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Abstract: In this work, we present the nonlocal Moore-Gibson-Thompson photothermal (NMGTPT) 

theory, a novel framework that integrates spatial and temporal nonlocality to address limitations in 

both traditional and advanced thermoelastic models. Specifically tailored for semiconductor materials 

with microstructural features, memory effects, and photo-excited phenomena, the NMGTPT theory 

unifies nonlocal elasticity, MGT thermal relaxation, and photothermal effects to model the complex 

interplay between heat, deformation, and photo-induced processes. Unlike prior models, the NMGTPT 

framework incorporates spatial and temporal nonlocalities, enabling the accurate representation of 

long-range interactions and memory effects. Additionally, the Atangana-Baleanu (AB) fractional 

operator is integrated into the NMGTPT model to further enhance its ability to describe nonlocal and 

memory-dependent behavior, making it particularly suitable for advanced material systems. By 

incorporating a thermal relaxation coefficient, the framework ensures finite-speed thermal wave 

propagation, effectively addressing the unrealistic prediction of infinite heat speed found in classical 

models. The theory also integrates photo-excited free carriers, thermal waves, and acoustic waves, 

proving highly effective in photothermal and photoacoustic studies involving semiconductors. With 

the inclusion of an internal length scale, the NMGTPT theory successfully captures size-dependent 

behaviors, which are essential for accurately modeling nanostructured materials, thin films, and 

composites. This innovation provides a robust platform for investigating the complex dynamics of 

photothermal and thermoelastic phenomena in advanced material systems. 
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spatial and temporal nonlocality 
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1. Introduction  

The study of acoustic theories examines how mechanical vibrations propagate through various 

materials, particularly under the influence of thermoelastic and photothermal effects [1]. These 

interactions alter the acoustic properties of materials, leading to investigations into the relationships 

between thermal, mechanical, optical, and acoustic phenomena, particularly in semiconductor and 

liquid layers [2]. Researchers utilize numerical simulations and analytical models to gain deeper 

insights into these complex interactions. A significant breakthrough in this field is the use of laser 

technology to generate ultrafast photoacoustic pulses lasting only nanoseconds. Furthermore, 

advancements in piezoelectric capacitor sensors have extended the frequency range for detecting weak 

photoacoustic signals. Notably, mechanical responses produce rapid pressure pulses, whereas thermal 

processes generate slower ones due to the inherent differences in reaction times between elastic and 

thermal mechanisms [3]. To further refine the understanding of photoacoustic pulse generation, 

researchers analyze the governing thermoelasticity equations. By distinguishing between the fast (PA) 

and slow (PT) mechanical disturbances, a mathematical framework is developed to characterize pulse 

generation in pulsed mode [4]. This approach improves both the theoretical and practical understanding 

of photoacoustic phenomena, contributing to advancements in materials research and sensor 

technology. 

When semiconductors are exposed to optical energy, such as laser pulses, free carriers (electrons 

and holes) are generated within the material. These carriers play a pivotal role in forming acoustic 

waves through their interaction with the semiconductor’s electronic and elastic properties. Photo-

generated carriers disrupt the local charge distribution, inducing periodic elastic strain within the 

material. This strain propagates as an acoustic wave, driven by the strong coupling between the 

semiconductor’s electronic and mechanical behaviors [5]. Additionally, the presence of free carriers 

can slightly alter the material’s elastic constants, though this effect is generally less significant than the 

strain caused by charge disturbances. These intricate interactions between optical excitation, electronic 

dynamics, and mechanical wave propagation form the basis of photoacoustic phenomena in 

semiconductors [6,7]. A thorough understanding of these processes is crucial for optimizing their use 

in diverse applications, including high-resolution sensing, advanced imaging technologies, and precise 

material characterization. 

Thermoelasticity is a focused area within the broader realm of elasticity theory that investigates 

how temperature impacts the mechanical behavior of materials. Researchers in this field explore the 

intricate connections between thermal fields and elastic substances, enabling a deeper understanding 

of how temperature fluctuations influence stress, strain, and deformation in solids [8]. Such knowledge 

is critical for the analysis and design of materials and structures that face combined thermal and 

mechanical challenges. Coupled thermoelasticity advances the study by recognizing the two-way 

interaction between heat flow and mechanical deformation. In this framework, thermal variations 

induce stresses and strains through mechanisms such as thermal expansion, while the resulting 

mechanical deformations, in turn, influence heat distribution within the material [9]. This mutual 

coupling makes the theory particularly applicable to advanced engineering problems where thermal 

and mechanical aspects are closely interdependent. Additionally, extended thermoelasticity introduces 
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more sophisticated considerations, such as finite thermal wave speeds, to address non-Fourier heat 

conduction and thermal relaxation effects, which account for delays in heat propagation. These factors 

are crucial for analyzing systems subjected to rapid thermal transients, such as those encountered 

during laser-material interactions or shock heating [10]. 

The applications of thermoelasticity extend across fields, highlighting its importance in advanced 

structural and material design. In aerospace and automotive engineering, the theory aids in analyzing 

thermal stresses in critical components, such as turbine blades and brake systems, which are subject to 

extreme temperature gradients [11]. In geomechanics, researchers apply thermoelastic principles to 

investigate effects in geothermal reservoirs and underground structures, deepening our understanding 

of subsurface conditions [12]. Moreover, electronic devices benefit from thermoelasticity by providing 

insights into thermal expansion and stress in semiconductors and microelectronic components—a 

crucial factor for ensuring their reliability. Finally, in material science, thermoelasticity supports the 

design of materials with tailored thermal and mechanical properties, including thermoelastic 

composites and shape-memory alloys, fostering innovations that meet specific performance 

requirements [13]. Through these diverse applications, thermoelasticity continues to drive significant 

advancements across multiple disciplines and industries. 

In response to the constraints of the classical coupled dynamic theory of thermoelasticity, 

researchers have developed a variety of extended theories aimed at tackling the intricate challenges of 

heat conduction and the coupling between thermal and mechanical processes in contemporary 

engineering and scientific contexts. Notably, the Green–Naghdi (GN) theories [14–16] and the Moore-

Gibson-Thompson (MGT) equation [17,18] have emerged as pivotal advancements in the 

thermoelasticity field. 

The Green–Naghdi theories [14–16] were formulated to extend classical thermoelasticity by 

accounting for the subtleties of energy dissipation. These theories enhance the understanding of heat 

conduction and thermal stresses within materials, offering comprehensive frameworks that address 

dynamic thermoelastic problems more effectively. Furthermore, the MGT heat equation [17] has 

emerged as a pivotal tool in modern thermoelasticity and fluid dynamics. This equation is rooted in a 

third-order differential framework, which generalizes traditional heat conduction models by 

incorporating thermal relaxation concepts and higher-order time derivatives. This formulation provides 

a novel perspective that contrasts with earlier models, particularly the Fourier and Cattaneo–Vernotte 

heat conduction theories [19,20], by explicitly acknowledging the finite propagation speeds of thermal 

waves and the effects of thermal inertia. As a result, the MGT equation is particularly well-suited for 

systems undergoing rapid thermal changes. 

Developments in this area have further expanded the application potential of the MGT equation. 

For instance, Quintanilla has introduced a new heat conduction model within the MGT framework, 

enhancing its relevance and utility. Additionally, researchers such as Abouelregal et al. [21–24] have 

modified the MGT-based heat equation by incorporating a relaxation parameter, which extends the GN 

Type III model. This modification provides a more refined description of energy dissipation and the 

propagation of thermal waves, particularly when relaxation effects are significant. 

The applications of the MGT equation are particularly significant in fluid dynamics, where the 

interactions between thermal and viscous effects are essential for accurate modeling. Furthermore, it 

has proven indispensable in micro- and nanoscale heat transfer scenarios, where classical models often 

fail to capture the complex dynamics of thermal waves at such scales [25,26]. Through these 

groundbreaking theories and their applications, researchers are advancing the understanding of 
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thermoelastic behavior, laying the foundation for improved designs and enhanced performance in 

engineered systems. 

The development of thermoelastic models represents a substantial advancement over traditional 

approaches; however, these new models encounter challenges when addressing materials that exhibit 

nonlocal interactions and memory-dependent behaviors. Such complexities arise in systems where 

both spatially nonlocal effects and temporal histories play a significant role in influencing mechanical 

and thermal responses. Consequently, there is a growing demand for sophisticated modeling techniques 

capable of accurately capturing the dynamic and intricate nature of these materials. 

In traditional continuum mechanics, constitutive equations describe how response variables at a 

material point depend solely on variables measured at that same point, adhering to the principle of 

local action. This principle asserts that a material point’s state is unaffected by conditions at distant 

points within the material. However, the significance of length scales becomes crucial in evaluating 

the validity of this local approach [27]. When a material’s external characteristic length, such as 

structural dimensions or wavelengths, significantly exceeds its internal characteristic length, like 

atomic spacings or heterogeneity sizes, classical constitutive laws provide reliable predictions. 

Conversely, when the external and internal length scales are comparable, local theories fail to capture 

the actual mechanical behavior of the material, necessitating the adoption of nonlocal methods. 

Nonlocal continuum field theories address this limitation by incorporating long-range interaction 

forces, wherein a material point’s response is influenced by the states of surrounding points, expressed 

through response functionals [28]. 

The growing focus on nanoscience and nanotechnology has made nonlocal continuum mechanics 

indispensable for modeling and optimizing miniaturized smart devices. With applications in 

engineering, the goal is to develop effective methods to capture size-dependent behavior and design 

small-scale structures, leveraging nonlocal mechanics as an alternative to computationally intensive 

atomistic models [29]. 

Mathematically, nonlocal theories extend conventional constitutive laws by incorporating long-

range interactions through internal characteristic lengths. Eringen’s integral elasticity theory [30,31] 

models stress as the convolution of the elastic strain field with an averaging kernel determined by an 

internal length, resulting in a strain-driven nonlocal framework. While this approach has proven 

effective in addressing issues such as screw dislocations and surface waves, it has faced challenges in 

structural applications [32]. Specifically, conflicts between its constitutive law and the necessary 

equilibrium conditions have led to contradictory outcomes, as highlighted by prior research and 

subsequently clarified in follow-up studies. Moreover, the concept of spatiotemporal nonlocality is 

crucial for linking spatial and temporal aspects in modeling. This idea becomes particularly significant 

in materials where long-range interactions and historical influences are dominant factors [33]. By 

offering a comprehensive framework for analyzing material responses, spatiotemporal nonlocality 

facilitates a profound understanding, especially for nanostructured materials, where conventional 

models frequently fail to capture the full complexity [34]. 

The importance of these advancements in nonlocal and spatiotemporal models cannot be 

overstated. They establish a robust foundation for designing materials with tailored properties and 

significantly enhance the ability to predict complex phenomena such as wave dispersion, thermal 

relaxation, and stress redistribution within next-generation materials. This progress represents a pivotal 

milestone in materials science and engineering, enabling the exploration of innovative studies that 

emphasize the significance of advanced theoretical models in unraveling complex thermal and 
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mechanical interactions within materials, offering profound contributions to thermoelasticity, 

viscoelasticity, and their diverse practical applications in engineering and technology. In their study, 

Abouelregal et al. [35] introduced a modified spatiotemporal nonlocal thermoelasticity theory that 

incorporates higher-order phase delays. The findings of this study substantially advanced the 

understanding of material behavior under rapid thermal loading conditions, providing valuable insights 

for applications in materials science and engineering design. 

Furthermore, Abouelregal et al. [36] presented a groundbreaking space-time nonlocal thermo-

viscoelastic model that accounted for two-phase lags in heat diffusion. They focused on analyzing heat 

transfer in a half-space domain subjected to an external heat source. By developing this innovative 

framework, the authors offered a comprehensive model for understanding the dynamics of heat 

diffusion and its implications for material behavior under thermal stress, thereby addressing critical 

challenges in modern materials engineering. 

There are several studies that significantly contribute to our understanding of semiconductor 

behavior under photothermal excitation, addressing critical factors such as moisture effects, nonlocal 

interactions, and size-dependent phenomena. These investigations are indispensable for advancing 

semiconductor technology, as they offer a deeper insight into how semiconductors respond to complex 

environmental and operational conditions. El-Sapa et al. [37] examined photothermal excitation 

processes in semiconductor materials, specifically considering the impact of moisture diffusivity. Their 

analysis revealed how moisture alters the thermal and optical properties of semiconductors during 

photothermal excitation, providing valuable insights into the performance and stability of these 

materials under real-world conditions. Moreover, El-Sapa et al. [38] studied the application of the 

Moore-Gibson-Thompson (MGT) theory to a nonlocal excited semiconductor medium. Their work 

focused on the stability characteristics of the medium under various excitation conditions, offering a 

profound understanding of how nonlocal effects influence the behavior of semiconductors when 

subjected to photothermal excitation. Extending this line of inquiry, El-Sapa et al. [39] incorporated 

the effects of moisture diffusivity into the MGT model for semiconductor materials under photothermal 

excitation. Through a combination of theoretical frameworks and numerical simulations, they 

demonstrated how moisture influences the photothermal response of semiconductors. These findings 

are critical for improving the efficiency and reliability of semiconductor devices, particularly in humid 

operational environments. 

Conventional thermoelastic models, encompassing both classical and extended coupled theories, 

face significant limitations in accurately capturing nonlocal interactions within materials where long-

range effects play a critical role in thermal and mechanical responses. Moreover, these models struggle 

to account for memory-dependent behavior, where prior states profoundly influence current dynamics, 

particularly in scenarios involving thermal relaxation and wave propagation. Additionally, local 

theories often overlook microscopic-scale effects, which are essential in nanostructured and composite 

materials. This study addresses these critical gaps by proposing a comprehensive theoretical 

framework that integrates spatiotemporal nonlocality, thermal relaxation, and photothermal coupling, 

thereby enabling more accurate predictions of material behavior at small scales. 

We introduce the Moore-Gibson-Thompson Nonlocal Photothermal (MGTPT) theory, a 

groundbreaking framework that integrates both spatial and temporal nonlocality to overcome the 

limitations of traditional and advanced thermoelastic models. This approach is particularly important 

for materials where microstructural features, memory-dependent behavior, and photo-excited 

phenomena play pivotal roles. By combining the principles of nonlocal elasticity, MGT thermal 



7564 

AIMS Mathematics  Volume 10, Issue 3, 7559–7590. 

relaxation, and photothermal effects, the MGTPT theory provides a unified and robust framework that 

captures the intricate interactions among heat transfer, mechanical deformation, and photo-induced 

processes. 

Unlike other models, the proposed framework incorporates nonlocality in both space and time, 

allowing for the accurate representation of long-range interactions and historical effects. The inclusion 

of a thermal relaxation coefficient within the Moore-Gibson-Thompson (MGT) equation ensures 

finite-speed propagation of thermal waves, addressing the unrealistic assumption of infinite heat 

propagation in classical models. Moreover, the MGTPT theory uniquely integrates the effects of photo-

excited free carriers, thermal waves, and acoustic waves, offering a comprehensive and unified 

description of photothermal and photoacoustic processes, particularly in semiconductors. By 

introducing an internal length scale, the framework effectively accounts for size-dependent behaviors, 

which are critical for nanostructured materials, thin films, and composite materials, enabling a more 

accurate prediction of their mechanical, thermal, and photothermal responses at small scales. 

2. Mathematical formulation 

In this section, we present the interconnected equations that govern stress, strain, carrier density, 

and thermal conductivity within nonlocal semiconductors, offering a holistic framework for 

understanding the intricate interplay among plasma, heat, and elastic waves. These coupled equations 

will elucidate the dynamics of energy transfer and wave interactions within the semiconductor material, 

providing a comprehensive and unified model for this complex system. 

Constitutive equation for thermoelasticity with electronic deformation [40,41]: 

𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 − 𝛾𝜃𝛿𝑖𝑗 − 𝛾𝑛𝑁𝛿𝑖𝑗. (2.1) 

The notations in Eq (2.1) are as follows: 𝜎𝑖𝑗 represents the stress tensor components, while 𝜇 and 

𝜆  are the Lamé constants describing the material’s elasticity. 𝑒𝑖𝑗  denotes the strain tensor, and 𝑒𝑘𝑘 

measures cubical dilatation (trace of strain tensor). 𝛾 = (3𝜆 + 2𝜇)𝛼𝑡  is the strain-temperature 

coefficient, 𝛼𝑡 is the coefficient of linear thermal expansion, and 𝜃 = 𝑇 − 𝑇0 defines the temperature 

change from a reference temperature 𝑇0 . 𝛾𝑛 = (3𝜆 + 2𝜇)𝑑𝑛  refers to the electronic deformation 

coefficient, 𝑑𝑛 is the coefficient of electronic deformation, 𝑁 represents the carrier density, and 𝛿𝑖𝑗 is 

the Kronecker delta. The strain-displacement relation: 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (2.2) 

where 𝑢𝑖 denotes the components of the displacement vector. Equation of motion [42]: 

𝜎𝑖𝑗,𝑗 + 𝐹𝑖 = 𝜌𝑢𝑖̈  (2.3) 

where 𝐹𝑖  represents body force components and 𝜌  Material density. Plasma-thermal-elastic wave 

equation [43]: 

𝐷𝐸∇2𝑁 = 𝜌
𝜕𝑁

𝜕𝑡
+

1

𝜏
𝑁 + 𝜅𝜃 + 𝐺 (2.4) 

where 𝐷𝐸  is the diffusion coefficient for carrier density, describing the rate at which carriers spread 

within the material. 𝜏 represents the carrier lifetime, indicating the average time carriers exist before 

recombination. 𝜅 is the thermal activation parameter, capturing the influence of temperature on carrier 
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dynamics. 𝐺  denotes the carrier photogeneration source term, which quantifies the rate at which 

carriers are generated due to optical excitation. 

Energy balance equation for heat conduction [42]: 

𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
= −∇ ∙ 𝑞⃗ + 𝑄 (2.5) 

where 𝐶𝐸  denotes the specific heat at constant volume, 𝑞⃗  represents the heat flux vector, and 𝑄 

signifies the external heat source. 

In semiconductor materials experiencing plasma and photoexcitation, the energy equation gains 

additional complexity due to the interactions among thermal fields, electronic deformation, and plasma 

waves. These intricate interactions are fundamental to accurately modeling the energy transfer 

processes within the material. Consequently, the revised energy equation, which accounts for these 

factors, is expressed as follows [43]: 

𝜌𝐶𝐸
𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
= −∇ ∙ 𝑞⃗ + 𝑄 +

𝐸𝑔

𝜏
𝑁. (2.6) 

The supplementary term 𝐸𝑔𝑁/𝜏  represents the energy impact caused by the generation and 

recombination of electron-hole pairs resulting from photon absorption when the photon energy exceeds 

𝐸𝑔. This term is vital as it quantifies the contribution of these processes to the energy dynamics of the 

semiconductor, highlighting the critical role of photon absorption in altering the system’s energy state. 

The heat flux vector, 𝑞⃗, is conventionally defined by Fourier’s law, expressed as [44]: 

𝑞⃗ = −𝐾 ∇𝜃 (2.7) 

where 𝐾  is the thermal conductivity. However, Fourier’s law assumes an infinite speed of heat 

propagation, which is physically unrealistic, particularly in rapid transient thermal processes or in 

materials with low thermal conductivity. This shortcoming highlights the need for more sophisticated 

heat conduction models that account for finite thermal propagation speeds and memory-dependent 

effects. To address the assumption of infinite thermal propagation speed, the Cattaneo-Vernotte (CV) 

law incorporates a time-relaxation parameter, 𝜏0, thereby modifying Fourier’s law as [19,20]: 

(1 + 𝜏0  
𝜕

𝜕𝑡
) 𝑞⃗ = −𝐾 ∇𝜃. (2.8) 

The Green-Naghdi (GN) models [15,16] enhance classical thermoelasticity by introducing the 

concept of thermal displacement, 𝜃𝑑, which interacts with both the mechanical displacement and the 

temperature fields. In the GN-III model, the heat flux equation includes an additional thermal 

displacement gradient term, 𝐾∗ ∇𝜃𝑑, resulting in the following modified expression [15]: 

𝑞⃗ = −𝐾 ∇𝜃 − 𝐾∗ ∇𝜃𝑑 (2.9) 

where 𝐾∗ represents thermal conductivity rate and thermal displacement satisfies 𝜃̇𝑑 = 𝜃. Expanding 

on the CV framework and integrating it with the Fourier law of the third kind (GN-III) involves 

incorporating memory-dependent effects and interactions that are pivotal to modern thermoelastic 

models. Within this context, the adjusted GN-III model can be expressed as follows [17,18]: 

(1 + 𝜏0  
𝜕

𝜕𝑡
) 𝑞⃗ = −𝐾 ∇𝜃 − 𝐾∗ ∇𝑇𝑑. (2.10) 

To enhance the understanding of memory effects and nonlocal interactions, fractional derivatives 
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are integrated into heat conduction models. The fractional derivative operator 𝐷𝑡
𝛼 (with 𝛼 within the 

range of (0,1) broadens traditional heat conduction equations by introducing time-dependent memory 

effects, which are crucial for materials exhibiting hereditary characteristics. 

Thus, the MGT heat equation can be extended by incorporating fractional derivatives, resulting 

in the following formulation [45,46]: 

(1 + 𝜏0
𝛼𝐷𝑡

𝛼)𝑞⃗ = −𝐾 ∇𝜃 − 𝐾∗ ∇𝑇𝑑. (2.11) 

The fractional derivative operator 𝐷𝑡
𝛼  can assume various forms depending on the chosen 

approach, such as the Caputo, Riemann-Liouville, or Grünwald-Letnikov formulations [47,48], as well 

as the Caputo–Fabrizio (CF) [49] and Atangana–Baleanu (AB) [50] operators. Each of these 

formulations offers unique methodologies for tackling fractional calculus, providing flexibility in 

modeling and capturing the intricate behaviors of systems influenced by memory effects and nonlocal 

interactions. 

In this study, we focus solely on the AB fractional operator of degree 𝛼, where 𝛼 ∈ (0,1). This 

particular operator is defined as follows [50]: 

𝐷0
𝐶

0
(𝛼)

𝑌(𝑡) =
M(𝛼)

1−𝛼
∫

𝑑

𝑑𝓈
𝑌(𝓈)𝐸𝛼 (

𝛼

1−𝛼
(𝑡 − 𝓈)𝛼)

𝑡

0
𝑑𝓈. (2.12) 

Here, M(𝛼) acts as a normalization constant, satisfying the conditions M(0) = 1 and M(1) = 1. 

By incorporating the fractional derivative-based Eq (2.10) into Eq (2.6), we derive a revised fractional 

heat conduction equation that effectively accounts for memory effects within the system. This newly 

formulated equation can be expressed as follows: 

(1 + 𝜏0
𝛼𝐷𝑡

𝛼)
𝜕

𝜕𝑡
[𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝑇0𝛾

𝜕𝑒

𝜕𝑡
− 𝑄 −

𝐸𝑔

𝜏

𝜕𝑁

𝜕𝑡
] =

𝜕

𝜕𝑡
∇ ∙ (𝐾 ∇𝜃) + ∇ ∙ (𝐾∗ ∇𝜃). (2.13) 

In the realm of nonlocal elasticity theory, the standard local stress-strain relationship is extended 

to incorporate the effects of long-range interactions within a material. Unlike classical elasticity, which 

assumes that stress at a specific location is influenced solely by the strain at that same location, 

nonlocal elasticity integrates contributions from neighboring points within the material’s domain. The 

nonlocal stress-strain relation can be mathematically expressed as follows [30,31]: 

𝑇𝑘𝑙(𝑿) = ∫ 𝜎𝑘𝑙(𝑿′)ℏ(|𝑿 − 𝑿′|, 𝜉)dΩ(𝑿′) (2.14) 

where 𝑇𝑘𝑙(𝑿) is the nonlocal stress tensor at the position 𝑿, 𝜎𝑘𝑙(𝑿′) represents the local stress tensor 

at a different point 𝑿′ in the material, ℏ(|𝑿 − 𝑿′|, 𝜂) is the nonlocal kernel function that determines 

the weighting of stress contributions from various spatial locations, 𝜉  is the internal length scale 

parameter, which introduces size-dependent phenomena into the analysis, and Ω is the material volume 

over which the integral is computed. 

The space-time nonlocal elasticity model represents a pivotal advancement in continuum 

mechanics, as it incorporates both spatial and temporal dimensions into the stress-strain relationships 

of materials. This progression addresses the limitations of classical elasticity theories, which often 

assume that material behavior is purely local and instantaneous [51]. By accounting for long-range 

interactions (spatial nonlocality) and memory effects (temporal nonlocality), the model provides a 

more comprehensive understanding of material responses under dynamic, thermal, and mechanical 

loading conditions. 

Inspired by Eringen’s nonlocal elasticity model and the Boltzmann superposition integral, modern 
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nonlocal elasticity incorporates both spatial and temporal dimensions. Stress and strain are represented 

through convolution integrals, effectively capturing memory effects and spatial interactions. This 

approach underscores that a material’s response is influenced by both its past states and its surrounding 

regions, providing a more nuanced understanding of phenomena such as wave propagation, heat 

transfer, and viscoelasticity. Mathematically, these interactions can be expressed as follows [52]: 

𝑇𝑘𝑙(𝑿, 𝑡) = ∫ ∫ 𝒦(|𝑿 − 𝑿′|, 𝑡 − 𝑡′)𝜎𝑘𝑙(𝑿′, 𝑡′)dΩ(𝑿′)d𝑡′
Ω

𝑡

−∞
. (2.15) 

In this context, the nonlocal stress tensor 𝑇𝑘𝑙(𝑿, 𝑡) represents the stress at a specific position 𝑿 

and time 𝑡, while the local stress 𝜎𝑘𝑙(𝑿′, 𝑡′) reflects the stress at a different location 𝑿′ and an earlier 

time 𝑡′. The function 𝒦(|𝑿 − 𝑿′|, 𝑡 − 𝑡′) serves as the space-time nonlocal kernel, determining how 

the influences of past and distant material points affect the stress experienced at the reference point 𝑿 

at time 𝑡. 

Choosing the kernel function 𝒦(|𝑿 − 𝑿′|, 𝑡 − 𝑡′) is crucial for shaping the extent and nature of 

nonlocal interactions within space-time elasticity models. The kernel must satisfy certain properties to 

ensure that the influence of distant stress interactions diminishes with increasing spatial and temporal 

distances, thus maintaining the model’s physical plausibility [53]. By meticulously crafting the kernel, 

it becomes possible to precisely depict how influences wane over distance and time, mirroring the 

inherent response of materials to stress. 

To establish a suitable kernel function formally, we treat it as analogous to a Green’s function for 

a linear differential operator. This relationship can be mathematically expressed as follows [51]: 

Δ{𝒦(|𝑿 − 𝑿′|, 𝑡 − 𝑡′)} = 𝛿(𝑿 − 𝑿′)𝛿(𝑡 − 𝑡′). (2.16) 

Here, the notation 𝛿(⋅) denotes the Dirac delta function and Δ signifies a differential operator that 

encompasses both spatial and temporal derivatives. This approach positions the kernel function as a 

solution to a differential equation, ensuring that it accurately captures the nonlocal effects across both 

temporal and spatial domains. 

To simulate space-time nonlocal elasticity, we suggest employing the Klein-Gordon (KG) 

operator, which effectively captures wave-like characteristics while incorporating both length and time 

dependencies. Within this framework, the differential operator Δ is articulated as follows [52]: 

Δ = 1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2. (2.17) 

Here, 𝜉  represents the internal length scale parameter, which regulates spatial nonlocality and 

addresses effects that vary with size. Moreover, 𝜂  denotes the characteristic time scale, which 

embodies temporal nonlocality and encompasses aspects related to memory effects. Together, these 

parameters play a pivotal role in shaping the behavior of materials under the framework of space-time 

nonlocal elasticity. 

Utilizing the KG operator Δ to the nonlocal stress tensor 𝑇𝑘𝑙(𝑿, 𝑡), we can derive the constitutive 

equations for isotropic materials within the framework of KG-type nonlocal elasticity as 

(1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2) 𝑇𝑖𝑗 = 𝜎𝑖𝑗 = 2𝜇𝑒𝑖𝑗 + 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 − 𝛾𝜃𝛿𝑖𝑗 − 𝛾𝑛𝑁𝛿𝑖𝑗. (2.18) 

By applying Eq (2.4) to Eq (2.13), the equation of motion, in the absence of body forces, can be 

reformulated as: 
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𝜇𝑢𝑖,𝑗𝑗 + (𝜆 + 𝜇)𝑢𝑗,𝑖𝑗 − 𝛾𝜃,𝑖 − 𝛾𝑛𝑁,𝑖 = 𝜌 (1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2
)

𝜕2𝑢𝑖

𝜕𝑡2
. (2.19) 

3. Statement of the problem 

In this study, the thermal and mechanical responses of an infinite, isotropic, and homogeneous 

semiconductor medium with perfect electrical conductivity is analyzed. The medium contains a 

spherical cavity of radius 𝑅0, where the inner surface is subjected to time-dependent heating and is 

free from external forces, as illustrated in Figure 1. Furthermore, no internal heat sources or body 

forces are present within the structure. Employing a spherical coordinate system (𝑟, Θ, 𝜙) , the 

governing equations will be investigated and solved, with all pertinent physical and mechanical 

variables treated as functions of the radial distance 𝑟 and time 𝑡, consistent with the system’s inherent 

symmetry. 

 

Figure 1. Configuration of the rotating solid semiconductor sphere. 

The displacement vector and the displacement-strain relationships within the considered 

semiconductor medium are described by the following components: 

𝑢𝑟 = 𝑢(𝑟, 𝑡), 𝑢𝜙(𝑟, 𝑡) = 0, 𝑢Θ(𝑟, 𝑡) = 0,

𝑒𝑟𝑟 =
𝑢

𝑟
, 𝑒𝜙𝜙 = 𝑒ΘΘ =

𝜕𝑢

𝜕𝑟
, 𝑒𝑟𝜙 = 𝑒𝑟Θ = 𝑒𝜙Θ = 0.

 (3.1) 

According to Eq (3.1), the dilatation e is expressed as: 

𝑒 = 𝑒𝑟𝑟 + 𝑒𝜙𝜙 + 𝑒ΘΘ =
𝜕𝑢

𝜕𝑟
+ 2

𝑢

𝑟
=

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
. (3.2) 

The relationships governing stress, strain, temperature, and carrier concentration take the 

following forms: 

(1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2
) 𝑇𝑟𝑟 = 𝜎𝑟𝑟 = (𝜆 + 2𝜇)

𝜕𝑢

𝜕𝑟
+ 2𝜆

𝑢

𝑟
− (𝛾𝜃 + 𝛾𝑛𝑁),  (3.3) 
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(1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2
) 𝑇ΘΘ = 𝜎ΘΘ = 𝜎𝜙𝜙 = 𝜆

𝜕𝑢

𝜕𝑟
+ 2(𝜇 + 𝜆)

𝑢

𝑟
− (𝛾𝜃 + 𝛾𝑛𝑁)  (3.4) 

where ∇2=
1

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
). 

The dynamic motion equation is expressed as: 

𝜕𝑇𝑟𝑟

𝜕𝑟
+

2

𝑟
𝑇𝑟𝑟 −

1

𝑟
(𝑇𝜙𝜙 + 𝑇ΘΘ) = 𝜌

𝜕2𝑢

𝜕𝑡2 . (3.5) 

Incorporating Eqs (3.3) and (3.4) into Eq (3.5) results in: 

(𝜆 + 2𝜇)
𝜕

𝜕𝑟
(

1

𝑟2

𝜕(𝑟2𝑢)

𝜕𝑟
) − 𝛾

𝜕𝜃

𝜕𝑟
− 𝛾𝑛

𝜕𝑁

𝜕𝑟
= 𝜌 (1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2)
𝜕2𝑢

𝜕𝑡2 . (3.6) 

By utilizing Eq (3.2), we can reformulate Eq (3.6) to present it in a more concise form: 

(𝜆 + 2𝜇)∇2𝑒 − 𝛾∇2𝜃 − 𝛾𝑛∇2𝑁 = 𝜌 (1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2)
𝜕2𝑒

𝜕𝑡2 .  (3.7) 

When there are no heat sources present (𝑄 = 0 ), the equation for the generalized fractional 

modified MGT heat transfer is given by: 

(1 + 𝜏0
𝛼𝐷𝑡

𝛼)
𝜕

𝜕𝑡
[𝜌𝐶𝐸

𝜕𝜃

𝜕𝑡
+ 𝛾𝑇0

𝜕𝑒

𝜕𝑡
−

𝐸𝑔

𝜏
𝑁] = 𝐾∇2𝜃̇ + 𝐾∗∇2𝜃. (3.8) 

In the absence of any carrier photogeneration source, the Plasma-thermal-elastic wave equation 

(1.4) can be expressed as follows: 

𝐷𝐸∇2𝑁 = 𝜌
𝜕𝑁

𝜕𝑡
+

1

𝜏
𝑁 + 𝜅𝜃. (3.9) 

The governing equations can be effectively transformed into dimensionless forms by introducing 

a set of dimensionless variables, which serve to simplify the analysis. The dimensionless variables are 

defined as follows: 

{𝑟′, 𝑢′} = 𝜐0𝛿∗{𝑟, 𝑢}, {𝑡′, 𝜏0
′ , 𝜏′, 𝜂′} = 𝜐0

2𝛿∗{𝑡, 𝜏0, 𝜏, 𝜂}, 𝜃′ =
𝛾

𝜌𝜐0
2 𝜃,

𝜉′ = 𝜐0𝛿∗𝜉, 𝑁′ =
𝛾𝑛

𝜌𝜐0
2 𝑁, 𝑇𝑖𝑗

′ =
1

𝜌𝑣0
2 𝑇𝑖𝑗, 𝛿∗ =

𝜌𝐶𝐸

𝐾
, 𝜐0 = √

𝜆 + 2𝜇

𝜌
.

 (3.10) 

If we choose to drop the prime notation, the governing equations can then be rewritten in the 

following manner: 

(1 + 𝜏0
𝛼𝐷𝑡

𝛼)
𝜕

𝜕𝑡
[

𝜕𝜃

𝜕𝑡
+ 𝜀1

𝜕𝑒

𝜕𝑡
− 𝜀2𝑁] = (

𝜕

𝜕𝑡
+ 𝜔∗) ∇2𝜃, (3.11) 

∇2𝑒 − ∇2𝜃 − ∇2𝛮 = (1 − 𝜉2∇2 + 𝜂2 𝜕2

𝜕𝑡2)
𝜕2𝑒

𝜕𝑡2, (3.12) 

∇2𝛮 = 𝑔1
𝜕𝛮

𝜕𝑡
+ 𝑔2𝛮 + 𝑔3𝜃, (3.13) 
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(1 − 𝜉2∇2 + 𝜂2
𝜕2

𝜕𝑡2
) 𝑇𝑟𝑟 =

𝜕𝑢

𝜕𝑟
+ (1 − 𝛽2)

𝑢

𝑟
− 𝜃 − 𝛮,

(1 − 𝜉2∇2 + 𝜂2
𝜕2

𝜕𝑡2
) 𝑇ΘΘ = (1 − 𝛽2)

𝜕𝑢

𝜕𝑟
+ (2 − 𝛽2)

𝑢

𝑟
− 𝜃 − 𝛮,

 (3.14) 

where 

𝛽2 =
2𝜇

𝜆 + 2𝜇
, 𝜀1 =

𝛾2𝑇0

𝜌2𝐶𝐸𝜐0
2 , 𝜔∗ =

𝐾∗

𝜐0
2𝜌𝐶𝐸

, 𝜀2 =
𝛾𝐸𝑔

𝜌𝜏𝛾n𝐶𝐸
,

 𝑔1 =
𝜌

𝐷𝐸𝛿∗
, 𝑔2 =

1

𝐷𝐸𝛿∗𝜏
, 𝑔3 =

𝜅𝛾𝑛

𝛾(𝛿∗)2𝐷𝐸𝜐0
2 .

 (3.15) 

4. Initial and boundary conditions of the problem 

To solve the system of governing equations and thoroughly characterize the thermoelastic, 

electronic, and nonlocal properties of the semiconductor medium containing a spherical cavity, the set 

of initial and boundary conditions is defined as follows: 

At the initial time 𝑡 = 0, we assume that the medium is initially at rest, i.e., 

𝑢(𝑟, 𝑡) = 0,
𝜕𝑢(𝑟, 𝑡)

𝜕𝑟
= 0,

𝜕2𝑢(𝑟, 𝑡)

𝜕𝑡2
= 0,

𝜕3𝑢(𝑟, 𝑡)

𝜕𝑡3
= 0, 𝛮(𝑟, 𝑡) = 0,

𝑇𝑖𝑗(𝑟, 𝑡) = 0,
𝜕𝑇𝑖𝑗(𝑟, 𝑡)

𝜕𝑟
= 0, 𝜃(𝑟, 𝑡) = 0,

𝜕𝜃(𝑟, 𝑡)

𝜕𝑟
= 0.

 (4.1) 

At the inner surface of the spherical cavity, where 𝑟 = 𝑅0 , the medium experiences a rapid 

application of heat. The thermal boundary condition is expressed as: 

𝜃(𝑅0, 𝑡) = 𝜃0𝐻(𝑡), 𝑡 > 0  (4.2) 

where 𝐻(𝑡) represents the Heaviside step function and 𝜃0 is a constant temperature value. 

At the inner surface of the spherical cavity, 𝑟 = 𝑅0, nonlocal radial stress is assumed to be zero 

because of the absence of a traction force. This condition is expressed mathematically as follows: 

𝑇𝑟𝑟(𝑅0, 𝑡) = 0. (4.3) 

During the diffusion phase, charge carriers have a finite likelihood of recombining as they move 

toward the sample’s surface. This situation results in a flux-type boundary condition for the carrier 

density that can be described as: 

𝐷𝐸

𝜕𝑁

𝜕𝜌
= 𝑠v𝑁                 at     𝑟 = 𝑅0 (4.4) 

Here, 𝑠v represents the surface recombination velocity, a metric that quantifies the likelihood of 

charge carriers recombining at the boundary. The surface recombination velocity (𝑠v) is defined by the 

equation: 𝑠v = 𝐽/Δ, where 𝐽 represents the recombination current density, which indicates the flux of 

charge carriers at the surface, and Δ𝑛 denotes the excess carrier concentration near the surface. 

The surface recombination velocity (𝑠v ) is a key parameter in semiconductor physics that 

quantifies the rate at which charge carriers (electrons and holes) recombine at the material’s surface or 
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boundary. It measures the efficiency of the recombination process occurring at the interface, where 

defects or impurities typically act as recombination centers. 

5. Solution in the domain of the Laplace transform 

In this section, we explore solutions based on the Laplace transform to illustrate the interactions 

among thermal, elastic, and plasma waves within nonlocal semiconductors. For a given function 

𝑔(𝑟, 𝑡), the Laplace transform, symbolized by ℒ[𝑔(𝑟, 𝑡) ] or 𝑔̅(𝑟, 𝑠), is defined as: 

ℒ[𝑔(𝑟, 𝑡) ] = 𝑔̅(𝑟, 𝑠) = ∫ 𝑔(𝑟, 𝑡)exp(−𝑠𝑡)𝑑𝑡,   𝑠 > 0.

∞

0

 (5.1) 

Using the Laplace transform on the governing equations (3.11)–(3.14), the following transformed 

equations are obtained: 

(∇2 − 𝜓)𝜃̅ = 𝜓𝜀1𝑒̅ −
𝜓𝜀2

𝑠
𝑁̅,  (5.2) 

∇2𝜃̅ + ∇2𝛮̅ = (1 + 𝑠2𝜉2)∇2𝑒̅ − 𝑠2(1 + 𝜂2𝑠2)𝑒̅, (5.3) 

(∇2 − 𝑔4)𝛮̅ = 𝑔3𝜃̅, (5.4) 

(1 + 𝜂2𝑠2 − 𝜉2∇2)𝑇̅𝑟𝑟 =
𝑑𝑢

𝑑𝑟
+ (1 − 𝛽2)

𝑢

𝑟
− 𝜃̅ − 𝛮̅, (5.5) 

(1 + 𝜂2𝑠2 − 𝜉2∇2)𝑇̅ΘΘ = (1 − 𝛽2)
𝑑𝑢

𝑑𝑟
+ (2 − 𝛽2)

𝑢

𝑟
− 𝜃̅ − 𝛮̅,  (5.6) 

where 

𝜓 =
𝑠2(1 + 𝜏0

𝛼  ℱ(𝑠))

(s + 𝜔∗)
, ℱ(𝑠) =

𝑠𝛼

𝑠𝛼(1 − 𝛼) + 1
, 𝑔4 = 𝑔1𝑠 + 𝑔2. (5.7) 

By separating Eqs (5.2)–(5.4), we obtain a higher-order differential equation that governs the 

variables 𝜃̅, 𝑁̅, and 𝑒̅: 

(∇6 − 𝓆2∇4 + 𝓆1∇2 − 𝓆0){𝜃̅, 𝑁̅, 𝑒̅} = 0, (5.8) 

where 

𝓆2 =
𝑔4𝑋2 + 𝑋4

𝑋2
, 𝓆1 =

𝑔4𝑋4 + 𝑋3𝜓 − 𝑔3𝑋5

𝑋2
, 𝓆0 =

𝑔4𝑋3𝜓 + 𝑔3𝑋3𝑋1

𝑋2
,

𝑋0 = 𝜓𝜀1, 𝑋1 =
𝜓𝜀2

𝑠
, 𝑋2 = 1 + 𝑠2𝜉2, 𝑋3 = 𝑠2(1 + 𝜂2𝑠2),

𝑋4 = 𝑋2 + 𝑋3 − 𝑋0, 𝑋5 = 𝑋0 − 𝑋1𝑋2.

 (5.9) 

Offering 𝓅𝑖 (where 𝑖 =1,2,3) into Eq (5.8) leads us to the expression: 

(∇2 − 𝓅1
2)(∇2 − 𝓅2

2)(∇2 − 𝓅3
2){𝑒̅, 𝜃̅, 𝑁̅} = 0. (5.10) 

In this context,  𝓅1
2, 𝓅2

2 , and 𝓅3
2 represent the roots of the polynomial equation: 
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𝓅6 − 𝓆2𝓅3 + 𝓆1𝓅2 − 𝓆0 = 0. (5.11) 

which can be further detailed as follows: 

𝓅1
2 =

1

3
[2𝒜 sin(ℬ) + 𝓆2],

𝓅2
2 = −

1

3
𝒜[sin(ℬ) + √3 cos(ℬ)] +

1

3
𝓆2,

𝓅2
2 =

1

3
𝒜[√3 cos(ℬ) − sin(ℬ)] +

1

3
𝓆2

 (5.12) 

where 

𝒜 = √𝛼2
2 − 3𝛼1, ℬ =

1

3
sin−1 (−

2𝓆2
3−9𝓆2𝓆1+27𝓆0

2ℬ3
). (5.13) 

The overall solution to Eq (5.10) can be expressed in the following manner: 

{𝜃̅, 𝑁̅, 𝑒̅} =
1

√𝑟
∑ {1, 𝐿𝑖, 𝐻𝑖}𝐶𝑖𝐾1/2(𝓅𝑖𝑟)3

𝑖=1 . (5.14) 

The coefficients 𝐶𝑖 (with 𝑖 =1,2,3) are required to be set and depend on 𝑠.  Furthermore, 𝐿𝑖 and 𝑀𝑖 

are two separate factors linked to 𝐶𝑖. By substituting Eq (5.14) into Eqs (5.2) through (5.4), we arrive 

at the following relationships: 

𝐿𝑖 =
𝑔3

𝓅𝑖
2 − 𝑔4

,     𝐻𝑖 =
(𝓅𝑖

2 − 𝜓) − 𝑋1𝐿𝑖

𝑋0
,   𝑖 = 1,2,3 (5.15) 

Upon applying the Laplace transform to Eq (3.2) and utilizing Eq (5.14), followed by integration 

from 𝑟 to infinity, while assuming that 𝑢̅ tends toward zero at infinity, we derive: 

𝑢̅ = −
1

√𝑟
∑

𝐻𝑖

𝓅𝑖
𝐴𝑖𝐾3

2

(𝓅𝑖𝑟)3
𝑖=1 .  (5.16) 

For large 𝒴, the modified Bessel functions of the second kind, 𝐾1/2(𝒴) and 𝐾3/2(𝒴), exhibit the 

following asymptotic behavior: 

𝐾1/2(𝒴)~e−𝒴√
𝜋

2𝒴
,   𝐾3

2

(𝒴) = e−𝒴√
𝜋

2𝒴
(1 +

1

𝒴
). (5.17) 

When these asymptotic relations are substituted into the general solutions given by Eqs (5.14) 

and (5.16), the following expressions are derived: 

{𝜃̅, 𝑁̅, 𝑒̅} =
1

√𝑟
∑ {1, 𝐿𝑖, 𝐻𝑖}𝐶𝑖e

−𝓅𝑖𝑟√
𝜋

2𝓅𝑖𝑟

3
𝑖=1 , (5.18) 

𝑢̅ = −
1

√𝑟
∑

𝐻𝑖

𝓅𝑖

2

𝑖=1

𝐶𝑖e
−𝓅𝑖𝑟√

𝜋

2𝓅𝑖𝑟
(1 +

1

2𝓅𝑖𝑟
). (5.19) 

By inserting the general solutions outlined in Eqs (5.18) and (5.19) into Eqs (5.5) and (5.6), we 

can deduce that the non-local thermal stresses conform to the following equations: 
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𝑇̅𝑟𝑟 = √
𝜋

2𝑟
∑

𝐶𝑖ⅇ−𝓅𝑖𝑟(−𝓅𝑖
2𝑟2(1+𝐿𝑖)+𝐻𝑖(1+𝓅𝑖

2𝑟2+𝛽2+𝓅𝑖𝑟(𝛽2+1)))

(𝓅𝑖𝑟)5 2⁄ (1+𝜂2𝑠2−𝜉2𝓅𝑖
2)

3
𝑖=1 , (5.20) 

𝑇̅ΘΘ = −√
𝜋

2𝑟
∑ 𝐶𝑖

ⅇ−𝓅𝑖𝑟(𝓅𝑖
2𝑟2(1+L1+𝐻𝑖(𝛽2−1))+𝐻𝑖𝛽2(1+𝓅𝑖𝑟))

(𝓅𝑖𝑟)5 2⁄ (1+𝜂2𝑠2−𝜉2𝓅𝑖
2)

3
𝑖=1 . (5.21) 

The boundary conditions provided in Eqs (4.2)–(4.4) take the following forms after applying the 

Laplace transform: 

𝜃̅(𝑟, s) =
𝜃0

𝑠
,             at           𝑟 = 𝑅0, (5.22) 

𝑇̅𝑟𝑟(𝑟, s) = 0,             at           𝑟 = 𝑅0, (5.23) 

𝐷𝐸
𝜕𝑁̅

𝜕𝑟
= 𝑠𝑓𝑁̅(𝑅, 𝑠)        at           𝑟 = 𝑅0. (5.24) 

By inserting the general solutions outlined in Eqs (5.18) and (5.20) into Eqs (5.22)–(5.24), we 

can obtain the following set of equations: 

1
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. (5.27) 

We determine the values of the parameters 𝐶𝑖, where 𝑖 = 1, 2, 3, by solving the system defined by 

Eqs (5.25) to (5.27). 

6. Converting solutions from the Laplace domain to the time domain 

The Gaver-Stehfest method, a powerful numerical tool for inverting Laplace transforms, plays a 

vital role in transitioning solutions from the Laplace domain to the time domain. This method, widely 

utilized in engineering and applied sciences, offers an efficient and reliable way to compute inverse 

transforms, especially for functions challenging to invert analytically. To approximate the values of 

ℊ(𝑟, 𝑡) across time intervals, the Gaver-Stehfest method utilizes the following formula [54,55]: 

ℊ(𝑟, 𝑡) ≈
ln(2)

𝑡
∑ 𝜔𝒷𝑔̅ (𝑟,

𝒷

𝑡
ln(2))ℓ

𝒷=1 , 𝒷 ≥ 1, 𝑡 > 0.  (6.1) 

Here, 𝜔𝒷 represents the coefficients associated with each term in the series expansion, while ℓ 

indicates the total number of terms included in this expansion (this number must be even). The 

coefficients 𝜔𝒷 are exclusively determined by the number of terms in the expansion 𝒷 and are defined 
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as follows [56]: 

𝜔𝒷 = (−1)𝒷+
ℓ
2 ∑

𝒿
ℓ
2(2𝒿)!

(
ℓ
2 − 𝒿) ! (𝒷 − 𝒿)! (2𝒿 − 𝒷)! (𝒿 − 1)! 𝒿!

𝑚𝑖𝑛{𝒷,ℓ/2}

𝒿=
𝒷+1

2

, 𝒷 ≥ 1, 1 ≤ ℓ ≤ 𝒷 (6.2) 

The method’s efficiency lies in its simplicity and speed, avoiding complex contour integrations 

and symbolic inversions, thus reducing computational time significantly. Adaptability to a variety of 

Laplace-transformed functions in fields like heat conduction and fluid dynamics further enhances its 

utility. For smooth functions devoid of singularities, this method delivers precise results. Despite its 

advantages, the Gaver-Stehfest method faces challenges such as numerical instability with increasing 

ℓ  values, potentially impacting accuracy. Careful selection of ℓ  is crucial to balance precision and 

stability, ensuring dependable outcomes in the inversion process. 

7. Materials and methods 

To validate the theoretical findings discussed in earlier sections, we conduct several case studies, 

presenting numerical values generated using the Mathematica program for the examined physical 

fields. Furthermore, we verify the proposed model, which incorporates the modified Moore-Gibson-

Thompson photothermal (MGTPT) heat equation and accounts for spatiotemporal non-locality. The 

physical fields under investigation are illustrated through both graphical representations and tables. 

For the numerical calculations during the theoretical analysis, isotropic silicon (Si) will be selected as 

the solid semiconductor material. The physical parameters for silicon are provided as follows [57]: 

𝜆 = 3.64 × 1010Nm−2,   𝜇 = 5.46 × 1010Nm−2,   𝜌 = 2330 kg m−3,

𝐾 = 150 W m−1K−1,   𝐶𝐸 = 6.95 × 102 J kg−1 K−1,   𝑑𝑛 = −9 × 10−31 m3,

𝐸𝑔 = 1.11 eV,   𝐷𝐸 = 2.5 × 10−3 m2 s−1,   𝑠𝑓 = 2 m s−1,   𝜏 = 5 × 10−5 s.

𝛼𝑡 = 4.14 × 10−6K−1, 𝑇0 = 300K.

 

We analyze the numerical outcomes for a specified time of 𝑡 = 0.12 and a radius parameter of 

𝑅0 = 1 . These findings have been meticulously examined and are visually displayed in Figures 1 

through 6, illustrating the calculated field variables across three scenarios. 

7.1. Comparison of fractional derivative operators 

In this section, we present a comparative analysis of the numerical results for different fields in 

an elastic semiconductor medium, concentrating on the effects of the Atangana-Baleanu (AB) and 

Caputo (C) fractional operators as opposed to the classical scenario with integer-order time derivatives 

(𝛼 = 1). By examining the differences and implications of these fractional operators, we aim to gain 

deeper insights into how they affect the behavior and characteristics of the fields within the 

semiconductor medium. Our goal is to highlight the distinctive impacts and potential advantages of 

using fractional operators in analyzing the dynamics of elastic systems governed by fractional 

derivatives. 

In this case study, we investigate how fractional orders influence the behavior of different fields 

within an elastic semiconductor medium. We analyze three specific fractional orders: 𝛼 = 1 for the 

conventional model, and 𝛼 = 0.85 and 𝛼 = 0.65 for fractional operators. Our aim is to compare the 
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numerical results for radial displacement (𝑢), temperature change (𝜃), nonlocal radial thermal stress 

(𝑇𝑟𝑟), and carrier density (𝑁) within the spherical cavity of the infinite elastic semiconductor medium 

across varying radial coordinates (𝑟). 

In this section, we explore and compare three variations of the Nonlocal Moore-Gibson-

Thompson Photothermal Model (NMGTPT), each customized for specific features and applications. 

The NMGTPT serves as the baseline framework, utilizing integer-order derivatives with 𝛼 = 1 , 

integrating nonlocal elasticity with finite-speed heat conduction for a conventional yet robust 

perspective on photothermal processes. The fractional nonlocal NGT photothermal model with Caputo 

operators (FNMGTPT-C) introduces Caputo fractional derivatives (0 < 𝛼 < 1), which bring in memory 

effects and account for long-range interactions, enhancing our understanding of thermal and elastic 

responses over time and distance. Last, the fractional nonlocal MGT photothermal model with AB 

operators (FNMGTPT-AB) uses AB fractional derivatives, providing a smoother and refined nonlocal 

response that captures complex dynamics, making it particularly suitable for analyzing intricate 

photothermal phenomena. 

The numerical results for these parameters will be presented in Tables 1–5, providing a structured 

and clear representation of the variations in their behavior under different fractional orders. This 

comparative analysis aims to offer insights into how fractional operators, with their varying orders, 

influence the dynamics and characteristics of the fields studied. By examining the differences in 

behavior, we seek to enhance our understanding of the role of fractional derivatives in affecting the 

physical properties of the system. 

The numerical results presented in Figure 2 offer a comprehensive examination of temperature 

variations (𝜃) within an infinite semiconductor medium containing a spherical cavity under various 

fractional models. The comparison highlights the impact of fractional derivatives, specifically focusing 

on the NMGTPT model (𝛼 = 1.00), the FNMGTPT-C model with fractional orders of (𝛼 = 0.85) and 

(𝛼 = 0.65), and the FNMGTPT-AB model for the same fractional orders. 

 

Figure 2. Variation of temperature (𝜃) across different fractional operators. 

Figure 2 highlights that the differences in temperature (𝜃 ) between the models become more 
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pronounced as the radial coordinates (𝑟) increase. At 𝑟 = 1.4, the NMGTPT model shows a higher 

temperature of 0.566934 compared to the fractional models. In the case of the FNMGTPT-C model, 

the temperature drops from 0.550915 (𝛼 = 0.85) to 0.539848 (𝛼 = 0.65). The FNMGTPT-AB models 

reflect even lower temperatures, with readings of 0.534157 (𝛼 = 0.85) and 0.533669 (𝛼 = 0.65). This 

trend demonstrates that as α decreases, the temperature values also decrease, underscoring the impact 

of fractional operators. Additionally, the AB operators consistently result in slightly lower temperatures 

than the C operators, indicating the stronger memory and nonlocal effects associated with the AB 

formulation. 

As 𝑟 increases, the temperature (𝜃) decreases more significantly, and the variations among the 

models become clearer. At 𝑟 = 3, the NMGTPT model (𝛼 = 1.00) produces a temperature of 0.0393976. 

In comparison, the FNMGTPT-C models yield temperatures of 0.0282343 (𝛼 = 0.85) and 0.0209751 

(𝛼 = 0.65). The FNMGTPT-AB models exhibit even lower temperatures, with values of 0.016073 (𝛼 

= 0.85) and 0.0126516 ( 𝛼  = 0.65). These results demonstrate that the AB fractional operators 

consistently lead to lower temperatures than the C operators for the same fractional order. The decrease 

in temperature with smaller 𝛼  reflects the growing influence of memory effects and nonlocal 

interactions in fractional models. This behavior indicates that the AB fractional operators are more 

effective at capturing these effects, resulting in a more pronounced temperature decline as the radial 

distance increases. 

The graphical results demonstrate that as α decreases, the temperature values drop across all radial 

positions, emphasizing the heightened memory effects and nonlocal interactions in fractional models, 

particularly when 𝛼 is less than 1. The AB fractional operators consistently deliver lower temperatures 

than the C operators for the same 𝛼, reflecting their smoother responses and superior ability to account 

for nonlocality and memory effects. Additionally, the NMGTPT model (𝛼 = 1.00) registers the highest 

temperatures, underscoring its limitations in addressing the memory effects and nonlocal interactions 

present in fractional models. 

Therefore, based on this analysis, we can conclude that fractional models, particularly those 

utilizing AB operators, provide a more precise depiction of temperature distribution in semiconductor 

media exhibiting memory-dependent behavior. This characteristic renders them especially suitable for 

analyzing complex thermal systems that surpass the limitations of classical models. 

The graphical data presented in Figure 3 depict how radial displacement ( 𝑢 ) varies in an 

unbounded semiconductor medium across various fractional models. The models under consideration 

encompass the nonlocal NMGPT photothermal model at (𝛼 =1.00), the fractional nonlocal FNMGPT-

C photothermal model with Caputo derivatives for (𝛼 =0.85) and (𝛼 =0.65), and the fractional nonlocal 

FNMGPT-AB Photothermal model with AB derivatives for the corresponding fractional orders. The 

subsequent analysis delves into the radial displacement behavior as a function of the coordinate (𝑟). 

From Figure 3, it is evident that displacement (𝑢) decreases as r increases across all models. 

However, the differences among the models diminish with increasing 𝑟. Additionally, the numerical 

outcomes illustrated in Figure 3 show that the use of fractional operators results in reduced radial 

displacement (𝑢), with AB operators leading to a more pronounced decrease compared to C operators. 

This pattern implies that fractional derivatives, particularly AB operators, improve the system’s 

stiffness or resistance to deformation in the vicinity of the spherical gap. These results support the 

notion that fractional operators, especially those with lower 𝛼 , introduce significant nonlocal and 

memory effects that help mitigate deformation. As a result, the medium becomes less prone to 

displacement as 𝑟 increases. The enhanced memory effects related to lower 𝛼 effectively dampen the 
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medium’s response, highlighting the essential role of fractional operators in elucidating the complex 

dynamics of such systems. 

 

Figure 3. Displacement field (𝑢) across fractional operators. 

Analyzing Figure 3 reveals that radial displacement (𝑢 ) decreases as the fractional order α 

declines across all radial coordinates. This pattern implies that lower fractional orders strengthen the 

medium’s rigidity and memory effects, thereby reducing its responsiveness to deformation. The 

enhanced memory effects linked to lower 𝛼  values allow the medium to resist displacement more 

efficiently, underscoring the substantial impact of fractional operators on the mechanical behavior of 

the system. Moreover, AB operators consistently yield lower displacement values than C operators at 

all radial coordinates. This trend indicates that AB operators provide a more sophisticated framework 

for modeling nonlocality and memory effects, effectively capturing the complex dynamics of the 

medium’s response. The exceptional capacity of AB operators to incorporate these effects emphasizes 

their potential for delivering a more accurate portrayal of the medium’s behavior under fractional-order 

formulations. 

The results highlight that fractional model, particularly those employing AB fractional operators, 

offer a more precise description of the medium’s behavior by incorporating long-range interactions 

and memory effects. As a result, these models are particularly advantageous for analyzing advanced 

materials and systems, where traditional models may fail to capture the intricacies of deformation 

dynamics. 

The numerical findings depicted in Figure 4 reveal the behavior of nonlocal radial thermal stress 

(𝑇𝑟𝑟) in the semiconductor medium under various fractional differential operators. The comparison 

between the NMGTPT model (𝛼 = 1.00) and the fractional models (FNMGTPT-C and FNMGTPT-

AB) for different 𝛼 values highlight the impact of memory effects and nonlocal interactions on thermal 

stress distribution. It is observed that at 𝑟 = 1, all models yield 𝑇𝑟𝑟, indicating that the stress is zero at 

the inner boundary of the semiconductor medium. This suggests that, at this boundary, the effects of 

fractional operators do not lead to changes in thermal stress. 
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Figure 4. Nonlocal radial thermal stresses (𝑇𝑟𝑟) across different fractional operators. 

In Figure 4, it is illustrated that as r increases, the absolute value of 𝑇𝑟𝑟 decreases across all models; 

however, clear distinctions arise among them. Specifically, the NMGTPT model (𝛼 = 1.00) generates 

the highest compressive thermal stress of 𝑇𝑟𝑟 = −1.13917 at 𝑟 = 1.4. Conversely, the fractional models 

display progressively smaller stress values. This trend indicates that as 𝛼 decreases, the influence of 

memory effects becomes more significant, leading to a reduction in thermal stress. Moreover, the AB 

operators, which are more responsive to nonlocality, further enhance this decrease in stress. 

Figure 4 reveals that the NMGTPT model features the highest thermal stress values, 

demonstrating the propensity of classical models to overstate stress by overlooking memory effects. 

As the fractional order 𝛼  decreases, a clear reduction in thermal stress is noted across all radial 

positions, emphasizing the growing impact of memory effects and nonlocality in alleviating stress 

concentrations within the semiconductor medium. Among the fractional operators, the AB operators 

consistently yield lower stress magnitudes compared to the C operators for the same 𝛼, indicating their 

more effective nonlocal influence. This suggests that AB operators enable a more efficient and gradual 

stress relaxation in semiconductor materials, offering a significant benefit in accurately representing 

realistic stress behaviors. Consequently, the results suggest that fractional models, especially those 

utilizing AB operators, provide a more reliable representation of stress distribution, making them 

highly relevant for semiconductor applications where effective thermal stress management is crucial. 

In Figure 5, the variation in nonlocal hoop thermal stress (𝑇ΘΘ) within a semiconductor medium 

is shown, influenced by different fractional differential operators. By examining the values across 

various radii (𝑟 ) for the models (NMGTPT (α = 1.00), FNMGTPT-C (𝛼  = 0.85, 𝛼  = 0.65), and 

FNMGTPT-AB (𝛼 = 0.85, 𝛼 = 0.65), we can see how these operators affect thermal stress distribution 

within the medium. It is observed from Figure 5 that at 𝑟 = 1, the NMGTPT model yields the highest 

thermal stress of 0.130292. In comparison, the FNMGTPT-C model reduces the stress to 0.12198 for 

𝛼 = 0.85 and further to 0.114549 for 𝛼 = 0.65. The FNMGTPT-AB models show even lower values at 

0.1021 for 𝛼  = 0.85 and 0.0969979 for 𝛼  = 0.65. This pattern suggests that fractional derivatives 

effectively lower thermal stress, highlighting their importance in reducing stress under nonlocal 

conditions. At 𝑟 = 1.4, the trend appears to change, with the NMGTPT model showing a thermal stress 
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(𝑇ΘΘ ) of 0.011188. In contrast, the FNMGTPT-C models exhibit an increase, reaching values of 

0.0134008 for 𝛼 = 0.85 and 0.0154321 for 𝛼 = 0.65. The FNMGTPT-AB models also follow a similar 

trend, peaking at 0.0208603 for 𝛼 = 0.65. This observation indicates a complex relationship in which 

lower fractional orders enhance the model’s sensitivity to thermal stress in this specific range. 

 

Figure 5. Nonlocal hoop thermal stresses (𝑇ΘΘ) across fractional operators. 

According to Figure 5, beyond 𝑟 = 1.8, all models, including NMGTPT, begin to produce negative 

thermal stresses (𝑇ΘΘ), indicating a transition in the thermal behavior of the medium. For instance, the 

FNMGTPT-C model records values of -0.0123442 for 𝛼 = 0.85 and -0.00976649 for 𝛼 = 0.65, while 

the FNMGTPT-AB models demonstrate a more gradual decline. This observation highlights the role 

of fractional derivatives in altering thermal stress behavior, particularly in nonlocal regions. At larger 

radii (𝑟  > 3), the thermal stress values trend toward small negative levels across all models. For 

example, at 𝑟 = 5, the NMGTPT model forecasts -0.000425308, whereas the FNMGTPT-AB model 

with 𝛼 = 0.65 approaches -0.000624862. This convergence indicates decreasing discrepancies among 

the models, leading to a more consistent thermal response as distance increases. 

The results highlight that fractional differential operators have a profound impact on the 

distribution of nonlocal hoop thermal stress (𝑇ΘΘ) in semiconductor materials. Although the NMGTPT 

model estimates higher localized stress values, fractional models, particularly those using AB 

fractional operators, reduce these stresses and expose intricate nonlocal interactions that are affected 

by the value of α. This emphasizes the significance of fractional operators in portraying the detailed 

thermal behavior of semiconductor media under various conditions. 

The numerical results presented in Figure 6 illustrate the variation in carrier density (𝑁) within a 

semiconductor medium, as influenced by different fractional differential operators. The data is 

categorized using various models, including the NMGTPT model and the fractional FNMGTPT-C and 

fractional FNMGTPT-AB Models, with fractional orders of 𝛼 = 1.00, 0.85, and 0.65. By examining 

the carrier density (𝑁) across varying radial distances (𝑟), meaningful insights can be drawn regarding 

the impact of fractional operators on the distribution and retention of carriers within the medium. 

From Figure 6, it is observed that at the cavity (𝑟 = 1), the NMGTPT model exhibits the highest 
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carrier density (𝑁) of 0.00210137, while the fractional models demonstrate a significant reduction in 

carrier density. The FNMGTPT-C model shows a carrier density of 0.00185516 for 𝛼 = 0.85, which 

further decreases to 0.00162501 for 𝛼 = 0.65. The FNMGTPT-AB models report even lower densities, 

suggesting that the fractional order has a substantial impact on carrier behavior. This trend implies that 

fractional operators, particularly the AB operators, introduce nonlocal effects and memory 

characteristics that contribute to the reduction of carrier density (𝑁) near the origin. The reduction 

becomes more pronounced as the fractional order decreases, emphasizing the role of fractional 

derivatives in modifying the dynamics of carrier distribution (𝑁). 

 

Figure 6. Carrier density (𝑁) across fractional operators. 

Figure 6 illustrates that as the radial distance increases, the carrier density (𝑁) decreases across 

all models, though the rate of this decline differs based on the fractional order and the specific operator 

applied. At 𝑟  = 1.4, the NMGTPT model indicates a carrier density (𝑁 ) of 0.688725, while the 

FNMGTPT-C models show lower values of 0.654672 for 𝛼 = 0.85 and 0.623269 for 𝛼 = 0.65. The 

FNMGTPT-AB models follow a similar pattern, indicating even lower densities. This behavior 

signifies that all models project a consistent reduction in carrier density with higher radial distances; 

however, fractional operators, particularly those with lower fractional orders, exhibit a more substantial 

impact on decreasing densities (𝑁) at moderate distances. The AB models, in particular, reveal more 

pronounced nonlocal effects, showcasing their capacity to effectively capture the complexities of 

carrier dynamics. 

At the greater radial distance of 𝑟 = 2.6, the differences in carrier density (𝑁) among the models 

become less distinct, particularly for the FNMGTPT-C models, which maintain similar values of 

carrier densities (𝑁). For instance, the NMGTPT model predicts a carrier density (𝑁) of 0.0663637, 

while the FNMGTPT-C models yield comparable densities, signifying that the influence of fractional 

order lessens as the radial distance increases. In contrast, the FNMGTPT-AB models consistently 

report slightly higher carrier densities (𝑁) than their FNMGTPT-C counterparts at the same fractional 

orders, suggesting that the AB models are more effective at preserving carriers at larger distances. This 

finding emphasizes the contribution of AB operators to a more gradual and refined decrease in carrier 
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density (𝑁). 

As the radial distance continues to increase, particularly at 𝑟 = 5, carrier densities (𝑁) experience 

a notable decline across all models. The NMGTPT model reports a carrier density of 0.0003877, while 

the FNMGTPT-C models persist in their downward trajectory, with the lowest densities found in 

models featuring the smallest fractional orders. Conversely, the FNMGTPT-AB models show a 

relatively greater retention of carriers (𝑁 ), with the model for 𝛼  = 0.65 producing a density of 

0.000887086, which is noticeably higher than that of the corresponding FNMGTPT-C model. This 

trend highlights the effectiveness of AB operators in alleviating the loss of carriers at larger distances, 

demonstrating their superiority in capturing nonlocal carrier dynamics in semiconductor systems. 

In conclusion, the findings from Figure 6 indicate that fractional differential operators play a 

crucial role in influencing the behavior of carrier density (𝑁) in semiconductor media. The NMGTPT 

model, while predicting the highest carrier densities near the origin, does not consider the nonlocal and 

memory effects that are intrinsic to fractional models. The FNMGTPT-C and FNMGTPT-AB models 

incorporate these effects, leading to reduced carrier densities (𝑁) and showcasing complex interactions 

that are dependent on the fractional order 𝛼 . Among these models, the AB operators consistently 

exhibit superior carrier retention, especially at larger distances, which enhances their suitability for 

accurately modeling carrier behavior (𝑁) in semiconductor applications. These findings highlight the 

significance of fractional calculus in furthering the understanding and forecasting of carrier dynamics 

in complex materials. 

7.2. Effects of length and time scale parameters 

Many researchers have emphasized the critical importance of the intrinsic length scale (𝜉) and 

time scale (𝜂) in accurately modeling the dynamic behavior of elastic nanomaterials under transient 

thermal and mechanical loads. Despite this, limited research encompasses their influence on 

semiconductor materials. By incorporating these parameters, it becomes possible to better account for 

size-dependent phenomena, time-delayed responses, and nonlocal effects. This integration provides a 

more precise framework for analyzing semiconductor nanomaterials, offering valuable insights that 

can enhance their practical applications. 

To address this gap, we investigate the thermoelastic and photoelastic responses within an elastic 

semiconductor medium. Specifically, the study examines the non-dimensional radial displacement 

field (𝑢 ), carrier density (𝑁 ), nonlocal thermal stresses (𝑇ΘΘ , 𝑇𝑟𝑟 ), and temperature variation (𝜃 ). 

Through this analysis, we aim to elucidate the interplay between these parameters and their influence 

on the behavior of semiconductor nanomaterials. 

Figure 7 illustrates the impact of the intrinsic length scale (𝜉) and time scale (𝜂) on the temperature 

variation (𝜃) in the semiconductor medium. At 𝑟 = 1, the temperature remains constant at 1.0013015, 

indicating negligible influence of 𝜉 and 𝜂 near the gap surface. As 𝑟 increases, higher values of 𝜉 and 

𝜂 cause a more pronounced temperature reduction, reflecting stronger nonlocal effects. For instance, 

at 𝜉 = 1.4, the temperature decreases from 0.539848 for 𝜉 = 0.000, 𝜂 = 0.000 to 0.431879 for 𝜉 = 0.006, 

𝜂 = 0.005. This trend reflects the nonlocal effects introduced by the intrinsic length and time scales, 

which tend to moderate the temperature distribution by accounting for long-range interactions and 

memory effects. The combined increase in 𝜉 and 𝜂 results in a more pronounced thermal attenuation. 
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Figure 7. Temperature variation (𝜃) for various length and time scale parameters. 

This trend is sustained at intermediate distances, such as 𝑟 = 2.2 and 𝑟 = 3, where the temperature 

gradually decreases due to enhanced thermal dissipation driven by nonlocal effects. These results 

suggest that the nonlocal effects become more pronounced as the distance increases, leading to a 

gradual reduction in temperature. The interplay between 𝜉 and 𝜂 enhances the dissipation of thermal 

energy, likely reflecting the role of spatial and temporal nonlocality in redistributing heat. However, at 

larger distances (𝑟 = 4.6 and 𝑟 = 5), the differences between parameter configurations narrow, and the 

influence of 𝜉  and 𝜂  diminishes, leading to converging temperature values. While the impact of 

nonlocal parameters is present, it diminishes as the radial distance grows, indicating that their influence 

weakens in far-field regions, possibly due to the diminishing contribution of nonlocal interactions. 

In conclusion, 𝜉  and 𝜂  significantly affect temperature variation (𝜃 ) at medium distances by 

introducing size-dependent and time-delayed effects, while their impact weakens at greater distances. 

Thus, incorporating these parameters is crucial for accurately modeling the thermal behavior of 

semiconductor materials. 

The numerical results in Figure 8 illustrate the variation in the radial displacement field (𝑢) within 

a semiconductor medium under the influence of changing intrinsic length scale (𝜉) and time scale (𝜂). 

At 𝑟 = 1, the displacement 𝑢 is highest, starting at 0.864326 for 𝜉 = 0.000, 𝜂 = 0.000 and progressively 

decreasing to 0.691461 for 𝜉 = 0.006, 𝜂 = 0.005. This significant reduction indicates the strong effect 

of nonlocal parameters near the medium’s origin, where long-range interactions and memory effects 

are most pronounced. As 𝑟 increases, the influence of 𝜉 and 𝜂 on displacement 𝑢 gradually diminishes, 

though the reduction in 𝑢  persists. For example, at 𝑟  = 1.8, the displacement 𝑢  decreases from 

0.152534 for 𝜉  = 0.000, 𝜂  = 0.000 to 0.122027 for 𝜉  = 0.006, 𝜂  = 0.005. Similarly, at 𝑟  = 2.6, the 

displacement 𝑢 reduces from 0.0163456 to 0.0130765 across the same parameter range. This trend 

reflects the moderation of displacement 𝑢 as nonlocal effects dissipate with distance. 

Also, at greater radial distances (e.g., 𝑟  = 4.6 and 𝑟  = 5), the displacement values become 

exceedingly small, and differences between parameter configurations narrow further. For instance, at 

𝑟 = 5, the displacement 𝑢  decreases from 1.89E-05 for 𝜉 = 0.000, 𝜂 = 0.000 to 1.51037E-05 for 𝜉 = 

0.006, 𝜂 = 0.005. This convergence suggests that the nonlocal interactions have a minimal effect on 
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far-field regions. 

 

Figure 8. Displacement field (𝑢) for various length and time scale parameters. 

Consequently, the intrinsic length scale (𝜉) and time scale (𝜂) significantly influence the radial 

displacement field (𝑢) at smaller and medium distances, introducing size-dependent and time-delayed 

effects. However, their impact weakens at larger distances, leading to nearly uniform displacement 

values. These findings highlight the critical role of nonlocal parameters in accurately capturing the 

mechanical behavior of semiconductor materials. 

 

Figure 9. Nonlocal radial thermal stresses (𝑇𝑟𝑟) for various length and time scale parameters. 

The numerical results depicted in Figure 9 reflect the variation in radial nonlocal thermal stresses 

(𝑇𝑟𝑟) within a semiconductor medium, emphasizing the impact of the intrinsic length scale (𝜉) and 
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time scale (𝜂). Notably, at a radius of 𝑟 = 1, thermal stress remains at zero across all configurations. 

This indicates that, at the gap surface, the nonlocal parameters do not influence the thermal stress (𝑇𝑟𝑟) 

at this specific point. 

As we move to greater radial distances, the effects of ξ and 𝜂 become increasingly prominent. At 

𝑟 = 1.4, the thermal stress (𝑇𝑟𝑟) demonstrates a significant reduction, dropping from -0.952456 when 

both 𝜉  and 𝜂  are zero, to -0.761965 when set to 𝜉  = 0.006 and 𝜂  = 0.005. This notable decrease 

highlights the size-dependent and time-delayed influences introduced by the nonlocal parameters, 

which serve to alleviate the thermal stress distribution (𝑇𝑟𝑟) within the material. This trend persists at 

intermediate distances, such as r = 2.2 and r = 3. For instance, at 𝑟 = 2.2, the thermal stress decreases 

from -0.285536 to -0.228429 as 𝜉  and 𝜂  are increased. Similarly, at 𝑟  = 3, there is a drop from -

0.0567629 to -0.0454104. These consistent reductions indicate that as the radial distance increases, the 

cumulative nonlocal effects of 𝜉 and 𝜂 continue to effectively moderate the radial thermal stresses (𝑇𝑟𝑟) 

in the semiconductor. 

At larger distances, specifically at 𝑟  = 4.6 and 𝑟  = 5, the thermal stress (𝑇𝑟𝑟 ) values shrink 

significantly, and the discrepancies across the different configurations narrow even further. For 

example, at 𝑟  = 5, the stress value declines from -0.000831434 with 𝜉  = 0.000 and 𝜂  = 0.000 to -

0.000665147 for 𝜉 = 0.006 and 𝜂 = 0.005. This convergence at extensive radial distances implies that 

the effects of nonlocal parameters tend to diminish as one moves further away, indicating a reduced 

sensitivity of thermal stresses to size-dependent and time-delayed phenomena. 

In conclusion, the observations affirm that both the intrinsic length scale (𝜉) and time scale (𝜂) 

play critical roles in shaping radial nonlocal thermal stresses (𝑇𝑟𝑟) at smaller and intermediate radial 

distances, effectively reducing stress magnitudes through their nonlocal effects. Nevertheless, their 

influence diminishes at larger distances, leading to a convergence of stress values. These findings 

underscore the crucial importance of integrating ξ and 𝜂 into models to accurately capture the thermal 

stress behavior in semiconductor materials. 

 

Figure 10. Carrier density (𝑁)for various length and time scale parameters. 

The numerical results displayed in Figure 10 illustrate the variation in carrier density (𝑁) within 
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a semiconductor medium as it responds to nonlocal parameters, namely the intrinsic length scale (𝜉) 

and time scale (𝜂). These parameters play a crucial role in determining the behavior of carrier density 

(𝑁) across different radial distances. as noticed in Figure 10, at a radius of 𝑟 = 1, we observe that the 

carrier density starts at 0.00162501 for the condition where 𝜉 and 𝜂 are both zero. As the values shift 

to 𝜉 = 0.006 and 𝜂 = 0.005, the density (𝑁) drops to 0.00130001. This notable reduction underscores 

the substantial impact of nonlocal effects, reflecting the underlying size-dependent and time-delayed 

interactions even in proximity to the origin. 

Moving to intermediate distances such as 𝑟  = 1.8 and 𝑟  = 2.2, the trend of decreasing carrier 

density (𝑁 ) continues as both 𝜉  and 𝜂  increase. For 𝑟  = 1.8, the carrier density decreases from 

0.379399 (when both parameters are at zero) to 0.303519 for 𝜉 = 0.006 and 𝜂 = 0.005. Similarly, at 𝑟 

= 2.2, we see a decline from 0.172419 to 0.137935 across the same parameter range. These 

observations highlight the moderate influence that nonlocal parameters exert on carrier density (𝑁) as 

the radial distance increases, likely due to enhanced redistribution effects linked to the scaling factors 

𝜉 and 𝜂. 

It can be seen from Figure 10 that at larger radial distances, particularly at 𝑟 = 3.8 and beyond, 

the carrier density (𝑁) diminishes noticeably, and the differences between configurations become even 

less pronounced. For instance, at 𝑟 = 5, the carrier density decreases from 0.0005704 for 𝜉 = 0.000, 𝜂 

= 0.000 to 0.00045632 for 𝜉  = 0.006, 𝜂  = 0.005. This convergence suggests that the influence of 

nonlocal parameters significantly wanes in far-field regions, resulting in carrier density levels that 

trend toward insignificance. 

Accordingly, the intrinsic length scale (𝜉 ) and time scale (𝜂 ) significantly contribute to the 

reduction of carrier density ( 𝑁 ) within the semiconductor medium, especially at smaller and 

intermediate distances. These nonlocal parameters account for the size-dependent and time-delayed 

effects that lead to a gradual decline in 𝑁 as 𝜉 and 𝜂 are increased. However, their influence diminishes 

at larger distances, culminating in nearly convergent values for carrier density (𝑁). These findings 

emphasize the critical importance of incorporating nonlocal parameters into models to accurately 

depict carrier transport in semiconductor materials. 

8. Conclusions 

We introduce the Nonlocal Moore-Gibson-Thompson Photothermal (NMGTPT) Theory, an 

innovative framework that brings together spatial and temporal nonlocality to address the shortcomings 

of both traditional and contemporary thermoelastic models. This theory is tailored for semiconductor 

materials that exhibit microstructural effects, memory-related behavior, and phenomena driven by 

photo-excitation. The major conclusions and results of this research are summarized as follows: 

• In contrast to classical thermoelastic models, the NMGTPT theory integrates both spatial and 

temporal nonlocality, which allows for a more precise depiction of long-range interactions and memory 

effects in semiconductor materials. 

• The introduction of the MGT thermal relaxation coefficient rectifies the unrealistic notion of 

infinite heat propagation speed found in classical thermoelasticity, ensuring a thermal response that 

has finite speed. 

• Utilizing the AB fractional derivative significantly improves the model’s capability to account 

for nonlocal and hereditary effects, making it especially suitable for materials that exhibit pronounced 

memory characteristics. 
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• The NMGTPT theory uniquely marries photothermal and photoacoustic processes, enabling a 

holistic examination of photo-induced free carrier dynamics, heat propagation, and mechanical wave 

movement within semiconductors. 

• By integrating an internal length scale, the NMGTPT model adeptly captures size-dependent 

phenomena, rendering it exceptionally relevant for nanostructured materials, thin films, and micro-

scale composites. 

• The study assesses the impacts of C and AB fractional derivatives, revealing that AB-derived 

models yield smoother and more realistic responses, whereas Caputo-based models demonstrate 

sharper transient behavior. 

• The NMGTPT model surpasses traditional frameworks by accurately forecasting stress 

distribution, thermal diffusion, and carrier transport in semiconductor devices and optoelectronic 

applications. 

Despite its advancements, the NMGTPT model has limitations that need further investigation. 

The inclusion of nonlocal interactions and fractional derivatives increases computational complexity, 

requiring advanced numerical methods. It also relies on parameters that are not easily obtainable from 

experiments, highlighting the need for further validation and calibration. While theoretically robust, 

its accuracy in real-world applications remains unverified without experimental testing in 

semiconductor materials. Additionally, its assumption of linear thermoelastic behavior limits its 

applicability to nonlinear and multi-phase systems, posing a challenge for future development. 

To enhance the NMGTPT model, future research should focus on experimental validation to 

determine nonlocal and fractional parameters, extend the model to nonlinear and multi-scale 

frameworks for complex interactions, and develop efficient numerical methods like finite element and 

machine learning approaches. Applications in nanoelectronics, flexible electronics, MEMS/NEMS 

devices, and quantum materials should be explored, alongside integrating electromagnetic interactions 

to broaden its use in photonic and optoelectronic systems. 
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