS
(w.r.t)(7.8, 0.75, 0.8, 0.15, 0.8) when t ∈ [7.0, 7.8] as shown in Figure 20. Figures 21–24 represent the
state quantization trajectory, the ETM (3.2), the intermittent controller, and the system state trajectory,
respectively. Similarly, as shown in Figures 10 and 14, it can be seen that in Theorem 3.2, the
system (4.1) is not only FTS but also has Lyapunov stability. Comparing Figure 7 with Figure 12,
it is clear that the number of ETM (3.1) communications is 33 and the number of ETM (3.2)
communications is 50. If we set the controller to u(t) = 0, the system is unstable, as shown in Figure 25.
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Figure 15. FTS and FTCS of Theorem 3.1.
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Figure 16. The intermittent state quantization curve trajectory of Theorem 3.1.

Figure 17. The extension of ETM (3.1).
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Figure 18. The intermittent controller of Theorem 3.1.
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Figure 19. State trajectories of the system in Theorem 3.1 to achieve Lyapunov stability.
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Figure 20. FTS and FTCS of Theorem 3.2.
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Figure 21. The intermittent state quantization curve trajectory of Theorem 3.2.

Figure 22. The extension of ETM (3.2).
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Figure 23. The intermittent controller of Theorem 3.2.
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Figure 24. State trajectories of the system in Theorem 3.2 to achieve Lyapunov stability.
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Figure 25. The trajectories of the system (2.1) without APIC.

5. Conclusions

This study uses ETC and APIC to investigate the FTS of stochastic nonlinear systems. First, the
Zeno behavior is avoided by designing the hover time in ETM. After that, the state quantization strategy
is introduced to implement the two triggering schemes, and quantization error estimation and sampling
error estimation are used to further implement the FTS and the FTCS. The viability and efficacy of the
theoretical results of state quantization and APIC are confirmed in two numerical examples, as are the
feasibility and validity of the two ETMs that have been proposed. Finally, different triggering schemes
can be selected by adjusting the size of the working interval to achieve different effects within a finite
time, which further saves resources. However, since the logarithmic quantizer in Assumption 2.1 of this
paper becomes more error-prone as the quantization level increases, exploring alternative quantization
methods, such as dynamic quantization, could be a promising direction for future research. In addition,
Assumptions 2.3 and 2.5 are more applicable to cases without time delay; therefore, these assumptions
may no longer hold when studying a stochastic nonlinear time delay system. However, a similar
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approach is provided in [14]. Future research work on stochastic nonlinear systems containing delays
with dynamic ETC is also needed.
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Appendix

Parameters
tm,i Event-triggered sampling instants, where 0 ≤ i ≤ ⌈ sm

ϵ
⌉, ⌈ sm

ϵ
⌉ is the maximum number of

communications on the interval [tm, tm + sm)
tm Starting point of the workspace
sm Length of the working interval
θ Minimum working interval length
ω Maximum control interval length
q(v) System state quantization
δ Constant related to the quantization density ρ and 0 < δ < 1, where the higher the

quantization density, the smaller the δ, and the higher the quantizer accuracy
Li Positive constants in Assumptions 2.3 and 2.5 (i = 1, 2, 3, 4)
ε1 Upper bound on the initial state of the system
ε2 An upper bound on the state E|x(t)| of the system in finite time T
ϱ During the time interval [T − τ,T ], the state E|x(t)| of the system does not exceed ϱ
ϵ Suspension time, indicating that the next trigger moment is executed after at least ϵ
λ Event-trigger related parameters for adjusting the trigger thresholds
κi The coefficients in Lemmas 3.1 and 3.2, consisting of δ, ϵ, λ, L1, L2, and L3

N(0, t) Number of control intervals on interval (0,T ]
β̂i, β̌i The correlation coefficients in Theorems 3.1 and 3.2, consisting of L1, L2, L3, L4, ϵ, c1,

φ2, κ1, and κ2, where φ1, φ2 and c1, c2 are given by Assumption 2.4 (i = 1, 2)
∆i Upper bound on the execution time between events in Theorems 3.1 and 3.2 (i = 1, 2)
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