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Abstract: The impact of inter-particle spacing and the radius of gold nanoparticles on nanofluid flow 

have substantial significance across applications. Optimizing these parameters in biomedical 

engineering enhances the drug delivery systems, thus controlling the release of medicines and 

accurately targeting the targeted area. We explored nanofluid flow on a bi-directional elongated plate. 

The surface of the sheet was characterized with variable porosity with inclined magnetic field effects, 

which is the main novelty of the work. We focused on how nanoparticle radius and spacing affect the 

overall flow dynamics. Additionally, we incorporated the Cattaneo-Christov heat and mass flux 

model effects to discuss the mass and thermal diffusions using some flow conditions. The major 

equations were translated in dimensionless form and solved with artificial neural networks (ANNs). 

As outcomes, we uncovered that primary velocity has weakened with extension in stretching ratio 

and magnetic factors and has been amplified with progression in variable porous factor with absolute 

error (AE) in the range 10-3 to 10-7. Thermal panels have enlarged with escalation in thermophoresis, 

magnetic, radiation, and Brownian motion factors with absolute errors AEs in the range 
310−
to

710−
. 

Concentration panels have escalated with augmentation in the thermophoresis factor and activation 
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energy factor and weakened with the expansion in Schmidt number, chemical reactivity factor, and 

Brownian motion factor. We conclude that the model’s optimal performance has observed at epochs 

111, 225, 194, 270, 179, 220, 339, and 221 for different scenarios. For all the scenarios, the gradient 

values are associated at
89.97 10− ,

99.91 10− ,
89.92 10− ,

89.91 10− ,
89.95 10− ,

89.91 10− ,
89.92 10− , and 

89.91 10− . 

Keywords: Cattaneo-Christov flux model; nanofluid; variable porous space; inclined magnetic field; 

chemical reaction; thermophoresis and Brownian motion 

Mathematics Subject Classification: 76D05, 76A02, 65L10 

 

1. Introduction  

The Cattaneo-Christov model marks a substantial improvement that is subject to the 

conventional Fourier [1] and Fick laws [2], which traditionally adopt that heat and mass flux respond 

instantaneously to mass and thermal gradients. These assumptions imply an infinite propagation 

speed for mass and thermal transfer, which is not realistic. The Cattaneo model [3] addresses this 

issue by introducing a thermal relaxation time that consequently acknowledges the restricted speed of 

heat diffusion. Christov [4] further refined this model by incorporating a derivative term to enhance 

its accuracy and predictive capabilities. By introducing this mathematical modification, Christov 

aimed to improve the model’s ability to capture dynamic changes and respond more effectively to 

variations in the system. In fluid dynamics, the Cattaneo-Christov model enhances the precision of 

heat predictions, as noted by Yseen et al. [5]. In thermal systems, such as solar collectors and thermal 

insulators, this model improves our understanding of heat distribution, leading to greater efficiency [6]. 

Eid et al. [7] computationally analyzed fluid flow in a permeable medium under the 

Cattaneo-Christov model’s influence. Mumtaz et al. [8] emphasized the significance of this model in 

concentration systems, mostly in biomedical and chemical uses, where it effectively represents the 

diffusivity and dispersal of fluid particles. This advanced modeling technique enhances the 

regulation of concentration gradients, leading to better performance in processes such as targeted 

drug delivery, chemical reactor optimization, and environmental pollutant monitoring. Unlike the 

traditional Fourier law, which has limitations in handling non-Fourier heat conduction, the 

Cattaneo-Christov model provides a more widespread framework for analyzing both concentration 

and thermal dynamics. Its ability to address these complexities makes it highly valuable in modern 

fluid dynamics and heat transfer studies. Rehman et al. [9] further reinforced its importance in improving 

industrial and scientific applications, paving the way for innovative technological advancements. 

Magnetohydrodynamics (MHD) examine the performance of electrically conducted fluids 

influenced by magnetic fields. In this field, magnetic forces generate electric currents within the fluid, 

leading to interactions that affect the flow and thermal panels [10,11]. According to Ahmad et al. [12], 

when nanofluids move through a magnetic field, they encounter a Lorentz force, which alters their 

velocity and heat distribution. This force acts as a magnetic drag, reducing the movement of fluid 

perpendicular to the magnetic field lines. Consequently, the velocity panel converts to complicated 

form, often featuring regions of diminished speed and distinct flow configurations compared to cases 

without magnetic influence, as noted by Tarakaramu et al. [13]. MHD also has a profound impact on 

temperature distribution. Vinutha et al. [14] highlighted that interactions among fluid motion and 

magnetic fields induce Joule heating, where electrical resistance within the fluid converts kinetic 
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energy into heat. This process raises the temperature in certain regions, leading to non-uniform 

thermal fields. In practical applications, MHD effects are connected to enhance efficiency in devices 

like MHD generators and pumps by regulating temperature gradients and controlling flow patterns. 

Obalalu et al. [15] discussed how these effects are employed to optimize thermal performance. These 

range from astro-physical studies to industrial phenomena comprising liquid metals and plasma. 

Algehyne et al. [16] focused on MHD fluid flow over an exponentially stretched surface while 

considering effects of chemical reactivity, further demonstrating the broad significance of MHD in 

scientific and engineering domains. 

Nanofluid flow is the fluid motion comprising nanoparticles suspended within a base liquid. 

These nanoparticles, typically measured in nanometers, boost the thermal features of the fluid, as 

first identified by Choi [17]. Zafar et al. [18] explored advancements in the Das and Tiwari nanofluid 

flow model and its application across geometric configurations. Anjum et al. [19] conducted 

bio-convective simulations of three-dimensional nanofluid flow, considering the role of 

microorganisms. Mohite et al. [20] explored the relevance of nanofluid flow in many industrial and 

engineering applications as well as in bio-medicines. The performance of nanofluid flow is 

subjective to multiple elements, including nanoparticle numbers, size, and shape, as examined by 

Acharya et al. [21]. Further, Khan et al. [22] investigated nanofluid flow past a moving thin needle, 

incorporating dissipative effects, and discovered that increasing nanoparticle concentration improves 

thermal performance while reducing velocity. The collaboration among nanoparticles and the 

adjoining fluid affects viscosity and thermal conductivity, thereby influencing overall flow behavior 

and heat transfer efficiency, as demonstrated by Gowda et al. [23]. The existence of nanoparticles 

enhances the fluid’s thermal performance, leading to more efficient heat transfer and a more uniform 

temperature distribution, which helps minimize thermal gradients [24]. However, the increased 

viscosity resulting from nanoparticles can slow the flow, particularly in boundary layer regions. 

Despite this, the improved thermal properties of nanofluids offset the reduction in velocity by 

enabling more effective heat dissipation. Due to these attributes, nanofluids are widely used in 

applications requiring precise thermal control, as they maintain efficient cooling even at lower flow 

speeds. Their ability to optimize heat transfer makes them indispensable in various high-performance 

thermal management systems. 

A variable porous space is a medium where the proportion of void spaces, or porosity, changes 

across regions. Fluid flow in a variable porous space is a complex phenomenon influenced by spatial 

changes in porosity, permeability, and pressure gradients. In such a medium, the flow behavior 

deviates from classical Darcy’s law due to variations in the pore structure, which may result from 

natural formations like sedimentary rocks or engineered materials such as functionally graded porous 

structures. Khan et al. [25] analyzed fluid flow incorporating binary diffusion using ANN approach 

with flow of fluid on a varying permeable sheet. Yadav et al. [26] investigated 

magnetohydrodynamic flow of fluid in a permeable medium with spatially varying porosity, 

concluding that the porous nature of materials directly regulates fluid motion. Wahid et al. [27] 

examined radiative nanofluid flow over a penetrable shrinking sheet, revealing that increasing 

radiation effects improved thermal distribution within the fluid. Variable porous media play a crucial 

role in many fields such as petroleum engineering, and hydrology as they influence the transport of 

oil, water, and impurities through geological formations, as observed by Shamshuddin et al. [28]. In 

these media, spatial porosity changes strongly affect fluid velocity and temperature distribution. 

Abbas et al. [29] demonstrated that higher porosity regions facilitate greater fluid movement, 

resulting in increased velocity, while lower porosity areas hinder flow and reduce velocity. 

Additionally, temperature distribution is impacted, with higher porosity regions supporting additional 
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thermal transference causing unchanging thermal profile [30]. Further, Kodi et al. [31] examined 

MHD effects on fluid flow around a vertical cone surrounded by a porous medium, incorporating 

diffusive influences. Hussain et al. [32] studied the behavior of nanoparticles through a varying 

permeable space with a magnetic field.  

Brownian motion denotes the random and irregular nanoparticles’ motion mixed in a fluid, 

resulting from collisions with the surrounding fluid molecules. This process enhances particle 

dispersion and mixing, thereby improving thermal conductivity and ensuring a more augmented 

thermal panel, as highlighted by Thabet et al. [33]. Conversely, thermophoresis designates the 

migration of particles from hotter to cooler areas due to temperature gradients. Madhura and Babitha [34] 

explained that this phenomenon occurs because particles are subjected to diverse forces at variable 

heat, causing a net motion toward cooler regions. Both these phenomena (thermophoresis and 

Brownian motion) play main role in shaping the heat and concentration panels of nanofluids [35]. 

Brownian motion contributes to heat transfer by promoting continuous collisions between particles 

and fluid molecules, leading to an even distribution of thermal energy and improved thermal 

conductivity. In contrast, thermophoresis generates a concentration gradient as nanoparticles move 

toward cooler zones, creating an uneven particle distribution. Depending on nanoparticle 

concentration in specific regions, this movement can further influence thermal conductivity. The 

collective impact of thermophoresis and Brownian motion results in complicated interactions that 

affect both heat and particle distribution, as detected by Sundeep et al. [36]. These influences are 

significant in practical applications, particularly in optimizing nanofluids for heat transfer purposes. 

In cooling systems, Brownian motion enhances heat dissipation by boosting thermal conductivity [37]. 

Nevertheless, too much thermophoretic migration leads to particle accumulation in cold areas that 

potentially enhances nanofluid performance and stability [38]. Additional studies on this subject can 

be found in references [39,40]. 

Casson fluid is a non-Newtonian fluid categorized by its yield stress and viscosity, behaving as 

a solid below a certain shear stress threshold and flowing as a fluid above it. This rheological model 

was initially developed to describe the flow of blood and other bio-fluids but has since been applied 

to various industrial fluids like chocolate, ketchup, and certain polymers as studied by Kumar et al. [41]. 

Islam et al. [42] simulated computationally the transportation of mass and thermal flow for Casson 

fluid flow with sinusoidal constraints at borderlines. Mahmood et al. [43] examined augmented 

transportation phenomenon for Casson fluid flow on a radiative movable sheet with thermal slip 

constraints. The flow properties of Casson fluids are influenced by factors like particle concentration, 

temperature, and pressure as observed by Upreti et al. [44]. Under low shear rates, these fluids 

exhibit a high apparent viscosity, which decreases as the shear rate increases. This unique behavior 

enables Casson fluids to maintain stability under low-stress conditions while flowing readily when 

subjected to sufficient force, making them useful in applications requiring controlled flow properties. 

The velocity profiles of a Casson fluid is distinct due to its yield stress [45]. In regions where the 

applied stress is below the yield stress, the fluid acts like a solid, resulting in a plug flow region 

where the velocity gradient is zero. Beyond this region, the fluid begins to flow, and the velocity 

increases with distance from the solid boundary. This non-linear velocity distribution creates a 

steeper gradient near the wall compared to Newtonian fluids, indicating a higher shear rate near the 

boundary. The presence of yield stress also means that Casson fluids exhibits velocity slip at the 

boundary, which significantly impacts flow characteristics in confined spaces or porous media. 

Hussain et al. [46] examined thermal transportations for stagnant EMHD Casson fluid flow on a 

surface with impacts of thermal radiations. 
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Novelty of current work 

• The literature lacks studies that examine the combined effects of an inclined magnetic field 

and variable porosity on Casson nanofluid flow on a convectively heated, dual-directional 

stretching surface. Researchers have primarily focused on Casson nanofluids flows with 

various flow conditions on stretching sheets with constant porosity. However, a 

comprehensive analysis of such flows integrating both an inclined magnetic field and variable 

porosity remains unexplored. This gap highlights the need for further investigation to 

understand the complex interactions of these factors on fluid dynamics and heat transfer 

characteristics. 

• To fill this research gap, we seek to investigate the influence of Cattaneo-Christov heat and 

mass flux on Casson nanofluid flow, including the impact of an inclined magnetic field and 

varying porosity, on an elongating surface. 

• The analysis also takes on convective boundary conditions, activation energy, chemical 

reaction, thermophoresis, and Brownian motion influences. 

• The sheet’s surface has variable porosity that is studied to clarify how changes in porosity 

influence the primary directional movement of the fluid. 

• By means of the similarity transformations, the major equations are altered to a dimensionless 

form and numerically solved with a leveraging ANN technique. 

Technical Specification of Physical Components  

The technical specification of various components used in this work is illustrated as: The 

Cattaneo-Christov model is employed to analyze heat and mass transfer in the nanofluid system, 

incorporating thermal relaxation effects to extend Fourier’s law. The working nanofluid consists of a 

base fluid as blood with suspended nanoparticles of gold enhancing thermal conductivity. We 

consider a variable porous space, where permeability varies spatially, affecting fluid resistance and 

heat dissipation. Inclined magnetic effects are modeled using an external magnetic field at an angle 

with inclination ( ) , modifying the Lorentz force and flow stability. A chemical reaction parameter 

accounts for species diffusion and reaction kinetics. Brownian motion of nanoparticles impacts heat 

and mass transfer, while thermophoresis effects nanoparticle distribution due to temperature gradients.  

Main Goal/Research Questions 

We aim to explore and answer key research questions, focusing on fundamental features of the topic: 

➢ What are the effects of variable porous space on velocities in all directions? 

➢ How the stretching ratio factor, magnetic factor, and Casson factor will affect the flow in 

primary and secondary directions? 

➢ How heat and mass transfer in the nanofluid flow system is affected by Cattaneo-Christov 

flux model? 

➢ How thermal distribution will vary with corresponding deviations in radiation, 

thermophoresis and Brownian motion factors. 

➢ What are the impacts of thermophoresis factor, activation energy factor Schmidt number, 

chemical reactivity factor and Brownian motion factor on concentration panels? 

Real World Applications 

This study has significant real-world applications in biomedical engineering, industrial 

manufacturing, and thermal management systems. The analysis of gold blood-based Casson 

nanofluids can enhance targeted drug delivery, hyperthermia cancer treatments, and artificial blood 

substitutes, improving medical therapies. In industrial processes, the findings can optimize polymer 

extrusion, chemical reactors, and nano-coating technologies by improving heat and mass transfer 

efficiency. Additionally, the integration of machine learning enhances predictive modeling in fluid 
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dynamics, benefiting applications in biotechnology, aerospace, and energy systems, where accurate 

control of nanofluid behavior is crucial for performance optimization. 

2. Formulation of the problem 

Take flow of gold-blood nanofluid on a convectively heated dual-directional elongating sheet 

with chemically reactive effects and activation energy. The surface of the sheet is elongated with 

velocities u cx= and v by= in x and y directions, respectively, keeping , 0b c  as fixed numbers. 

The effects of the magnetic field used to the flow system with an inclination ( ) along the z-axis, as 

portrayed in Figure 1. This study investigates heat and mass transfer in fluid flow by integrating the 

Cattaneo-Christov model while considering the influence of thermal radiation. The surface of the 

sheet is variably porous with thermophoresis and Brownian motion effects. 

 

Figure 1. Geometrical view of the flow problem. 

With the above stated suppositions, we have [47,48]: 
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With constraints at boundary [48]: 
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Thermo-physical features of nanofluid are illustrated as [48]: 
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The experimental values of thermo-physical features are given in Table 1. 

Table 1. Thermo-physical features of Au-nanoparticles and blood [50]. 

  J/kgKpC  
3kg/m      W/mKk   S/m  

Blood 3594 1063 0.492 0.8 

Au 129 19320 314 4.10×107 

In Eq (9), the interspace of nanoparticles is portrayed by h , and pd is used for the diameter of 

nanoparticles while their volume fraction is presented by  . 

Implementing Eq (7), we have 
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The constraints at the boundaries are 
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In the above equations, we have
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3 f

T
Rd

k k


= = radiation factor, 

b

c
 = = ratio factor, 
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D
= = Schmidt number, 2 C c = = mass relaxation time factor, 

fT
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h
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= = thermal Biot number, 1 Ec = = thermal relaxation time factor, 
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
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= = chemical reactivity factor, 
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
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factor and, aE
E

kT

= = activation energy factor. 

2.1. Interested quantities 

The skin frictions in x and y-directions with Nusselt and Sherwood numbers are given as: 
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*
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nfnf nf B

z z z z
fx fy x x

f w f ww Bf f

T Tu u Ck xD
k zz z z

C C Nu Sh
u v D CCk T T


 

 



= = = =



    − + 
   

= = = = −
−−

  (15) 

Using Eq (7), we get from Eq (15) that 
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With Re Rew w
x

f f

y

u x v y
and

 
= = as local Reynolds numbers. 

3. Solution method 

LMS-NNA is a sophisticated optimization technique designed for training artificial neural 

networks efficiently and accurately. It combines the gradient descent method, which adjusts the 

weights of the network to minimize the error between predicted and actual outputs, with the 

Gauss-Newton method, known for solving non-linear least squares problems. By merging these 

approaches, LMS-NNA provides a dynamic way to update the network’s weights, transitioning 

smoothly between the stability of gradient descent when it is far from the solution and the faster 

convergence of Gauss-Newton as the solution nears optimality. This hybrid method is particularly 

effective in handling complex and large-scale neural networks, enabling faster and more precise 

training compared to standard optimization methods. As a result, it is extensively used in numerous 

applications, like pattern recognition and predictive modeling, where rapid and accurate convergence 

is crucial. This method is mathematically described as follows: 
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The sigmoid function is a bounded, smooth real-valued function characterized by a single inflection point 

and a derivative that is always non-negative. Its formula serves as an example of this type of function. 
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.          (21) 
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This function is incorporated into Eqs (17)−(20) so that we have  
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Above, , ,P Q M are component vectors described by , ,i i iP Q M . The number of neurons and the order 

of derivative are illustrated by , ,P Q M . Equations (23)−(26) portray the Sigmoid function 

1
( )

1 i i
i ii M P

f M P
e



+

+ =
+

 as the objective function and its higher order, which is of 3rd order. 

3.1. Fitness function formulation 

The MSE (mean squared error) is used as an error function that is given for the current model as 

follows: 

1 2 3 4 ,    = + + +           (27) 



8540 

AIMS Mathematics  Volume 10, Issue 4, 8528–8568. 

( ) ( )( )

( )

2

2

2

1 0 1

3

3

0 1

23 2

3 2

1
1

1
1

sin

1
1

1

nf

nf

Da

nf

nf
Da

f

f

f

f

d f df d f
f g

d d d

df
M

e
N

e
Da d

 

 

 
 

     

 


  

  

 

−

−

     
      

     

  
= +         

    
    

+   
 

   
+ − − +   

   

 
 −
 
 − −
 
 
 
  

1

,
N

 
 
 
 
 
 
 
 
 
 
 
 

      (28) 

( ) ( )( )

( )

2

2

2

2 0 1

3

3

0 1

23 2

3 2

1
1

1
1

sin

1
1

1

nf

nf

Da

nf

nf
Da

f

f

f

f

d g dg d g
f g

d d d

dg
M

e
N

e
Da d

 

 

 
 

     

 


  

  

 

−

−

     
      

     

  
= +         

    
    

+   
 

   
+ − − +   

   

 
 −
 
 − −
 
 
 
  

1

,
N

 
 
 
 
 
 
 
 
 
 
 
 

      (29) 

( )

( )
( ) ( )( )

( )

( )

( ) ( )( )
( )( ) ( )( )

( ) ( )

22

2

2 2
2

1 1

3

2

Pr Pr

Pr Pr
2

1

p pnf

p pnf n

f f

f
f

C Ck d d d d d
Rd f g Nb Nt

k d d d d dC C

f gdf dg d d
f g

d d d df g

N

     
 

     

  
   

   



 

          + + + − +                  

  + +  
  − + + −     

 
 
 
 =
 
 
    

  


1

,
N



  (30) 

( ) ( )( ) ( ) ( ) ( )( )
( )

( )

( )( ) ( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )1

2

22

2
2 2 1

4

2 1

1

2
2 1

1
.

E

N

m

r

fd d Nt d
Sc f g Sc f g

d d Nb dg

d
f g f g K Sc e

N

d

    

  
      

  


       




−
+

 + 
  + +


+ −  +  

  



 
 

=  
 


 

− + − + +
 

  (31) 

Equation (27) illustrates the objective function in which  corresponds with mean squared error 

that is the summation of 1 2 3, ,   , and 4 . These values of 1 2 3, ,   , and 4 are evaluated through 

Eqs (28)−(31). 

3.2. Advantages and disadvantages 

The Levenberg-Marquardt (LM) is a popular optimization technique used to train neural networks. 

Here are its key advantages and disadvantages. 

3.2.1. Advantages 

• This algorithm is faster than standard gradient descent, especially for moderate-sized networks.  

• It provides better optimization and often achieves lower error rates than other 

backpropagation methods.  

• It performs well when dealing with networks of small to moderate size.  
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• It adapts between these two methods, improving both stability and speed.  

• It works well with non-linear problems and avoids getting stuck in local minima as often as 

a simple gradient descent. 

3.2.2. Disadvantages 

• The LM algorithm requires storing large Jacobian matrices, making it memory-intensive.  

• As the network size increases, computational costs become very high.  

• The effectiveness of the algorithm depends on the proper adjustment of the damping factor.  

• It may not perform well when training data contains high levels of noise.  

• Due to its high computational demands, it is impractical for very deep networks. 

Figure 2 illustrates the neural network phenomenon.  

 

Figure 2. Dissemination of layers for the current problem. 

4. Results and discussion 

In this work, we explore the behavior of nanofluid flow over a variable porous extending 

surface, considering the influence of an inclined magnetic field. We specifically examine how the 

size and spacing of nanoparticles impact the overall flow dynamics, heat transfer, and mass transport 

characteristics. To enhance the accuracy of thermal and mass diffusion analysis, the study integrates 

the Cattaneo-Christov heat and mass flux model, which accounts for relaxation time effects, 

improving upon the traditional Fourier and Fick’s laws. Furthermore, the model includes the impact 

of chemical reactions and activation energy, which are crucial for understanding reaction kinetics in 

nanofluid transport. Additional effects such as Brownian motion and thermophoresis are also 

considered, as these play significant roles in nanoparticle dispersion and thermal conductivity 

enhancement. We solved the modeled equations using ANN. In the upcoming paragraphs, the 

discussion of ANN graphs and different flow distributions are presented. 

4.1. ANN graphs analysis 

Figure 2 portrays the process for neural networks, using an algorithmic approach. The graphical 

depictions for statistical analysis of the LMS-NNA design regarding influences of distinct emerging 

factors on velocities, temperature, and concentration are portrayed in Figures 3−10. The illustration 

of MSE convergence is suggested in Figures 3(a)−10(a). The MSE values are closely monitored 
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during the testing, training, and validation phases, providing a comprehensive understanding of the 

model’s performance and convergence throughout these critical stages. The model’s optimal 

performance is observed at certain epochs like 111, 225, 194, 270, 179, 220, 339, and 221. The 

traditional stages for addressing the gradient computation and validation checks in the LMS-NNA 

design are illustrated in Figures 3(b)−10(b). These visuals depict the sequential progression of the 

model as it undergoes adjustments to optimize performance. The gradient computation stage ensures 

that the model correctly updates its weights by evaluating the direction and magnitude of error 

reduction. Validation checks serve as an essential quality control mechanism, assessing the model’s 

generalization ability and preventing overfitting by verifying its performance on unseen data. Each of 

these stages represents a fundamental aspect of the model’s adaptive learning process, ensuring accurate 

and efficient optimization. The error histograms for all the scenarios are depicted in Figures 3(c)−10(c). 

These figures present visual representations that offer valuable insights into the convergence and 

accuracy of the suggested model. Additionally, these visuals provide a thorough examination of the 

model’s precision, demonstrating how closely it lines up with expected conclusions. These diagrams 

provide a thorough understanding of the convergence behavior and accuracy displayed by fluid 

model during its assessment and simulation process. The function fitness for error analysis regarding 

the structure solution is covered in Figures 3(d)−10(d). These visuals suggest a thorough perception 

for the performance and maximization of the EA structure by illustrating the progression of the 

function’s fitness during various phases. By depicting the progression of function fitness across 

stages of LMS-NNA design, the visuals help assess the effectiveness of the method in refining 

accuracy, minimizing errors, and maximizing performance. This comprehensive analysis enables a 

deeper understanding of how the structure evolves and adapts to achieve the best possible 

outcome. Figures 3(e)−10(e) illustrate the regression performance of the suggested model across 

cases (1−8). A consistent pattern emerges across all figures, with correlation values ('R') closely 

clustering near one for the training, testing, and validation phases. This near-unity alignment is a key 

finding, highlighting the exceptional accuracy of the LMS-NNA design in the suggested model. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 3. The LMS-NNA scheme for ( )f  vs  (a) MES outcome, (b) Transition state, 

(c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4. The LMS-NNA scheme for ( )f  vs M (a) MES outcome, (b) Transition state, 

(c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 5. The LMS-NNA scheme for ( )g  vs  (a) MES outcome, (b) Transition state, 

(c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6. The LMS-NNA scheme for ( )g  vs M (a) MES outcome, (b) Transition state, 

(c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7. The LMS-NNA scheme for ( )  vs Rd (a) MES outcome, (b) Transition 

state, (c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8. The LMS-NNA scheme for ( )  vs Pr  (a) MES outcome, (b) Transition 

state, (c) Error Histogram, (d) Curve fitting, and (e) Regression. 
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(a) (b) 

 

 

(c) (d) 

 

(e) 

Figure 9. The LMS-NNA scheme for ( )  vs Nb  (a) MES outcome, (b) Transition 

state, (c) Error Histogram, (d) Curve fitting, and (e) Regression. 



8550 

AIMS Mathematics  Volume 10, Issue 4, 8528–8568. 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 10. The LMS-NNA scheme for ( )  vs Nt  (a) MES outcome, (b) Transition 

state (c), Error Histogram, (d) Curve fitting, and (e) Regression. 
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4.2. Analysis of velocity panels ( ) ( ) &f g    

The effects of numerous factors on ( ) ( ) &f g    are portrayed in Figures 11−15. The 

effects of the stretching ratio factor ( ) on ( ) f  are portrayed in Figure 11(a) with a deteriorating 

behavior in ( ) f  for growth in ( ) . As the stretching ratio factor ( )  increases, the sheet 

elongates more rapidly in two directions (along x and y-axes). This causes the fluid near the surface 

to experience a stronger pull, causing a stretching-dominated flow. Consequently, the fluid’s 

momentum near the surface becomes more aligned with the elongation direction, reducing the 

primary velocity ( ) f  . This happens because the stretching forces dominate the flow, slowing 

down the movement of fluid away from the surface (i.e., the primary flow). The effect reflects the 

competition between the stretching forces and the fluid’s inherent tendency to flow in other 

directions. Figure 11(b) depicts the absolute error in ( ) f  for the current problem regarding 

variations in ( ) . These errors range from 10-4 to 10-7, as illustrated in Figure 11(b). This analysis 

emphasizes the computational discrepancies between the assessed and analytical results, providing 

valuable insights into the accuracy of the current model for the given problem. 

  

(a) Behavior of ( )f Vs   (b) Variations in  vs Absolute Error 

Figure 11. Behavior of ( )f Vs   with Absolute Error. 

The influences of magnetic factor ( )M on ( ) f  are portrayed in Figure 12(a), with a 

declining behavior in ( ) f  for growth in ( )M . As ( )M increases in the fluid flow on a 

bidirectional elongating sheet, then ( ) f   is reduced due to the magnetic field’s opposing effect 

on the fluid motion. This phenomenon, known as the magnetohydrodynamic effect, generates a 

Lorentz force that acts against flow direction. Consequently, the fluid practices greater resistance to 

motion, particularly near the surface of the sheet. This increased resistance slows down the flow, 

causing a lessening in ( ) f  , which represents the flow along the main direction of movement. The 

magnetic field effectively dampens the fluid’s momentum, decreasing the velocity profile. Figure 12(b) 

illustrates the absolute error in ( ) f  for the given problem, specifically in relation to different 
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values of the magnetic factor. This visual representation helps analyze how changes in the magnetic 

factor influence deviations in velocity, providing insights into the accuracy of the numerical or 

computational model used. By showcasing the absolute error, the figure highlights areas where 

discrepancies occur, enabling a better understanding of error distribution and potential improvements 

in the modeling process. The analysis, presented in this figure, is crucial for evaluating the impact of 

magnetic variations on fluid dynamics or structural behavior, ensuring that the proposed solution 

maintains precision across conditions. These errors range from 10-4 to 10-7, as illustrated in Figure 12(b). 

  

(a) Behavior of ( )f Vs M  (b) Variations in M vs Absolute Error 

Figure 12. Behavior of ( )f Vs M  with Absolute Error. 

The impacts of Casson factor ( ) on both velocities ( ) ( ) &f g   are portrayed in Figures 13(a) 

and 14(a) with a deteriorating behavior in ( ) ( ) &f g   for growth in ( ) . As ( ) increases in 

the fluid flow on a bidirectional elongating sheet, the velocities ( ) ( ) &f g   decrease due to the 

fluid’s non-Newtonian behavior. The Casson model describes fluids that exhibit yield stress, meaning 

the fluid resists motion until a certain stress threshold is exceeded. As ( ) grows, this threshold 

increases, making it harder for the fluid to start flowing. Consequently, the fluid experiences greater 

resistance, particularly near the sheet’s surface in both the directions, resulting in a slower movement 

overall. This increased resistance reduces ( ) ( ) &f g   , as the fluid’s ability to flow is 

increasingly hindered by the higher Casson factor ( ) , reflecting the thickening effect of the fluid 

under stress as portrayed in Figures 13(a) and 14(a). Figures 13(b) and 14(b) depict the absolute 

error in ( ) ( ) &f g   for the current problem regarding variations in ( ) . These errors range 

from 10-4 to 10-7 in the case of ( ) f  , as illustrated in Figure 13(b), while in the case of ( ) g  , 

these errors expand on 10-4 to 10-8, as depicted in Figure 14(b). 
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(a) Behavior of ( )f Vs   (b) Variations in  Vs Absolute Error  

Figure 13. Behavior of ( )f Vs   with Absolute Error. 

 

  

(a) Behavior of ( )g Vs   (b) Variations in  Vs Absolute Error  

Figure 14. Behavior of ( )g Vs   with Absolute Error. 

The impacts of ( )Da on ( ) f  are portrayed in Figure 15(a), with an augmenting behavior in

( ) f  for growth in ( )Da . The increase in ( )Da inside the fluid flow system means that the 

material through which the fluid flows become more permeable, enabling easier passage of fluid 

through its pores. On a bidirectional elongating sheet, this translates into a rise in primary velocity 

profiles ( ) f  because the fluid encounters less confrontation when passing the porous medium. 

Consequently, the fluid moves faster both along and perpendicular to the sheet’s stretching directions. 

This augmentation in velocity is also influenced by factors like the nature of the fluid, the sheet’s 

elongation rates, and external forces; however, it primarily indicates reduced resistance in fluid flow 

due to higher porosity. Figure 15(b) illustrates the absolute error in ( ) f  for the current problem, 
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specifically considering the variations in ( )Da . The graph provides a detailed comparison of the 

computational results by highlighting the deviation between benchmark solutions. As the porous 

factor changes, the figure captures how the error fluctuates across the domain, offering insights into 

the accuracy and reliability of the applied numerical method. The observed trends in the error 

distribution can be used to assess the sensitivity of the velocity profile to variations in the porous 

factor, which is crucial for optimizing computational models in porous media flow analysis. These 

errors range from 10-4 to 10-8 in the case of ( ) f  , as illustrated in Figure 15(b). 

  

(a) Behavior of ( )f Vs Da  (b) Variations in Da vs Absolute Error 

Figure 15. Behavior of ( )f Vs Da  with Absolute Error. 

4.3. Analysis of temperature distributions ( )    

The effects of numerous factors on temperature distribution ( )    are portrayed in 

Figures 16−19. Figure 16(a) inspects the behavior of ( )   with deviations in ( )Rd . Here, with 

the expansion in ( )Rd , there is an upsurge in ( )   . As ( )Rd upsurges on a bidirectional 

elongating sheet, the system absorbs more thermal energy from radiative heat transfer. This causes an 

upsurge in ( )   , meaning the fluid’s temperature rises more rapidly. Radiation supports heat 

transfer by emitting energy from the surface of the elongating sheet into the surrounding fluid, 

increasing the fluid’s thermal energy. This effect is more significant as ( )Rd grows, enhancing the 

overall heat transfer rate and leading to higher temperatures within the fluid, especially near the 

sheet’s surface, as shown in Figure 16(a). In cancer treatment, this principle is related to 

hyperthermia therapy, where targeted radiation is used to elevate temperatures in tumor tissues. By 

controlling radiation, the localized heating damage the cancer cells without harming the surrounding 

healthy tissues, making this a key technique in treatments like radiotherapy and thermal ablation. 

Figure 16(b) illustrates the absolute error in the temperature distribution ( )   for the current 

problem, considering variations in the radiation factor ( )Rd . The error represents the difference 
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between the computed and reference temperature values, indicating the accuracy of the numerical 

model. The error distribution provides insight into the model’s sensitivity to radiative effects and 

helps in assessing the reliability of the thermal predictions. These errors range from 10-4 to 10-7 in the 

case of ( )   , as illustrated in Figure 16(b). 

  

(a) Behavior of ( )Vs Rd   (b) Variations in Rd Vs Absolute Error 

Figure 16. Behavior of ( )Vs Rd   with Absolute Error. 

Figure 17(a) illustrates the performance of ( )   for deviations in Brownian factor ( )Nb . 

With expansion in ( )Nb , there is an upsurge in ( )   . Brownian motion is the erratic movement of 

tiny particles due to collisions with surrounding molecules, which leads to enhanced thermal 

interactions. This increased particle motion generates additional heat, causing a rise in the fluid’s 

temperature. Consequently, the temperature profiles ( )   in the system are augmented as ( )Nb

grows. This effect plays a significant role in nanofluid heat transfer, where the thermal energy 

distribution is influenced by the movement of nanoparticles within the fluid, causing enhanced heat 

transfer rates. In cancer treatment, this principle is applied in nanoparticle-based hyperthermia 

therapy. By injecting nanoparticles into tumor sites and using external energy sources, the 

nanoparticles exhibit Brownian motion, elevating local temperatures. This targeted heating destroys 

cancer cells by raising their temperature while minimizing damage to surrounding healthy tissue. 

Figure 17(b) portrays the absolute error in ( )   for the current problem regarding variations in

( )Nb . The error represents the difference between the computed and reference temperature values, 

indicating the accuracy of the numerical model. These errors range from 10-3 to 10-7 in the case of 

( )   , as illustrated in Figure 17(b). 
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(a) Behavior of ( )Vs Nb   (b) Variations in Nb Vs Absolute Error 

Figure 17. Behavior of ( )Vs Nb   with Absolute Error. 

Figure 18(a) inspects the performance of ( )   for deviations in thermophoresis factor ( )Nt . 

With surge in ( )Nt , there is an upsurge in ( )   . When the factor ( )Nt increases, more particles 

move from hotter to cooler regions. The increase in ( )Nt leads to a rise in ( )   for fluid flow on 

the bidirectional elongating sheet because thermophoresis designates the movement of particles from 

a hot to a cooler region in the presence of a temperature gradient. As ( )Nt grows, more particles are 

moved from the hotter region towards cooler areas, reducing heat transfer from the surface of the 

sheet. This causes a higher accumulation of thermal energy near the sheet, effectively increasing the 

temperature of the fluid in proximity to it. Therefore, the thermal distribution ( )   rises due to the 

diminished cooling effect of particle migration. Figure 18(b) describes the absolute error in ( )   for 

the current problem regarding variations in ( )Nt . The error represents the difference between the 

computed and reference temperature values, indicating the accuracy of the numerical model. These 

errors range from 10-2 to 10-7 in the case of ( )   , as illustrated in Figure 18(b). 
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(a) Behavior of ( )Vs Nt   (b) Variations in Nt Vs Absolute Error 

Figure 18. Behavior of ( )Vs Nt   with Absolute Error. 

Figure 19(a) inspects the performance of ( )   for deviations in the thermal Biot number

( )TBi . In this graph, it is seen that with an upsurge in ( )TBi , there is an upsurge in ( )   . A higher 

( )TBi means a more efficient thermal exchange among the sheet’s surface and the nearby fluid, 

resulting in greater heat retention and higher temperature near the surface. In cancer treatment, this 

principle is applicable in hyperthermia therapy, where elevated temperatures are used to damage the 

cancer cells. By manipulating factors like the Biot number, medical devices optimize heat 

distribution to target tumors effectively while minimizing damage to healthy tissues, enhancing the 

efficacy of treatments like radiofrequency or microwave-induced hyperthermia. Figure 19(b) 

portrays the absolute error in ( )   for the current problem regarding variations in ( )TBi . The error 

represents the difference between the computed and reference temperature values, indicating the 

accuracy of the numerical model. These errors range from 10-5 to 10-7 in the case of ( )   , as 

illustrated in Figure 19(b). 
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(a) Behavior of ( ) TVs Bi   (b) Variations in TBi vs Absolute Error  

Figure 19. Behavior of ( ) TVs Bi   with Absolute Error. 

4.4. Analysis of concentration distributions ( )    

The effects of various factors on ( )    is portrayed in Figures 20−24. Figure 20(a) shows the 

behavior of ( )   for the reaction of deviations in Brownian number ( )Nb . For a surge in ( )Nb , 

there is a decline in ( )   . As ( )Nb increases, the intensity of this random motion also grows, 

causing more frequent and widespread dispersal of particles throughout the fluid. This enhanced 

particle movement increases the overall concentration of particles in the fluid, resulting in an 

augmentation in ( )   . Essentially, stronger Brownian motion promotes greater mixing and 

dispersion of particles, causing more uniform and heightened particle distribution within the fluid 

flow. Figure 20(b) describes the absolute error in ( )   for the current problem regarding 

variations in ( )Nb . The error represents the difference between the computed and reference 

temperature values, indicating the accuracy of the numerical model. These errors range from 10-3 to 

10-7 in the case of ( )   , as illustrated in Figure 20(b). 
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(a) Behavior of ( )Vs Nb   (b) Variations in Nb  vs Absolute Error 

Figure 20. Behavior of ( )Vs Nb   with Absolute Error. 

Figure 21(a) shows the performance of ( )   for the reaction of deviations in thermophoresis 

factor ( )Nt . This graph shows that with the expansion in ( )Nt , there is an augmentation in ( )   . 

As ( )Nt increases, particles are more strongly influenced by these temperature differences. This 

results in the accumulation of particles in cooler areas, leading to an augmentation in ( )   . In 

simple terms, the higher the thermophoretic force, the more significant the particle movement toward 

the cooler zones, enhancing the concentration of particles in specific regions of the fluid. This affects 

the overall distribution of particles within the flow field, which has implications for processes like 

heat and mass transfer. Figure 21(b) depicts the absolute error in ( )   for the current problem 

regarding variations in ( )Nt . The absolute error quantifies the deviation between the computed and 

reference concentration values, highlighting the accuracy of the numerical model. The error 

distribution helps assess the model’s sensitivity to thermophoresis and provides insight into how well 

the numerical predictions capture the underlying physical mechanisms. These errors range from 10-3 

to 10-6 in the case of ( )   , as illustrated in Figure 21(b). 
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(a) Behavior of ( )Vs Nt   (b) Variations in Nt vs Absolute Error 

Figure 21. Behavior of ( )Vs Nt   with Absolute Error. 

Figure 22(a) illustrates the performance of ( )   for the reaction of deviations in the chemical 

reactivity factor ( )Kr . With an upsurge in ( )Kr , there is a decline in ( )   . As this factor increases, 

the chemical reactions become more intense, leading to a faster consumption or transformation of the 

reacting species. This results in a reduction in particle concentration as more particles are being used 

up or altered by the reactions. Consequently, the concentration profiles ( )   of the species diminish 

because the particles are being removed from the fluid more rapidly through these reactions. This 

process decreases the overall particle density in the fluid, especially in regions where the reactivity is 

higher. Figure 22(b) depicts the absolute error in ( )   for the current problem regarding variations 

in ( )Kr . These errors range from 10-3 to 10-6 in the case of ( )   , as illustrated in Figure 22(b). 

  

(a) Behavior of ( )Vs Kr   (b) Variations in Kr vs Absolute Error  

Figure 22. Behavior of ( )Vs Kr   with Absolute Error. 
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Figure 23(a) shows the performance of ( )   for the reaction of deviations in Schmidt number

( )Sc . With an upsurge in ( )Sc , there is a decline in ( )   . For flow over the bidirectional 

elongating sheet, a higher ( )Sc implies that the concentration field diffuses more slowly than the 

velocity field. As a result, the concentration boundary layer gets thinner, causing a decline in ( )   . 

Physically, this means that as the Schmidt number grows, the diffusion of mass in the fluid becomes 

more restricted, confining it closer to the sheet, while the velocity field spreads out more easily. 

Figure 23(b) portrays the absolute error in ( )   for the current problem regarding variations in ( )Sc . 

These errors range from 10-3 to 10-7 in the case of ( )   , as illustrated in Figure 23(b). 

 
 

(a) Behavior of ( )Vs Sc   (b) Variations in Sc vs Absolute Error 

Figure 23. Behavior of ( )Vs Sc   with Absolute Error. 

Figure 24(a) shows the performance of ( )   for deviations in the activation energy factor ( )E . 

This graph shows that with an expansion in ( )E , there is an upsurge in ( )   . When ( )E increases 

for fluid flow on a bidirectional elongating sheet, it implies that more energy is needed for mass 

transfer or chemical reactions. As a result, higher energy barriers slow reaction rates, leading to an 

accumulation of the reactant species in the fluid. This accumulation augments the concentration 

profiles ( )    because less of the species is consumed or diffused from the surface of the sheet. 

Physically, this means that as the activation energy factor ( )E grows, species tend to remain in higher 

concentrations within the boundary layer, as the energy required for their diffusion or reaction is 

higher, leading to thicker concentration boundary layers. Figure 24(b) illustrates the absolute error in 

( )   for the current problem regarding variations in ( )E . These errors range from 10-3 to 10-7 in the 

case of ( )   , as illustrated in Figure 24(b). 
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(a) Behavior of ( )Vs E   (b) Variations in E vs Absolute Error 

Figure 24. Behavior of ( )Vs E   with Absolute Error. 

4.5. Discussion of the tables 

Table 1 depicts the experimental values of gold nanoparticles and blood. Table 2 offers an 

in-depth presentation of the computational data generated by the ANN model across several 

scenarios. This table provides critical information on the MSE recorded during three distinct phases 

of model development: Training, validation, and testing. The MSE is a key metric that measures the 

average squared difference between the predicted and actual values and is instrumental in assessing 

the ANN’s predictive accuracy. Lower MSE values generally indicate a model that makes accurate 

predictions and generalize well to unseen data. In addition to MSE, the table highlights several other 

crucial metrics that contribute to the overall evaluation of the ANN model. These include network 

performance, which reflects the model’s ability to minimize error across iterations, as well as the 

gradient and 'mu' parameter. The gradient measures how steeply the error changes with respect to 

adjustments in the model’s weights, offering insight into how effectively the model is learning at 

each epoch. Table 2 also concludes that the model’s optimal performance is observed at epochs 111, 

225, 194, 270, 179, 220, 339, and 221. The 'mu' parameter, part of the Levenberg-Marquardt 

optimization algorithm used in many ANN models, helps control the transition between gradient 

descent and a more refined optimization process, balancing learning speed and stability. To validate 

the current results, a comparative analysis is conducted in Table 3. In this table, the results for heat 

transfer rate are compared with the established works of Gorla & Sadawi [51] and Hamad [52]. It is 

revealed in this table that a closed agreement exists amongst all the results that validate the results.  
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Table 2. LMS-NNA design regarding outcomes for various scenarios. 

Scenari

os 

MSE Performan

ce 

Gradien

t 
Mu 

Epoc

h 

Tim

e (s) Training Validation Testing 

1 97.3452 10−  92.2314 10−  94.3241 10− 
108 21 10−  

89.97 10− 
81.00 10− 111 02 

2 108.5341 10−  91.2524 10− 
93.4231 10− 

107.45 10− 
99.91 10− 

81.00 10− 225 01 

3 
108.9765 10−

 

92.2341 10−

 

91.2341 10−

 

109.90 10−

 

89.92 10−

 

81.00 10−

 
194 00 

4 
106.5623 10−

 

116.6342 10−

 

116.4576 10−

 

116.62 10−

 

89.91 10−

 

81.00 10−

 
270 02 

5 
103.2341 10−

 

106.2341 10−

 

106.7643 10−

 

103.01 10−

 

89.95 10−

 

81.00 10−

 
179 01 

6 
106.5342 10−

 

116.6245 10−

 

117.4576 10−

 

92.2341 10−

 

89.91 10−

 

81.00 10−

 
220 03 

7 95.7643 10−  95.2524 10−  
93.4521 10−

 

108.01 10−

 

89.92 10−

 

81.00 10−

 
339 02 

8 
107.7983 10−

 

117.6532 10−

 

116.7761 10−

 

116.56 10−

 

89.91 10−

 

81.00 10−

 
221 01 

Table 3. Comparison of our results for the thermal transfer rate with established works. 

Pr  
( )0−  

Gorla & Sadawi [51] Results Hamad [52] Results Current Results 

0.07 0.06560000 0.06556000 0.0655601 

0.2 0.16910000 0.16909000 0.1690912 

0.7 0.45390000 0.45391000 0.4539123 

2.0 0.91140000 0.91136000 0.91136014 

7.0 1.89050000 1.89540000 1.89540117 

5. Conclusions 

In this study, we explore nanofluid flow on a bi-directional elongated plate. The surface of the 

sheet is characterized with variable porosity with inclined magnetic field effects, which is the main 

novelty of this work. We focus on how nanoparticle radius and spacing affect the overall flow 

dynamics. Additionally, we incorporate the Cattaneo-Christov heat and mass flux model effects to 

discuss the mass and thermal diffusions using flow conditions. The major equations are translated in 

dimensionless form and solved with ANNs. After a detailed discussion of the work, hawse highlight that: 

• Primary velocity weakens with a surge in the stretching ratio factor and magnetic factor and 

is augmented with growth in a variable porous factor, where the AE varies in the range 
310−
 

to 
710−
. 

• Both velocities ( ) ( ) &f g    slow with the growth in the Casson factor. 

• Thermal panels amplify with the escalation in thermophoresis, magnetic, radiation, and 

Brownian motion factors with AEs varying in the range 
310−
to 

710−
. 

• Concentration panels escalate with the augmentation in the thermophoresis factor and 
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activation energy factor while they weaken with a surge in the Schmidt number, chemical 

reactivity factor, and Brownian motion factor, where the AE varies in the range 
410−
to 

610−
. 

• We conclude that the model’s optimal performance is observed at epochs 111, 225, 194, 270, 

179, 220, 339, and 221.  

• For all the scenarios, the gradient values are associated at 
89.97 10− ,

99.91 10− ,
89.92 10− ,

89.91 10− , 
89.95 10− ,

89.91 10− ,
89.92 10−  , and 

89.91 10− . 

Future Direction of the Study: In future research, the impacts of Jeffery fluid will be incorporated 

to extend the study of non-Newtonian fluid behavior in the flow system. Additionally, the influence 

of microorganisms will be analyzed to model bio-convective effects in the nanofluid system. 
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