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Abstract: This study presents a fractional mathematical model that explains how behavioral and
social contagion in the market, can explain the bubble, collapse, and stability phases of financial
bubbles. We study the proposed model via a new fractional derivative in the framework of the Caputo
derivative involving a modified generalized Mittag-Leffler function (MLF). Furthermore, we use the
Schauder and Banach fixed point theorems (FPTs) to prove the existence and uniqueness (E&U) of
the solution of the model. Moreover, we discover the equilibrium point and identify the nullcline
points of the suggested model. Then we use the Lyapunov function to investigate the global stability
of the discovered equilibrium point at certain criteria, leading to the discovery of a globally stable
solution. To obtain numerical results, we use the fractional Adams-Bashforth technique of order 3.
We also analyze the residual error to evaluate the correctness of the proposed method. After that, we
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perform simulations with different parameter values and fractional orders to show the applicability of
the method in different contexts. Additionally, our results can be applied to the fractional generalized
Atangana-Baleanu-Caputo (GABC), Atangana-Baleanu-Caputo (ABC), and Caputo—Fabrizo-Caputo
(CFC) derivatives as special cases at certain parameters. The results confirm that the technique can
produce accurate answers in many settings.

Keywords: financial bubbles; fractional derivatives; existence and uniqueness; Lyapunov equation;
Adams-Bashforth method
Mathematics Subject Classification: 26A33, 91G80, 93D05

1. Introduction

Previous studies indicate that categorizing and analyzing the financial system’s price crashes,
bubbles, momentum, and liquidity have played a vital role in financial behavior over the last few
years. Asset bubbles exist when the prices of commodities such as real estate, stocks, or gold shoot up
abruptly within a short period, not necessarily due to their intrinsic value. Consulting Evans [1]
provides additional understanding of important issues relating to new financial instruments. This
economic model helped us to understand financial fundamentals, including the formation of a
financial bubble and how to deal with it. One very good indicator of a bubble is when the market
value is way over and above the intrinsic value of an asset, whereby people seemingly buy a particular
asset for no good reason, known as irrational exuberance. In other words, a bubble occurs when
market prices are greater than the asset’s fundamental value.

For several years, great effort has been devoted to studying the financial bubbles. According to
Barlevy [2], a financial bubble occurs when the market price of an asset is higher than its fair or main
value. This deviation from true value can lead to concerns about market distortions. Furthermore,
financial bubbles can develop even when an asset’s essential value does not change. Thus, while
trends in fashion may show price fluctuations that correspond to shifts in fair value, sudden price
spikes in other assets may indicate a bubble. Conventional macroeconomic models, which assume
perfect financial markets and ignore financial frictions, prove inadequate for understanding financial
crises [3—6]. These models assume that financial frictions only affect non-financial firms and view
financial intermediaries as a simple curtain. Nonetheless, groundbreaking research in the literature,
such as that carried out by [7, 8], has examined different types of systems and shed light on the
intricate dynamics of financial crises. As demand for the asset increases, herd behavior causes prices
to soar. This disrupts the normal supply and demand equilibrium and leads to market instability.
During the growth phase, the bubble often experiences exponential expansion beyond the natural
increase in market size. Anyhow, this unsustainable price direction eventually collapses, especially
when triggered by even minor events. This has made the use of the two-scale economic theory,
introduced by He [9, 10], more effective in studying such bubbles, which will give more accurate and
reliable results. In summary, an asset bubble occurs when market prices become disconnected from
the fundamental value, and understanding the causes and signs can help protect investors when these
bubbles burst. According to Sornette and Cauwels [11], a bubble usually begins when new
information, such as the opening of a new market, captures the market’s attention and raises
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expectations of future performance. Investors are drawn in as word spreads of the potential for high
returns. First, the astute investors spot the real opportunity, then the inattentive ones.

The Riemann-Liouville and Caputo operators are examples of nonlocal fractional operators that
contain a singular kernel that occasionally fail to explain complex dynamic systems. As a result,
researchers have offered several options to improve the description of actual event models by using a
novel strategy and an additional tool. In this regard, novel fractional operators including a nonsingular
kernel [12] have emerged. In fact, researchers have made significant progress in applying fractional
calculus to real-world problems. The Atangana-Baleanu-Caputo(ABC) operator is the most optimal
emulation operator among nonsingular kernel operators, and it depends on the Mittag-Leffler function
(MLF) [13]. Then, Abdeljawad and Baleanu [14], created a new generalized Atangana-Baleanu
-Caputo (GABC) operator of singular and nonsingular kernels with a generalized MLF of three
parameters. Recently, a generalized weighted ¢-fractional operator covering all definitions of
nonsingular kernels have been presented by Thabet et al. [15]. These new fractional derivative
operators have applications in science, engineering, and financial bubbles [16—19].

Using fixed point theory, several scholars have investigated the qualitative properties of solutions
to fractional problems [20-23]. In particular, Wang [24] employed the Guo-Krasnoselskii and Avery-
Henderson fixed point theory. In addition, there are numerous simple ways to prove the stability of
linear systems of fractional order. In [25-27] established the existence and Hyers—Ulam stability of
solutions for their proposed equations. However, these approaches are not applicable to fractional-
order nonlinear systems. Diethelm [28] showed that under certain conditions a fractional system is
stable; however, this conclusion is only applicable to scalar fractional systems. Therefore, alternative
methods must be used to establish the stability of nonlinear fractional systems in the vector situation.
Li et al. [29] introduced a fractional-order extension of the direct Lyapunov approach as one such
method. However, because the fractional-order scenario involves additional complexity in identifying
a Lyapunov candidate function, the application of this technique is often very challenging. In order
to demonstrate the stability of fractional systems, some authors have suggested the use of Lyapunov
functionals. Although two well-known works [30,31] can be consulted, there is no clear relationship
between the fractional differential equation and the Lyapunov function. In addition, [32] suggests
more Lyapunovs where their relationship to the fractional differential problem is more fundamental;
however, these functionals are neither simple nor restricted to certain types of fractional systems.

The fractional Adams—Bashforth method [33] is a powerful and excellent numerical approach that
can produce a numerical solution that is closer to the precise answer; hence it is used to evaluate the
approximate solution. This technique was created with classical differentiation, which takes the
difference between two times, such as #,,; and ,, and applies it to the fundamental theorem of
calculus. We can observe, in the numerical simulation section, that the final formula of this technique
comprises the fractional parameters, increasing the options for choosing that parameter and so
providing more data about the dynamics behavior. Moreover, we show that the chaotic dynamic
arising from the bubble’s rupture may be effectively controlled.

Unlike previous models in the field of financial bubbles, this research paper contributes to studying
the impact of behavioral contagion more accurately and more flexibly in the market by presenting
a fractional-order mathematical model based on the generalized Mittag-Lefller function, providing a
more comprehensive approach. Studying stability leads to a deeper understanding and opens new
horizons and visions for those working and interested in the market, and provides numerical solutions
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to help in understanding how financial bubbles develop and how to address them.

1.1. Model formulation

Very recently, the authors of [34] studied the following five-dimensional financial bubble model:

P jy((A+d + St ) — ki P(s% + d, )
@ T vl + 1 2 eA+1”
@ = VAW,
A = VAW — (YUD) + p)AD), (1.1)
%’ = (YU®) + p) AW — %f[[(ﬁ),
= 17w),
subject to the initial conditions:
~ d: + 53 o _ 3 3
P(0) = sj " ;l, N(©0) = C = A®0) > 0, A®) > 0, T(0) =0, Q) =0, (1.2)
2 2

where C refers to the population size within the economy, ? is the asset price, V is the neutral sub-
population, A is the optimist/bull group, U is the pessimist/bear group, and Q is refers actors before
leaving the market permanently and becoming a quitter, and further parameter details are in Table 1.

Table 1. Fitted and referred parametric values used in the model (1.1).

Parameter Description

ki The factor determining how the difference between supply and demand
affects the rate at which the asset price changes.

4 Impact of the number of bulls on self-sufficient demand.

v The pessimist’s impact on the autonomy.

e The influence of the number of bulls on the elasticity of demand for prices.

d; Consistent independent demand level unaffected by bulls.

d; The constant self-sufficient demand level in the fundamental demand elasticity of price.

s The consistent self-sufficient level with no pessimists around.

s5 The stable autonomous supply level in the constant price elasticity of supply.

0 Rate of optimistic and pessimistic behavior.

Yy The rate of pessimistic behavior.

P The rate at which optimists naturally transition into pessimists.

n The usual length of time a pessimist stays in the bear class.

Furthermore, most research examining financial bubble systems is limited to solving ordinary
differential equations of integer order. It has been demonstrated that mathematical models that use
integer-order ordinary differential equations are useful for comprehending bubbles dynamics.
Motivated by the above work [34], in this article, we extend the abovementioned model (1.1) to the
fractional differential model by using a new generalized fractional derivative in the Caputo sense
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as follows:
_ B s* _ *
cDXPDY) = |y (CAW) + dF + ———) — ki PI)(s + ————),
0,0 ( ) 1(§ ( ) 1 V(L[(ﬁ)-l-l) 1 ( )(2 Sﬂ(ﬁ)'i'l)
DYPHV(I) = —s V@ AW),
DEEAD) = 6VNAW) ~ (YHWD) + p)AW), (1.3)
DEPHU@®) = (YUWD) + p)AD) - 1UW),
‘DR Q) = 1UW),
subject to the initial conditions:
~ di+s7 . ~ - - - ~
P(0) = Sj " ;{, TY(0) = C - A) > 0, AD) >0, UO0) =0, Q0) =0, (1.4)
2 2

where "D(‘;‘,’f’” is a new generalized fractional derivative in the Caputo sense of order « € (0, 1), Re(w) >
0, > 0, and o € R, which will defined in Section 2.
It is worth declaring that the novelty and contributions of this study are the following:

(1) Exploring the financial bubble systems under a new generalized fractional derivative involving a
modified MLF of three parameters (1.3)—(1.4).

(2) Investigating the E&U of the solution of the fractional financial bubble model (1.3)—(1.4) by
utilizing the Banach and Schauder FPTs.

(3) Discovering the equilibrium point and identifying the nullcline points of the suggested
model (1.3)—(1.4).

(4) Investigating the global stability of the discovered equilibrium point by using the Lyapunov
function.

(5) Studying approximate solutions of the model (1.3)-(1.4) by utilizing the fractional
Adams-Bashforth technique of order 3. We also compute the residual error to evaluate the
correctness of the proposed method.

(6) Performing simulations with different parameter values and fractional orders to show the
applicability of the method in different contexts.

(7) Our fractional model (1.3)-(1.4) returns to the framework of the GABC, ABC, and
Caputo—Fabrizo-Caputo(CFC) operators for (x = 3),(x =B, 0=p=1),and(=o0c=pn=1),
respectively.

This article is organized as follows: Several preliminary outcomes are presented in Section 2. Then,
we investigate the E&U theorems in Section 3. A stability analysis of the model is performed in
Section 4. Also, we determine a numerical solution of the above model by using the Adams-Bashforth
technique in Section 5. In addition, we discuss an error in Section 6. Finally, we establish the numerical
simulations of our results in Section 7.

2. Preliminaries
In 2023, Thabet et al. [15] introduced new generalized fractional operator with respect to a function
¢ involving the weighted function w. One of its special cases represents a generalized to ABC and

CFC operators for ¢(¢}) = ¢, w = 1, and y = [3 as follows:
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Definition 2.1. [15] The generalized fractional derivative in the framework of Caputo is defined as

A 9
D) = 1 [ B0 d - 91 (o), o

where « € (0,1), Re(nw) > 0, B > 0,0 € R, and a function f € H'(a, b). Furthermore, EG (A, 2) is the

modified Mittag-Leffler function (MLF) of three parameters defined as Eg (A, z) = Z A (j,)’rf;“ :;) , ()

is the gamma function, A\, = %, A() is the normalization function such that A(O) A(l) =1, and
(0)j=0o(c+1)...(oc+j-1).

Remark 2.1. Be aware that the following established definitions can be found in the literature for
every given value of the parameters «, 3, |, and o.

(1) If « = B, in the formula (2.1), one finds the GABC fractional derivative that was recently defined
in [35].

(2) If x = B, and 0 = w = 1, in the formula (2.1), we find the ABC fractional derivative that was
defined in [13].

(3) If p = 0 = w=1, in the formula (2.1), we get the CFC fractional derivative [36].

(4) The formula (2.1) reduces to the first derivative for «, o, 3, w — 1. Furthermore, it has a singular
kernel for p € (0, 1).

Moreover, the fractional derivative (2.1) is associated with the following fractional integral definition:

I;f’ﬁ HE(9) = Z ( )w R]lﬁ mH £(9), 2.2)
I\ A(x)

where le,ﬁ Rt f() is the Riemann-Liouville fractional integral defined in [37].

Lemma 2.1. [15] Let us consider « € (0, 1), Re(it) > 0,3 > 0, and o € R. In this case

D) ISPHEDER @) = f@) - f(a). (2.3)
i chxB ”(I“’f’“f)(ﬂ) _ (@), for Re(ip —w+1)>1,Re(1 — ) > l,and n # 1, 2.4)
“ J@) - E; A9 —a)f(a), forp=1

Theorem 2.1. ( [38], Banach’s FPT) Assume that F is a Banach space, and let x : G — G be a
contraction operator,in which case; x owns an exactly one fixed point in G.

Theorem 2.2. ( [39], Schauder’s FPT) Assume that F is a Banach space and let G € F be a convex,
bounded, and closed set. If x : G — G is a continuous operator such that xG € F and xG is relatively

compact, then x possesses at least one fixed point in G.
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3. Qualitative theorems

This part studies the E&U properties for the model (1.3)—(1.4). This model can be expressed in the
following form:

DYPHPWG) = W (0, P, V, A, U,Q),
DYPVI) = WH9, P, V, AU, Q),
DYPEAW) = W30, P, V. A, UQ), (3.1)
Dy A UW) = W@, P, V. A UQ),
DYPHQW) = W@, P, V, A, U,Q),
where o 3
W\ (&, P,V, AU, Q) = k(LAWD) + d: + vwm) kPN (sh + ﬂ(ﬂ)ﬂ),
WL, P, V, AU, Q) = —6VAWD),
Wi, P, V, A, U,Q) = 5VAW) — (YU + p)AWD), (3.2)
Wi, P, V, AU, Q = (yUWD) + p)AW) - ;UWD),
Ws@,P,V,A,UQ = L1UW),
and we can write the model (1.3)—(1.4) as follows:
CDS‘,’f X = f(3,x®), x©0)=xo, YI€[0,T], (3.3)
such that
P(9), Wi, P(0),
V®), W, V),
X@) =AW,  f@O,x) ={Ws5,  Xo ={A©0),
U, Wi, U(0),
Q), Ws, Q(0).

Theorem 3.1. Let x € (0, 1), 3 > 0, Re(p) > 0, and o € R. A function X is a solution of the model (3.3)
if and only if (iff) x satisfies the following integral equation:

_ (o) (1 — o) ol 1 g iB-
X() = xo + Z}](Z) T | @9 s, G

provided that i = 1 requires f(0,x(0)) =

Proof. By using Definition 2.2, and Lemma 2.1, we obtain
X®) = Xo = I £, x(9))

0\ (= 00 T
‘;(z‘)—m) 1P 29, % (9)). (3.5)

Conversely, if we take the derivative defined in Definition 2.1 on both sides of Eq (3.4), and apply
Lemma 2.1, we get the model (3.3). O
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Now, we consider the Banach space of the continuous function = = C[0, T'] under the norm |[x|| =
SUp (0.1 IX(@)]. Moreover, we define the Banach space X = (£ >, Ix|l) with the norm

Ixll = P, V, A, UQI = sup {P@) + V(&) + AW) + UW) + Q).

1€[0.T]
Next, we use Schauder’s FPT to demonstrate the E&U of the solution of model (3.3).

Theorem 3.2. Let a function f € X be continuous, and there is a constant k; > 0,3 |f(?,x(}))| <
ki (1 + X)), and Y9 € [0,T] for each x € X. Then at least one solution for the model (3.3) exists,

provided that
S (o\(1 — o) 7l Tl '
" L L, 3.6

1 (;(Z) |A(e0)] r(if)—u+2)K1)< if u# (3.6)

and | = 1 requires f(0,%x(0)) =0

Proof. The solution of model (3.3) is an analogous to the solution of the fractional integral
equation (3.4). Let us define the operator J : ¥ — X as follows:

(1 _ (X)l i i B
(I —X0+Z( ) A TGP—pnx 1)f (@ —s)" M f(s,x(s))ds. (3.7)

We now take the bounded closed convex ball defined as B, = {x € X : [Ix|l < ¢,¢ > 0}, where ¢ >

(1 o()l—io(i Ti[i—p+l
such that ¥, = + : K
= 2= bol+ (3 (O Rar rp—we )
Firstly, we show that (¥ B.) C B.. Thus V¢ € [0, T], and one has

(1—0(,)1 i i 1 ) B
|<Jx>(ﬂ>|<|xO|+Z() Al T ie T f (@ — )P Hf(s,x(s)lds
(1—0()1 i~ B
<|xO|+Z( ) A T u+1)f (9 = )* k1 (1 + [x(s))ds.

For x € B, we get

(1-o' o K1 B+l
||Jx||<|xO|+Z(l) Aol T

o\(1 — )~ Ki G Byt
*Z(:‘) Al T -n+d

i=0
< \P2 +\Pl§S S.

This means that (JB,) C B..
Now, we prove that the operator J is continuous. For this, we take the sequence {X,} such that
X» — X 1In B¢ as n — oo. Then, for each ¥ € [0, T'], we find

(T X (@) = (T XD
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i( ) O()l_i i
—\i) 1A

F(l[?) w4+ 1) f |(f(s Xn(S)) f(S X(S))l(ﬂ S)IB kds
- (1 — )1 i
<
Y

o TP EI(FC, xa()) = FE X
B IAITGR — 1 +2)

By the continuity of a function f, we get || X,

continuous.

Jxll = 0 asn — oo. Thus, the operator J is
Next, let us prove that (J B,) is a relatively compact operator. On account of the fact that (7B.) C
B, (I B;) is uniformly bounded.

For indicating J is equicontinuous on B, , let X € B, and ¥,?, € [0, T], and ¢, < ¥,. We obtain
I(TX)@) = (T O

— (o\(1 — o) ! 1
3

£\i) Il TR — i+ 1)

191 . 192
x| f F(5,X(S)@1 - 5)*Hds -
0

(o)

f(s, (), — s)l‘ﬁ—uds\
Z( )(1— o) 1
" IA(cv)]

TG -+ 1)
Uy
<] | " Fsx(s)09, — s)Pds - (S X))
(1 _ oc)l‘ioci | .
+Z(,-) A F(iB—u+1))j,;2 (5. X0 = 9)~ds|

1= 111 1
skml+92§(J( )

ﬂ _
A TG -p+2)

1 - lll -1
+K¢r+ozS(J( %)

)
Al TaB-p+2!

ﬁz)iﬁ—pﬂ_ﬂilﬁ—pwl +0;[3—u+1)

ﬂz)iﬁ—},wl.
We find that (19’?““rl -

9P ”“) — 0, as ¥, — ,. Hence, we deduce that J is equicontinuous. From
the conclusions above, we infer that J is completely continuous. As a consequence of Theorem 2.2
we came to conclusion that the model (3.3) possesses at least one solution

O
In what follows, we study the uniqueness result of the solution of the model (3.3) by the Banach FPT

Theorem 3.3. The model (3.3) possesses a unique solution if there is a positive real number k, > 0
such that VX, X € X. One has |f(,x()) — f(}, X(D)| < k; [x( ) — X(D)|, provided that

~ x o (1 _ (X)l—i(xi Tiﬁ—p+1 )
" ‘(KZ;(i) A Tap—wep) <L iEED G9
and 1 = 1 requires f(0,%x(0)) = 0.
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Proof. Let us define the operator J : £ — X as given in (3.7). Then, for each x,x € X, and ¢ € [0, T],
one finds
(1-o0)' 1

IAC)l  TGER —p+1)

(T — (T < Z( )
x( f /(8. X(8) ~ (5. XD — )" *ds)

Z( )(1 L 1 fﬂ(ﬂ— s)P¥x(s) - x(s)lds
i) Al TG —p+1)Jo

=0

N — o)l TRk i
Z( ) Al Tap -2y X Xk

i=0

Hence,

(1 _ Oé)l i~ TiB—pH B
lix = xll

WX - :fx||<KzZ, A TGP -1t2)

=0
< ¥ llx =Xl

Since W3 < 1, J is a contraction operator. Based on Theorem 2.1, we conclude that the model (3.3)
has a unique solution. O

4. Stability analysis

This section aims to investigate the equilibrium point, nullclines, and the Lyapunov stability of the
model (1.3)—(1.4) at an equilibrium point.
4.1. Equilibrium point

The equilibrium point’s are the point where each state variable does not change in value, marked by
the derivative of each variable equal to zero. In order to compute it for the system (1.3), let us set

“DyEHP9) = Dyt V() = Dy AW) = DEP UW9) = “DyEHQW®) = 0

Thus, !
k(CAW) + d; + WM) kP)(s; + o) =0
—O0VHAW) =
SVAW) - (ﬂ«ﬂ) + p)AW) = 0, (4.1)
(YUW) + p)AW) = ;UW) =
%([{(19) =0

Therefore, the equilibrium point is

*

S e a0 a0 x di +s
VR U.Q) = ( di,o 0,0,0).
2
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Remark 4.1. The first equation in the model (1.3) does not correspond to the social contagion
component’s dynamics, as described by the final four equations. Thus, we must first determine the
steady state (V, A, U, Q) to perform the stability analysis.

4.2. Nullclines

The goal of this section is to identify the nullcline points from the system of Eq (1.3). Nullcline
points contrast with equilibrium points as they are locations where the vectors are vertical, either
ascending or descending. By definition, the x; — nullcline is defined as

fxi(XlaXZ,---,Xia---aXn) =0

In our case, we find that a V—nullcline point will be obtained with (=6 V(9)A(H)) = 0; an A—nullcline
point will be determined by imposing with (6V (A — (YU + p)AD)) = 0; an U—nullcline will
be found due to ((yU(®) + p)AW®) — 1U($)) = 0; and a Q-nullcline will be obtained by (;U(®)) = 0

Thus, for the ‘V—nullcline point, we have the following set (,0,0,0), (0, A,0,0), and YV, A €
R*; for the A-nullcline point, we have (V,0,U,0), (0,0,U,0), (0, A, ~£,0), and YV, U, A € R*;
for the U —nullcline and é—nullcline, we have (0,0, 0, 0).

4.3. Lyapunov stability

Before we investigate the Lyapunov stability of the model (1.3)—(1.4) at the equilibrium point, we
need to prove the following auxiliary result.

Theorem 4.1. Let X(1) be a derivable function and continuous. Then, at any instant in time t > 0, for
0<(PBi+w <1, wehave

5 DEPMA®) < X DY x(@), Ve (0,1). (4.2)

Proof. The expression above is true if
X DY) = S°DEEP @) > 0, Vae (0,1).

By using Definition (2.1), it can be written as

Py A(x) 7 . ,
D@ = = | Eg (O (8 = )X (5)ds. 43)
’ l-aJ, P
Multiplying Eq (4.3), by x(), we get

X DX (@) = 2 " (s (0 - )X (S)X(O), (4.4)

and

cDoc Bop 2(19) (O() f (}\(X, (% — s))2x(s)X'(s)ds.
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Therefore,
1 A
D) =0 0 "ET (e (8 - )X(SX(S)ds. (4.5)
By subtracting Eq (4.5) from Eq (4.4), one finds
1 A
XY DGEIX(0) = 3D = O BT (s (0 — )X () - X(SIX ()
A 9
:ﬂ ES e (8 = HOKD) — XX (S)ds.  (4.6)
1l -«

By putting Y(s) = (x(9) — x(s)), which yields Y’(s) = —x/(s) in (4.6), then we have

Ay [0 , A (0 A
T ), ER (A, (@ = 5)Y(s)Y'(s)ds = - - Zs it TBi+

)
x ( f @ - )PV Y ()Y (s)ds). 4.7)
0
Integrating by part for Eq (4.7), implies

u= (9 -s)Prh, dv =Y (s)Y'(s),

_Ys)
- Lo,

du = —(Bi+ p— (& - s)PHH2,

In that way (4.7), can written as:
B A(x) N (0); }\fx ((0 _ S)(ﬁi+p.—l) yz

1 -« par i T(Ri+ W)

I A () A ( V()
S 21—k i T(Ri+ )N - s)! -

f (Bi + = 1)@ — )“”“‘”y(s) ds)

Y*(0)
=t (9 — 0)I-Birw

v
+ f (Bi + L — 1)@ — s)PBitrn=2 y2(s)ds). (4.8)
0

Since there is an indeterminate at s = 1 in the first term of the expression (4.8), we examine the
appropriate limit as follows:

I Y(s) X =x(s)T 3@ - 2x()x(s) + X*(s))
2 (9 — 8) - 5oy (9 — 5)l-BEm s © — s)-(w)

=0. 4.9)

Therefore, the expression (4.8) reduces to

=1 Al o (0 AL _ (x@® - x(0))?
2 1-asd it T(Ri+ =B+

1 A(x) = (0); Al 9) — x(0))2 7 . "
=31 502 ((;) T(Bi+ },L)((X(tl)—(ﬁii(s) ) +f0 (1= (Bi + w)(@ — )P+ 2)312(5)015) >0,
i=0

g
- f (= (Bi+ )@ - S)(B”“_z)yz(S)dS)
0

since 0 < s <t,and 0 < (3i + w) < 1. This completes the proof. O
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Theorem 4.2. The following inequality holds for 0 < i3 + u < 1:
VA () + YU + p)UNAD) + 1 /n QAYUD) < 6V DAWD) + YUD) + p) A () + 1/ T ().
Then, the model (1.3)—(1.4) is globally stable at the equilibrium point.
Proof. First, we introduce the Lyapunov function as follows:
LV, AU Q) =/ >V* + oA + 12U + 1/2Q".

We note that L(V, A, U,Q) > 0, for (V,A,U,Q) # (0,0,0,0), and L(V, A U Q) = 0, at the
equilibrium point ((VO, A, U°, Q") = (0,0,0,0), then, by using Theorem 4.1, one has

DEPELIVB), AW), U®), QD))
:cDoc,ﬁ,u(l/z(pz(ﬂ) + 1/2ﬂ2(ﬁ) 1 1/2{{2(19) 4 1/2Q2(ﬂ))
<V(9) ‘DFEH*V®) + AW) DY AWD) + UD) “DFPHU D) + QW) “DFPQ)
<Vw)( - (YV(z‘})ﬂ(ﬁ)) + ﬂ(ﬁ)(é(V(ﬂ)ﬂ(ﬁ) — (@) + p)AD))

~ ~ ~ 1 - . 1~
+ UD)(yU®) + p)AWD) Ewm) i a(ﬁ)(;ﬂ(ﬂ))
= = SVDAWD) + SVOA @) - (YUD) + p) A ()
+ (yU®) + p)UD)AW) - %ﬂz(ﬁ) + %Q(ﬁ)ﬂ(ﬁ)
- - ~ - - 1 < ~
=(6 VAW + (YUD) + p)UNAD)) + 5@(19)11(19))

= (6V2AWD) + UD) + p) A D)) + %ﬂz(ﬁ)).

Therefore, we deduce that ‘D> L(V, A, U, Q) < 0, ¥ (V, A, U, Q) # (0,0,0,0), if the following
condition holds:

VA @) + (YUD) +p) U AWD) + 1/n QNUW) < SV2DAD) + yUWD) + p) A W) + /o U (9).

Hence, CD&’E ’“L((V, A, U, é) is negative definitely. Therefore, according to (Lemma 5, [40]), we
deduce that the origin of the fractional model (1.3)—(1.4) is asymptotically stable. O

5. Numerical method
In this section, we introduce a numerical method which is used to solve the fractional model (1.3)—

(1.4). This technique is the fractional Adams-Bashforth method of order 3 (FABM3). Thus, by using
the Theorem 3.1, we have

00 )11 i
iB-
X(@) = xO+Z A(a)r(lﬁ =D f (@ = P f(s, X(s))ds.
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Now, we provide a rough solution that entails approximation at the points ¢ = #,, and ¢ = 9,1, such
that h = ¥, — ¥, where h is the size step,n = 0,1,...,p, 99 =0, and 9,1 =T.
Therefore, if ¢ = 1, one has

00 (?)(1 _ (X)l_i Oéi
= AOIGR —p+1)

9,
X)) = %o + fo (@ — )P f(s,x(s))ds, (5.1

and if ¢ = 9,1, we find

9.1) = > () -l et 9 B d 5.
X( n+1)—xO+;A(a)r(iB_u+l) @ =95 x(5)ds. (5.2)

Subtracting Eq (5.1) from Eq (5.2), yield

B > (o) (1 — ) e 1
X(s1) —x(ﬂn>+;(i) Ao T —wrD

It I
([ = psoxonas = [0, psxons) 63)

Using the Lagrange interpolation and the interpolating functions F,,, F,_, F,_,, the proposed technique
is of order 3.

(ﬁ - ﬂn—l)(ﬁ - ﬁn—Z) (19 - 19n)(19 - ﬂn—Z) F X

(ﬂn - 19n—l)(ﬁn - ﬁn—Z) " (0n—1 - ﬂn)(ﬂn—l - ﬁn—Z) "
(0 = 9,)(@ = Fy1)

Y(@) ~ f(9,x(P) =

25 (5.4)
(ﬁn—Z - ﬂn)(ﬂn—Z - ﬁn—l) ?
where Fn = f(ﬁn’ X(ﬁn))’ Fn—l = f(ﬁn—laX(ﬁ'n—l)), and Fn—Z = f(ﬁn—Za X(ﬂn—l))
In what follows, we can rewrite Eq (5.3) based on the Newton polynomial as:
o (o) (1 — @) e 1
Tue1) =X, i ;
XDt =X( )+;Z;(l) YT (TRTY
ﬂp+l .
x f (B — SYPH(Y(S) + E(S))ds, (5.5)
1917
where E is related to an error term and is defined by [41] as follows:
(s, x(s))
E(s) = fT(s —Fp2)(s = Fpo1)(s — ).
Next, let
h=09,., -9, and s = 9. (5.6)

Thus, by putting Eqgs (5.4) and (5.6) into Eq (5.3), one gets
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Alx) TG -p+1)

fﬂnu (ﬂ 3 ﬁ)iﬁ—“( (ﬂ - ﬂn—l)(ﬁ - ﬁn—Z) F 4 (19 - ﬁn)(l9 - ﬂn—Z)
0 ! (ﬂn - ﬂnfl)(ﬂn - 791%2) " (ﬁnfl - ﬂn)(ﬂnfl - ﬁn72)

oo 1 — o) -ind 1
xwmo=mﬁa+§jcy ©_x
i=0

Fn—l

X

(¥ = 9)@ = Fu1)
(ﬁn—Z - ﬂn)(ﬁn—Z - ﬁn—l)
9,
" iR— (l9 - ﬁn—l)(l9 - ﬁn—Z) (ﬁ - ﬁn)(l9 - ﬁn—Z)
- 8, — )P F,
L ( ) ((ﬂn - 071—1)(7-%1 - ﬁn—Z) " (ﬂn—l - ﬂn)(ﬂn—l - ﬂn—Z)
(0 = 9,)(0 = Fy1)
(ﬁn—Z - ﬂn)(ﬂn—Z - ﬁn—l)

F n_z)dﬂ

Fn—l

)Fn_z)dﬂ]. (5.7)

We can also write Eq (5.7), as follows:

_ (o) (1 — o) el 1
xwmo—xw»+;;@) e IUB_H+DQVJQ, (5.8)

where
T R o TR e e e T
T e
and
T R e e e TR e e T8

(¥ - 9)@ = Fu)
(ﬁn—2 - ﬂn)(ﬂn—Z - ﬁn—l)

)Fn_z)dﬁ. (5.10)

The fractional integral (5.9) can be evaluated as:
S pon( (0= 0 ) = 0,2)
I = D1 — PP - = F,
: ZLL(+1) anwwfm@

(¥ - 9)(0 - F02) (0 =)@ = F0-1)
(ﬂn—l - 7-9n)(7~9n—1 - ﬂn—Z) " (ﬂn—Z - ﬂn)(ﬂn—Z - ﬂn—l)

p=0

Fn_z)dﬂ]

- Fn ﬂp+1 o
B Z [(19 9, )@, —9,2) (s = NP = 9, ) — 3,2)d D
n = Un-1 n = YUn-2 ¥y

.\ F, D p+1
(ﬁn—l - ﬂn)(ﬁn—l - ﬁn—Z) 9
Fn_2 19/7+I
+
(ﬁn—Z - ﬂn)(ﬁn—Z - ﬂn—l) 9y

p=0

(Fpi1 — DPFHI = 9,9 — 9,2)d0

Bper = P HI = 9,)(I - ﬁn—l)dﬂ]
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~N[FE, (7 .
- [ O = 09540 = 000 - 0,20
),

p=0 P
F, P 1 ‘

» 2 f (B = OYP (D — 9,00 — B,_)d
e ),
Fn—2 791)+1 lﬁ_u
= fﬁ (B — OYP D — 9,000 — B,)d|

P

Now, by choosing x = (1,41 — ), which implies that dx = —d}, and then

n Fn 19,,+|—19p+1 o
Il = Z [ — 2h2 L XlI3 p‘(79,1+1 -X—- ﬂn—l)(ﬂrﬁl -X- ﬂﬂ—Z)dX

p:() n+l_ﬂ]7
Fn—l ﬁn+l*ﬂp+l )
+ h2 f Xlﬁ_u(0n+l -X- 79n)(19n+1 —-X- ﬁn—Z)dX
19n+1_19p
Fn_ ﬁll+l_l9p+l .
- 2h22 f XP et = X = Fn)(Fner — X — ﬂn_l)dx]
0n+l_l9p

n Fn D1 _79p+1 )
= [ - 55 f XP (2R = )Bh = X)dx
p:() ﬂnJrl_ﬂp

F,_, Fn1=Fpr1
+ f XPH(h = x)(Bh — x)dx
9,

h2 n+l_79p
F,, Fn1=Fpr1
- f X = )2 x)dx]
0n+1_79p
n _F ﬁn+l_l9p+l . . .
— Z [ 2" f (6h2xl[5—p. _ 5hX16—u+1 + Xz[%—u+2)dx
p:() 2h 19n+1_19p
F, Fne1=0p+1 ) ) )
Izz— f (3h2xlﬁ—u _ 4hxt[5—u+l + XzB—u+2)dX
19n+l_19p
Fn—2 ﬂn+l _ﬂp+] . . )
_ 2h2 f (2h2xzﬁ—u _ 3hxz[5—u+l + Xzﬁ—u+2)dx]
19n+1_19p
F, —6h? o B
= th(m((mﬂ = G )P = (B = B0)P )
5h . )
+ m((ﬂnn = D) P = (D — ﬁo)lﬁ_”+2)
1 iB-p+3 iB-p+3
- m(ﬁnﬂ = Dni1) = (D1 — ) )
F, 3n? e .
+ hzl(iB - 1((ﬁnﬂ = Fpe) P = (1 — D) PLH)
4h iB-pu+2 iB-p+2
- m((ﬂn+l - ﬁn+l) - (ﬂn+l - 190) )
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+ ﬁ((ﬂm = 0) P = B - ﬁo)fﬁ—“+3))

+ Z’;;(iﬁ j’i (Bt = 90)P 7 = By = 090
i (B = 80P = B = 00 77)

- ﬁ(ﬂnﬂ = 9 )P = By - 00)iﬁ_u+3))~

As a result, the first fractional integral computation is provided by

30+ P Sk P2 (n P )
iP-p+1  20B-p+2) 2B-pn+3)"
_ iB—p+l iB-—pu+2 iB-pu+3
+( 3n+1) +4(n+1) (n+1) ) -

I = hiﬁ—u+l[(

ip-u+1 iBp-u+2 B ip-u+3
(n+ 101 304 yBRe2 (4 ])iBomed
+ B-n+l  2Gp—p+2) +2(i(5—u+3)) w2

(5.11)

The second fractional integral (5.10) can be computed in the same manner as the previous procedures.
We found that

n—1 9
ptl oy =10, = 1,-)
I, = 9, — )P+ F,
’ ; [fa R v
& — 9,)® - 9,) & - 9,)@ — D)
F, F,_»)dY
s = OO —Ona) " Bra = F)(Fns — Oor) J ]
n—1 F l9p+1 b
- n 9 — DPFHG = 9_ ) — Fpn)d S
; [(ﬂn - ﬂn—])(ﬂn - ﬂn—Z) »[19; ( ) ( 1)( 2)

F,_ T p+1 .
e ﬁl o f (&, — 9P = 9,)(F — 9,,_p)dD
n-1 " Un n-1 = Up-2 9,

Fn—2 ﬂp+]
+
(ﬂn—Z - ﬁn)(ﬁn—Z - ﬂn—l) 9y

(@, = NP D = 9, - ﬁn-l)dﬁ]

n—1 F 3 i1 .
=2, [z_hz f (W = P = B, 1) — Dy 2)d)
p:0 ﬂp
F 3 p+1 '
- _;;2_ 1 f (& — HP W = ) — Fyn)dD
)

P

F D) ﬂp+1 .
+ = f (0, — )P = 3, - F1)dD |-
212 )y,

Substitution x = (¢, — ), which implies that dx = —d, and then
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—

n—

_Fn 17,,—19P+1 .
L= [ : f XP @D =X = Fue) (@0 — X — Fu2)dX
2h Py=1)

b
[«

Fn_ 9, ﬁl”'l o
+ 71 f XIB p’(19n -X- 19n)(ﬁn -X- ﬂn—Z)dX
G0

Fn—2 Py~ pi1 )
- f Xlﬁ_u(ﬂn - X ﬁn)(ﬂn -X- ﬁn—l)dx:|
I

202 Jy, s,
n-1 ﬂn_ﬂp+l F ﬂn_ﬂerl [5
= X" H(=x)@2h - x)dx
Z_; [ 202 f " h2 s
Fn—2 ﬂn_ﬁpﬂ 'ﬁ—u
- Bt (—x)(h — x)d
T ﬁ Y X H=X)(h = x)dX
n—1

0[)4—1 ) ) )
— [ 2h2 f (ZhZXtB—u _ 3thB—p+l + Xz[S—u+2)dX

p=0 ¥,
Fn—l fﬂn ﬂp+l(_2hxiﬁ—p+] . Xi[_’,—u+2)dx ~ Fn—2 ftn_tpﬂ(_hxiﬁ—pAl N Xiﬁ—u+2)dx
h2 Fn=19p 2h2 th—tp
F 2h? : 3h , 1 ‘
— on( = ﬁn _ 1_9 ip-p+r T ﬂn _ ’19' iB—p+2 o ﬂn _ ’1_9 iB-pu+3
2h2(i[3—u+1( 0) iB—u+2( 0) iB—u+3( 0" 7)
F, 2h . 1 .
+ " ﬂn -9 B-p+2 - ﬂn -9 ip—p+3
(iﬁ—u+2( o) B3 )
F,» —h 1 o
+ n ﬁ -9 iB- M+2 - ﬂn -9 iB-pu+3 .
Zl’lz(lﬁ u+2( 0) iB—u+3( 0"7)
Hence,
iB—p+l iB-p+2 iB-—p+3
L :his_w[( [ O e it
B-n+l 2p-p+2) 26B-pn+3)
2 iB-pu+2 iB-p+3 iB-pu+3 iB-pu+2
(A WP e (2 A (5.12)
P-w+2 iP-pn+3 20 —pnu+3) 2ip-pu+2)

Now, putting Eqs (5.11) and (5.12) into Eq (5.8) gives the following numerical strategy for the FABM3:

X(ﬁn+1)

_ o (0\(1— o) o 1 iB-pt1

—x(ﬂn)+;(l,) Ao T@B_ns 1)[h b (5.13)

3(1’1 + 1)i[5—u+1 _ (n)iB—pH 3(n)i[5—p.+2 _ 5(n _ l)ifi—p.+2 (I’l + 1)i[3—u+3 _ (n)iﬁ—p.+3)
( B—prl " 2P -n+2) T B —n+3) "
—3(71 + 1)1’[5—u+1 4(I’l + 1)[[3—u+2 _ z(n)iﬁ—p+2 (n)iﬁ—u+3 _ (l’l + 1)i|3—p.+3
+( iB-p+1 " iB-pn+2 iB-pn+3 )F"_l

(n + 1)i[5—u+1 ~ 3(1’1 + 1)i[5—p+2 + (n)iﬁ—u+2 (n + 1)i[5—u+3 _ (n)iﬁ—p+3
(iB—p+1 iB-n+2) | 2p-n+3) )Fea
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6. Error analysis

The error is typically analyzed by comparing the numerical solution with the exact solution [42,
43]. In this section, we locate the error analysis for the suggested numerical method that includes the
generalized fractional derivative in the framework of Caputo. To calculate it, we go back to (5.5):

(1_ )11 i 1
x(ﬁn+1)—x(ﬂ)+ZZ() Ax) T@GER-p+1)

p=2 i=0

ﬂp+l
<( [ @ = 57 01v09) + EC1s), 6.1)
Iy

);

where
(s, x(s))

E@s) ==

Therefore, the error term 1is

b N0 [0\ - ) 1
Es LL(ﬂ)_,z(i) Ax) TGR-p+1)

i=0

pe1 _ 3)
x( f O (S X( J7EXE) g s - p_l)(s—ﬁp)ds). 6.2)

9p

(5~ 9p2)(S — Bp)(s — ).

Now, by applying the absolute value on both sides for s € [9,,3,.1], we get

. (1_“)11 i 1
1Ea H(ﬁ)'<zz(z) A T@p—p+1)

p=2 i=0
(s, x(s)

19p+1 '3
19n+ —-s)P
X(fﬂp () 30
> (o\ (1 — o) 1 Dpe B
= Z Z (z) IA()| TGP -+ 1)(fﬂp D1 = 87

F9(s,x(s)
3!

(s = 0p-2)(s — Fpo1)(s - ﬂp>|ds)

X sup
Se[’ps’p+l]

sup [(s —Fp2)(s —Fp-1)(s — ﬂp)IdS)

SE[lp,l‘er]]

o\ (1 — o) ! 1 Fpi1 "
(l) |A(OC)| r(l[?) - u+ 1) L]} (79n+1 - S) Hds

o) (- B . .
(l)lA((X)lr(lB _ u+2)[ (ﬂnﬂ ﬁpﬂ) H +(ﬁn+1 ﬂp) = ]’

where T = sup |f®(s,x(s)|.
SE[fp,fp+1]
As a result, in what follows, we drive the error estimate for Eq (6.1), which is

Th3 b o (1 _ o()l—io(i N
ot - iB—p+l
[EgPH()] < — 6 g (i)|A(o¢)|[‘(i[3 “1+2) (D1 — F)PH
ThiB-HH4 & (5 (1- oc)l_ioci -
) T;(i)ll\(OC)IF(iB - u+2)(”_ DT (6.3)
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7. Numerical simulations

This part uses the earlier approximate solutions to present the numerical approach for all categories
for the fractional model (1.3)—(1.4). The numerical solutions are plotted for numerous values of
fractional orders. Here, we consider the following parameter values that are given in [34]: the primary
constraints V(0) = 995, A(0) = 5, and U(0) = Q0) = 0, the population size in economy C = 1000;
and the parameter values k; = 2, = 0.0002,v = 0.0018,d; = 0.02,d; = 0.001,& = 0.0002, s} =
0.03,s; = 0.004,6 = 0.0001,y = 0.0002, p = 0.0002, and 1 = 30. We simulate our numerical results
for various fractional-orders values in Figures 1-5 for a set of fractional order values («, 8, u, o).

In Figure 1, the curves correspond to the situations one expects to observe during the formation of a
financial bubble. We note that there is a volatile increase in the price of assets which would result from
an increased demand for the asset, which is reflected in a higher price for the asset. This is accompanied
by a rapid decrease in value due to the bubble’s implosion. After the bubble’s implosion, the asset’s
price seems to settle around its price just before the bubble breaks. The reason for this is said to be
adjustment back to equilibrium after the huge variability created by financial bubbles. It can be noted
that the fractional orders are directly related to the rate of increase as well as the rate of decrease in the
price levels. In Figure 2, we observe a gradual decline in the number of individuals in the neutral group.
This indicates that individuals tend to shift to other groups, either the optimists group or the pessimists
group. This leads to the system reaching a state of equilibrium. Figure 3 can be divided into two phases.
During the growth phase as prices rise, optimism increases as people believe the market will continue

to rise, in the decline phase, after the peak is reached, excessive optimism gradually diminishes and
the number of optimists begins to decline. This behavior is the typical pattern of financial bubbles. On
the other hand, in Figure 4, we see a time lag in the appearance of pessimists, which indicates that the
market cycle is sequential, with optimists appearing first, followed by pessimists. We see an increase
in the number of pessimists, followed by a period of contraction and their transition to the group that

exits the market. In Figure 5, we observe a gradual increase in the number of individuals who decide
to exit the market, indicating a loss of confidence in the market.

“““ (0.6,0.65,1.5,0.5)
= = =1:(0.65,0.7,1.6, 0.6)
B === (0.7,0.8,1.7,0.7)
R (0.75,0.9,1.8,0.8)
S
S B A
-
LY
B L
B f 1
100 - B B 4
St '
B N1 'A
[ Sty 1
g g '
5 g \
H - '
< B [
L
B : B | '
50 T g Y 4
Sty \
B ] [} \
S Y \
St 1 .
- 1 AY
St . .
2y, . .
SR . A
X e b
L Rl o e e
o Il Il Il Il Il Il
o 100 200 300 400 500 600 700
Time v

Figure 1. Price of assets at the given fractional-order values.

AIMS Mathematics Volume 10, Issue 4, 8587-8614.



8607

1000
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B
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T
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—200

I I I I I I
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Time o

Figure 2. Dynamics of the neutral sub-population at the given fractional-order values.

1000 T

““““ (0-6,0.65,1.5,0.5)
= =11(0.65,0.7,1.6,0.6)
=== (0.7,0.8,1.7,0.7)
(0.75,0.9,1.8,0.8)

Optimists/bulls group (A)

—200

I I I I I I
o 100 200 300 400 500 600 700
Time ©

Figure 3. Optimist/bull group at the given fractional-order values.

““““ (0.6,0.65,1.5,0.5)
= =11(0.65,0.7,1.6, 0.6)
=== (0.7,0.8,1.7,0.7)
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Figure 4. Pessimist/bear group at the given fractional-order values.
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Figure 5. Sub-population of quitters at the given fractional-order values.

On the other hand, the considered derivative is a more general operator and includes some already

defined fractional derivatives like GABC, ABC, and CFC as special cases. The numerical simulations
can be performed easily over a long range. Figures 6-10 show the graphics of the components of the

fractional model (1.3)—(1.4) for a set of fractional-order values («, 5, u, o) via four types of fractional
derivatives which are a new fractional derivative(FD) (2.1), and its special cases, GABC, ABC, and
CFC. This proves that the newly used FD is more flexible and practical, and the results can be easily

compared with some of the existing fractional derivatives in the literature.
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Figure 6. Price of assets using various fractional derivatives: the new FD, GABC, ABC, and

CFC.
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Figure 7. Dynamics of the neutral sub-population using various fractional derivatives: the
new FD, GABC, ABC, and CFC.
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Figure 8. Optimist/bull group using various fractional derivatives: the new FD, GABC, ABC,
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Figure 10. Sub-population of quitters using various fractional derivatives: the new FD,
GABC, ABC, and CFC.

8. Conclusions

This paper provides a comprehensive, deeper, and more accurate understanding of a model related
to financial bubbles and analyzes their stages (growth, collapse, and stabilization) using a new
fractional-order derivative. The model identifies equilibrium points, and nullclines, and verifies the
uniqueness and existence of the solution using the Schauder and Banach fixed-point theorems.
Stability was studied using various theories, and a powerful technique namely the third-order
Adams-Bashforth method, was applied to compute approximate solutions for the proposed model.
Finally, a numerical simulation was conducted to confirm the accuracy of the employed methodology
in handling various scenarios by using a step size of 4 = 1. The results show that the new
fractional-order derivative is more accurate in capturing the dynamics of time changes compared with
other derivatives. Additionally, our results can be applied to various fractional derivatives as special
cases, such as the GABC, ABC, and CFC derivatives at certain values for the given parameters (see
Figures 6-10). The results confirm that the technique can produce accurate answers in many settings.

Moreover, in the future, we aim to extract valuable information from massive financial data to
improve the parameter estimation process with the greater flexibility of the model to align with varying
market environments. It is possible to broaden the model by considering other elements that contribute
to the development of financial bubbles. Combining these aspects will improve the model’s realism as
well as its ability to help understand and explain financial market phenomena and predict future events.
This analysis can also be extended to other models in the future.
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