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Abstract: The impact of inter-particle spacing and the radius of gold nanoparticles on nanofluid flow
have substantial significance across applications. Optimizing these parameters in biomedical
engineering enhances the drug delivery systems, thus controlling the release of medicines and
accurately targeting the targeted area. We explored nanofluid flow on a bi-directional elongated plate.
The surface of the sheet was characterized with variable porosity with inclined magnetic field effects,
which is the main novelty of the work. We focused on how nanoparticle radius and spacing affect the
overall flow dynamics. Additionally, we incorporated the Cattaneo-Christov heat and mass flux
model effects to discuss the mass and thermal diffusions using some flow conditions. The major
equations were translated in dimensionless form and solved with artificial neural networks (ANNSs).
As outcomes, we uncovered that primary velocity has weakened with extension in stretching ratio
and magnetic factors and has been amplified with progression in variable porous factor with absolute
error (AE) in the range 10 to 1077. Thermal panels have enlarged with escalation in thermophoresis,
magnetic, radiation, and Brownian motion factors with absolute errors AEs in the range 102 t0107".
Concentration panels have escalated with augmentation in the thermophoresis factor and activation
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energy factor and weakened with the expansion in Schmidt number, chemical reactivity factor, and
Brownian motion factor. We conclude that the model’s optimal performance has observed at epochs
111, 225, 194, 270, 179, 220, 339, and 221 for different scenarios. For all the scenarios, the gradient
values are associated at9.97x10° 9.91x10° 9.92x10° 9.91x10° 9.95x10° 9.91x10° 9.92x10° apq

9.91x10°°

Keywords: Cattaneo-Christov flux model; nanofluid; variable porous space; inclined magnetic field;
chemical reaction; thermophoresis and Brownian motion
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1. Introduction

The Cattaneo-Christov model marks a substantial improvement that is subject to the
conventional Fourier [1] and Fick laws [2], which traditionally adopt that heat and mass flux respond
instantaneously to mass and thermal gradients. These assumptions imply an infinite propagation
speed for mass and thermal transfer, which is not realistic. The Cattaneo model [3] addresses this
issue by introducing a thermal relaxation time that consequently acknowledges the restricted speed of
heat diffusion. Christov [4] further refined this model by incorporating a derivative term to enhance
its accuracy and predictive capabilities. By introducing this mathematical modification, Christov
aimed to improve the model’s ability to capture dynamic changes and respond more effectively to
variations in the system. In fluid dynamics, the Cattaneo-Christov model enhances the precision of
heat predictions, as noted by Yseen et al. [5]. In thermal systems, such as solar collectors and thermal
insulators, this model improves our understanding of heat distribution, leading to greater efficiency [6].
Eid et al. [7] computationally analyzed fluid flow in a permeable medium under the
Cattaneo-Christov model’s influence. Mumtaz et al. [8] emphasized the significance of this model in
concentration systems, mostly in biomedical and chemical uses, where it effectively represents the
diffusivity and dispersal of fluid particles. This advanced modeling technique enhances the
regulation of concentration gradients, leading to better performance in processes such as targeted
drug delivery, chemical reactor optimization, and environmental pollutant monitoring. Unlike the
traditional Fourier law, which has limitations in handling non-Fourier heat conduction, the
Cattaneo-Christov model provides a more widespread framework for analyzing both concentration
and thermal dynamics. Its ability to address these complexities makes it highly valuable in modern
fluid dynamics and heat transfer studies. Rehman et al. [9] further reinforced its importance in improving
industrial and scientific applications, paving the way for innovative technological advancements.

Magnetohydrodynamics (MHD) examine the performance of electrically conducted fluids
influenced by magnetic fields. In this field, magnetic forces generate electric currents within the fluid,
leading to interactions that affect the flow and thermal panels [10,11]. According to Ahmad et al. [12],
when nanofluids move through a magnetic field, they encounter a Lorentz force, which alters their
velocity and heat distribution. This force acts as a magnetic drag, reducing the movement of fluid
perpendicular to the magnetic field lines. Consequently, the velocity panel converts to complicated
form, often featuring regions of diminished speed and distinct flow configurations compared to cases
without magnetic influence, as noted by Tarakaramu et al. [13]. MHD also has a profound impact on
temperature distribution. Vinutha et al. [14] highlighted that interactions among fluid motion and
magnetic fields induce Joule heating, where electrical resistance within the fluid converts kinetic
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energy into heat. This process raises the temperature in certain regions, leading to non-uniform
thermal fields. In practical applications, MHD effects are connected to enhance efficiency in devices
like MHD generators and pumps by regulating temperature gradients and controlling flow patterns.
Obalalu et al. [15] discussed how these effects are employed to optimize thermal performance. These
range from astro-physical studies to industrial phenomena comprising liquid metals and plasma.
Algehyne et al. [16] focused on MHD fluid flow over an exponentially stretched surface while
considering effects of chemical reactivity, further demonstrating the broad significance of MHD in
scientific and engineering domains.

Nanofluid flow is the fluid motion comprising nanoparticles suspended within a base liquid.
These nanoparticles, typically measured in nanometers, boost the thermal features of the fluid, as
first identified by Choi [17]. Zafar et al. [18] explored advancements in the Das and Tiwari nanofluid
flow model and its application across geometric configurations. Anjum et al. [19] conducted
bio-convective simulations of three-dimensional nanofluid flow, considering the role of
microorganisms. Mohite et al. [20] explored the relevance of nanofluid flow in many industrial and
engineering applications as well as in bio-medicines. The performance of nanofluid flow is
subjective to multiple elements, including nanoparticle numbers, size, and shape, as examined by
Acharya et al. [21]. Further, Khan et al. [22] investigated nanofluid flow past a moving thin needle,
incorporating dissipative effects, and discovered that increasing nanoparticle concentration improves
thermal performance while reducing velocity. The collaboration among nanoparticles and the
adjoining fluid affects viscosity and thermal conductivity, thereby influencing overall flow behavior
and heat transfer efficiency, as demonstrated by Gowda et al. [23]. The existence of nanoparticles
enhances the fluid’s thermal performance, leading to more efficient heat transfer and a more uniform
temperature distribution, which helps minimize thermal gradients [24]. However, the increased
viscosity resulting from nanoparticles can slow the flow, particularly in boundary layer regions.
Despite this, the improved thermal properties of nanofluids offset the reduction in velocity by
enabling more effective heat dissipation. Due to these attributes, nanofluids are widely used in
applications requiring precise thermal control, as they maintain efficient cooling even at lower flow
speeds. Their ability to optimize heat transfer makes them indispensable in various high-performance
thermal management systems.

A variable porous space is a medium where the proportion of void spaces, or porosity, changes
across regions. Fluid flow in a variable porous space is a complex phenomenon influenced by spatial
changes in porosity, permeability, and pressure gradients. In such a medium, the flow behavior
deviates from classical Darcy’s law due to variations in the pore structure, which may result from
natural formations like sedimentary rocks or engineered materials such as functionally graded porous
structures. Khan et al. [25] analyzed fluid flow incorporating binary diffusion using ANN approach
with flow of fluild on a varying permeable sheet. Yadav et al. [26] investigated
magnetohydrodynamic flow of fluid in a permeable medium with spatially varying porosity,
concluding that the porous nature of materials directly regulates fluid motion. Wahid et al. [27]
examined radiative nanofluid flow over a penetrable shrinking sheet, revealing that increasing
radiation effects improved thermal distribution within the fluid. Variable porous media play a crucial
role in many fields such as petroleum engineering, and hydrology as they influence the transport of
oil, water, and impurities through geological formations, as observed by Shamshuddin et al. [28]. In
these media, spatial porosity changes strongly affect fluid velocity and temperature distribution.
Abbas et al. [29] demonstrated that higher porosity regions facilitate greater fluid movement,
resulting in increased velocity, while lower porosity areas hinder flow and reduce velocity.
Additionally, temperature distribution is impacted, with higher porosity regions supporting additional

AIMS Mathematics Volume 10, Issue 4, 8528—-8568.



8531

thermal transference causing unchanging thermal profile [30]. Further, Kodi et al. [31] examined
MHD effects on fluid flow around a vertical cone surrounded by a porous medium, incorporating
diffusive influences. Hussain et al. [32] studied the behavior of nanoparticles through a varying
permeable space with a magnetic field.

Brownian motion denotes the random and irregular nanoparticles’ motion mixed in a fluid,
resulting from collisions with the surrounding fluid molecules. This process enhances particle
dispersion and mixing, thereby improving thermal conductivity and ensuring a more augmented
thermal panel, as highlighted by Thabet et al. [33]. Conversely, thermophoresis designates the
migration of particles from hotter to cooler areas due to temperature gradients. Madhura and Babitha [34]
explained that this phenomenon occurs because particles are subjected to diverse forces at variable
heat, causing a net motion toward cooler regions. Both these phenomena (thermophoresis and
Brownian motion) play main role in shaping the heat and concentration panels of nanofluids [35].
Brownian motion contributes to heat transfer by promoting continuous collisions between particles
and fluid molecules, leading to an even distribution of thermal energy and improved thermal
conductivity. In contrast, thermophoresis generates a concentration gradient as nanoparticles move
toward cooler zones, creating an uneven particle distribution. Depending on nanoparticle
concentration in specific regions, this movement can further influence thermal conductivity. The
collective impact of thermophoresis and Brownian motion results in complicated interactions that
affect both heat and particle distribution, as detected by Sundeep et al. [36]. These influences are
significant in practical applications, particularly in optimizing nanofluids for heat transfer purposes.
In cooling systems, Brownian motion enhances heat dissipation by boosting thermal conductivity [37].
Nevertheless, too much thermophoretic migration leads to particle accumulation in cold areas that
potentially enhances nanofluid performance and stability [38]. Additional studies on this subject can
be found in references [39,40].

Casson fluid is a non-Newtonian fluid categorized by its yield stress and viscosity, behaving as
a solid below a certain shear stress threshold and flowing as a fluid above it. This rheological model
was initially developed to describe the flow of blood and other bio-fluids but has since been applied
to various industrial fluids like chocolate, ketchup, and certain polymers as studied by Kumar et al. [41].
Islam et al. [42] simulated computationally the transportation of mass and thermal flow for Casson
fluid flow with sinusoidal constraints at borderlines. Mahmood et al. [43] examined augmented
transportation phenomenon for Casson fluid flow on a radiative movable sheet with thermal slip
constraints. The flow properties of Casson fluids are influenced by factors like particle concentration,
temperature, and pressure as observed by Upreti et al. [44]. Under low shear rates, these fluids
exhibit a high apparent viscosity, which decreases as the shear rate increases. This unique behavior
enables Casson fluids to maintain stability under low-stress conditions while flowing readily when
subjected to sufficient force, making them useful in applications requiring controlled flow properties.
The velocity profiles of a Casson fluid is distinct due to its yield stress [45]. In regions where the
applied stress is below the yield stress, the fluid acts like a solid, resulting in a plug flow region
where the velocity gradient is zero. Beyond this region, the fluid begins to flow, and the velocity
increases with distance from the solid boundary. This non-linear velocity distribution creates a
steeper gradient near the wall compared to Newtonian fluids, indicating a higher shear rate near the
boundary. The presence of yield stress also means that Casson fluids exhibits velocity slip at the
boundary, which significantly impacts flow characteristics in confined spaces or porous media.
Hussain et al. [46] examined thermal transportations for stagnant EMHD Casson fluid flow on a
surface with impacts of thermal radiations.
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Novelty of current work

e The literature lacks studies that examine the combined effects of an inclined magnetic field
and variable porosity on Casson nanofluid flow on a convectively heated, dual-directional
stretching surface. Researchers have primarily focused on Casson nanofluids flows with
various flow conditions on stretching sheets with constant porosity. However, a
comprehensive analysis of such flows integrating both an inclined magnetic field and variable
porosity remains unexplored. This gap highlights the need for further investigation to
understand the complex interactions of these factors on fluid dynamics and heat transfer
characteristics.

e To fill this research gap, we seek to investigate the influence of Cattaneo-Christov heat and
mass flux on Casson nanofluid flow, including the impact of an inclined magnetic field and
varying porosity, on an elongating surface.

e The analysis also takes on convective boundary conditions, activation energy, chemical
reaction, thermophoresis, and Brownian motion influences.

e The sheet’s surface has variable porosity that is studied to clarify how changes in porosity
influence the primary directional movement of the fluid.

¢ By means of the similarity transformations, the major equations are altered to a dimensionless
form and numerically solved with a leveraging ANN technique.

Technical Specification of Physical Components

The technical specification of various components used in this work is illustrated as: The
Cattaneo-Christov model is employed to analyze heat and mass transfer in the nanofluid system,
incorporating thermal relaxation effects to extend Fourier’s law. The working nanofluid consists of a
base fluid as blood with suspended nanoparticles of gold enhancing thermal conductivity. We
consider a variable porous space, where permeability varies spatially, affecting fluid resistance and
heat dissipation. Inclined magnetic effects are modeled using an external magnetic field at an angle
with inclination( 7/), modifying the Lorentz force and flow stability. A chemical reaction parameter

accounts for species diffusion and reaction kinetics. Brownian motion of nanoparticles impacts heat
and mass transfer, while thermophoresis effects nanoparticle distribution due to temperature gradients.
Main Goal/Research Questions
We aim to explore and answer key research questions, focusing on fundamental features of the topic:
» What are the effects of variable porous space on velocities in all directions?
» How the stretching ratio factor, magnetic factor, and Casson factor will affect the flow in
primary and secondary directions?
» How heat and mass transfer in the nanofluid flow system is affected by Cattaneo-Christov
flux model?
» How thermal distribution will vary with corresponding deviations in radiation,
thermophoresis and Brownian motion factors.
» What are the impacts of thermophoresis factor, activation energy factor Schmidt number,
chemical reactivity factor and Brownian motion factor on concentration panels?
Real World Applications
This study has significant real-world applications in biomedical engineering, industrial
manufacturing, and thermal management systems. The analysis of gold blood-based Casson
nanofluids can enhance targeted drug delivery, hyperthermia cancer treatments, and artificial blood
substitutes, improving medical therapies. In industrial processes, the findings can optimize polymer
extrusion, chemical reactors, and nano-coating technologies by improving heat and mass transfer
efficiency. Additionally, the integration of machine learning enhances predictive modeling in fluid
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dynamics, benefiting applications in biotechnology, aerospace, and energy systems, where accurate
control of nanofluid behavior is crucial for performance optimization.

2. Formulation of the problem

Take flow of gold-blood nanofluid on a convectively heated dual-directional elongating sheet
with chemically reactive effects and activation energy. The surface of the sheet is elongated with
velocities U=CXand v=byin x and y directions, respectively, keeping b, ¢ >0as fixed numbers.

The effects of the magnetic field used to the flow system with an inclination( y)along the z-axis, as

portrayed in Figure 1. This study investigates heat and mass transfer in fluid flow by integrating the
Cattaneo-Christov model while considering the influence of thermal radiation. The surface of the
sheet is variably porous with thermophoresis and Brownian motion effects.

u—>0,v>0,T>T,,C>C,

Free—stream conditions

////Z‘z’/Z’//Z‘//Z‘/i‘/fz‘///ﬁ'f"
), DedC Dy OT _

u=cx,v=by, w=0, -k ;:/1 T.-T
: 7 & (7 § & T, 6z

Surface conditions
Figure 1. Geometrical view of the flow problem.

With the above stated suppositions, we have [47,48]:
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With constraints at boundary [48]:

v:yb,u:xc,W:O,hT(Tf —T):—k 5

u—>0, v»0, C>C_,T—>T,,as z—>wx.

a (&j%+&ﬁ_
"oz’ oz T, oz (6)

The transformable variables are given as [11,49]:

=t (n)x, w=—ore (9 n)+ 1 (1)), v=cg'(n)y, ”F .
C=C, +¢(77)(CW—COO), T=T, +9(77)(TW —Tw).

m’s(z)’
(1-¢(2))"

Thermo-physical features of nanofluid are illustrated as [48]:

Above K(z2) = e(2)=¢, [1+glexr;2j. (8
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The experimental values of thermo-physical features are given in Table 1.
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Table 1. Thermo-physical features of Au-nanoparticles and blood [50].

C, [I/kgK] p| kgim® ] k[W/mK] o[S/im]
Blood 3594 1063 0.492 0.8
Au 129 19320 314 4.10x10’

In Eq (9), the interspace of nanoparticles is portrayed byh, and d, is used for the diameter of
nanoparticles while their volume fraction is presented by ¢.
Implementing Eq (7), we have
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In the above equations, we havePr =

v
a =—= ratio factor, SC= D—f = Schmidt number, y,=/4.C= mass relaxation time factor,
c B
. hT Uf _ . _ _ . . Uf
Bl = PR thermal Biot number, » =AcC= thermal relaxation time factor, Da=—;=
C am
f

o B? , K 2 . .
=magnetic factor, K, =—— =chemical reactivity factor,
Co; c

oC _ pC _
( p)”f b (T-T.) = thermophoresis factor, Nb = ( p)”f By (C-C.)

(pCp)f T, v, ,on)f U,

variable porous media factor, M =

Nt = = Brownian motion

a

factor and, E = =activation energy factor.

2.1. Interested quantities

The skin frictions in x and y-directions with Nusselt and Sherwood numbers are given as:
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Using Eq (7), we get from Eq (15) that
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With Re, =——and Re = Y a5 local Reynolds numbers.
Uy s

3. Solution method

LMS-NNA is a sophisticated optimization technique designed for training artificial neural
networks efficiently and accurately. It combines the gradient descent method, which adjusts the
weights of the network to minimize the error between predicted and actual outputs, with the
Gauss-Newton method, known for solving non-linear least squares problems. By merging these
approaches, LMS-NNA provides a dynamic way to update the network’s weights, transitioning
smoothly between the stability of gradient descent when it is far from the solution and the faster
convergence of Gauss-Newton as the solution nears optimality. This hybrid method is particularly
effective in handling complex and large-scale neural networks, enabling faster and more precise
training compared to standard optimization methods. As a result, it is extensively used in numerous
applications, like pattern recognition and predictive modeling, where rapid and accurate convergence
is crucial. This method is mathematically described as follows:

d277 P (17)
:nfz = ;qi%X(nMﬁF’.))

;i;fg :izil:(q”:_;x(nMi +P,)j,

o(n)= X (aX (M, +R)),

3—?;2 qi%X(nMﬁF’.)} .
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The sigmoid function is a bounded, smooth real-valued function characterized by a single inflection point
and a derivative that is always non-negative. Its formula serves as an example of this type of function.

1
f =— 21
(1) o (7)1 21
) ) . 1
The sigmoid function f (M, +P,;) = 1o (22)
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Above, P, Q, M are component vectors described by P, Q., M.. The number of neurons and the order
of derivative are illustrated by P, Q, M . Equations (23)—(26) portray the Sigmoid function

f(nM, +P,) = M% as the objective function and its higher order, which is of 3" order.

3.1. Fitness function formulation

The MSE (mean squared error) is used as an error function that is given for the current model as
follows:

X=h+Xot X+ Xa (27)
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1)

Equation (27) illustrates the objective function in which y corresponds with mean squared error
that 1s the summation of y,, %,, ¥;, and y,. These values of y,, %,, X5, and y, are evaluated through
Eqgs (28)—(31).

3.2. Advantages and disadvantages

The Levenberg-Marquardt (LM) is a popular optimization technique used to train neural networks.
Here are its key advantages and disadvantages.
3.2.1. Advantages
e  This algorithm is faster than standard gradient descent, especially for moderate-sized networks.
e It provides better optimization and often achieves lower error rates than other

backpropagation methods.
e It performs well when dealing with networks of small to moderate size.
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e [t adapts between these two methods, improving both stability and speed.
e It works well with non-linear problems and avoids getting stuck in local minima as often as
a simple gradient descent.

3.2.2. Disadvantages

e  The LM algorithm requires storing large Jacobian matrices, making it memory-intensive.
e  As the network size increases, computational costs become very high.
e  The effectiveness of the algorithm depends on the proper adjustment of the damping factor.
e It may not perform well when training data contains high levels of noise.
e  Due to its high computational demands, it is impractical for very deep networks.
Figure 2 illustrates the neural network phenomenon.

Hidden Output
" o
- 4 wl e
| Q/ | S Q—iQ
1 7
V
10 7

Figure 2. Dissemination of layers for the current problem.
4. Results and discussion

In this work, we explore the behavior of nanofluid flow over a variable porous extending
surface, considering the influence of an inclined magnetic field. We specifically examine how the
size and spacing of nanoparticles impact the overall flow dynamics, heat transfer, and mass transport
characteristics. To enhance the accuracy of thermal and mass diffusion analysis, the study integrates
the Cattaneo-Christov heat and mass flux model, which accounts for relaxation time effects,
improving upon the traditional Fourier and Fick’s laws. Furthermore, the model includes the impact
of chemical reactions and activation energy, which are crucial for understanding reaction kinetics in
nanofluid transport. Additional effects such as Brownian motion and thermophoresis are also
considered, as these play significant roles in nanoparticle dispersion and thermal conductivity
enhancement. We solved the modeled equations using ANN. In the upcoming paragraphs, the
discussion of ANN graphs and different flow distributions are presented.

4.1. ANN graphs analysis

Figure 2 portrays the process for neural networks, using an algorithmic approach. The graphical
depictions for statistical analysis of the LMS-NNA design regarding influences of distinct emerging
factors on velocities, temperature, and concentration are portrayed in Figures 3—10. The illustration

of MSE convergence is suggested in Figures 3(a)—10(a). The MSE values are closely monitored
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during the testing, training, and validation phases, providing a comprehensive understanding of the
model’s performance and convergence throughout these critical stages. The model’s optimal
performance is observed at certain epochs like 111, 225, 194, 270, 179, 220, 339, and 221. The
traditional stages for addressing the gradient computation and validation checks in the LMS-NNA
design are illustrated in Figures 3(b)—10(b). These visuals depict the sequential progression of the
model as it undergoes adjustments to optimize performance. The gradient computation stage ensures
that the model correctly updates its weights by evaluating the direction and magnitude of error
reduction. Validation checks serve as an essential quality control mechanism, assessing the model’s
generalization ability and preventing overfitting by verifying its performance on unseen data. Each of
these stages represents a fundamental aspect of the model’s adaptive learning process, ensuring accurate
and efficient optimization. The error histograms for all the scenarios are depicted in Figures 3(c)—10(c).
These figures present visual representations that offer valuable insights into the convergence and
accuracy of the suggested model. Additionally, these visuals provide a thorough examination of the
model’s precision, demonstrating how closely it lines up with expected conclusions. These diagrams
provide a thorough understanding of the convergence behavior and accuracy displayed by fluid
model during its assessment and simulation process. The function fitness for error analysis regarding
the structure solution is covered in Figures 3(d)—10(d). These visuals suggest a thorough perception
for the performance and maximization of the EA structure by illustrating the progression of the
function’s fitness during various phases. By depicting the progression of function fitness across
stages of LMS-NNA design, the visuals help assess the effectiveness of the method in refining
accuracy, minimizing errors, and maximizing performance. This comprehensive analysis enables a
deeper understanding of how the structure evolves and adapts to achieve the best possible
outcome. Figures 3(e)—10(e) illustrate the regression performance of the suggested model across
cases (1-8). A consistent pattern emerges across all figures, with correlation values ('R') closely
clustering near one for the training, testing, and validation phases. This near-unity alignment is a key
finding, highlighting the exceptional accuracy of the LMS-NNA design in the suggested model.
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Best Validation Performance is 8.3978e-09 at epoch 111 Gradient = 9.8061e-08, at epoch 111
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Figure 3. The LMS-NNA scheme for f'(?])vs L (a) MES outcome, (b) Transition state,
(c¢) Error Histogram, (d) Curve fitting, and (e) Regression.
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Figure 4. The LMS-NNA scheme for f '(77) vs M (a) MES outcome, (b) Transition state,

Gradient = 9.9655e-08, at epoch 225
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(c) Error Histogram, (d) Curve fitting, and (e) Regression.
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Figure 5. The LMS-NNA scheme for 9,(77 ) vs B (a) MES outcome, (b) Transition state,
(c) Error Histogram, (d) Curve fitting, and (e) Regression.
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Bgst Validation Performance is 2.7157e-10 at epoch 270
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Figure 6. The LMS-NNA scheme for g'(ﬂ) vs M (a) MES outcome, (b) Transition state,
(c) Error Histogram, (d) Curve fitting, and (e) Regression.
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Btoest Validation Performance is 3.2097e-10 at epoch 179
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Figure 7. The LMS-NNA scheme for ¢ (77) vs Rd (a) MES outcome, (b) Transition
state, (c¢) Error Histogram, (d) Curve fitting, and (e) Regression.
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Figure 8. The LMS-NNA scheme for 9(’7) vs Pr (a) MES outcome, (b) Transition
state, (c) Error Histogram, (d) Curve fitting, and (e) Regression.
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Best Validation Performance is 9.9821e-10 at epoch 399

Gradient = 9.8798e-08, at epoch 399
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Figure 9. The LMS-NNA scheme for ¢(77)Vs Nb (a) MES outcome, (b) Transition
state, (c) Error Histogram, (d) Curve fitting, and (e) Regression.
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Bgst Validation Performance is 7.2274e-10 at epoch 221 Gradient = 9.8341e-08, at epoch 221
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Figure 10. The LMS-NNA scheme for ¢(77)Vs Nt (a) MES outcome, (b) Transition
state (c), Error Histogram, (d) Curve fitting, and (e) Regression.
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4.2. Analysis of velocity panels { f'(n) &g'(n)}

The effects of numerous factors on { f'(n) &g'(n)} are portrayed in Figures 11—15. The
effects of the stretching ratio factor(a) on { f '(77)} are portrayed in Figure 11(a) with a deteriorating
behavior in{ f '(77)} for growth in (a) . As the stretching ratio factor (a) increases, the sheet

elongates more rapidly in two directions (along x and y-axes). This causes the fluid near the surface
to experience a stronger pull, causing a stretching-dominated flow. Consequently, the fluid’s
momentum near the surface becomes more aligned with the elongation direction, reducing the
primary Velocity{ f'(n)}. This happens because the stretching forces dominate the flow, slowing

down the movement of fluid away from the surface (i.e., the primary flow). The effect reflects the
competition between the stretching forces and the fluid’s inherent tendency to flow in other

directions. Figure 11(b) depicts the absolute error in {f’(n)} for the current problem regarding
variations in(a). These errors range from 10 to 107, as illustrated in Figure 11(b). This analysis

emphasizes the computational discrepancies between the assessed and analytical results, providing
valuable insights into the accuracy of the current model for the given problem.
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Figure 11. Behavior of f '(77) Vs o with Absolute Error.

The influences of magnetic factor (M )on { f '(77)} are portrayed in Figure 12(a), with a
declining behavior in { f '(77)} for growth in (M ) . As (M ) increases in the fluid flow on a
bidirectional elongating sheet, then { f '(77)} is reduced due to the magnetic field’s opposing effect

on the fluid motion. This phenomenon, known as the magnetohydrodynamic effect, generates a
Lorentz force that acts against flow direction. Consequently, the fluid practices greater resistance to
motion, particularly near the surface of the sheet. This increased resistance slows down the flow,

causing a lessening in{ f '(77)} , which represents the flow along the main direction of movement. The

magnetic field effectively dampens the fluid’s momentum, decreasing the velocity profile. Figure 12(b)
illustrates the absolute error in{f’(n)} for the given problem, specifically in relation to different
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values of the magnetic factor. This visual representation helps analyze how changes in the magnetic
factor influence deviations in velocity, providing insights into the accuracy of the numerical or
computational model used. By showcasing the absolute error, the figure highlights areas where
discrepancies occur, enabling a better understanding of error distribution and potential improvements
in the modeling process. The analysis, presented in this figure, is crucial for evaluating the impact of
magnetic variations on fluid dynamics or structural behavior, ensuring that the proposed solution
maintains precision across conditions. These errors range from 10 to 107, as illustrated in Figure 12(b).
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Figure 12. Behavior of f '(77) Vs M with Absolute Error.

The impacts of Casson factor( £)on both Velocities{ f'(n) & g'(n) } are portrayed in Figures 13(a)
and 14(a) with a deteriorating behavior in{ f'(n) & 9'(n) } for growth in(f). As (f)increases in
the fluid flow on a bidirectional elongating sheet, the Velocities{ f '(77) & g'(77) } decrease due to the

fluid’s non-Newtonian behavior. The Casson model describes fluids that exhibit yield stress, meaning
the fluid resists motion until a certain stress threshold is exceeded. As ( ,B) grows, this threshold

increases, making it harder for the fluid to start flowing. Consequently, the fluid experiences greater
resistance, particularly near the sheet’s surface in both the directions, resulting in a slower movement
overall. This increased resistance reduces { f '(77) & g’(n) } , as the fluid’s ability to flow is

increasingly hindered by the higher Casson factor( i3 ), reflecting the thickening effect of the fluid

under stress as portrayed in Figures 13(a) and 14(a). Figures 13(b) and 14(b) depict the absolute
error in {f'(n) & g'(n)}for the current problem regarding variations in( yij ) These errors range

from 10 to 107 in the case of { f '(77)} , as illustrated in Figure 13(b), while in the case of {g'(n)},
these errors expand on 10 to 1078, as depicted in Figure 14(b).
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Figure 13. Behavior of f '(77 ) Vs [ with Absolute Error.
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Figure 14. Behavior of g’(n) Vs [ with Absolute Error.

The impacts of (Da)on { f '(77)} are portrayed in Figure 15(a), with an augmenting behavior in
{f’(n)} for growth in(Da). The increase in (Da)inside the fluid flow system means that the
material through which the fluid flows become more permeable, enabling easier passage of fluid

through its pores. On a bidirectional elongating sheet, this translates into a rise in primary velocity
proﬁles{ f '(n)}because the fluid encounters less confrontation when passing the porous medium.

Consequently, the fluid moves faster both along and perpendicular to the sheet’s stretching directions.
This augmentation in velocity is also influenced by factors like the nature of the fluid, the sheet’s
elongation rates, and external forces; however, it primarily indicates reduced resistance in fluid flow
due to higher porosity. Figure 15(b) illustrates the absolute error in{ f '(77)} for the current problem,
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f(n)

specifically considering the variations in(Da). The graph provides a detailed comparison of the

computational results by highlighting the deviation between benchmark solutions. As the porous
factor changes, the figure captures how the error fluctuates across the domain, offering insights into
the accuracy and reliability of the applied numerical method. The observed trends in the error
distribution can be used to assess the sensitivity of the velocity profile to variations in the porous
factor, which is crucial for optimizing computational models in porous media flow analysis. These
errors range from 10 to 10 in the case of { f '(77)}, as illustrated in Figure 15(b).
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Figure 15. Behavior of f '(77) Vs Da with Absolute Error.

4.3. Analysis of temperature distributions {9(77)}

The effects of numerous factors on temperature distribution {6’(77)} are portrayed in
Figures 16—19. Figure 16(a) inspects the behavior of {6’(77)} with deviations in (Rd). Here, with
the expansion in(Rd), there is an upsurge in {9(77)} . As (Rd) upsurges on a bidirectional
elongating sheet, the system absorbs more thermal energy from radiative heat transfer. This causes an
upsurge in{&(n)}, meaning the fluid’s temperature rises more rapidly. Radiation supports heat

transfer by emitting energy from the surface of the elongating sheet into the surrounding fluid,
increasing the fluid’s thermal energy. This effect is more significant as (Rd ) grows, enhancing the

overall heat transfer rate and leading to higher temperatures within the fluid, especially near the
sheet’s surface, as shown in Figure 16(a). In cancer treatment, this principle is related to
hyperthermia therapy, where targeted radiation is used to elevate temperatures in tumor tissues. By
controlling radiation, the localized heating damage the cancer cells without harming the surrounding
healthy tissues, making this a key technique in treatments like radiotherapy and thermal ablation.
Figure 16(b) illustrates the absolute error in the temperature distribution{@(n)} for the current

problem, considering variations in the radiation factor(Rd). The error represents the difference
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between the computed and reference temperature values, indicating the accuracy of the numerical
model. The error distribution provides insight into the model’s sensitivity to radiative effects and
helps in assessing the reliability of the thermal predictions. These errors range from 10 to 107 in the
case of {9(77)} , as illustrated in Figure 16(b).
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Figure 16. Behavior of 9(77) Vs Rd  with Absolute Error.

Figure 17(a) illustrates the performance of {6’(7])} for deviations in Brownian factor(Nb).
With expansion in( Nb) , there is an upsurge in{@(n)}. Brownian motion is the erratic movement of
tiny particles due to collisions with surrounding molecules, which leads to enhanced thermal
interactions. This increased particle motion generates additional heat, causing a rise in the fluid’s
temperature. Consequently, the temperature proﬁles{@(ﬂ)}in the system are augmented as (Nb)
grows. This effect plays a significant role in nanofluid heat transfer, where the thermal energy
distribution is influenced by the movement of nanoparticles within the fluid, causing enhanced heat
transfer rates. In cancer treatment, this principle is applied in nanoparticle-based hyperthermia
therapy. By injecting nanoparticles into tumor sites and using external energy sources, the
nanoparticles exhibit Brownian motion, elevating local temperatures. This targeted heating destroys
cancer cells by raising their temperature while minimizing damage to surrounding healthy tissue.
Figure 17(b) portrays the absolute error in {9(77)} for the current problem regarding variations in

(Nb) . The error represents the difference between the computed and reference temperature values,

indicating the accuracy of the numerical model. These errors range from 103 to 107 in the case of
{9(77)} , as illustrated in Figure 17(b).

AIMS Mathematics Volume 10, Issue 4, 8528—-8568.



8556

g e e e

Ui

3

== =Proposed Nb = 0.5

w=® = Pproposed Nb = 1.0

Proposed Nb = 1.5

w=® = Proposed Nb = 2.0
4 Ref

4 5

(a) Behavior of 9(77) Vs Nb

6

10

"'<J 10

10°®

107

\ S
| /

N AA DA
s ‘I ] I,‘ 1g l\? K \
N ,\\;.4!4‘.1 | 124

N AN AT

|,' ‘ o “"

' '

¥

(b) Variations in Nb Vs Absolute Error
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Figure 18(a) inspects the performance of {6(7); for deviations in thermophoresis factor( Nt).
g

With surge in (Nt) , there is an upsurge in{@(n)}. When the factor(Nt) increases, more particles

move from hotter to cooler regions. The increase in (Nt) leads to a rise in {0(77)} for fluid flow on

the bidirectional elongating sheet because thermophoresis designates the movement of particles from

a hot to a cooler region in the presence of a temperature gradient. As (Nt) grows, more particles are

moved from the hotter region towards cooler areas, reducing heat transfer from the surface of the
sheet. This causes a higher accumulation of thermal energy near the sheet, effectively increasing the
temperature of the fluid in proximity to it. Therefore, the thermal distribution{@(n)} rises due to the

diminished cooling effect of particle migration. Figure 18(b) describes the absolute error in {0 (77)} for

the current problem regarding variations in(Nt). The error represents the difference between the

computed and reference temperature values, indicating the accuracy of the numerical model. These
errors range from 107 to 107 in the case of {0(77)} , as illustrated in Figure 18(b).
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Figure 18. Behavior of 9(77) Vs Nt with Absolute Error.

Figure 19(a) inspects the performance of {0(77)} for deviations in the thermal Biot number
(Bi; ). In this graph, it is seen that with an upsurge in (Bl ), there is an upsurge in{é’(n)} . A higher
(BiT)means a more efficient thermal exchange among the sheet’s surface and the nearby fluid,

resulting in greater heat retention and higher temperature near the surface. In cancer treatment, this
principle is applicable in hyperthermia therapy, where elevated temperatures are used to damage the
cancer cells. By manipulating factors like the Biot number, medical devices optimize heat
distribution to target tumors effectively while minimizing damage to healthy tissues, enhancing the
efficacy of treatments like radiofrequency or microwave-induced hyperthermia. Figure 19(b)
portrays the absolute error in {6’(77)} for the current problem regarding variations in(BiT ) The error

represents the difference between the computed and reference temperature values, indicating the
accuracy of the numerical model. These errors range from 107 to 107 in the case of {0(77)}, as

illustrated in Figure 19(b).
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Figure 19. Behavior of (9(77) Vs Bi; with Absolute Error.

4.4. Analysis of concentration distributions {¢(7])}

The effects of various factors on {¢(77)} is portrayed in Figures 20—24. Figure 20(a) shows the
behavior of {¢(7])} for the reaction of deviations in Brownian number(Nb) . For a surge in (Nb) ,
there is a decline in{@(n)}. As (Nb)increases, the intensity of this random motion also grows,

causing more frequent and widespread dispersal of particles throughout the fluid. This enhanced
particle movement increases the overall concentration of particles in the fluid, resulting in an
augmentation in {¢(7])} Essentially, stronger Brownian motion promotes greater mixing and

dispersion of particles, causing more uniform and heightened particle distribution within the fluid
flow. Figure 20(b) describes the absolute error in {¢(77)} for the current problem regarding

variations in(Nb). The error represents the difference between the computed and reference

temperature values, indicating the accuracy of the numerical model. These errors range from 107 to
107 in the case of {¢(77)} , as illustrated in Figure 20(b).
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Figure 20. Behavior of ¢(77) Vs Nb with Absolute Error.

Figure 21(a) shows the performance of {¢(77)} for the reaction of deviations in thermophoresis
factor (Nt). This graph shows that with the expansion in (Nt), there is an augmentation in{¢(77)} .
S (Nt)increases, particles are more strongly influenced by these temperature differences. This
results in the accumulation of particles in cooler areas, leading to an augmentation in{¢(77)}. In

simple terms, the higher the thermophoretic force, the more significant the particle movement toward
the cooler zones, enhancing the concentration of particles in specific regions of the fluid. This affects
the overall distribution of particles within the flow field, which has implications for processes like
heat and mass transfer. Figure 21(b) depicts the absolute error in {¢(77)} for the current problem

regarding variations in( Nt) . The absolute error quantifies the deviation between the computed and

reference concentration values, highlighting the accuracy of the numerical model. The error
distribution helps assess the model’s sensitivity to thermophoresis and provides insight into how well
the numerical predictions capture the underlying physical mechanisms. These errors range from 107
to 10 in the case of {¢(7])} , as illustrated in Figure 21(b).
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Figure 21. Behavior of ¢(77) Vs Nt with Absolute Error.

Figure 22(a) illustrates the performance of {¢(77)} for the reaction of deviations in the chemical

reactivity factor( Kr) . With an upsurge in (KI’) , there is a decline in{¢(77)} . As this factor increases,

the chemical reactions become more intense, leading to a faster consumption or transformation of the
reacting species. This results in a reduction in particle concentration as more particles are being used
up or altered by the reactions. Consequently, the concentration profiles {¢(77)} of the species diminish

because the particles are being removed from the fluid more rapidly through these reactions. This
process decreases the overall particle density in the fluid, especially in regions where the reactivity is

higher. Figure 22(b) depicts the absolute error in {¢(7])} for the current problem regarding variations

in( Kr) . These errors range from 107 to 107 in the case of {¢(7])} , as illustrated in Figure 22(b).
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Figure 23(a) shows the performance of {¢(77)} for the reaction of deviations in Schmidt number
(SC) . With an upsurge in (SC) , there is a decline in {¢(77)} . For flow over the bidirectional
elongating sheet, a higher (SC)implies that the concentration field diffuses more slowly than the
velocity field. As a result, the concentration boundary layer gets thinner, causing a decline in {¢(7])} .

Physically, this means that as the Schmidt number grows, the diffusion of mass in the fluid becomes
more restricted, confining it closer to the sheet, while the velocity field spreads out more easily.

Figure 23(b) portrays the absolute error in {¢(77)} for the current problem regarding variations in(Sc).
These errors range from 10~ to 10”7 in the case of {¢(77)} , as illustrated in Figure 23(b).
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Figure 23. Behavior of ¢(77) Vs SC  with Absolute Error.

Figure 24(a) shows the performance of {¢(77)} for deviations in the activation energy factor( E).
This graph shows that with an expansion in (E) , there is an upsurge in{¢(77)} . When (E) increases

for fluid flow on a bidirectional elongating sheet, it implies that more energy is needed for mass
transfer or chemical reactions. As a result, higher energy barriers slow reaction rates, leading to an
accumulation of the reactant species in the fluid. This accumulation augments the concentration

profiles {¢(77)} because less of the species is consumed or diffused from the surface of the sheet.
Physically, this means that as the activation energy factor( E) grows, species tend to remain in higher

concentrations within the boundary layer, as the energy required for their diffusion or reaction is
higher, leading to thicker concentration boundary layers. Figure 24(b) illustrates the absolute error in
{¢(77)} for the current problem regarding variations in(E). These errors range from 10 to 107 in the

case of {¢(7])} , as illustrated in Figure 24(b).
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Figure 24. Behavior of ¢(77 ) Vs E with Absolute Error.

4.5. Discussion of the tables

Table 1 depicts the experimental values of gold nanoparticles and blood. Table 2 offers an
in-depth presentation of the computational data generated by the ANN model across several
scenarios. This table provides critical information on the MSE recorded during three distinct phases
of model development: Training, validation, and testing. The MSE is a key metric that measures the
average squared difference between the predicted and actual values and is instrumental in assessing
the ANN’s predictive accuracy. Lower MSE values generally indicate a model that makes accurate
predictions and generalize well to unseen data. In addition to MSE, the table highlights several other
crucial metrics that contribute to the overall evaluation of the ANN model. These include network
performance, which reflects the model’s ability to minimize error across iterations, as well as the
gradient and 'mu' parameter. The gradient measures how steeply the error changes with respect to
adjustments in the model’s weights, offering insight into how effectively the model is learning at
each epoch. Table 2 also concludes that the model’s optimal performance is observed at epochs 111,
225, 194, 270, 179, 220, 339, and 221. The 'mu' parameter, part of the Levenberg-Marquardt
optimization algorithm used in many ANN models, helps control the transition between gradient
descent and a more refined optimization process, balancing learning speed and stability. To validate
the current results, a comparative analysis is conducted in Table 3. In this table, the results for heat
transfer rate are compared with the established works of Gorla & Sadawi [S1] and Hamad [52]. It is
revealed in this table that a closed agreement exists amongst all the results that validate the results.
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Table 2. LMS-NNA design regarding outcomes for various scenarios.

Scenari MSE Performan | Gradien Mu Epoc | Tim
08 Training Validation | Testing ce t h e (s)
1 7.3452x10° | 2.2314x107° | 4.3241x10°| 8-21x107"°| 9.97x107| 1.00x1078| 111 | 02
2 8.5341x107™ | 1.2524x10° | 3.4231x10°| 7.45x107° | 9.91x10°| 1.00x10° 225 | 01
3 8.9765x107Y 2.2341x107° | 1.2341x10° | 9.90x107* | 9.92x10°°| 1.00x10°® 194 |00
4 6.5623x107Y 6.6342x107"| 6.4576x107"} 6.62x107* | 9.91x10°°| 1.00x10°® 270 |02
-1 -10 —1Q -10 -8 -8
s 3.2341x107Y 6.2341x10"°| 6.7643x107Y 3.01x10 9.95x10°%| 1.00x10 179 ot
6 6.5342x107°| 6.6245x1071t 7.4576x107Y 2.2341x10% 9.91x10°®| 1.00x10°® 0 |03
9 -10 -8 -8
. 5 7643x10° | 5.2524x10° 3.4521x107° | 8.01x10 9.92x10°°| 1.00x10 139 |0
o 7.7983x107°| 7.6532x107"| 6.7761x107" 6.56x107* | 9.91x10°®| 1.00x10°® »1 ot

Table 3. Comparison of our results for the thermal transfer rate with established works.

i (0
' Gorla & Sadawi [51] Results Hamad [52] Results Current Results

0.07 0.06560000 0.06556000 0.0655601

0.2 0.16910000 0.16909000 0.1690912

0.7 0.45390000 0.45391000 0.4539123

2.0 0.91140000 0.91136000 0.91136014

7.0 1.89050000 1.89540000 1.89540117

5. Conclusions

In this study, we explore nanofluid flow on a bi-directional elongated plate. The surface of the
sheet is characterized with variable porosity with inclined magnetic field effects, which is the main
novelty of this work. We focus on how nanoparticle radius and spacing affect the overall flow
dynamics. Additionally, we incorporate the Cattaneo-Christov heat and mass flux model effects to
discuss the mass and thermal diffusions using flow conditions. The major equations are translated in
dimensionless form and solved with ANNSs. After a detailed discussion of the work, hawse highlight that:

e Primary velocity weakens with a surge in the stretching ratio factor and magnetic factor and

is augmented with growth in a variable porous factor, where the AE varies in the range 107

to

107,

e Both velocities { f'(n) & g'(n)} slow with the growth in the Casson factor.

e Thermal panels amplify with the escalation in thermophoresis, magnetic, radiation, and

Brownian motion factors with AEs varying in the range 10°to 107".
e Concentration panels escalate with the augmentation in the thermophoresis factor and
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activation energy factor while they weaken with a surge in the Schmidt number, chemical
reactivity factor, and Brownian motion factor, where the AE varies in the range 10“to 107°.
e We conclude that the model’s optimal performance is observed at epochs 111, 225, 194, 270,
179, 220, 339, and 221.
e For all the scenarios, the gradient values are associated at 9.97x10™ 9.91x10™ 9.92x10°
9.91x10°  9.95x10° 9.91x10° 9.92x10° ,pq 9.91x107°
Future Direction of the Study: In future research, the impacts of Jeffery fluid will be incorporated
to extend the study of non-Newtonian fluid behavior in the flow system. Additionally, the influence
of microorganisms will be analyzed to model bio-convective effects in the nanofluid system.
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