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Abstract: Optimal investment strategy selection has become a primary research focus in investment
science and operations research. Key challenges in this field include identifying an appropriate risk
measure to capture potential extreme losses, accurately modeling the impact of market volatility on
investment decisions, and effectively balancing returns and risks. To handle uncertainty in return
distributions, robust portfolio optimization is a more recent approach. In this study, we employ
robust Conditional Value-at-Risk (CVaR) as the risk measure and propose a multi-stage robust
portfolio selection model incorporating both risk-free and risky assets under a known first and second
moment uncertainty set. By integrating a regime-switching framework, we derive an analytical
optimal investment strategy using dynamic programming (DP) techniques. Our numerical analysis
demonstrates that the optimal strategy determined by dynamic programming adjusts dynamically at
each stage in response to regime switches.
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1. Introduction

The effectiveness of financial activities depends on the choice of investment decision-making.
Recent research has increasingly focused on optimal investment strategy selection in finance and
operations. Key factors drive effective solutions in this area include selecting an appropriate risk
measure to capture potential extreme losses, assessing how market fluctuations impact investments,
and balancing returns against risks. In classical Markowitz mean-variance models, risk is measured
by deviations from the mean, such as variance or standard deviation. However, relying on variance as
a risk measure presents serious limitations. Compared to variance, measuring the downside risk of a
portfolio is more critical, an insight long recognized by both scholars and practitioners.
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Until the late 1980s, the Basel Committee emphasized the importance of widely accepted risk
standards and recommended introducing quantitative models based on mathematical and statistical
principles. Value-at-Risk (VaR) was explicitly recommended for evaluating the capital adequacy and
market risk of commercial banks for the first time. However, VaR has notable limitations, particularly
its inability to adequately measure tail risk. When actual losses exceed the VaR threshold, their
magnitude and acceptability remain unknown. To address these shortcomings, recent research has
focused on coherent risk measures. Artzner et al. [1] were among the first to investigate this issue,
introducing the concept of coherent risk measures. Following their work, research on coherent risk
measures has attracted significant attention, leading to significant advancements, including Expected
Shortfall (ES) [2], Conditional Value-at-Risk (CVaR) [3], spectral risk measures [4], and one-sided
moment measures [5]. A substantial body of literature has explored methods for minimizing these
coherent risk measures, with CVaR emerging as the most extensively studied and widely applied.
Rockafellar and Uryasev demonstrated that solving a simple convex optimization problem enables the
simultaneous computation of both CVaR and VaR for a portfolio. CVaR offers an efficient approach
for solving portfolio optimization problems, facilitating large-scale computations that would otherwise
be infeasible.

Corresponding to the research on risk measures, the practical applications of portfolio selection
models have also expanded. Private and institutional investors are developing dynamic techniques
and tools to improve security price predicting and enhance investment capital management. Numerous
portfolio selection models have been proposed, employing diverse solution techniques and applications
across different markets. However, a significant limitation in existing research is the assumption that
the distribution of risk asset prices or returns is known in advance or fully specified. This assumption
often renders many risk management methods and optimal investment strategy models impractical
for real-world investment decision-making, as precise characterizations of security returns are often
unavailable. In response, modern optimization methods for decision-making under uncertainty, such
as robust optimization techniques, have gained prominence in risk management and portfolio selection.
Recently, various robust risk measures and corresponding robust portfolio selection models have
emerged, yielding several valuable results. Nonetheless, many issues remain unresolved or require
further refinement. This paper, therefore, focuses on constructing and solving robust portfolio selection
models within this framework.

Robust optimization has emerged as a powerful tool for addressing optimization problems under
uncertainty. Soyster [6] initially introduced the method of robust optimization, and definitions for
robust feasible solutions and optimal solutions were later provided by Ben-Tal and Nemirovski [7]
and Ghaoui [8]. Garlappi et al. [9] addressed the mean-variance robust portfolio selection problem,
assuming only the mean is uncertain and belonging to a box uncertainty set. Costa and Paiva [10],
Goldfarb and Iyengar [11], and Lu [12] investigated robust portfolio selection within the mean-
variance framework. Goldfarb and Iyengar [11] considered a factor model for asset stochastic returns,
constructing uncertainty sets for the model parameters using statistical processes. Lu [12] studied
the robust portfolio selection problem using a joint ellipsoidal uncertainty set to describe the model
parameters, demonstrating that the problem can be reformulated as a cone programming problem.
Halldorsson and Tiitilincti [13] extended these results [10—12] by applying interior point algorithms to
address the robust mean-variance portfolio selection problem with mean vectors and covariance matrix
parameters modeled as box uncertainty sets. Popescu [14] examined the robust mean-variance (M-
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V) portfolio selection problem when the moment information of a given return vector distribution is
known. They demonstrated that, for a broad class of objective functions, finding a robust solution is
equivalent to solving a parameterized quadratic program. Natarajan et al. [15] focused on the worst-
case CVaR robust portfolio selection model when only partial moment information of the stochastic
return variables is known. Zhu and Fukushima [16] introduced a different type of uncertainty,
where instead of focusing on the first and second moments of the portfolio, the uncertainty is in
the distribution of portfolio returns themselves. Distributionally robust optimization addresses the
uncertainty in asset return distributions by considering a set of possible distributions rather than relying
on a single estimated distribution. This approach is beneficial when the underlying distribution is
unknown or subject to change. The Wasserstein metric is commonly employed to define ambiguity sets,
allowing for a robust optimization framework adaptable to various scenarios [17, 18]. Subsequently,
Huang et al. [19] applied the methods from [16] to portfolio selection problems with uncertain
termination times. In practice, there are various methods to handle uncertainty in the covariance
matrix of a model. Some approaches involve additional factors in the return model [20], while others
consider confidence intervals for individual covariance matrices [14]. Even when the uncertainty set is
defined simply as a collection of possible scenarios for the covariance matrix, the advantages of such
approaches are well recognized [10,21]. Best and Grauer [22] and Black and Litterman [23] studied
the sensitivity of optimal portfolio estimates to uncertainty in average returns.

Dynamic risk measures play a crucial role in assessing the risk of financial portfolios over time.
Large portfolios that use the CVaR measure often exhibit non-smooth characteristics. To address
this, [24] proposed a derivative-free method for nonsmooth functions. Regime-switching models
account for the nonstationarity of financial markets by allowing parameters to shift across different
regimes. These models can capture phenomena such as volatility clustering and fat tails frequently
observed in financial data. For instance, the Markov regime-switching GARCH model has been
widely used to model asset returns under varying market conditions [25]. [26] introduced explicit
CRRA equilibrium strategies for two-player stochastic investment games under Markovian regime
switching, while [27] derived globally optimal solutions for incomplete regime-switching markets. [28]
proposed a novel VIX-based candlestick predictor with market regime analysis. Quantum-inspired
optimization [29] and robust genetic strategies [30] provide scalable frameworks for high-dimensional
and dynamic challenges, aligning with regime-switching CVaR portfolios. Additionally, Al techniques
for dynamic risk management have also been applied across various fields [31].

In financial portfolio management, optimizing asset allocation while dynamically managing risk
remains a critical challenge. Traditional robust risk measurement and portfolio selection models
often rely on worst-case scenarios, resulting in overly conservative investment decisions that fail to
accurately reflect the impact of market changes on the uncertainty set. Existing studies on robust
portfolio selection models with known matrix uncertainty either focus on single-period scenarios
or lack analytical solutions. However, the real financial market is highly dynamic, particularly
in medium and long-term investments, and multi-period risk models are essential for effectively
managing risks over investment horizons. Single-period risk models have limitations in offering
optimal long-term investment strategies. Therefore, extending single-period risk measures to a
multi-period framework is highly significant. Furthermore, most portfolio selection models assume
deterministic information, such as known distribution functions, but in practice, market parameters
are inherently uncertain. Even minor parameter changes can significantly affect investment outcomes,
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potentially leading to suboptimal or infeasible solutions. Robust optimization provides a powerful
method to address parameter uncertainty. Given these challenges, this study aims to bridge these
gaps by developing a multi-period robust portfolio selection model that effectively integrates dynamic
uncertainty considerations with robust optimization techniques.

This study focuses on a market consisting of multiple risky assets and one risk-free asset,
extending previous research [16] by including the risk-free asset. The returns of the risky assets are
characterized by a given mean vector and covariance matrix, forming an uncertainty set distinct from
the Wasserstein ambiguity set [18] and the asymmetric distribution uncertainty set [32]. We consider a
multi-period robust portfolio selection model that utilizes robust CVaR as the risk measure, contrasting
it with the mean lower partial moment [32], and solve the problem via dynamic programming, which
differs from the SOCP optimization approach [33].

The main contributions of the paper include:

e The proposed multi-period investment strategy is formulated from a dynamic perspective,
allowing investors to adjust their strategies according to market conditions throughout the holding
period to enhance returns.

e We utilize regime-switching techniques to capture the dynamic dependencies between
consecutive periods, adjusting the uncertainty set based on the first and second moments to reflect
these dynamic relationships.

e The constructed uncertainty set features a mean vector that follows a Markov process. We
demonstrate that the optimal investment strategy, derived recursively, depends on this mean
vector, ensuring that the optimal strategy adapts to the state of the uncertainty set. This dynamic
investment strategy offers a more realistic alternative to static strategies.

e By using wealth dynamic equations as constraints and leveraging existing solution techniques,
we derive an analytical optimal investment strategy based on dynamic programming principles.

This paper is structured as follows. Section 2 introduces the multi-stage robust portfolio selection
model, incorporating a regime-switching technique to capture the dynamic correlations. Section 3
presents an approach to derive the analytical optimal solution using dynamic programming. Section 4
details our proposed method, which recursively breaks down the problem from the current stage back
to the initial stage. Section 5 provides numerical analysis and results. Finally, Section 6 concludes
the paper.

2. Multi-period robust portfolio selection model

We consider a security market consisting of n risky assets and one risk-free asset with return R.
To maintain model tractability, we use CVaR as the fundamental risk measure when constructing the
multi-period robust portfolio selection model.

To characterize the dynamic changes in the stochastic returns of risky assets, we define a
probability space (€2, F, P). The sigma algebra F; represents all available information up to time
k, with the assumption that Fy, = {Q, @} and Fx = F, where K denotes the total investment period.
Thus, since Fy C F; C --- Fg, the collection {F;} forms a filtration. At the beginning of each period,
the current wealth is reallocated among all assets. We denote the proportion of wealth allocated to n

T
risky assets at stage k by the vector x; = (x,lc N xZ) .
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T

Let & = (g;, e ,gg) represent the vector of random returns for the n risky assets at time k.
This vector is defined as a random variable on the probability space (Q, 5, P) for k = 1,2,--- , K.
Moreover, for each k, & is Fi-measurable, indicating that the stochastic process {&, k= 1,2,--- , K} s

adapted to the filtration {F;,k = 1,2,--- ,K}.

We assume that the first and second moments of asset returns are known. Due to dynamic
dependence, the mean vector at time k is conditionally dependent on the information available at time
k — 1, represented as ; = Ep,_, [&]. To capture the dynamic correlations of return rates, we employ a
regime-switching model. In this framework, the regime process follows a Markov chain, where the set
of possible regimes is constructed by m regimes U = {,ul, e, ,u’”}. The transition probability from
regime ' at time k to regime y/ at time k + 1 is denoted as P,,i(k,k + 1) = P {,uk+1 = uj|yk = ,u’}. We
assume the Markov chain is time-homogeneous with stationary transition probabilities. Therefore, the
transition probability matrix at time k is denoted as

Pﬂlﬂl P/llplz T Pﬂlym

P#Zul Py2'u2 PuZMm
Pe=1 ", : .

P/Jm/ll PlumHZ Pymum

Consequently, the state of y; at time k + 1 depends only on its state at time k, satisfying the
Markov property. This implies that, throughout the investment process, the mean for the next period
relies on the mean return of the previous period. Investors can adjust their strategies at each stage of
the investment horizon in response to market fluctuations, thereby optimizing returns.

Furthermore, we define the covariance matrix of risky asset returns at stage k as I'; = Cov [&;]. For
simplicity, we follow the approach in [15] and assume that [, = T" > 0, k = 1,--- , K across different
periods of the investment horizon, where I' > 0 denotes that I" is positive definite.

Next, we describe the uncertainty in the distribution of return rates, assuming that &, at stage k
belongs to a given uncertainty set D, defined by its first two moments,

Dy = {m | E[&] = e, Cov [&] =T}

Suppose an investor joins the market at time O with an initial wealth of wy = 1. The investor plans
to allocate this wealth in the securities market over K periods, where the cumulative return rate at stage
kis Wi — W

rp=——4k=1,--- K.
Wo

We define r, as the minimum required cumulative return rate for each period, ensuring r, —rg_; >
R fork =1,---,K. We assume that the investment process is self-financing, leading to the dynamic
equation r_; + E[fk]Txk + R(l - kae) =r,k=1,--- ,K,wheree =[1,---, 117. Without constraints,
excessive leverage or short positions in risky assets may arise. However, the inclusion of a risk-free
asset along with a minimum return constraint addresses this issue, resulting in a more stable portfolio.
Furthermore, the presence of a risk-free asset allows investors to allocate capital between risky and
risk-free assets, enabling dynamic position adjustments under different market regimes. Throughout
the investment process, the investor constantly reallocates their wealth among n risky assets and one
risk-free asset at the beginning of each period. The terminal total wealth at the end of stage k is denoted
by wy, while —w; can be viewed as the potential loss at stage k.
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The optimal investment strategy must be determined at the decision-making outset for investors.
When selecting x;, the actual return rate &; is unknown. Similarly, when formulating the investment
strategy x; (k > 2), the return &, remains uncertain. Therefore, x; should depend on &;_; rather than &,
making x; a variable influenced by uncertain data &,_;. This implies that the investment decision x,
for stage k + 1 is made based on the information from the previous period, without knowledge of the
current return &1, fork =1,--- | K.

Investors usually aim to minimize risk while maximizing terminal wealth in multi-stage
investment scenarios. We continue to use CVaR as the fundamental risk measure. Based on the
aforementioned uncertainty set, we derive a robust CVaR measure to control total risk from any
intermediate moment until the end of the investment period.

We define the loss function at time k as follows:

f &) = - (xsz + R(l - xze)).

Rockafellar and Uryasev [3, 34] demonstrated that CVaR can be computed by minimizing the
auxiliary function

Fg, (X, i) = o +

1
1 _ﬂkE[(f(Xk,fk) - a’k)+] s

where «; represents the threshold for the loss function, and B, € (0,1) denotes the confidence
level. Then,
CVaRﬂk (xk) = mlﬁng Fﬂk (xk, a/k) .
e

We express the robust CVaR risk measure as follows:

— — max min Fg (X, @
RCVaRg, (xr) = geagi CVaRg, (xp) = max min B (X @),

Unlike existing literature, our approach ensures that investors minimize total risk while ensuring
that the return rates do not drop below a pre-specified threshold in each period. Let V. (w,_;) represent
the optimal target value at stage k. Under these stochastic market conditions, we formulate the multi-
stage robust portfolio selection model using dynamic programming principles:

Vk(rg—1) = min  max min<ag +
xg€ER” é:KNDK(,uK,l") ag€eR

1 —lﬁKE |(-R = ok — xk (éx - Re))+]}
st rgor+ (B[E]) xx + R (1 - Xﬁe) = Iy

Vk-1(rg-») = min max min {aK_l +
XK-1 §1<71~D1<71(#K71’r) ak-1

1_;&{_]1; [(-R - ket = Xy Gt — Re)) |
+E[VL (rK—l)]} @1

s.t. rgo+(E [fK—l])TxK—l +R (1 - XIT(_16) =Ty

. . 1 T *
Vi(l) = mx}nflfgii(l,r) n(lllln {011 + =5 E [(—R —a; —x; (& - Re))+] +E[V; (r )]}

st. (E[&]) x + R(l - xlTe) =r,.
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It is important to emphasize that when making decisions at stage k, the variable x; does not
depend on the unknown &;; instead, it relies on &_;. According to the wealth dynamic equation, x; is
also influenced by the return rate r;_;. Therefore, we denote x; (ry_1,&x—1) as a variable dependent on
both Fr—1 and gk—l-

3. Approach to solving the multi-period robust portfolio selection problem

In this section, we derive the analytical optimal solution for the multi-period robust portfolio
selection problem using dynamic programming principles.

First, at stage K, given the cumulative return rx_; from time K — 1, we define the objective function
as the robust CVaR for stage K. The corresponding robust optimization model is formulated as follows:

E[(-R - ax — xk (& — Re))+]}

Vk(rg-1) = min  max min {aK + ]

xg€ER” fKNDK(NKsF) ag€eR — Pk

st i+ (B[] xg + R(1 - xke) = ry.
Since the set Dy is convex and closed, the function Fp, (x;, ;) is also convex. By applying

the minimax theorem (see Theorem 4.2 in [35]), we can interchange the order of the maximum and
minimum operations. Therefore, we formulate the robust CVaR portfolio selection problem as follows:

RCVaRy, (x) = min  max Fg, (x;, ax)

areR ﬂkeDk
1
= min o + max E(-R — ax — xL — Re .
minae+ g max |E( x — Xk (€x — Re)) |

Using Lemmas 2.2 and 2.4 from [36], we obtain

R (xKTe — 1) —ag — xg! g + \/xKTFxK + (R(xxTe - 1) — ax — xxux)

2(1-px)

RCVaRg, (x;) = min ag +
ageR

(3.1)
The first-order optimality condition for problem (3.1) is given by

1 1 2(R (xKTe - 1) —ag — xKT,uK)

1— _ =0.
2(1-B8x) 2(1 —,BK)Q

xxTxg + (R (xgTe — 1) — ag — xxTpx)’

Consequently, we have

* Zﬁ](_l T T T
= ———— V! Txg — -R(1- .
S T R e

The robust CVaR portfolio selection problem is formulated as follows:

RCVaRg, (x) = 7 'BZ Vg Txx — xx g — R (1 - xKTe) .
- Bk
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Let fix = ux — Re. Consequently, we formulate the following optimization problem:

/ T T~
Vi (rg-y) = mlﬂr{}I = hr xplxg — xgjig — R 32)

rk-1 + (E[éx]) xK+R(1—xKe)—r

Let &y = E[ék] — Re, and set sy = xLiix. Employing a transformation from the proof of
Theorem 2.5 in [36], problem (3.2) is equivalent to

/ / T
min min x Txg — xpfig — R
SKER xgeRM 1 - K K/l

(3.3)
S.t. K XK =rg—Tk-1—
XK,UK = Skg.
To proceed, we first solve problem (3.4):
min xKFxK
S.t. -f;(TXK =TIy —Tk-1— R, (34)

T~ _
XgMK = SK-

By obtaining the optimal solution x}, (sx) for (3.4), we can derive x}(sK)Tl"x; (sx) and substitute
this into the objective function of problem (3.3), transforming it into an unconstrained optimization
problem. This leads to the optimal strategy for period K. The Lagrangian function for problem (3.4)
is therefore

L(xK,/lf,/lg) = xplxg + AF (SK - xlT(ﬂK) + A5 (ZK —rg-1—R— XIT(é:,K) )

and applying the first-order optimality conditions yields the following equations:

L. =2Txg — AN — A5¢ . =0, (3.5)
k€ x = (rg =1 = R) =0, (3.6)
xkiix — sg = 0. (3.7)
From (3.5), we obtain
o= T (U + 25E ). (38)

and substituting (3.8) into (3.6) and (3.7) gives us

(K k + /l’(fK) I ig = 2sx,
(AKfixc + 25,) T8, =2(ry = re — R).
(

Afu,@r ik + A% (& ) ik = 25,
ARRET g, + 2K (& ) & =2(ry - ko1 - R).
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We define the notation

ag = ()T, af =) T ik, df =gl ik,

K

N S S L P S
afak — (af) afak — (a{() afak — (af)
Then,
a¥ AKX + af Ak = 25,
{{/IK +a0/1K Z(IK—’”K—I —R).
That is,

ak af\(ak _ s Sk
af /lK EK—}"K_I—R.

We find the Lagrange multipliers

) o _“f)( SR RS ) P
L afaf - (af) —ay dy J\rg = rk- =R —di dy J\rg—rk1 —RJ’

Substituting AX, /lf into (3.8), we derive the optimal solution for problem (3.4):

1 X a5 —df
i (550 = 5T (i f'K)(ﬂK) (F T )( o dK)(r _:EI_R), (3.9)
Thus,

Xo(s1) T (5%) = ((d{fs,( —-df (KK —Trg-1 — R) dx (KK —Tg-1— R) - d{(SK)( a )) !

€)'
e a1 )

d¥ (ry — re-1 — R) — df sk
= a(df i = d¥ (ry = rir = R)) + ak (a5 (ry = reor = R) - dfsie)
+ 24k (—d{fdf 2+ (d{fdf t (df)z) (r = 71 = R) s = d¥ (g = ric-1 - R)z)
= (¥ ()’ - 2afdfaf +ab(ar)) su?
12 (af(df) —aKdfdX + akdkd - agdfdg) (ry = 71 = R) 5k
; (ag(df)z _2aKdkdk + a{f(df)z) (rg = rx1 —R)
= (s = 2 (rye = ris = R) s + d¥(rg - ri1 —R) (3.10)

Substituting (3.10) into the objective function of problem (3.3) transforms it into the following
unconstrained optimization problem:

. Bk 2
min g, (sx) 1= /1 i \/d{f(s,()2 —2d¥ (ry — rg-1 — R) s + dX(r = rk-1 = R) = sg = R. (3.11)

AIMS Mathematics
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The first-order optimality condition for problem (3.11) is

sz d€(r, —rxk_1 — R
gy (sx) = c Al e - ) _1=0,
P ﬁK 2
\/a’K(s

ZdK r —rKl—R)sK+d (r —rKl—R)

leading to
Bi(di sk - dS (r = it = R)) = (1= ) (d{f(sK)Z —2d% (ry - ri1 = R) s+ d(r = ri - R)Z)
df (Brdy = (1 = Br)) (sx)* = 2d (Bxdff — (1 = i) (g = rx-1 = R) sk
" ( «(df) —ak a1 —ﬁ,()) (rg - rx1 —R) =0,

This presents two scenarios:

ﬁ > 1, the optimal solution for problem (3.11) is
(e -R) (= e —R)
Sk e +
dq df (Bxd’ — (1 - Bx))
\/ [Beds ~ (1= ]| (XY (Brdl = (1 = Bio) - d (Bu(af) - d (1 = o)
d¥(r, —re. =R —rk -
Ak i )+d (ﬁKdKrK G g)) i = o[ (e )t )
0 K¢y — — PK
df (ZK — g1 — R) (KK — g — R) \/ >
= + d¥dX — (d¥) ) (1 = Bx)
i s \JBdf = (1 =) et =ty )=o)
af s~ (ar)
=|r,—rg-1 —R L
= )dg di Bt -1

2) If ﬁ K dK < 1, the optimal solution for problem (3.11) is s; = +oo, indicating that
problem (3. 11) 18 unbounded.
In scenario (1), substituting 57 back into (3.9) provides the optimal investment strategy for period

K, and substituting into (3.11) yields the optimal objective value for problem (3.2). Specifically, the
optimal investment strategy for period K is

dK dK —Vw{_(dK)z_Fﬁ
x;{:(rk_rK—l_R)(F_]ﬂK F_lfK')( O ) d’ﬁ/ﬁ'fﬁK A

1
-dk  d¥
1 4 ]
Substituting &, = E [éx] — Re = fix into the above expression yields

K K _(1K)2
dK dK dOdZ_(dl) g
0 ! Bk dy

K
G )| e
1

i = (e = 7 — R) T i 1 1)(
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B
1-B
8 mversely measures diversification potential; a smaller d’g indicates higher diversification. When
k

< 1, the level of risk aversion By is insufficient relative to the market’s diversification potential

Remark 1. A higher By implies greater risk aversion. The ratio scales the investor’s risk aversion.

dk Thls imbalance results in unbounded leverage in risky assets to minimize risk or maximize returns,
causing the optimization problem to not have a finite solution (i.e., s, = +0). When dk > 1, risk
aversion dominates market conditions, ensuring the existence of a finite optimal portfollo

The expression for the optimal solution x} involves fix, which can be represented as fix = ug —Re.
The random sequence {u, k = 1,--- , K} forms a Markov chain with m possible states u', u?, - - -, ™.
Thus, the derived x}, varies with the state of 1, making this optimal solution a strategy that adapts to
prior information. Suppose an investor finds that the sub-strategy from time k to K does not achieve
optimality based on their initial decision at time k. In that case, it indicates that the initial investment
choice is not the most effective across the entire investment period.

Compared to static investment strategies that fail to adapt to market changes, the adoption of a
dynamic decision-making approach aligns more closely with real-world scenarios and represents a
superior strategy. However, in practice, market information evolves, and the information available is
continuously updated. If investors can swiftly adjust their strategies in response to market fluctuations,
they tend to achieve greater returns than relying on a fixed approach. From the above conclusions, the
optimal value for period K is given by

Vi (rg-1) = 4 f 7 %’(81( \/d(l)((s})z - Zd]K (I_’K - rg_q — R) S+ df(fK —Frg_q — R)2 —sx—R

dEds — ()

dK 2
) 16];31( \ d{){(s} B % (ZK ~TK-17 R)) + T(fk —Tk-1— R)2 - sy —R
2
_ diBx dXdf - (d{()2 (fk —rr_i — R) . dKdk - (de)z(rk o R)2 e
A df By (%)

_ / dy B (dé(df - (df)z) (ZK K-~ R)2 ( Brdf
B 1 —ﬁ]{\ (dK)2 ﬁKdK_(l _IBK)

_(V —l"[(l—R),BK dé(dé(—(d{()z_d{((fk—l’[(_l— deK d{()z(K_rK—l_R)_R
- 1_ﬁK fKZ(I)( -1 d([)< dK ﬁKdK_l
K 0 1-Bk
dEdE — (akY BN gk
= (rg = k-1 = R) Ve (dl{f) & -7 | R
= qx-1 - (rg — k-1 —R) - R, (3.12)
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where
P K
{ asas - (@) -1
QK—I - d([)( d([)( .

This notation is convenient and aids in deriving recursive relationships during the solving process.

When the investor is in period K — 2, for a given cumulative return rate rx_,, substituting (3.12)
into the objective function of problem (2.1) allows us to express the corresponding optimal investment
decision problem as

Vi1 (rx—2) =min { /—1 f’k;] X5 Doy = (g1 — Re) xx_1 — R+ E[Vi (wg_1)] (3.13)

st. rgo+(E [-fK—l])TXK—l +R (1 - x17}_16) =Ty

Substituting the expression Vi (rx-;) into the objective function of problem (3.13) yields

Vi1 (rg—2) =min 'BK—_I \/XIC_IFXK—l — (k-1 — Re)TxK—l —-R+qgx1-E [(KK —rk-1— R)] -R
YK-1 1 =Bk

s.t. rg_o+ (E [§K_1])Tx1<_1 +R (1 - xIT{fle) =Te

Incorporating the constraints into the above objective function, problem (3.13) becomes

V-1 (rk-2) = fxfll(l_lll { "lfk—ﬁ_,l(_l \/xng_ler—l = (Ug-1 — Re)TxK—l -R
+ k-1 (KK - (TK—z + (E [€x_1]) xg-1 + R(l - x,@_le)) - R) - R}

o Bk-1
= min

mir 1——,31(—1 XIY;_IFXK—l — (fig—1 + CIK—lf}(_l)TXK_l +gk-1- (L’K - "K—z) - 2R(gx-1+ 1) .

Letting s = xi_ | (fik-1 + gx-1€ _;) and employing a method similar to that used for the period
K problem, we can equivalently represent problem (3.13) as

. ) Br-1 T
V-1 (rg2) = min min \/1 e VAo T Xk-1 = Sk-1 + gk (ZK ”K—z) 2R(gg1 + 1)

S.t. rK_2+(E [é:K_l])T XK-1 +R(1 —xi_le) =Tr 1
x1T(—1 (g1 + qx1€'k-1) = Sk-1-

(3.14)
To this end, we first solve problem (3.15)
s.t. xz—lf/l(—l =rFg 1~ Tk2— R, (315)

xﬁ_l (fik-1 + g€ 1) = Sk-1-
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By finding the optimal solution x}_, (sx—1) for (3.15), we can derive x}_, (sx_DIT Xy_; (sx-1) and
substitute it into the objective function of problem (3.14), thus transforming it into an unconstrained
optimization problem to determine the optimal strategy for period K — 1. The Lagrangian function for
problem (3.15) is

L(xK—l’ Ak /15(_1) = xb Txg_y + A5 (SK—1 — xp_y (g1 + CIK—lf/K—l))

K-1 T g
+4; (ZK_l — Tk~ R—xg & K—l)'

Applying the first-order optimality conditions yields the following equations:

Ly, = 2Txg_q = AF " (figoy + qra€x ) = 57 =0, (3.16)
g€ ko = (g —rk2 = R) =0, (3.17)
Xy (g1 + qr1& k) = sg-1 = 0. (3.18)

From (3.16), we obtain

1 ~ 7 —1 ¢
xier = 5T (A (o + g k) + 457 ). (3.19)

and substituting (3.19) into (3.17) and (3.18) yields

~ ’ —_ 7] T — ~ !

(A (o + grard o) + A8 ) T (ks + qrad o) = 25501,
~ 7 — 7 T — /

(/1{(_1 (fix-1 + qx1€'g_) + '€ K—l) ey, = 2(EK_1 — k-2 —R)-

K-1 K-1 2 K-1) 3K-1 K-1 K-1) yk-1 _
{(a2 +2gk1a) " + qx_q, )/11 +(a1 + qx-14a, )/12 =2Sk_1,

K-1 K-1) 3K-1 K-17K-1
(al + gk-14, )/11 +a," A, :Z(EK_l—”K—z—R)-

K-1 K-1 2 K-1 _K-1 K-1\ [ k-1
Thus ay, ' +2qg_a7 +qx_,a, ay” +qg-1ag A _» Sk-1
’ ak=l + ak-! ak-! AL ro . —rxk——R)
1 qk-14y 0 2 K-1— "K=2

The Lagrange multipliers are

K1 K-1 (K1 K-1
(/ll ) B 2 ( a, (a1 +qx-14a, ) )( Sk_1 )
K-1)— 2 K-1 K-1 K-1 K-1 2 K-1 _ _ :
A5 ak-1ak-1 - (a{(—l) - (a1 +gx-1af ) af '+ 2gx_1af ! + g7 af vy —tk—2—R

Substituting into (3.19) and simplifying yields the optimal solution for problem (3.15):

(ﬂk—l +qx-1€ k-1 é:lK—l)(/lf_l)

. 1.
x;(_l (sg-1) ==T !

2 4
K1 - (dK‘l + qK_ldK_l)
(' (e 4 ae & -lg 0 1 0
( (fk-1 + qx-18"k-1) 3 K—l)(_ (dff—l + qK_ld{f‘l) dy "+ 2qx1df + gy df!
Sk-1
| 3.20
(f[(—l T2~ R) ( |
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02
Consequently,( K1 gk1 (a{(‘l) ) X (sg-) T, (sk-1) =

((ag Ysey — (a{( + qK_lag_l) ([K_l — Iy — R)

K-1 K-1 K-1 K-1
(az + 2qk- 1611 +CIK 190 )(’_’K_l —”K—z—R)—(al + qk-14y )SK—l)

(('UK : 'é‘giKl)leK 2 ))F_1 ((ﬂK—l +gx-1&y, f’K_1)

[ é“sK_l - (af_l + 6]1(—1616{_1) (L‘K_l —rg-2— R) ))
4 2gk_1af + qK \a K_l) (ZK—l — g — R) - (af‘l + qK_lag‘l) Sk-1

= [( +2gk- 1a1 b+ qK lag 1) (a{){_])z - ag_l(af_l + qK_lag_l)z] s%(_l

+2 [(af‘l + qK_]ag_l)3 - ag : ( Ly qk- 161(')< 1)(a§_] + 26]1(_1611 + qK lag 1)]

Te_y — Tk-2 —R) Sk_1 + [ag 1( 'y 2qk- la Uy qK 1a§ 1)2

2 2
K-1 K-1\( K-1 K-1
a,  + ZqK_la Ly qK 140 )(‘11 + gx-1a, ) ] (KK—l —Irg_n — R)

2
K-1_K-1 K-1 K-12 K-1 K-1
=la, a, (a1 ) ][ao S%_1 Z(al + gk-1ay, )(I_’K_l —Trk_a —R) Sk-1

1

2
+(a5 "+ 2gx a7 + g jal 1)(1_’1(_1 —rK_z—R) ]

Hence,

Xy (sxo) Ty (sgor) = dy sy = 2(df ™ + qondl ™) (e, — reea = R) sk

#(d +2qu1dE + G dE ) (e, — rea — R) (3.21)

Therefore, substituting (3.21) into the objective function of problem (3.14) reveals that
problem (3.14) is equivalent to the unconstrained optimization problem

sglllnhﬁKl(SK 1) = wh_ngl\/dK s | — dK1+q_1d )(Kl—er—R)sK_l

(dK '+ 2qx- 1dK : +qK ldk ])( g 1 — Tk- 2—R)2— Sk-1 + gk-1 (L’K—'”K—z)—zR(QK—l +1).

(3.22)
The first-order optimality condition for problem (3.22) is
’ _ ﬁK—l
hgy_," (sk-1) = ﬂ—l e,
d(l)(_ISK,l - (df_l + C]K,ld(l)(_l) (KK—I —Irg-—2 — R) 1o
\/dK ! dK "+ gk ,1d )(£K71 —rg-2 — R) Sg—1 + (dé(_l + ZqK,ldf‘l + qifldg‘l) (1"1(71 —rg-n — R)2
(3.23)
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Thus, we have
Bieor(dS sy = (a5 + qard™) (rye_y = ria — R))
= (1= B0 (dy sy = 2(af " + grad ™) (ry = ree2 = R) sk
# (57 2gk1df ™+ G (riy = 1 = RY )l (Brds™ = (1= ) sk
= 2(df ™ + qrardfT) (Brordf T = (1= Br-)) (e, — 52 — R) 55
+( kot (A7 + qeadf™) = (@57 + 2qx0dS + g dET) (1= B 1))( —rg2—R) =0,

We then consider two scenarios:
(1)When = ﬁ L gk !> 1, the optimal solution for problem (3.22) is

. (dK1+(]K 1d )(Kl_rKZ_R) (EK_l—rK_z—R)
K-1= +

K=1
4o di! \/ﬁK—ldé{_l - (1= Bk-1)

\/(d(l){_l (dg_l +2qgadf ! + ‘Ii—ld([)(_l) - (d{(_l + CIK—ld(I)(_l)z) (I =Bk-1)

_ (d{(_l + QK—ld(I)(_l) (KK_l —rg—2— R)

dK—]
0
\/dK—l (dK—l 200 1 dE 4 2 dK—l)_(dK—l + dK—1)2
0 2 qk-14, dk-1% 1 qk-1d,
" Br_1d5™! (EK*1 L R)'
K-1 _|Bk-i
do (1—ﬁK(11) -1
(2) When 2= . g5~! < 1, the optimal solution is sj_, = +co, indicating that problem (3.22)

is unbounded.

In scenario (1), substituting s%_, into (3.19) yields the optimal investment strategy for period K—1,
and substituting into (3.14) provides the optimal objective value for problem (3.13). Thus, the optimal
value for period K — 1 is

V1*<_1 (rg-2) =

- - - - _ - 2 _ dK*I
(ZK—l LS R) \/d(l){ ! (d§ '+ ZCIK—ld{( '+ q%(—ldé{ 1) - (d{{ '+ CIK—ld(I){ 1) 'Bf—lﬁ,{o,l -
d(’f‘l

(dK1+q_]d )(K]_FKZ_R)
dKl
:(KK_l_rK—Z_R)‘

2 K-1
Vs (5 + 2™ + g i)~ (0 + g™ N 1 - — g
dK—l
0

+ gk-1 (IK - rK—Z) - 2R(gg-1 + 1)

+ gk-1 (ZK - ”K—z) —2R(gk-1+ 1)
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1
=dqk-2- (ZK_I - ”K—z) +gk-1 (rk = rg-2) — 2R (5(]1(—2 +4k-1t+ 1) )

where gx_, =

Br-1d5!
1-Bk-1

2
\/dg—‘ (d5~" +2qx1d5 + % dK) = (dX! + gy df)
dK—l
0

1= dE T = gy dE

b

Jasas - (@) VR -1 ar

dy dy

dk-1 =

The optimal investment strategy for period K — 1 is

Xg_1 = (ZK_l —Tk-2— R) (F_l (k-1 + qr-18"k_1) F_l‘fll(—l)
dk-! — (X" + ggo1df)
_(d{(—l n qK_]dK—l) dK—l " ZqK_]dK—l n q%_ldl(—l

(d{(_]‘*'tﬁ(—ld(l)(_]) N \/dK I(dK '+2q1< 1dK I+ql( 1d([)( I) (dl( I+qK 1dK I)

KT
dy JK-1 Bx—ldo -
0 (1-Bk-1)

1

-1

By substituting & = E [£x] — Re = jig into the expression, we find

Xy g = (KK_l &) —R) I fig-y (1 + gk-1 1)
dk! — (%" + gx_1dE)
—(df_l +qK_1d(])<_l) d§_1 +2qK_1df_l +q%(_ldg_l

(@ g™ N 20t i df ) i)

K1 K1
dy JK-1 Br-19)
0 (1-Bk-1)

1

-1

4. Optimal strategies for the multi-period robust portfolio selection model

We apply the same method from period K down to period 1 to solve the optimal investment
decision problems for each subsequent stage. Theorem 1 summarizes the resulting optimal strategies.

Theorem 1. For allk =1,....K, let&, = [fk] Re, d = (&)'T7'¢,, d = (&) T 'y, d =
k
BTy, d = k (k)z, d"

a4 e

2 2 —
\/dz+1 (dz+1 +2d1+1 Z qj+dz+1( Z ql)] (dz+1 +dz+1 Z ql) ﬁlil[;l(il —

Jj=i+l Jj=i+l Jj=i+l

i =

i+1
dO
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dl;rl ( Z q;) dz+l

j=i+1

i+1
dO

If % . df) > 1 forallk = 1,...,K, then, given a cumulative return ry_,, the optimal objective
value and optimal investment strategy at stage k are

V(”kl)—qu r—rkl [Z(] k+1)gj+K— k+1]

Jj=k
and
X ko k!
ol do - (dl + do ]gk qj)
X = (Kk — Ig-1 — R) F_lﬁk (1 + Zk dj 1) K-1 K-1 k-1 \?
= —(d’l‘+d’5 ) qj) ds +2d; 3, f]j+d]5(_z Clj)
Jj=k J=k j=k
— - 2 - 2
[rsn) afan’y qf*d"['{zl qf) Hota50)
UL — =
dt By ’

1

respectively. If f—%k -df < 1 for some k (1 < k < K), the optimal solution at period k diverges to infinity,
making problem (2.1) unbounded.

Proof. Assume the optimal value and solution hold at stage k + 1. At stage k, given the cumulative
return r,_;, the corresponding optimal decision problem is expressed as

Vi (re-1) =glei1§}1 \/1[_3—2,( xITxp — (u — Re) xe — R + g (Zk+1 -E [rk]) +

+qx-2(re_, —Elnd) + gx1 (rg — Elned) - Z(] kg1 + K-k 4.1)

Jj=k+1
st. rey + (B[&]) x + R(l - x,{e) =r,.

Substituting the constraints into the objective function of the problem (4.1), we obtain

Vi (rier) = meri \/%\/x,fl"xk — Al X + qi (£k+1 - (”k—l + (B[&]) x + R(l - x,fe))) +
+ qk- 2( Fk-1 (rk—l +(E [fk])Txk + R(l - x,fe)))
+61K1(1< (rk1+(E[§k]) xk+R(1_x’{e)))

—R[Z (]—k)qj_1+K—k+l)

J=k+1
. ~ T
= ){Ig[{l \/—ll_gkﬁk x,{l"xk — (fx + (g + Qa1 + -+ qr-1) EL) X + i (£k+1 - rk—l) +--
k
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K
+ gx_2 ([K_l — rk_l) + gk-1 (EK - rk_l) —R( Z (j—Kkgj-1 +K—-k+ 1],

Jj=k+1

with s, = x,{ (fx + (g + Gre1 + - -+ + gx-1) &) showing that problem (4.1) is equivalent to

. . ﬁk T
min min ,/—Jx Ix — s + k(r —rk_1)+~--
skeR xieR™ 1 —ﬁk k T\ Lkt
K

+C]K_2(£K_1 —rk_1)+q,(_1 (L'K—rk_l)—R[Z (j—k)q]'_l +K—-k+ 1]

Jj=k+1
site X (fe + Qe+ Gt + -+ gr-1) &) = Sk

To this end, we consider the following problem:

min x,{l“xk
xpER”
Ter _
st. x&r=r.—no—R,
, K-1
- ;)
X Mk + 'Zk CIjgk = Sk-
J:

The Lagrangian function for problem (4.3) is

K-1

L(xk, A, /l';) =x T + A [sk - x; [ﬂk + Z qu'k)) + A5 (fk —rIe1—R- x,{gk) .

=
Using the first-order optimality conditions, we derive the following equations:
K1
Ly = 2T~ 4) [ﬁk + Z qf'flk] - L& =0,
=k
&y - (Kk — Ty — R) =0,

K-1
xXp (ﬁk + Z ij,k) -5t =0.

Jj=k

From (4.4), we have
. ) K-1 , ,
J=k
substituting (4.7) into (4.5) and (4.6) yields

. K s 2 s
a2+2alij+a02qj a1+aOZqJ- o s
Jj=k Jj=k Jj=k 11 :2 k
A r,—ri1 —RJ’
k k k 2 L
al +Clo Zk q] aO

4.2)

4.3)

(4.4)

4.5)

(4.6)

4.7)
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Thus, the Lagrange multipliers are
k ko ok
o 5
N B RS e o R

Substituting A%, A% into (4.7) and simplifying gives the optimal solution for problem (4.3):

X, (sp) =
k S
5 % - (d1 +do Jgk CIj) Sk
(r-l (ﬂk vy q,f'k) r-lf'k) . IS ( ) .
J=k ko gk k k k r,—r-1—R
_dl+d0 qu] d2+2dlij+d0 qu
= = =
4.8)
Therefore,
K-1
(x (sk))TFxZ (s¢) = (dk + d Z qj] — Iy — R) Sk
j=k
K-1 K-1 ) (4.9)
+ d’2‘+2d’f2qj+d"[ ] (r, = re1 =R
Jj=k Jj=k

Substituting (4.9) into the objective function of problem (4.2) transforms the problem into an
unconstrained optimization problem

: ,_ B
I;l;clellrel hg, (s¢) = e
K-1 K-1 k-1 \? 5
dgsi - Z[d’]‘ + dé qu] (l_’k — Fpeq — R) Sk + d’z‘ + 2d’1‘ Z q;+ dk(z qj] (fk — Iy — R) — Sk
=k =k =k

K
(j—k)qj_1+K—k+1].
k

(4.10)

+ gy (fk+1 - ”k_1) + o+ gro (fk—l - ”k—l) + gk-1 (ZK - i’k_1) - R(
Jj=k+1

At this point, we consider two cases: (1) When db > 1,

(dk+a’kkz_:lq-)(r -7 —R)
SRRy o (Kk—”k—l—R)

*

s; = g7 +
0 di \Bdl — (1 = BY)
K-1 k-1 \? k-1 \?
\(dg[d’2‘+2d’{2qj+d§( qj) ]—[d’f+d’5 q,.) ](1—ﬁk),
J=k j=k j=k
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that is

P
(dl +d, Zk qj) (zk — Ty — R)
]:

Sy = 7
0

k| g _— s ’ Ky ’

d; (dz +2d, Zk q;j* do( Zk Qj) ) - (dl +d; Zk ‘]j)

J= = J=
+ - (,_,k — Tl — R).
dk | 2%
0N (1-80

(2) When _—ﬁ d" < 1, the optimal solution for problem (4.10) is s; = +oo, indicating it is
unbounded. In case (1) substituting s; back into (4.8) provides the optimal investment strategy for
period k, and substituting into (4.2) gives the optimal objective value for problem (4.1). Thus, the

optimal value for period & is

V: :(fk—rk_l —R)

k| gk - = ’ k gk Bidy ko gk
dy | d; + 2d, ]gk qj+dg jgk qi| |- \d +d; Z a4l Nig — 1 di+d Zk q;
= = J=

d d

+Qk(£k+1—rk—1)+"‘+6]1<—2(£1<_1—rk—1)+611<1(r _rkl [Z(] kgj-1 +K—-k+1

j=k+1

= Q-1 (rk = Fe-1 = R) + 4 (rk+1 - rk—l) + gk (rK | rk_l)

+C]K1(V _rkl [Z(J k)gj-1 + K — k+1]

Jj=k+1

where g, =

A Ko s 2 R 2 il k-1
dy|d5 + 2d; /Zk qj+ do(jzk qj) - (a’1 +dg jZk qj) 5~ 1 df +Rd; Zk q;R™*
j= = = =

dq dq

The optimal investment strategy for period k is

K-1
d (a e’y o)
* — | ~ ./=
X, = (Kk — I — R)r ]/Jk(l + gk qj' 1) K-l K1 K1 2
—(d’l‘+d’(§ 5 q,-) & 42 q,.+dg(z qj)
j=k J=k Jj=k
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K o K 5 2 e 2
(d1+do ) qf) do| o +2dy 2 ajrdy| X 4j) |=|di+dy 2 4
=k =k J=k =k

+

k -

4 PN
0V (1-8¢)

1

Thus, by employing dynamic programming, we can recursively solve problem (2.1) to obtain the
optimal objective values and strategies for period k (where k = 1,...,K) as

Vk(Wkl)—ZC], r—rkl (Z(] k+1)qj-1+K - k+1]

Jj=k
Here,
2 2 B di+1
dz+1 (dz+1 +2an+1 Z q; + dz+1( Z q;) ]_(d11+1 dz+1 Z qJ) 1111[3,21 _
j=i+l Jj=i+l j=i+1
qi = d6+1
- K-1 .
dl1+ +(Z qj)d(’)+
Jj=i+1
B 4+ ’
0
and
k kLo e
K-1 dy - (d1 +d, Ek qi)
xk_(k r"l_R)r_lﬂk(l_i_ngj 1) K-1 K-1 k-1 \?
* e aga) @G aral5o)

_ _ _ 2 _ 2
d*+dk Kzlq- d¥| dk+2a* KZ]q'+d" Kzlq« —| d+dk Kzlq-
1 0 jart J o 2 1j=k J 0 et J 1 0 J

+ - -
dk ,M—l
0V (1-5p)

k
dO

O

With the analytical solution provided in Theorem 1, the optimal investment strategies can be
directly determined for portfolio selection at each stage within a robust optimization framework.

5. Numerical results

Our dataset consists of five stocks (NVDA, DFS, MTCH, WBA, and GOOGL) from https:
//finance.yahoo.com. These stocks were selected for sectoral diversity across technology, finance,
healthcare, and consumer discretionary sector while also exhibiting high liquidity and non-Gaussian
return characteristics, as validated by the Shapiro-Wilk test in Table 1. It includes the weekly closing
price of these stocks from January 5, 2014, to January 7, 2024, covering diverse market regimes,
such as bull markets and the COVID-19 crash. This selection ensures rigorous validation of the

AIMS Mathematics Volume 10, Issue 4, 9974-10001.


https://finance.yahoo.com
https://finance.yahoo.com

9995

regime-switching CVaR model and aligns with our focus on distributionally robust optimization under
uncertain return distributions. Figure 1 presents the time series plots of the original price data. This
study adopts the robust CVaR as the risk measure to solve the robust optimization problem, aiming to
minimize risk while satisfying the minimum target return rate constraint.

© NVDA

DFS
150 © MTCH
J WBA

GOOGL

100 o

NVDA, DFS, MTCH, WBA, GOOGL

d
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Date

Figure 1. Time series plots of the dataset.

We computed the logarithmic return rates for all five stocks. Table 1 presents the central moments
and Shapiro-Wilk test results for the selected assets. Based on the S-W test results, the P-values in
the last column of Table 1 were all below 0.01. Thus, the null hypothesis of normality is rejected,
indicating that the data do not follow a normal distribution.

Table 1. Moments and KS test statistic.

mean Var skew kurt S-W test P-value

NVDA 0.0113 0.0036 0.4364 2.005 0.9771 0.0000
DFS 0.0031 0.0034 0.5131 27.1993 0.7765 0.0000
MTCH 0.0032 0.0040 0.3137 3.7597 0.9564 0.0000
WBA -0.0010 0.0016 -0.0633 1.3410 0.9842 0.0000
GOOGL 0.0038 0.0014 0.6776 4.5066 0.9609 0.0000

We aim to dynamically adjust asset allocation based on capital market conditions. The underlying
regimes are predicted by a Markov chain with two regimes, which are commonly interpreted as a bear
market or a bull market, denoted as U = {0, 1}. By incorporating regime switching, the model can
more accurately reflect market dynamics.

Using historical data, we identify market regimes based on a threshold criterion. Specifically, we
set a threshold of 0.01, meaning a return above 1% signifies a bull market. Asset returns, volatility,
and other parameters fluctuate between the two regimes. We estimate the expected mean returns and
covariance matrices for each regime based on historical data, as shown in Eq (5.1) to (5.4). The

AIMS Mathematics Volume 10, Issue 4, 9974-10001.



9996

confidence level By is set to 0.95, which is assumed to be the same across regimes. The minimum
required return 7, is set to 0.03, and the risk-free rate R is set to 0.02.

1’ =107%(0.7843 -0.5138 —1.1134 —0.8089 0.2239)T, 5.1

' =107%(0.9948 0.3196 0.4803 0.0012 O.3353)T, (5.2)

0.6154 0.3471 0.3945 0.0384 0.2318
0.3471 1.3260 0.4550 0.2238 0.2317
I’ =1072[0.3945 0.4550 0.9793 0.1117 0.2020{, (5.3)
0.0384 0.2238 0.1117 0.3897 0.0634
0.2318 0.2317 0.2020 0.0634 0.2938

27641 0.5327 0.8717 0.4835 0.7327
0.5327 0.8597 0.2803 0.4115 0.3851
' =107]0.8717 0.2803 2.2574 0.3398 0.5778]. (5.4)
0.4835 0.4115 0.3398 0.9886 0.3319
0.7327 0.3851 0.5778 0.3319 0.9563

By analyzing regime transition frequencies, we compute the transition probability matrix

_(0.5823 0.4177
- 10.6390 0.3610)

The optimal investment strategy can be determined using dynamic programming, which
recursively simplifies the problem to reduce computational complexity, particularly when state
transitions exhibit Markov properties. The state variables include the current market condition and
current wealth levels. The decision variable is the portfolio adjustments at each stage. State transitions
are determined by the transition probability matrix of the market states, while the objective function
represents the minimum risk from the current stage to the final stage.

A robust optimization model that minimizes risk under the worst-case scenario is applied at each
stage. Based on the current state and decision-making, the optimal portfolios for the next stage are
computed while considering the state transition probabilities. Thus, embedding the robust optimization
problem within the dynamic programming framework is necessary.

By recursively decomposing the multi-stage problem through dynamic programming, the robust
optimization subproblem is solved at each stage by calculating backward from the final stage k = K
to the initial time k = 1. The proposed framework’s time complexity is O(K - m? - n*), where K is
the number of periods, m is the number of regimes, and » is the number of risky assets. Dynamic
programming avoids the exponential explosion of the scenario tree, enhancing the computational
efficiency of the multi-stage robust portfolio optimization problem.
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Table 2. Optimal portfolios under DP.

Risk
Period Regime NVDA DFS MTCH WBA GOOGL Asset

Weight

0 1 0.2000 0.2000 0.2000 0.2000 1.6912x 107 0.8000

1 0 0.2000 0.2000 1.1299 x 1071 1.2979 x 1071° 2.3682 x 1071 0.4000

2 0 3.2500 x 1071 0.2000 6.0090 x 107! 0.2000 0.2000 0.6000

3 0 1.2931 x 1077 4.6059 x 1071° 0.2000 9.7313 x 1071° 0.2000 0.4000

4 1 0.2000 1.0664 x 107 9.9738 x 1071° 0.2000 0.2000 0.6000

5 1 0.2000 0.2000 0.2000 1.7060 x 10™'' 3.3000 x 10™'"  0.6000

6 0 0.2000 48124 %107 3.5599x 107" 1.1482x 10™° 3.9763 x 107" 0.2000

7 1 2.5804 x 1071° 0.2000 0.2000 0.2000 9.1840 x 1071 0.6000

8 0 0.2000 0.2000 1.8773 x 107° 0.2000 0.2000 0.8000

9 0 0.2000 1.1065 x 1071 9.4690 x 1071 3.4756 x 1071° 0.2000 0.4000

We develop an investment strategy that dynamically adjusts asset allocation in response to regime
transitions. Table 2 presents the optimal portfolios across different stages, demonstrating a dynamic
adjustment strategy that minimizes risk while satisfying return constraints. The initial market state is
assumed to be a bull market with an initial wealth of 10.0. At each stage, u; is dynamically updated,
and the target value V; and strategy are adjusted accordingly. The total number of stages is set to
K = 10. The sum of portfolio weights in each row is less than 1.0 due to the inclusion of the risk-free
asset. The changes in portfolio allocations across different stages are examined, with allocations to
certain assets increasing while others decrease, reflecting the model’s expectations of regime switches.

Building upon the optimal portfolios derived from the dynamic programming framework as
detailed in Table 2, we further evaluate the strategy’s efficacy and robustness. Key performance
indicators, including the Sharpe ratio (SR), compound annual growth rate (CAGR), maximum
drawdown (MDD), and turnover ratio (TR), are reported in Table 3.

Table 3. Performance measures of the portfolios.

Periods SR CAGR MDD TR
10 1.1235 3.2659% 12.7198% 37.1429%

The strategy exhibits robust performance over a 10-period investment horizon, achieving a
Sharpe ratio of 1.12 and an annualized CAGR of 3.27%, indicating consistently superior risk-adjusted
returns and stable growth. The maximum drawdown of 12.72% demonstrates effective downside
risk management, while the turnover rate of 37.14% indicates that a balanced portfolio rebalancing
corresponds with transaction costs. These performance measures provide empirical validation that our
model effectively addresses the multi-stage robust portfolio selection problem under regime switching.

6. Conclusions
In this study, we propose a dynamic multi-period robust portfolio selection framework that
integrates regime-switching techniques and distributionally robust optimization under CVaR risk

measures. By refining the uncertainty set with known first and second moments, we construct a
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dynamic model that captures the dependencies between consecutive periods. Our approach employs
dynamic programming to address the robust optimization problem, ensuring that the resulting optimal
investment strategies adapt dynamically based on the state of the uncertainty set. Compared to
static strategies that fail to respond to market fluctuations, our approach better aligns with real-
world conditions and offers a more effective solution. Leveraging convex duality and dynamic
programming, we derive analytical optimal investment strategies that dynamically adjust allocations
based on regimes. This framework develops multi-period portfolio optimization by integrating
dynamic uncertainty modeling with robust risk management.

Although we have analytically solved the multi-stage robust portfolio selection problem, the
complexity of the problem increases with the number of stages. We assume the Markov transition
matrices are time-homogeneous, while structural breaks on asset returns vary across markets.
Developing a robust adaptive transition estimator will be a potential research direction. There
remain numerous questions for further study. This study considers the case where the distribution
of asset returns is uncertain. Future research could extend this framework to scenarios where both
the distribution and mean of the return are uncertain. Approaches employing CVaR and VaR as
risk measures would be valuable, especially in scenarios where the mean belongs to an ellipsoidal
uncertainty set or a Wasserstein ambiguity set. Identifying multi-period risk measure models that not
only have a strong financial and economic foundation but also ensure practical applicability remains
a critical research area. Future work will apply Dempster-Shafer [37] and multi-scale fusion [38]
to optimize dynamic CVaR in regime-switching portfolios. Furthermore, enhancing computational
efficiency in solving multi-period portfolio selection problems through stochastic programming and
other relevant methodologies, such as PMCTNN [39], will be crucial for advancing multi-period
investment strategies.
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