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Abstract: Trees play a vital role in the climate by producing oxygen, supporting ecosystems, and
benefiting communities and the environment. They are essential for maintaining ecological balance
and overall ecosystem health. However, beetle infestations pose a significant threat to forests, causing
severe ecological and economic damage, particularly when aggressive species, such as spruce and
mountain pine beetles, heavily attack trees. These infestations can lead to widespread tree mortality and
long-term environmental consequences. In this study, we highlight the importance of tree plantations
and developed a mathematical model to analyze tree-beetle interactions, incorporating the effects of
wildfire and harvesting. We examined equilibrium points, their stability, and the basic reproduction
number to understand beetle population dynamics. Additionally, we introduced an optimal control
strategy to mitigate beetle attacks, incorporating a pesticide variable into the model to reduce beetle
populations. The model was numerically solved to generate visual representations, and optimal control
strategies were applied to minimize the impact of beetle infestations using pesticides. Sensitivity
analysis was conducted to explore factors influencing beetle reproduction, particularly their preference
for trees with larger diameters, thicker bark, and extensive phloem, which enhance brood survival and
growth. This study underscores the urgency of implementing effective beetle management strategies
to protect and restore forest tree populations, ensuring long-term ecosystem sustainability.
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Abbreviation

Terms Description
IPM Integrated Pest Management.
GDP Gross Domestic Product.
CIP Country Investment Plan.

1. Introduction

Beetle infestations are primarily caused by certain species of beetles that burrow into tree bark,
creating tunnels and disrupting the tree’s vascular system. Different beetle species tend to specialize
in particular types of trees. For instance, emerald ash borers predominantly attack ash trees, while
pine beetles target pine trees. Bark beetles, a family of insects known for infesting multiple tree
species, can cause extensive damage in forests. Their larvae feed on the inner bark (phloem) and
outer sapwood, interfering with the tree’s ability to transport water and nutrients. Without timely
intervention, this damage weakens the tree, making it more vulnerable to infections, environmental
stressors, and ultimately, tree death. In cases of severe infestations, beetle outbreaks can lead to
widespread tree mortality, particularly in forested areas where beetles rapidly spread from tree to tree.
Effective management strategies include tree removal, tree traps, insecticide applications, and cultural
practices that promote tree health. Early detection and intervention are crucial in minimizing tree
damage and controlling beetle populations. To ensure long-term beetle management and forest health,
Integrated Pest Management (IPM) strategies combining multiple control methods may be necessary.
As noted by Alexander et al. (1977): “Trees hold profound significance for human beings. The
importance of ancient trees is deeply rooted in our collective consciousness; they often symbolize the
wholeness of personality in our dreams. The trees we cherish create unique spaces—places of solace,
passage, and connection. They have the power to shape social environments in diverse ways”.

Variations in climate affect the population dynamics of bark beetles because temperature affects
the number of generations they develop, how long they take to reproduce, how many times they die
during the winter, how far they can fly, and how well they can migrate [1]. The European spruce bark
beetle primarily targets Norway spruce, potentially affecting over 25% of Europe’s current Norway
spruce growth population [2]. Drought in recent years has greatly increased the amount of insect-
induced tree mortality, which has disastrous consequences for the world’s biogeochemical cycles,
ecosystem function, atmospheric processes, and the availability of sustainable resources. However, the
physiological relationships among insect outbreaks, drought, and tree defenses are poorly understood,
which makes it challenging to predict tree mortality in the face of continuous climate change [3]. Over
the past 50 years, the European spruce bark beetle, the most commercially significant pest in Europe,
has ravaged approximately 150 million square meters of forest. A destructive insect pest common in
coniferous forests across Europe [4]. The way that this complex of phloem-feeding insects and their
microbial partners partitions the belowground resource depends on the anatomy and physiology of the
hosts. The red turpentine beetle, Dendroctonus vallens LeConte, reproduces in both living and dead
trees [5]. For a year, a single lodgepole pine is usually used as the brood tree by mountain pine beetles
in British Columbia [6]. By increasing the potential for acidification, the harvesting of trees in forests
has a severe impact on the richness of animals and birds living there as well as the health of the related
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aquatic ecosystems [7,8]. A significant loss of habitat for a wide variety of trees and animal species can
result from forest fires. If a species cannot adapt or find a suitable home elsewhere, it may experience
population decreases or perhaps local extinction. This could throw ecological interactions off balance.

We can learn about the bifurcation analysis of the spruce budworm model and the population model
with harvesting in other studies [9, 10]. Decisions about forest management are usually influenced by
the mountain pine beetle population’s size, power, and range, as shown in [11]. Uncontrolled flames
that spread quickly through vegetation are known as wildfires, and they typically occur in grasslands,
forests, or other wilderness regions. The impacts of wildfires—both positive and negative—on the
environment, economy, and society are explored by Gill et al. [12]. In a heterogeneous environment
where functions vary spatially over time, the population dynamics of a single species under the
influence of harvesting are analyzed by Kamrujjaman et al. [13]. Harvesting activities can be
considered as “experimental manipulations” of entire ecosystems, as they often encompass large areas,
including water catchments and wildlife habitats [14]. A simplified Lotka-Volterra model has been
developed to study the dynamics of tidal forests and wetlands. The Sundarbans, the largest mangrove
forest in Bangladesh, faces significant environmental threats and hazardous events, as discussed
in [15–17]. Additionally, insights into forest ecosystems governed by an age-structured parabolic-
ordinary system can be found in other studies [18].

In this paper, we examine beetle infestations in Bangladesh, along with pine beetle attacks in
forests influenced by two key disruptions: harvesting and fire. We develop a mathematical model
to analyze tree-beetle interactions while incorporating the effects of harvesting and fire. Additionally,
we introduce a pesticide component into the model as a control measure to mitigate beetle populations.
Our objects of the study are:

• Conducting a study in Bangladesh for beetle attacks in forests.
• Describing the negative effects of beetle attack, harvesting and fire on forest.
• Analyzing the steps to control beetles.
• The use of pesticide to control beetle outbreak.

The remainder of this paper is structured as follows: In Section 2, we discuss beetle infestations in
forests in Bangladesh. In Section 3, we present the development of a mathematical model for beetle
attacks on trees, incorporating the effects of harvesting and fire. In Section 4, we analyze the model
by determining equilibrium points, their stability, and the properties of the basic reproduction number.
In Section 5, we provide numerical solutions and visual representations for both the beetle-free and
endemic stages. In Section 6, we examine strategies for controlling beetle populations. In Section 7,
we explore optimal control strategies, including the introduction of a pesticide variable into the model
to mitigate beetle outbreaks. In Section 8, we conduct a sensitivity analysis of the model with pesticide
intervention. Finally, in Section 9, we summarize our findings and conclusions.

2. Case study in Bangladesh

Bangladesh, with 160 million inhabitants and 147,570 km2 of land, is the eighth most populous
country in the world. There is a lot of room for the forestry sector to mitigate the effects of climate
change. Gross Domestic Product (GDP) derived from the forest sector, which employed 2% of the
labor force. This is the main source of the carbon sink. The way that trees lessen the effects of cyclones
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and storm surges has already been shown. In terms of providing for their needs, it is also crucial for the
locals that reside near woodlands. In addition, the country’s Gross Domestic Product (GDP) derived
from the forest sector, which employed 2% of the labor force. The substantial amounts of fuel wood,
fodder, small timber and poles, thatching grass, medicinal plants, and other forest produce that are
extracted both legally and illegally are not included in the GDP list, which gives the impression that
the forest sector’s contribution to the GDP is low. One of the major barriers to the growth of forest
species nurseries and plantations is pest (beetle) and disease. When creating the plan to protect forest
from beetle, consideration was given to the national act as well as laws, regulations, policies, and
guidelines that dealt with issues related to disease, pest, and chemical control. The plan has been
prepared by examining a number of national regulatory mechanisms, such as the Forest Act of 1927,
the National Forest Policy of 2016, the Forestry Master Plan of 2017–2036, the Forest Investment
Plan of 2017, and the Bangladesh Country Investment Plan (CIP) for forests. The resources listed
above comprise the following: Environment, Forestry and Climate Change (2016–2021), Seventh
Five Year Plan (2016–2020), National Biodiversity Strategy and Action Plan (2016–2021), National
Conservationation Strategy, 2017 (Draft), National Agriculture Policy (2013), National Integrated
Pest Management Policy (2002), National Crop and Forest Biotechnology Policy (2012), Pesticide
Ordinance (1971), amended Pesticide Rules (1985), Plant Quarantine Act (2011), and the Destructive
Organizations Act. The plan included a list of the primary diseases and pests that impact nurseries,
plantations, and storage facilities, along with suggestions for integrated pest management (IPM)
methods to mitigate their impacts [19].

3. Mathematical model

A system of ordinary differential equations is employed to illustrate the dynamics of the model,
which shares similarities with the Modified Predator-Prey Model with Non-linear Incidence [20, 21].
This model, known as the “Beetle-Tree Interaction Model,” considers two major disruptions affecting
the forest ecosystem: Harvesting and fire. Harvesting refers to the removal of a certain population of
trees at specific intervals, making it crucial to analyze its impact on forest dynamics. On the other
hand, forest fires, often triggered by extreme heat, pose a significant threat to trees and can drastically
alter the ecosystem.

The mathematical representation of the model is given by:
dM
dt

= rmM
(
1 −

M
km
− gk

N
r + N

)
− ELM − P

M
km

QmM, t ≥ 0,

dN
dt

= rnN
(
1 −

N
kn

)
−
α (1 − bE − cQm) knN

1 + γknN
− QnP

M
km

QmN, t ≥ 0,
(3.1)

with initial conditions,

M(0) = M0, and N(0) = N0. (3.2)

The state variables in the model represent:

• M: The density of trees.
• N: The density of mountain pine beetles per tree.
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The parameters governing the dynamics of the system are as follows:

• rm: The intrinsic growth rate of trees.
• rn: The intrinsic reproductive rate of beetles.
• r: The critical attack density of beetles.
• km: The carrying capacity of trees.
• kn: The carrying capacity of beetles.
• gk: The fraction of trees killed by beetles.
• α: The defensive rate of trees.
• γ: The reciprocal of the beetle density scale at which tree defense reaches saturation.

The harvesting-related parameters include:

• E: The proportionate loss of trees due to harvesting.
• L: The average intensity rate of the tree’s response to harvesting.
• b: The impact of harvesting on tree defense against beetles.

The fire-related parameters are:

• Qm: The proportionate loss of trees due to fire.
• P: A constant representing the average intensity rate of the tree’s response to fire, which depends

on different thermogenic characteristics.
• P M

km
: The probability or frequency of fire, assumed to be related to the density of trees in the forest.

• P M
km

Qm: The fire strength, which determines additional tree mortality and is influenced by both
fire intensity and tree density.
• Qn: The proportionate loss of beetles due to fire, correlated with the beetle density per tree.
• c: The impact of fire on tree defense against beetles.

This formulation accounts for the interplay between tree population dynamics, beetle infestation,
harvesting, and fire, incorporating both ecological and external factors that influence forest health and
beetle population stability.

In the absence of harvesting, i.e., when E = 0, there is no proportionate loss of trees due to
harvesting. Similarly, if there is no fire, meaning the proportionate loss of trees due to fire is also
zero (Qm = 0), then the additional mortality of trees caused by fire is eliminated. As a result, when
both the proportionate loss of trees due to harvesting and fire is zero, the proportionate loss of beetles
due to fire also becomes zero (Qn = 0).

Under these conditions, the original model described by Eq (3.1) simplifies to the following form:


dM
dt

= rmM
(
1 −

M
km
− gk

N
r + N

)
, t ≥ 0,

dN
dt

= rnN
(
1 −

N
kn

)
−

αknN
1 + γknN

, t ≥ 0.
(3.3)

In addition, when harvesting and fire are present in the system, they are represented by E , 0 and
Qm , 0. However, if the effects of harvesting and fire on the tree’s defense mechanism are absent, i.e.,
b = 0 and c = 0, then these factors do not influence the tree’s ability to defend against beetle invasion.
Table 1 provides a summary of all variables and parameters of the main model.
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Table 1. Model parameters and their descriptions.

Notation Unit Definition
M tree The density of trees
N beetles/tree The density of mountain pine beetles per tree
rm (time)−1 The intrinsic growth rate of trees
rn (time)−1 The intrinsic reproductive rate of beetles
r beetles/tree Critical attack density of beetles
km tree Carrying capacity of trees
kn beetles/tree Carrying capacity of beetles
gk unitless Fraction of trees that are killed by beetles
α tree.(beetles.time)−1 Defensive rate of trees
γ (beetles/tree)−2 Reciprocal of the beetle’s density scale at which tree’s defense

reaches saturation
P (time)−1 The average intensity rate of the tree’s response to the fire
Qm Unitless Proportionate loss of trees for fire.
Qn Unitless Proportionate loss of beetles for fire.
L (time)−1 The average intensity rate of the tree’s response to the harvesting.
E Unitless Proportionate loss of trees for harvesting.

3.1. Dimensional analysis

A dimensionless model is derived by rescaling the variables and parameters of a system to eliminate
physical units. This transformation simplifies the mathematical analysis and enhances the model’s
generality by reducing the number of independent parameters. By minimizing the number of governing
parameters, dimensionless models make the system more manageable for analysis and numerical
simulations. Since the model is independent of specific units, it facilitates comparisons across-
different systems and experimental conditions. Furthermore, dimensionless equations often lead to
better-conditioned numerical solutions by avoiding extreme values in computations. For clarity and
simplification, we introduce the following dimensionless variables and parameters, resulting in:

m =
M
km
, n =

N
kn
, re =

rn

rm
, qn =

QnQmP
rm

, qm =
QmP
rm

, qs =
EL
rm
,

k = gkkn, γ1 = γk2
n, τ = trm, αn =

α (1 − bE − cQm) kn

rm
, (1 + qm) < qn, qn > qm.

Therefore, the dimensionless model is defined as follows:
dm
dτ

= m
(
1 − m −

kn
r + knn

− qs − qmm
)
, τ ≥ 0,

dn
dτ

= n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]
, τ ≥ 0,

(3.4)

with initial conditions,

m(0) = m0, and n(0) = n0, where, 0 ≤ m ≤ 1, and 0 ≤ n ≤ 1. (3.5)
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4. Steady state and stability analysis

4.1. Presence of both disruptions: Harvesting and fire

Beetle attacks occur in trees of any forest. To understand this interaction, we develop a model called
the “Beetle-Tree Interaction Model”, which describes the relationship between beetles and trees in the
forest. The forest ecosystem is affected by two major disturbances: Fire and harvesting. Harvesting
refers to the removal of multiple trees at once, while forest fires can be triggered by excessive heat,
causing significant harm to trees. When both harvesting and fire impact the forest, the model is
modified accordingly, leading to the following mathematical representation:

dm
dτ

= m
(
1 − m −

kn
r + knn

− qs − qmm
)
, τ ≥ 0,

dn
dτ

= n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]
, τ ≥ 0,

(4.1)

with initial conditions,

m(0) = m0, and n(0) = n0. (4.2)

For equilibrium solutions,
dm
dτ

= 0, and
dn
dτ

= 0,

such that

m
(
1 − m −

kn
r + knn

− qs − qmm
)

= 0. (4.3)

n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]
= 0. (4.4)

From (4.3) we get,

m = 0, and
(
1 − m −

kn
r + knn

− qs − qmm
)

= 0. (4.5)

From (4.4) we have,

n = 0 and re + reγ1n − ren − ren2γ1 − αn − qnm − qnγ1mn = 0. (4.6)

If n = 0, then from (4.5) we get, m =
1−qs
1+qm

.

Thus, we obtain the boundary equilibrium,

E0 =

(
1 − qs

1 + qm
, 0

)
.

Let the coexistence equilibrium is E∗ = (m∗, n∗), here m∗ > 0, n∗ > 0, then from (4.5), we get,

1 − m −
kn

r + knn
− qs − qmm = 0
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∴ m =
r − qsr + (kn − qskn − k) n

(1 + qm) (r + knn)
. (4.7)

Putting the value of m from (4.7) in (4.6) we get,

re + reγ1n − ren − ren2γ1 − αn − qnm − qnγ1mn = 0

⇒ re + reγ1n − ren − ren2γ1 − αn − qn
r − qsr + (kn − qskn − k) n

(1 + qm) (r + knn)

− qnγ1

(
r − qsr + (kn − qskn − k) n

(1 + qm) (r + knn)

)
n = 0

⇒ re (1 + qm) (r + knn) + reγ1n (1 + qm) (r + knn)

− ren (1 + qm) (r + knn) − ren2γ1 (1 + qm) (r + knn) − αn (1 + qm) (r + knn)

− qn (r − qsr + (kn − qskn − k) n) − qnγ1 (r − qsr + (kn − qskn − k) n) n = 0
⇒ rer + reknn + reqmr + reqmknn

+ reγ1nr + reγ1knn2 + reγ1nqmr + reγ1qmknn2

− rern − reknn2 − reqmrn

− reqmknn2 − reγ1n2r − reγ1knn3 − reγ1qmn2r − reγ1qmknn3

− αnr − αnknn − αnqmr − αnqmknn

− qnr + qnqsr − qn (kn − k) n + qnqsknn

− qnγ1nr + qnqsγ1rn − qnγ1 (kn − k) n2 + qnqsγ1knn2 = 0
∴ −

[
γ1knre (1 + qm)

]
n3

+
[
(kqn − rre (1 + qm)) γ1 + kn ((1 + qm) (−1 + γ1) re − (1 − qs) qnγ1)

]
n2

+
[
(1 + qm)

[
−knαn + re (kn + r (−1 + γ1))

]
+ qn (k − (1 − qs) kn − rγ1 (1 − qs))

]
n

+ r
[
(re − αn) (1 + qm) − qn (1 − qs)

]
= 0. (4.8)

We can write (4.8) as,
F(n) = f1n3 + f2n2 + f3n + f4 = 0, (4.9)

where

f1 = −
[
γ1knre (1 + qm)

]
,

f2 =
[
(kqn − rre (1 + qm)) γ1 + kn ((1 + qm) (−1 + γ1) re − (1 − qs) qnγ1)

]
,

f3 =
[
(1 + qm)

[
−knαn + re (kn + r (−1 + γ1))

]
+ qn (k − (1 − qs) kn − rγ1 (1 − qs))

]
,

f4 = r
[
(re − αn) (1 + qm) − qn (1 − qs)

]
.

Since γ1 > 0, kn > 0, re > 0, qm > 0, qn > 0, 0 < qs < 1, and f1 < 0, then lim
n→ +∞

F(n) = −∞. If
(re − αn) (1 + qm) > qn (1 − qs), then F(0) > 0. According to the real continuation method, there is
n∗ > 0 such that F(n∗) = 0. As k = gkkn, 0 < gk < 1, 0 < qs < 1, then we have kn − k > 0, (1 − qs) < 1,
r > qsr, kn > qskn. Consider, kn − qskn − k > 0 and we can write,

m∗ =
r − qsr + (kn − qskn − k) n∗

(1 + qm) (r + knn∗)
> 0.
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Thus, we can conclude that when (re − αn) (1 + qm) > qn (1 − qs), the model has at least one coexistence
equilibrium E∗ = (m∗, n∗). We can consider the basic reproduction number,

R0 =
(re − αn) (1 + qm)

qn (1 − qs)
. (4.10)

4.1.1. Stability analysis

First, we would describe local asymptotic and global asymptotic stability. The model is,
dm
dτ

= m − m2 −
knm

r + knn
− qsm − qmm2, τ ≥ 0,

dn
dτ

= ren − ren2 −
αnn

1 + γ1n
− qnmn, τ ≥ 0.

(4.11)

Assume that,

g1 = m − m2 −
knm

r + knn
− qsm − qmm2,

g2 = ren − ren2 −
αnn

1 + γ1n
− qnmn.

The Jacobian matrix is,

J =


∂g1

∂m
∂g1

∂n

∂g2

∂m
∂g2

∂n

 ,
which yields

J =


1 − 2 (1 + qm) m −

kn
r + knn

− qs
knkmn

(r + knn)2 −
km

(r + knn)
−qnn re(1 − 2n) − qnm +

αnnγ1

(1 + γ1n)2 −
αn

(1 + γ1n)

 .
For the equilibrium E0 =

(
1−qs
1+qm

, 0
)
:

The Jacobian matrix at point E0 is,

J0 =


−1 + qs −k

(1 − qs)
(1 + qm) r

0 re − qn
(1 − qs)
(1 + qm)

− αn

 =

(
u1 u2

v1 v2

)
. (4.12)

The eigenvalues of the matrix J0 can be defined as λ0, hence, we have |J0−λ0I|, where, I is the identity
matrix. The characteristic equation is,

λ2
0 − tr(J0)λ0 + det(J0) = 0,

where

tr(J0) = u1 + v2,

det(J0) = u1v2 − u2v1 = u1v2, since v1 = 0.

The following theorem establishes the results of the stability criterion for boundary equilibrium.
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Theorem 1. Let qs > 0, k > 0, qm > 0, re > 0, r > 0, αn > 0 such that all of them are positive
parameters. Then, we have,

1) If u1v2 > 0 and u1 + v2 < 0, then the boundary equilibrium E0 is locally asymptotically stable.
2) If u1v2 < 0 or, u1 + v2 > 0, then the boundary equilibrium E0 is unstable.

Proof. The eigenvalues, which determine stability, are determined by:

λ0 =
tr(J0) ±

√
(tr(J0))2 − 4det(J0)

2
.

If the real components of both eigenvalues are negative, the equilibrium is stable. Therefore, the
conditions for the stability of the system (4.1) at the equilibrium E0 =

(
1−qs
1−qm

, 0
)

are:

tr(J0) < 0 and det(J0) > 0. (4.13)

To ensure stability, the conditions are as follows:

det(J0) > 0⇒ u1v2 > 0, (4.14)

and

tr(J0) < 0⇒ u1 + v2 < 0. (4.15)

Hence, if u1v2 > 0 and u1 + v2 < 0, the boundary equilibrium E0 is locally asymptotically stable.
If the equilibrium E0 is unstable, then at least one of the conditions in (4.13) is not satisfied, such that
tr(J0) > 0 or det(J0) < 0. Now, we have:

det(J0) < 0⇒ u1v2 < 0. (4.16)

Otherwise, we have:

tr(J0) > 0⇒ u1 + v2 > 0. (4.17)

Consequently, if u1v2 < 0 or u1 + v2 > 0, then the boundary equilibrium E0 is unstable.
�

From (4.14) we have,

u1 > 0 and v2 > 0 or, u1 < 0 and v2 < 0.

If

u1 > 0⇒ qs > 1 and v2 > 0⇒ (re − αn) (1 + qm) > qn (1 − qs) . (4.18)

The condition (4.18) is not valid as qs ≯ 1 such that for stable equilibrium, (re − αn) (1 + qm) ≯
qn (1 − qs). Otherwise we can write,

u1 < 0⇒ qs < 1 and v2 < 0⇒ (re − αn) (1 + qm) < qn (1 − qs) . (4.19)
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The prerequisite (4.19) is possible for the stability as qs < 1 and that is why for the stable equilibrium
E0, we have (re − αn) (1 + qm) < qn (1 − qs). So, for stability, the product of (re − αn) and (1 + qm) is
less than the product of qn and (1 − qs).
Following the relation (4.15), we get,

u1 + v2 < 0

⇒ − 1 + qs + re − qn
(1 − qs)
(1 + qm)

− αn < 0

∴
(re − αn) (1 + qm)

(1 + qm + qn) (1 − qs)
< 1,

the inequality ensure the stability. Similarly, Eq (4.16) implies,

u1 < 0 and v2 > 0 or, u1 > 0 and v2 < 0,

and, we have qs < 1, and (re − αn) (1 + qm) > qn (1 − qs) . The constraint is possible as qs < 1 and
for the unstable equilibrium E0, the required condition is,

(re − αn) (1 + qm) > qn (1 − qs) .

The next mathematical inequality prospect, u1 > 0 and v2 < 0, that yields qs > 1, and
(re − αn) (1 + qm) < qn (1 − qs), respectively.

The Eq (4.17) implies

u1 + v2 > 0⇒
(re − αn) (1 + qm)

(1 + qm + qn) (1 − qs)
> 1. (4.20)

From (4.20), we have for the instability
(re − αn) (1 + qm)

(1 + qm + qn) (1 − qs)
> 1. So, the ratio of (re − αn) (1 + qm)

and (1 + qm + qn) (1 − qs) is greater than 1.

Theorem 2. Let qs > 0, k > 0, qm > 0, re > 0, r > 0, αn > 0. Then we have,

1) If (re − αn) (1 + qm) < qn (1 − qs), then the boundary equilibrium E0 is locally
asymptotically stable.

2) If (re − αn) (1 + qm) > qn (1 − qs), then the equilibrium E0 is unstable.

Proof. Consider the basic reproduction number,

R0 =
(re − αn) (1 + qm)

qn (1 − qs)
. (4.21)

For stable equilibrium,

R0 < 1

⇒
(re − αn) (1 + qm)

qn (1 − qs)
< 1

⇒ (re − αn) (1 + qm) < qn (1 − qs) . (4.22)
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For unstable equilibrium,

R0 > 1

⇒
(re − αn) (1 + qm)

qn (1 − qs)
> 1

⇒ (re − αn) (1 + qm) > qn (1 − qs) . (4.23)

Thus, if (re − αn) (1 + qm) < qn (1 − qs), then the boundary equilibrium E0 is locally asymptotically
stable. If (re − αn) (1 + qm) > qn (1 − qs), then the boundary equilibrium E0 is unstable. �

Coexistence equilibrium E∗ = (m∗, n∗):
The Jacobian martix at E∗ is,

J∗ =


1 − 2 (1 + qm) m∗ −

kn∗

r + knn∗
− qs

knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)

−qnn∗ re(1 − 2n∗) − qnm∗ +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)

 . (4.24)

Consider,

J∗ =

(
w1 w2

z1 z2

)
. (4.25)

Here,

w1 = 1 − 2 (1 + qm) m∗ −
kn∗

r + knn∗
− qs, w2 =

knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)
,

z1 = −qnn∗, z2 = re(1 − 2n∗) − qnm∗ +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)
.

The eigenvalues of the matrix J∗ can be defined as λ∗. The characteristic equation is,

λ2
∗ − tr(J∗)λ∗ + det(J∗) = 0, (4.26)

while tr(J∗) = w1 + z2, det(J∗) = w1z2 − w2z1. For stability analysis, following Theorem 1, we have
tr(J∗) < 0 and det(J∗) > 0.

The equilibrium is stable as long as, tr(J∗) < 0 ⇒ w1 < −z2, and det(J∗) > 0 ⇒ w1 >
w2z1

z2
. It is

a remark for the stable situation, w1 is less than −z2 and w1 is greater than the ratio of w2z1 and z2. To
check the unstable equilibrium point E∗, at least one of the conditions of (4.13) is not satisfied, such
that tr(J∗) > 0 or, det(J∗) < 0 and we obtain the following relations.

w1 > −z2, w1 <
w2z1

z2
.

Hence, we can conclude that for instability, w1 is greater than −z2 or, w1 is less than the ratio of w2z1

and z2.

Theorem 3. Let any open region Ω containing equilibrium E∗ of system (4.1) and R0 > 1. If αn <

re

(
n + 1

γ1

)
, then equilibrium E∗ is globally asympotically stable.
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Proof. Assume any open region,

Ω = {(m, n) : m > 0, n > 0}.

Consider the scalar function, D = 1
mn . Next from the model (4.1), we have,

DY ,
1

mn

[
m

(
1 − m −

kn
r + knn

− qs − qmm
)]
,

DZ ,
1

mn

[
n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]]
.

Taking partial derivatives,

∂(DY)
∂m

=
1
n

(−qm − 1) .

∂(DZ)
∂n

=
1
m

(
αnγ1

(1 + γ1n)2 − re

)
<

1
m

(
αnγ1

(1 + γ1n)
− re

)
. (4.27)

Check that,

∂(DY)
∂m

< 0, where n belongs to Ω.

From (4.27), consider,

αnγ1

(1 + γ1n)
< re ⇒ αn < re

(
n +

1
γ1

)
. (4.28)

Using (4.28), we remark that

∂(DZ)
∂n

< 0, where m belongs to Ω.

Therefore,
∂(DY)
∂m

+
∂(DZ)
∂n

< 0, where (m, n) belongs to Ω. (4.29)

According to Dulac Criterion, there is no limit cycle or periodic orbit in the open region Ω. Here,

(re − αn) (1 + qm) > qn (1 − qs) ,

such that R0 > 1. Hence the equilibrium E∗ is globally asymptotically stable. �

4.1.2. Properties of basic reproduction number R0

Recall the basic reproduction number as defined in (4.21),

R0 =
(re − αn) (1 + qm)

qn (1 − qs)
. (4.30)

Now,

(re − αn) (1 + qm)
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= re + reqm − αn − αnqm

= re + reqm −
α (1 − bE − cQm) kn

rm
−
α (1 − bE − cQm) knqm

rm

= re + reqm −
αkn

rm
+
αbEkn

rm
+
αcQmkn

rm
−
αknqm

rm
+
αbEknqm

rm
+
αcQmknqm

rm

= re + reqm −
αkn

rm
+
αbqsrmkn

Lrm
+
αcqmrmkn

Prm
−
αknqm

rm
+
αbqsrmknqm

Lrm
+
αcqmrmknqm

Prm

=

(
re −

αkn

rm
+
αbqskn

L

)
+

(
re −

αkn

rm
+
αbqskn

L
+
αckn

P

)
qm +

αcknq2
m

P
, (4.31)

where, qm =
QmP
rm

and qs = EL
rm

.
Consider,

R0 = 1

⇒

(
re −

αkn
rm

+
αbqskn

L

)
+

(
re −

αkn
rm

+
αbqskn

L + αckn
P

)
qm +

αcknq2
m

P

qn (1 − qs)
= 1

⇒ qn (1 − qs) =

(
re −

αkn

rm
+
αbqskn

L

)
+

(
re −

αkn

rm
+
αbqskn

L
+
αckn

P

)
qm +

αcknq2
m

P

∴ qn =

(
re −

αkn
rm

+
αbqskn

L

)
+

(
re −

αkn
rm

+
αbqskn

L + αckn
P

)
qm +

αcknq2
m

P

(1 − qs)
. (4.32)

4.1.3. A numerical example for basic reproduction number R0

In Figure 1, we can observe the properties of R0. This figure corresponds to Eq (4.32) and represents
the relationship between qn and qm. The parameters used in this figure are:

re = 33.75, kn = 1956, α = 0.04086,
rm = 0.08, P = 0.1, c = 0.5.

The data utilized in this study is obtained from previous studies [20–22], which includes Canadian data
from the Canadian Forest Service. We consider 0 < qs < 1 and assume certain parameter values such
as b = 0.5, qs = 0.8, and L = 0.1 to achieve meaningful results.

Figure 1 illustrates the scenario when R0 = 1. When the basic reproduction number R0 is equal
to one, each infected individual will, on average, infect exactly one other individual. This typically
results in a stable epidemic, where the total number of affected individuals remains constant over time.
In epidemiology, R0 is a crucial metric for determining a disease’s contagiousness and potential for
spread. If R0 > 1, it indicates a higher likelihood of exponential disease transmission, potentially
leading to an epidemic or outbreak. Conversely, if R0 < 1, the disease is expected to eventually die out
since each infected individual infects, on average, fewer than one other person. Furthermore, if R0 < 1,
the graph tends to approach the vertical axis, whereas if R0 > 1, it shifts closer to the horizontal axis.
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Figure 1. The properties of basic reproduction number R0, where (re = 33.75, kn = 1956,
α = 0.04086, rm = 0.08, P = 0.1, c = 0.5, b = 0.5, qs = 0.8 L = 0.1).

4.2. Presence of fire disruption

Every forest has beetle attacks on its trees. To explain the relationship between the forest’s beetles
and trees, we would create a model. The forest can also be harmed by wildfire. Human activity and
natural elements can both start forest fires. In woods, lightning strikes have the potential to start fires,
particularly in arid weather. Nearby trees may catch fire due to the heat and ash from volcanic activity.
Sometimes, it is necessary to set fire to trees that have been impacted by beetles. When there is fire in
forests, the model is, 

dm
dτ

= m
(
1 − m −

kn
r + knn

− qmm
)
, τ ≥ 0,

dn
dτ

= n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]
, τ ≥ 0,

(4.33)

with initial conditions,

m(0) = m0, and n(0) = n0. (4.34)

Following the same procedure as before, we can determine the boundary equilibrium as:

E0 =

(
1

1 + qm
, 0

)
, (4.35)

and, the mathematical equations to establish the next results.

re (1 − n) −
αn

1 + γ1n
− qnm = 0 (4.36)

⇒ re − ren −
αn

1 + γ1n
− qnm = 0

⇒ re + reγ1n − ren − ren2γ1 − αn − qnm − qnγ1mn = 0. (4.37)
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Let the coexistence equilibrium is, E∗ = (m∗, n∗), where m∗ > 0, n∗ > 0. From (4.33), we obtain,

1 − m −
kn

r + knn
− qmm = 0

⇒ (r + knn) − kn − m (1 + qm) (r + knn) = 0

∴ m =
r + (kn − k) n

(1 + qm) (r + knn)
. (4.38)

Putting the value of m from (4.38) in (4.37), we get,

re + reγ1n − ren − ren2γ1 − αn − qnm − qnγ1mn = 0

⇒ re + reγ1n − ren − ren2γ1 − αn − qn
r + (kn − k) n

(1 + qm) (r + knn)

− qnγ1

(
r + (kn − k) n

(1 + qm) (r + knn)

)
n = 0

⇒ re (1 + qm) (r + knn) + reγ1n (1 + qm) (r + knn)

− ren (1 + qm) (r + knn) − ren2γ1 (1 + qm) (r + knn) − αn (1 + qm) (r + knn)

− qn (r + (kn − k) n) − qnγ1 (r + (kn − k) n) n = 0.
∴ −

[
γ1knre (1 + qm)

]
n3

+
[
(kqn − rre (1 + qm)) γ1 + kn ((1 + qm) (−1 + γ1) re − qnγ1)

]
n2

+
[
(1 + qm)

[
−knαn + re (kn + r (−1 + γ1))

]
+ qn (k − kn − rγ1)

]
n

+ r
[
(re − αn) (1 + qm) − qn

]
= 0. (4.39)

We can write (4.39) as,
F(n) = f1n3 + f2n2 + f3n + f4 = 0, (4.40)

where

f1 = −
[
γ1knre (1 + qm)

]
,

f2 =
[
(kqn − rre (1 + qm)) γ1 + kn ((1 + qm) (−1 + γ1) re − qnγ1)

]
,

f3 =
[
(1 + qm)

[
−knαn + re (kn + r (−1 + γ1))

]
+ qn (k − kn − rγ1)

]
,

f4 = r
[
(re − αn) (1 + qm) − qn

]
.

Here, γ1 > 0, kn > 0, re > 0, qm > 0, qn > 0, and f1 < 0, then lim
n→ +∞

F(n) = −∞. If (re − αn) (1 + qm) >
qn, then F(0) > 0 and according to the real continuation method, there is n∗ > 0, such that F(n∗) = 0.
Since k = gkkn and 0 < gk < 1, it follows that:

kn − k > 0.

Thus, we can express m∗ as:

m∗ =
r + (kn − k) n∗

(1 + qm) (r + knn∗)
> 0. (4.41)

Consequently, we conclude that if the condition:

(re − αn) (1 + qm) > qn,

is satisfied, then the model (4.33) possesses at least one coexistence equilibrium given by:

E∗ = (m∗, n∗) .
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4.2.1. Stability analysis

Define the Jocobian matrix for the system (4.33), we obtain,

J =


1 − 2 (1 + qm) m −

kn
r + knn

knkmn
(r + knn)2 −

km
(r + knn)

−qnn re(1 − 2n) − qnm +
αnnγ1

(1 + γ1n)2 −
αn

(1 + γ1n)

 . (4.42)

For the equilibrium E0 =
(

1
1+qm

, 0
)
:

The Jacobian matrix at point E0 is,

J0 =


−1 −

k
(1 + qm) r

0 re −
qn

(1 + qm)
− αn

 =

(
e1 e2

h1 h2

)
, (4.43)

such that

e1 = −1, e2 = −
k

(1 + qm) r
, h1 = 0, h2 = re −

qn

(1 + qm)
− αn.

The characteristic equation is,
λ2

0 − tr(J0)λ0 + det(J0) = 0,

where,

tr(J0) = e1 + h2,

det(J0) = e1h2 − e2h1 = e1h2, since h1 = 0.

To ensure the stability of the system at equilibrium E0 =
(

1
1−qm

, 0
)
, the determinant and trace conditions

must be satisfied. The determinant condition is:

det(J0) > 0⇒ e1h2 > 0.

This implies:
e1 > 0, h2 > 0, or e1 < 0, h2 < 0.

For e1 > 0 and h2 > 0, we obtain:
(re − αn) (1 + qm) > qn,

which is not possible since −1 ≯ 0. Hence, the stability condition requires:

(re − αn) (1 + qm) < qn.

Additionally, the trace condition is given by:

tr(J0) < 0⇒ e1 + h2 < 0.
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This leads to:
(re − αn) (1 + qm)

(1 + qm + qn)
< 1.

Thus, for stability, the ratio of (re − αn) (1 + qm) to (1 + qm + qn) must be less than 1.
If equilibrium E0 is unstable, then at least one of the conditions in (4.13) is not satisfied, meaning either
tr(J0) > 0 or det(J0) < 0. The determinant condition for instability is:

det(J0) < 0⇒ e1h2 < 0.

This implies:
e1 < 0, h2 > 0, or e1 > 0, h2 < 0.

For e1 < 0 and h2 > 0, we obtain
(re − αn) (1 + qm) > qn,

which confirms instability. Hence, for instability,

(re − αn) (1 + qm) > qn.

Additionally, if
tr(J0) > 0⇒ e1 + h2 > 0,

we obtain:
(re − αn) (1 + qm)

(1 + qm + qn)
> 1.

Thus, for instability, this ratio must be greater than 1.
For the equilibrium E∗ = (m∗, n∗):
The Jacobian martix at E∗ is,

J∗ =


1 − 2 (1 + qm) m∗ −

kn∗

r + knn∗
knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)

−qnn∗ re(1 − 2n∗) − qnm∗ +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)

 . (4.44)

Assume,

J∗ =

(
i1 i2

j1 j2

)
, (4.45)

where,

i1 = 1 − 2 (1 + qm) m∗ −
kn∗

r + knn∗
, i2 =

knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)
,

j1 = −qnn∗, j2 = re(1 − 2n∗) − qnm∗ +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)
.

The eigenvalues of matrix J∗, denoted as λ∗, satisfy the characteristic equation:

λ2
∗ − tr(J∗)λ∗ + det(J∗) = 0.
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Here,

tr(J∗) = i1 + j2,

det(J∗) = i1 j2 − i2 j1.

For stability,

i1 < − j2, i1 >
i2 j1

j2
.

For instability,

i1 > − j2, i1 <
i2 j1

j2
.

4.3. Presence of harvesting disruption

Trees in any forest are susceptible to beetle attacks. To understand the interaction between beetles
and trees, we develop a model that describes their dynamics. Additionally, trees can be affected by
harvesting, which may occur for both commercial and non-commercial purposes. Logging or timber
extraction is carried out for various reasons, including the removal of beetle-infested trees to control
their spread. When tree harvesting is considered, the Beetle-Tree Interaction Model is given by:

dm
dτ

= m
(
1 − m −

kn
r + knn

− qs

)
, τ ≥ 0,

dn
dτ

= n
[
re (1 − n) −

αn

1 + γ1n

]
, τ ≥ 0,

(4.46)

with initial conditions,

m(0) = m0, and n(0) = n0. (4.47)

To determine equilibrium, we set
dm
dτ

= 0,
dn
dτ

= 0.

This leads to system

m
(
1 − m −

kn
r + knn

− qs

)
= 0,

n
[
re(1 − n) −

αn

1 + γ1n

]
= 0.

Solving these equations, we obtain two equilibria:

• The boundary equilibrium,
E0 = (1 − qs, 0) .

• The coexistence equilibrium,

E∗ = (m∗, n∗) , m∗ > 0, n∗ > 0.
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For coexistence equilibrium, solving for m∗ is

m∗ =
r − qsr + (kn − qskn − k) n∗

r + knn∗
> 0.

From the quadratic equation,
F(n) = f1n2 + f2n + f3 = 0,

where

f1 = −reγ1, f2 = re(γ1 − 1), f3 = re − αn.

Given re > αn, there is a positive root n∗ > 0 ensuring coexistence. Therefore, when re > αn, the model
admits at least one coexistence equilibrium E∗ = (m∗, n∗).

4.3.1. Stability analysis

Define the Jacobian matrix of the model (4.46),

J =


1 − 2m −

kn
r + knn

− qs
knkmn

(r + knn)2 −
km

(r + knn)
0 re(1 − 2n) +

αnnγ1

(1 + γ1n)2 −
αn

(1 + γ1n)

 . (4.48)

For the equilibrium E0 = (1 − qs, 0): The Jacobian matrix at point E0 is,

J0 =

−1 + qs −k
(1 − qs)

r
0 re − αn

 =

(
a1 a2

d1 d2

)
, (4.49)

where

a1 = −1 + qs, a2 = −k
(1 − qs)

r
, d1 = 0, d2 = re − αn.

The eigenvalues of the matrix J0 can be defined as λ0. The characteristic equation is,

λ2
0 − tr(J0)λ0 + det(J0) = 0.

Here,

tr(J0) = a1 + d2,

det(J0) = a1d2 − a2d1 = a1d2, since d1 = 0.

For stability, the conditions are:

det(J0) > 0 ⇒ a1d2 > 0 ⇒ (a1 > 0, d2 > 0) or (a1 < 0, d2 < 0).

Since qs < 1, the stable equilibrium condition is re < αn. Additionally,

(re − αn)
(1 − qs)

< 1,
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ensuring stability when the ratio of (re − αn) to (1 − qs) is less than one.
If E0 is unstable, then:

det(J0) < 0 ⇒ a1d2 < 0 ⇒ (a1 < 0, d2 > 0) or (a1 > 0, d2 < 0).

For instability, we find that re > αn is a necessary condition, implying:

(re − αn)
(1 − qs)

> 1.

Thus, instability occurs when the ratio of (re − αn) to (1 − qs) exceeds one.
For the equilibrium E∗ = (m∗, n∗): The Jacobian martix at E∗ is,

J∗ =


1 − 2m∗ −

kn∗

r + knn∗
− qs

knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)

0 re(1 − 2n∗) +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)

 . (4.50)

Consider,

J∗ =

(
x1 x2

y1 y2

)
. (4.51)

Here,

x1 = 1 − 2m∗ −
kn∗

r + knn∗
− qs, x2 =

knkm∗n∗

(r + knn∗)2 −
km∗

(r + knn∗)
,

y1 = 0, y2 = re(1 − 2n∗) +
αnn∗γ1

(1 + γ1n∗)2 −
αn

(1 + γ1n∗)
.

The eigenvalues of the matrix J∗ can be defined as λ∗. The characteristic equation is,

λ2
∗ − tr(J∗)λ∗ + det(J∗) = 0.

Now, for stable equilibrium,

tr(J∗) < 0 and det(J∗) > 0
⇒ x1 + y2 < 0 ⇒ x1y2 − x2y1 > 0

∴ x1 < −y2 ∴ x1 >
x2y1

y2
. (4.52)

From (4.52), for stability, x1 must be less than −y2 and greater than the ratio x2y1
y2

.
For unstable equilibrium,

tr(J∗) > 0 or det(J∗) < 0
⇒ x1 + y2 > 0 ⇒ x1y2 − x2y1 < 0

∴ x1 > −y2 ∴ x1 <
x2y1

y2
. (4.53)

From (4.53), for instability, x1 must be greater than −y2 or less than the ratio x2y1
y2

.
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5. Numerical examples

Our findings indicate that the number of trees generally decreases due to harvesting and fire. Beetles
experience two distinct consequences from these disruptions. The disruptions directly reduce the beetle
population by causing mortality. However, they weaken the trees’ natural defenses, creating a more
favorable environment for beetle proliferation. Due to these opposing effects, we aim to numerically
analyze two different equilibrium points to understand the overall impact. We consider the following:

• Beetle free equilibrium (boundary equilibrium E0).
• Endemic equilibrium (coexistence equilibrium E∗).

To solve the model, we need different values of the parameters of the model (Table 2).

Table 2. Model parameters values.

Notation Value Source

γ1 156.9398 [20]
re 33.75 [20]
qm [75 − 100] [20]
qn 366.75 [20]
kn 1956 [20]
α 0.04086 [20]
rm 0.08 [20]
P 0.1 [21]
Qm [0.3 − 0.6] [21]
αn [30 − 849.17295] Estimated [21]
k 1467 [21]
r 9.1 [21]
qs 0.8 Assumed

Using the relations, (re − αn) (1 + qm) < qn (1 − qs) and (re − αn) (1 + qm) > qn (1 − qs), we found the
value of αn. We collect data from [20–22], which are Canadian data from Canadian Forest Service and
consider 0 < qs < 1.

5.1. Computational results in the presence of fire and harvesting disruptions

In this case, we have solved model (4.1) numerically using different values. The Beetle free
equilibrium is E0 =

(
1−qs
1+qm

, 0
)
. We know that if,

(re − αn) (1 + qm) < qn (1 − qs) , (5.1)

then the equilibrium E0 is locally asymptotically stable. For Eq (5.1), we consider αn = 529.48431 in
the absence of a beetle attack in the forest. Thus, the initial condition is n0 = 0. The system experiences
two disruptions: Fire and harvesting. At the equilibrium point E0, we have n = 0, where n = N

kn
. This

implies that the beetle density, N, is zero.
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From Figure 2, it is evident that beetles have no effect on the forest dynamics. Instead, the primary
factors influencing the system are harvesting and fire, both of which contribute to a decrease in m. As
the parameter qm increases, the death rate of trees due to fire also increases. Similarly, as qs increases,
the death rate of trees due to harvesting rises. Consequently, an increase in either qm or qs leads to
a reduction in the value of m. Furthermore, since m is defined as m = M

km
, a decrease in m directly

implies a reduction in the tree density M. Thus, higher values of qm and qs result in a lower overall
tree population.

(a) (b)

Figure 2. (a) m vs τ for different values of qm = 20, 40, 75, qs = 0.8, (b) m vs τ for different
values of qs = 0.20, 0.40, 0.60, 0.80, qm = 75, where m = M

km
, τ = trm, t is in decades,

m0 = 0.05, n0 = 0 and for the values of γ1, re, r, qn, k, kn the reference table is 2.

The endemic equilibrium point is E∗ = (m∗, n∗). We establish that, under the following criteria,

(re − αn) (1 + qm) > qn (1 − qs) , (5.2)

the equilibrium E0 is unstable. When the equilibrium E0 is unstable, an endemic equilibrium
E∗ emerges.

In this scenario, we consider Eq (5.2) with αn = 30, indicating the presence of a beetle attack in
the forest. Additionally, the system is affected by two external disruptions: Fire and harvesting. From
Figure 3, we observe that at the endemic equilibrium E∗:

• In subplot (a), the value of n increases, leading to a rise in the beetle density N. Notably, n
converges almost to its maximum value of 1, indicating a significant beetle population.
• In subplot (b), due to the combined effects of beetles, harvesting, and fire, the value of m decreases

more rapidly compared to the beetle-free scenario in Figure 2. This implies a sharper decline in
the density of trees, M, surpassing the reduction observed in Figure 2.

Thus, the presence of beetles, along with harvesting and fire disturbances, leads to a substantial increase
in beetle density and a more pronounced decline in tree density compared to the beetle-free case.
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(a) (b) (c)

Figure 3. (a) n vs τ, (b) m vs τ, (c) Trajectories of m and n vs τ, where n = N
kn

, m = M
km

,
τ = trm, t is in decades, n0 = 0.1, m0 = 0.1, αn = 30, qm = 75, qs = 0.8, k = 1467, and the
values of γ1, re, r, qn, kn are referred from Table 2.

From Figure 4, we observe a direct relationship between the parameter k and the number of trees
that are destroyed. As the value of k increases, the number of trees that are killed also increases,
indicating a stronger impact of the parameter on tree mortality. Furthermore, an increase in k leads
to a decrease in m, where m represents the normalized tree density. Since m is given by m = M

km
, a

reduction in m implies a corresponding decline in the total tree density, M. This suggests that as k
grows, the overall forest population diminishes significantly. Thus, a higher value of k accelerates tree
loss, leading to a more pronounced decline in tree density over time.

Figure 4. m vs τ at m0 = 0.01, n0 = 0.1, k = 200, 500, 1200, where m = M
km

, n = N
kn

, τ = trm,
t is in decades, αn = 30, qm = 75, qs = 0.8, and the values of γ1, re, r, qn, kn are available in
Table 2.

From Figure 5, we observe the effect of parameter γ1 on the beetle population dynamics. For
γ1 = 15, the curve representing n initially decreases before gradually increasing. When γ1 = 20, the
curve exhibits a slower initial decline compared to γ1 = 15, but then it increases at a higher rate than for
γ1 = 15. As the value of γ1 continues to rise, the curve of n increases more significantly. This behavior
suggests that when γ1 is relatively small, trees exhibit a strong resistance to beetle attacks, leading to
an initial suppression of the beetle population. At this stage, the trees’ ability to resist beetles is at its
peak. However, as γ1 increases further, the trees lose their ability to counteract the beetle infestation
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effectively. Consequently, the beetle population grows unchecked, leading to a decline in the tree
population. Thus, a higher value of γ1 eventually results in a lower tree density and an increased
beetle population.

Figure 5. n vs τ at m0 = 0.1, n0 = 0.1, γ1 = 15, 20, 50, 150, k = 1467, where m = M
km

, n = N
kn

,
τ = trm, t is in decades, αn = 30, qm = 75, qs = 0.8 and the values of re, r, qn, kn are available
in Table 2.

5.2. Computational results in the presence of fire disruptions

In this section, we focus on the computational results of Eq (4.33), specifically considering the
impact of fire disruptions on the system. The beetle-free equilibrium is given by

E0 =

(
1

1 + qm
, 0

)
,

which is asymptotically stable under the condition:

(re − αn) (1 + qm) < qn. (5.3)

For the computations in Eq (5.3), we consider the parameter value αn = 849.17295, representing
a scenario where there is no beetle attack in the forest. Consequently, the initial beetle population is
zero, i.e., n0 = 0. Since at equilibrium point E0 we have n = 0, the density of beetles, N, is also
zero, as defined by the relation n = N

kn
. In this scenario, fire is the only disruption affecting the forest

ecosystem. From Figure 6, we observe that in the absence of beetles, fire remains the primary factor
influencing tree mortality. As the fire intensity parameter qm increases, the rate of tree death due to
fire also rises. This leads to a decrease in m, which represents the normalized tree density. Since m is
defined as m = M

km
, a reduction in m implies a corresponding decline in the total tree density, M. Thus,

our analysis reveals that in a beetle-free environment, fire alone can significantly impact forest density.
As the severity of fire disturbances increases, tree density declines at an accelerated rate, contributing
to overall forest degradation.
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Figure 6. m vs τ at qm = 20, 40, 75, 100, where m = M
km

, n = N
kn

, τ = trm, t is in decades,
m0 = 0.1, n0 = 0 (as there is no beetle attack), and the values of γ1, re, r, qn, k, kn are counted
from the Table 2.

The endemic equilibrium of the system is denoted as

E∗ = (m∗, n∗) .

We know that if the following condition holds:

(re − αn) (1 + qm) > qn, (5.4)

then the beetle-free equilibrium E0 becomes unstable, leading to the existence of an endemic
equilibrium E∗ where both tree and beetle populations coexist.

For the computational analysis in Eq (5.4), we consider αn = 30, representing a scenario where
beetle infestation is present in the forest, along with fire as a disruptive factor. From Figure 7, we
observe that at the endemic equilibrium point E∗, the beetle population density, n, increases over time,
leading to a rise in the total beetle population, N.

(a) (b) (c)

Figure 7. (a) n vs τ (b) m vs τ, (c) Trajectories of m and n vs τ, where n = N
kn

, m = M
km

,
τ = trm, t is in decades, n0 = 0.1, m0 = 0.1, αn = 30, qm = 100, k = 1467, and the values of
γ1, re, r, qn, kn are used from Table 2.

The combined effects of beetle infestation and fire disturbances cause a more rapid decline in tree
density compared to the beetle-free scenario in Figure 6. Consequently, the normalized tree density, m,
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decreases at a faster rate than in the absence of beetles. Since tree mortality is primarily driven by
beetle attacks and fire in this case, we note a more significant reduction in the total tree population, M,
than in Figure 6.

Unlike previous scenarios, harvesting does not influence tree density in this analysis. As a result, the
trees’ natural defensive mechanisms against beetles strengthen, leading to a relatively slower increase
in the beetle population compared to Figure 3. Similarly, the rate of tree decline is also slower than
that observed in Figure 3, where harvesting played a role. Thus, our findings indicate that while
beetle infestations and fire contribute significantly to tree loss, the absence of harvesting allows trees
to develop a stronger resistance, partially mitigating the severity of beetle population growth and
tree mortality.

From Figure 8, it is evident that as the parameter k increases, the number of trees that are killed also
rises. This results in a decrease in the normalized tree density, m. Since M represents the total tree
population and is related to m through m = M

km
, the decline in m implies that the total tree density, M,

also decreases correspondingly. Thus, a higher value of k leads to increased tree mortality, reducing
the overall forest density.

Figure 8. m vs τ at m0 = 0.03, n0 = 0.1, k = 200, 500, 1200, where m = M
km

, n = N
kn

, τ = trm, t
is in decades, αn = 30, qm = 100, and the values of γ1, re, r, qn, kn from the Table 2.

In Figure 9, we analyze the effect of the resistance parameter γ1 on beetle population dynamics.
When γ1 = 10, the curve representing n (the normalized beetle density) initially declines before
gradually increasing. For γ1 = 20, we observe a similar trend; however, the initial decrease occurs
at a slower rate compared to γ1 = 10, followed by a more pronounced increase. As the value of γ1

continues to rise, the curve of n exhibits a steady upward trend.
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Figure 9. n vs τ at m0 = 0.1, n0 = 0.1, γ1 = 10, 20, 50, 150, k = 1467, where m = M
km

,
n = N

kn
, τ = trm, t is in decades, αn = 30, qm = 100, and the values of re, r, qn, kn are used

from the Table 2.

This behavior suggests that when γ1 is small, trees have a strong ability to resist beetle infestations,
effectively limiting beetle population growth. At this stage, the trees’ resistance to beetles is at its peak.
However, as γ1 increases further, trees gradually lose their ability to counteract the beetle infestation
effectively. As a result, the beetle population expands unchecked, leading to a decline in tree density.
Our findings indicate that while lower values of γ1 enhance the trees’ resistance against beetles, higher
values weaken this defense mechanism, allowing the beetle population to grow while reducing the
tree population.

5.3. Numerical analysis of the model considering harvesting disruptions

In this case, we numerically solve model (4.46) using different parameter values to analyze the
system’s behavior. The beetle-free equilibrium is given by

E0 = (1 − qs, 0) .

We establish that if

re < αn, (5.5)

then the equilibrium E0 is locally asymptotically stable.
To explore this scenario, we consider αn = 679.33836 and assume that there is no beetle attack in

the forest. This implies an initial beetle population of n0 = 0. In this setting, the primary disruption
affecting the forest is harvesting. From Figure 10, we observe that harvesting is the sole factor
influencing tree density, as beetles have no impact on the system. As the harvesting parameter qs

increases, the tree mortality rate due to harvesting also rises. Consequently, for increasing values of
qs, the normalized tree density m increases at a slow rate, leading to a gradual increase in the total tree
density M.

AIMS Mathematics Volume 10, Issue 4, 9933–9973.



9961

Figure 10. m vs τ at qs = 0.20, 0.40, 0.60, 0.80, where m = M
km

, τ = trm, t is in decades,
m0 = 0.1, n0 = 0 (as there is no beetle attack), and the values of γ1, re, r, k, kn are counted
from the Table 2.

The endemic equilibrium of the system is given by

E∗ = (m∗, n∗) .

We know that if

re > αn, (5.6)

then the beetle-free equilibrium E0 becomes unstable, and the system admits an endemic
equilibrium E∗, where both tree and beetle populations coexist.

For this scenario, we set αn = 30, enabling beetle infestation to occur in the forest alongside
harvesting disruption. From Figure 11, we observe that at the endemic equilibrium point E∗, the beetle
density, N, increases over time. The beetle population exhibits oscillations, where beetle numbers
decrease when trees are harvested but rise again when new trees grow from the harvested stumps. This
dynamic interplay leads to fluctuations in beetle density.

(a) (b) (c)

Figure 11. (a) n vs τ, (b) n vs τ in close range, (c) m vs τ, where n = N
kn

, m = M
km

, τ = trm,
t is in decades, n0 = 0.9, m0 = 0.1, αn = 30, qs = 0.8 and the values of γ1, re, r, k, kn are
available in Table 2.

The combined effects of beetle infestation and harvesting lead to a decline in tree density, as
observed in Figure 11(b). Since fire is absent in this scenario, its impact on tree mortality is negligible.
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However, we note that the defensive capacity of trees against beetles is lower in this case compared
to Figure 7. As a result, the beetle population grows more rapidly than in Figure 7, while the tree
population declines at a faster rate. Moreover, the system takes a longer time τ to stabilize compared
to Figure 3, where both fire and harvesting were present. These results indicate that in the presence
of harvesting alone, tree density initially increases at a slow rate but eventually declines as beetles
become more prevalent. The competition between beetle growth and tree harvesting leads to oscillatory
dynamics in beetle population levels, influencing the overall stability of the forest ecosystem.

From Figure 12, we observe the following trends:

• In subplot (a), as the value of k increases, the number of trees that are killed also increases.
Consequently, for higher values of k, the curve representing m exhibits a decreasing trend.
• In subplot (b), when the parameter kn increases, the decline in m occurs at a slower rate, indicating

a more gradual decrease in tree density.

(a) (b)

Figure 12. (a) m vs τ at m0 = 0.01, n0 = 0.1, k = 450, 550, 1250, kn = 1956, (b) m vs τ at
m0 = 0.03, n0 = 0.1, kn = 2000, 4000, 6000, k = 1467, where m = M

km
, n = N

kn
, τ = trm, t is in

decades, αn = 30, qs = 0.8 and the values of γ1, re, r, are in Table 2.

There are many reasons why our trees sustain damage, including an influx of beetles into trees, trees
being chopped down for a variety of reasons, and forest fires. As a result, forest’s tree population is
declining. If a tree is attacked by beetles, the damage gets worse in addition to what is done by fire
and harvesting.

6. How to control beetle attacks in forests

In forests, managing beetles is essential to preserving the ecosystem’s health and equilibrium.
Significant tree damage by beetles can result in degraded forests and a decline in biodiversity. Here are
a few methods that are frequently used in forests to manage beetles:

Forested regions should be regularly surveyed and monitored in order to identify beetle populations
early on. We should identify the beetle species that are present and evaluate their distribution and
population dynamics. To precisely map areas of infection, we must use ground surveys. We should
use an integrated strategy that incorporates many control techniques, including mechanical, chemical,
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cultural, and biological control. To reduce our impact on the environment, whenever possible, we have
to give preference to non-chemical methods.

Beetle parasites or native predators can be introduced to assist manage beetle populations. To
prevent unforeseen effects on species other than the intended target, this strategy needs to be
carefully considered.

We must use forest management techniques, such as thinning, pruning, and encouraging a diversity
of tree species and age classes, to improve tree resilience and decrease insect habitat. In order to
reduce the population of adult beetles, we must utilize trapping tools. To stop beetles from infecting
healthy trees, diseased trees should be removed. When preventing beetles from accessing susceptible
trees, we have to think about erecting physical barriers or applying tree banding methods. When non-
chemical approaches fail to manage beetle populations, we can use chemical pesticides as a last resort.
It is imperative that we select pesticides that are specifically targeted at that specific species of beetle
and have minimal impact on non-target creatures and the environment. All safety precautions and
laws pertaining must be observed to the use of pesticides, including the right timing and application
techniques. To lessen the chance of beetle spread, we need to make everyone working in the forest
aware of how important it is to follow quarantine regulations. We could encourage studies aimed at
exploring the biology, behavior, and available management strategies of beetles. It is important to
work together with governmental organizations, academic institutions, and other interested parties to
exchange information and resources for successful beetle control. Ii is important to inform the public,
managers, and landowners in forests about the value of controlling beetles and their part in early
detection and prevention. To enable early intervention, we should give instructions on how to recognize
beetle symptoms and report possible infestations. In forest ecosystems, we must keep evaluating the
feasibility and long-term impacts of beetle management programs. Using these strategies as part of a
comprehensive beetle control plan can help forest managers effectively mitigate the consequences of
infestations while protecting the resilience and overall health of forest ecosystems.

7. Optimal control strategy

In optimal control problems, consider m(t) and n(t) is state variable and w(t) is control variable.
The state variables satisfy the ordinary differential equations. The state variable depends on control
variable such that [23, 24],

m′(t) = g (t,w(t),m(t), n(t)) , (7.1)
n′(t) = s (t,w(t),m(t), n(t)) . (7.2)

Consider the objective function,

max
w

∫ t1

t0
f (t,w(t),m(t), n(t)) , subject to, (7.3)

m′(t) = g (t,w(t),m(t), n(t)) , (7.4)
n′(t) = s (t,w(t),m(t), n(t)) , (7.5)
m(t0) = m0 and n(t0) = n0.

The Hamiltonian function is,

H (t,w(t),m(t), n(t), λ1(t), λ2(t))
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= f (t,w(t),m(t), n(t)) + λ1(t)g (t,w(t),m(t), n(t)) + λ2(t)s (t,w(t),m(t), n(t)) . (7.6)

We want to maximize the Hamiltonian function H with respect to w at w∗, where w∗ is the optimal
value of w. According to Pontryagin’s Maximum Principle, the conditions are,

∂H
∂w

= 0 at w∗

⇒ fw + λ1gw + λ2sw = 0, (7.7)

with 
λ′1 = −∂H

∂m = − ( fm + λ1gm + λ2sm) (adjoint equation),
λ′2 = −∂H

∂n = − ( fn + λ1gn + λ2sn) (adjoint equation),
λ1(t1) = 0 and λ2(t1) = 0 (transversality condition).

(7.8)

Theorem 4. [23] Consider that f (t,w(t),m(t), n(t)), g (t,w(t),m(t), n(t)) and s (t,w(t),m(t), n(t)) are
continuously differentiable functions in four variables and concave in w. Let w∗ is an optimal
control solution for problem, with associated state variables m∗ and n∗, and λ1 and λ2 are piecewise
differentiable function with λ1(t) ≥ 0 and λ2(t) ≥ 0. Consider t0 ≤ t ≤ t1 and for optimal control
variable w∗, we have,

H (t,w(t),m∗(t), n∗(t), λ1(t), λ2(t)) ≤ H (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) , where, (7.9)
Hw (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) = 0. (7.10)

Proof. For time t0 ≤ t ≤ t1 and optimal control variable w∗, we can write,

H (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) − H (t,w(t),m∗(t), n∗(t), λ1(t), λ2(t))

=
[
f (t,w∗(t),m∗(t), n∗(t)) + λ1(t)g (t,w∗(t),m∗(t), n∗(t)) + λ2(t)s (t,w∗(t),m∗(t), n∗(t))

]
−

[
f (t,w(t),m∗(t), n∗(t)) + λ1(t)g (t,w(t),m∗(t), n∗(t)) + λ2(t)s (t,w(t),m∗(t), n∗(t))

]
=

[
f (t,w∗(t),m∗(t), n∗(t)) − f (t,w(t),m∗(t), n∗(t))

]
+ λ1(t)

[
g (t,w∗(t),m∗(t), n∗(t)) − g (t,w(t),m∗(t), n∗(t))

]
+ λ2(t) [s (t,w∗(t),m∗(t), n∗(t)) − s (t,w(t),m∗(t), n∗(t))]
≥ (w∗(t) − w(t)) fw (t,w∗(t),m∗(t), n∗(t)) + λ1(t) (w∗(t) − w(t)) gw (t,w∗(t),m∗(t), n∗(t))

+ λ2(t) (w∗(t) − w(t)) sw (t,w∗(t),m∗(t), n∗(t))

= (w∗(t) − w(t)) Hw (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) = 0.

Hence, we conclude that,

H (t,w(t),m∗(t), n∗(t), λ1(t), λ2(t)) ≤ H (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) .

�

For the minimization problem,

H (t,w(t),m∗(t), n∗(t), λ1(t), λ2(t)) ≥ H (t,w∗(t),m∗(t), n∗(t), λ1(t), λ2(t)) .

The problem is maximization problem as long as
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∂2H
∂w2 < 0 at w∗,

whereas the problem is minimization one, if

∂2H
∂w2 > 0 at w∗.

7.1. Mathematical model with pesticide

Our objective is to employ pesticides to reduce the number of beetles. The modified model with
pesticide is,

dM
dt

= rmM
(
1 −

M
km
− gk

N
r + N

)
− ELM − P

M
km

QmM + U
W
kw

M
N
kn
, t ≥ 0,

dN
dt

= rnN
(
1 −

N
kn

)
−
α (1 − bE − cQm) knN

1 + γknN
− QnP

M
km

QmN −G
W
kw

N, t ≥ 0,
(7.11)

with initial conditions,

M(0) = M0, and N(0) = N0. (7.12)

The detailed description of the model, along with its variables and parameters, can be found in the
main model (3.1). The additional parameters are provided in the following Table 3.

Table 3. Model parameters and their descriptions.

Notation Unit Definition

M tree The density of trees
N beetles/tree The density of mountain pine beetles per tree
rm (time)−1 The intrinsic growth rate of trees
rn (time)−1 The intrinsic reproductive rate of beetles
r beetles/tree Critical attack density of beetles
km tree Carrying capacity of trees
kn beetles/tree Carrying capacity of beetles
gk unitless Fraction of trees that are killed by beetles
α tree(beetles.time)−1 Defensive rate of trees
γ (beetles/tree)−2 Reciprocal of the beetle’s density scale at which tree’s defense

reaches saturation
P (time)−1 The average intensity rate of tree’s response to the fire
Qm Unitless Proportionate loss of trees for fire.
Qn Unitless Proportionate loss of beetles for fire.
L (time)−1 The average intensity rate of tree’s response to the harvesting.
E Unitless Proportionate loss of trees for harvesting.
U (time)−1 Growth rate of trees due to beetle reduction with the use of pesticide
W ml Amount of application of pesticide
kw ml Maximum amount of pesticide can be applied.
G (time)−1 Death rate of beetles for using pesticide
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By introducing the following non-dimensional variables and parameters,

m =
M
km
, n =

N
kn
, re =

rn

rm
, k = gkkn, γ1 = γk2

n,

qm =
QmP
rm

, τ = trm, qn =
QnQmP

rm
, qs =

EL
rm
,

αn =
α (1 − bE − cQm) kn

rm
, h =

U
rm
, e =

G
rm
, w =

W
kw
, (1 + qm) < qn, qn > qm.

We derive the modified dimensionless system of nonlinear differential equations, which is defined
as follows: 

dm
dτ

= m
(
1 − m −

kn
r + knn

− qs − qmm
)

+ hwmn, τ ≥ 0,

dn
dτ

= n
[
re (1 − n) −

αn

1 + γ1n
− qnm

]
− ewn, τ ≥ 0,

(7.13)

with initial conditions,

m(0) = m0, and n(0) = n0. (7.14)

Our objective is to increase the number of trees by controlling the beetle population through the
application of pesticides. Therefore, we aim to maximize the use of pesticides within a given limit.

Consider that there exists an upper bound w such that 0 ≤ w(τ) ≤ w over a fixed time interval [0,T ],
where T > 0. The control function w is time-dependent, denoted as w = w(τ). The constraint on w(τ)
is given by:

ϕ = {w(τ) | 0 ≤ w(τ) ≤ w, 0 ≤ τ ≤ T, w(τ) is Lebesgue measurable}.

The optimal objective function is formulated as:

A(w(τ)) =

∫ T

0

[
m(τ)w(τ) − m(τ)2 − w(τ)2

]
dτ, where m(0) = m0, n(0) = n0. (7.15)

The optimal control problem is then defined as:

A∗(w∗(τ)) = max
w(τ)∈ϕ

A(w(τ)).

The integrand of the objective function is given by:

V(w(τ)) = m(τ)w(τ) − m(τ)2 − w(τ)2.

To obtain maximum value of (7.16), the Hamiltonian function is,

H = mw − m2 − w2,

+ λ1

[
m − m2 −

knm
r + knn

− qsm − qmm2 + hwmn
]

+ λ2

[
ren − ren2 −

αnn
1 + γ1n

− qnmn − ewn
]
.
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To find opotimal solutions, the Pontryagin’s Maximum Principle is,
∂H
∂w = 0,
λ′1 = −∂H

∂m , λ
′
2 = −∂H

∂n ,

λ1(T ) = 0, λ2(T ) = 0.

(7.16)

Using Pontryagin’s Maximum Principle, we have,

∂H
∂w

= 0⇒ w∗ =
m + λ1hmn − λ2en

2
at w∗.

Here,

∂2H
∂w2 = −2 < 0.

Thus, it is a maximization problem. We can write,

λ′1 = −
∂H
∂m

= −

[
w − 2m + λ1

[
1 − 2m −

kn
r + knn

− qs − 2qmm + hwn
]
− λ2qnn

]
,

λ′2 = −
∂H
∂n

= − [λ1Y1 + λ2Y2] ,

λ1(T ) = 0, λ2(T ) = 0,

where, Y1 =
[

knkmn
(r+knn)2 −

km
(r+knn) + hwm

]
, Y2 =

[
re − 2ren +

αnnγ1

(1+γ1n)2 −
αn

(1+γ1n) − qnm − ew
]
.

7.2. Computational results of pesticide model

It is now time to demonstrate the computational results of the model (7.13). Using equation

(re − αn) (1 + qm) > qn (1 − qs) ,

we determine the value of αn. Additionally, using the equation

w =
W
kw
,

we compute the values of w for different values of W. Given W = 3.50, 4.33, 9.40, 13.95, 19.86, we
obtain the corresponding values of w as follows:

w = 0.175, 0.2165, 0.47, 0.6975, 0.993.

For plotting the figures, we consider the values of w as:

w = 1.75, 2.165, 4.7, 6.975, 9.93.

We collect the values of parameters γ1, re, r, qm, qn, k, and kn from Table 2, and the values of w, h,
and e from Table 4. The data were sourced from [20–22, 25], which are Canadian datasets obtained
from the Canadian Forest Service.
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We assume the conditions:
0 < qs < 1, 0 < h < 1, 0 < e < 1,

and assign specific values to achieve accurate results. Here,

m =
M
km
, n =

N
kn
, 0 ≤ M ≤ km, 0 ≤ N ≤ kn.

Thus, it follows that:
0 ≤ m ≤ 1, 0 ≤ n ≤ 1.

Table 4. Model parameters values.

Notation Value Source

W [3.50 − 19.86] [25]
w [1.75 − 9.93] Estimated [25]
h 0.4 Assumed
e 0.6 Assumed
kw 20 Assumed

From Figure 13, it can be inferred that using pesticide to kill beetles effectively prevents their
population from increasing in the forest. As the value of w gradually increases, the value of n rises
slowly, which in turn causes the beetle density N to increase at a slower rate. Therefore, after the
pesticide is applied, the beetle population tends to decrease. Consequently, the density of trees also
decreases gradually as the beetles’ death rate increases.

(a) (b)

Figure 13. (a) n vs τ (b) m vs τ, where n = N
kn

, m = M
km

, τ = trm, t is in decades, n0 = 0.1,
m0 = 0.1, αn = 30, and Tables 2 and 4 are referred for other parameters values.
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8. Sensitivity analysis

In this section, we compute the sensitivities of the model (7.13). Let us consider the system,
ẋ1 = f1

(
x1, x2, · · · , xq

)
,

ẋ2 = f2

(
x1, x2, · · · , xq

)
,

...
...

ẋq = fq

(
x1, x2, · · · , xq

)
.

(8.1)

We use local forward sensitivity analysis for the ordinary differential equations, and the sensitivity
equation is,

u̇i =
∂ f
∂x

ui +
∂ f
∂p
, where i = m, n, and p = parameters, (8.2)

u̇i = J.ui + F, where ui = ui(τ), u̇i = u̇i(τ) =
dui

dτ
, J =

∂ f
∂x
, and F =

∂ f
∂p
, (8.3)

with initial condition,

ui(0) = ui0, where i = m, n.

The Jacobian of the system (7.13) is,

J =


1 − 2 (1 + qm) m −

kn
r + knn

− qs + hwn
knkmn

(r + knn)2 −
km

(r + knn)
+ hwm

−qnn re(1 − 2n) − qnm +
αnnγ1

(1 + γ1n)2 −
αn

(1 + γ1n)
− ew

 .
(8.4)

For pesticide parameter w, we have

F =

(
hmn
−en

)
, ui =

(
um

un

)
. (8.5)

Substituting the values from (8.4) and (8.5) into (8.3), we get,(
u̇m

u̇n

)
=

(
A1 A2

A3 A4

) (
um

un

)
+

(
hmn
−en

)
,

where

A1 = 1 − 2 (1 + qm) m −
kn

r + knn
− qs + hwn,

A2 =
knkmn

(r + knn)2 −
km

(r + knn)
+ hwm,

A3 = −qnn,

A4 = re(1 − 2n) − qnm +
αnnγ1

(1 + γ1n)2 −
αn

(1 + γ1n)
− ew,

∴

(
u̇m

u̇n

)
=

(
A1um + A2un + hmn
A3um + A4un − en

)
.
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8.1. Numerical example for sensitivity analysis

It is time to present the results visually. We determine the values of m = 0.0638 and n = 0.646
by solving the model described in equation (7.13). Additionally, we obtain the values of γ1, re, r,
qm, qn, k, and kn from Table 2, and the values of w, h, and e from Table 4. Further data is sourced
from [20–22,25], which provides Canadian data from the Canadian Forest Service. For the purpose of
achieving reliable results, we assume certain values as necessary during the analysis.

From Figure 14, we observe that the amount of un decreases more significantly than um when
pesticides are used.

Figure 14. Trajectories of um and un vs τ, where τ = trm, t is in decades, um0 = 0.1,
un0 = 0.1, w = 9.93, m = 0.0638, n = 0.646, αn = 30, and Tables 2 and 4 are referred for
other parameters values.

9. Conclusions

We formulated and analyzed a mathematical model to investigate the impact of beetle infestations
on forest ecosystems, incorporating key ecological disruptions such as harvesting and wildfires. To
understand the system dynamics, we determined the equilibrium and explored their stability conditions.
The results were then visually represented through numerical simulations, providing insights into the
interactions between tree populations, beetle outbreaks, and environmental stressors. Additionally,
we examined the basic reproduction number, a crucial parameter in determining whether beetle
populations will persist or decline, and analyzed its ecological significance.

To mitigate the devastating impact of beetle infestations, we applied an optimal control strategy,
aiming to reduce beetle populations while ensuring sustainable forest management. A pesticide
variable was incorporated into the mathematical model, offering an additional control mechanism
to curb beetle outbreaks. Through sensitivity analysis, we evaluated how different ecological and
environmental parameters influence beetle reproduction, infestation severity, and forest resilience.

Beetle infestations are caused by specific species that bore into tree bark, forming tunnels and
damaging the tree’s vascular system, which is crucial for water and nutrient transport. Different beetle
species tend to specialize in attacking specific tree species, leading to widespread deforestation and
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ecological imbalance.
Despite the growing concern over climate-driven beetle outbreaks, our understanding of the

physiological interactions between insect infestations, drought stress, and tree defense mechanisms
remains incomplete. This knowledge gap hinders our ability to predict long-term forest mortality
trends and assess the resilience of tree populations in response to climate change.

In this study, we examined beetle outbreaks in Bangladesh and pine beetle infestations in forests
affected by two major ecological disruptions: Harvesting and fire. We developed a mathematical
model that captures the interactions between tree populations, beetle dynamics, and environmental
disturbances. The model incorporates:

• Harvesting operations, which act as experimental manipulations of forest ecosystems, affecting
tree density and beetle habitat availability.
• Wildfires, which not only destroy beetle habitats but can also create favorable conditions for

infestation by weakening trees.
• Pesticide applications, which serve as a control measure to suppress beetle populations and

promote tree regeneration.

By integrating these factors, our model provides a comprehensive framework for understanding
beetle infestations and their impact on forest ecology, ecosystem stability, and sustainable resource
management. The findings highlight the importance of implementing proactive conservation
strategies, including:

• Optimal harvesting practices to maintain ecological balance.
• Effective pest management interventions to control beetle outbreaks.
• Climate adaptation measures to ensure forest sustainability.

This study emphasizes the need for a holistic approach to beetle infestation control to preserve forest
biodiversity, prevent large-scale tree mortality, and support sustainable environmental management.
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