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Abstract: In this work, we present the nonlocal Moore-Gibson-Thompson photothermal (NMGTPT)
theory, a novel framework that integrates spatial and temporal nonlocality to address limitations in
both traditional and advanced thermoelastic models. Specifically tailored for semiconductor materials
with microstructural features, memory effects, and photo-excited phenomena, the NMGTPT theory
unifies nonlocal elasticity, MGT thermal relaxation, and photothermal effects to model the complex
interplay between heat, deformation, and photo-induced processes. Unlike prior models, the NMGTPT
framework incorporates spatial and temporal nonlocalities, enabling the accurate representation of
long-range interactions and memory effects. Additionally, the Atangana-Baleanu (AB) fractional
operator is integrated into the NMGTPT model to further enhance its ability to describe nonlocal and
memory-dependent behavior, making it particularly suitable for advanced material systems. By
incorporating a thermal relaxation coefficient, the framework ensures finite-speed thermal wave
propagation, effectively addressing the unrealistic prediction of infinite heat speed found in classical
models. The theory also integrates photo-excited free carriers, thermal waves, and acoustic waves,
proving highly effective in photothermal and photoacoustic studies involving semiconductors. With
the inclusion of an internal length scale, the NMGTPT theory successfully captures size-dependent
behaviors, which are essential for accurately modeling nanostructured materials, thin films, and
composites. This innovation provides a robust platform for investigating the complex dynamics of
photothermal and thermoelastic phenomena in advanced material systems.
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1. Introduction

The study of acoustic theories examines how mechanical vibrations propagate through various
materials, particularly under the influence of thermoelastic and photothermal effects [1]. These
interactions alter the acoustic properties of materials, leading to investigations into the relationships
between thermal, mechanical, optical, and acoustic phenomena, particularly in semiconductor and
liquid layers [2]. Researchers utilize numerical simulations and analytical models to gain deeper
insights into these complex interactions. A significant breakthrough in this field is the use of laser
technology to generate ultrafast photoacoustic pulses lasting only nanoseconds. Furthermore,
advancements in piezoelectric capacitor sensors have extended the frequency range for detecting weak
photoacoustic signals. Notably, mechanical responses produce rapid pressure pulses, whereas thermal
processes generate slower ones due to the inherent differences in reaction times between elastic and
thermal mechanisms [3]. To further refine the understanding of photoacoustic pulse generation,
researchers analyze the governing thermoelasticity equations. By distinguishing between the fast (PA)
and slow (PT) mechanical disturbances, a mathematical framework is developed to characterize pulse
generation in pulsed mode [4]. This approach improves both the theoretical and practical understanding
of photoacoustic phenomena, contributing to advancements in materials research and sensor
technology.

When semiconductors are exposed to optical energy, such as laser pulses, free carriers (electrons
and holes) are generated within the material. These carriers play a pivotal role in forming acoustic
waves through their interaction with the semiconductor’s electronic and elastic properties. Photo-
generated carriers disrupt the local charge distribution, inducing periodic elastic strain within the
material. This strain propagates as an acoustic wave, driven by the strong coupling between the
semiconductor’s electronic and mechanical behaviors [5]. Additionally, the presence of free carriers
can slightly alter the material’s elastic constants, though this effect is generally less significant than the
strain caused by charge disturbances. These intricate interactions between optical excitation, electronic
dynamics, and mechanical wave propagation form the basis of photoacoustic phenomena in
semiconductors [6,7]. A thorough understanding of these processes is crucial for optimizing their use
in diverse applications, including high-resolution sensing, advanced imaging technologies, and precise
material characterization.

Thermoelasticity is a focused area within the broader realm of elasticity theory that investigates
how temperature impacts the mechanical behavior of materials. Researchers in this field explore the
intricate connections between thermal fields and elastic substances, enabling a deeper understanding
of how temperature fluctuations influence stress, strain, and deformation in solids [8]. Such knowledge
is critical for the analysis and design of materials and structures that face combined thermal and
mechanical challenges. Coupled thermoelasticity advances the study by recognizing the two-way
interaction between heat flow and mechanical deformation. In this framework, thermal variations
induce stresses and strains through mechanisms such as thermal expansion, while the resulting
mechanical deformations, in turn, influence heat distribution within the material [9]. This mutual
coupling makes the theory particularly applicable to advanced engineering problems where thermal
and mechanical aspects are closely interdependent. Additionally, extended thermoelasticity introduces
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more sophisticated considerations, such as finite thermal wave speeds, to address non-Fourier heat
conduction and thermal relaxation effects, which account for delays in heat propagation. These factors
are crucial for analyzing systems subjected to rapid thermal transients, such as those encountered
during laser-material interactions or shock heating [10].

The applications of thermoelasticity extend across fields, highlighting its importance in advanced
structural and material design. In aerospace and automotive engineering, the theory aids in analyzing
thermal stresses in critical components, such as turbine blades and brake systems, which are subject to
extreme temperature gradients [11]. In geomechanics, researchers apply thermoelastic principles to
investigate effects in geothermal reservoirs and underground structures, deepening our understanding
of subsurface conditions [12]. Moreover, electronic devices benefit from thermoelasticity by providing
insights into thermal expansion and stress in semiconductors and microelectronic components—a
crucial factor for ensuring their reliability. Finally, in material science, thermoelasticity supports the
design of materials with tailored thermal and mechanical properties, including thermoelastic
composites and shape-memory alloys, fostering innovations that meet specific performance
requirements [13]. Through these diverse applications, thermoelasticity continues to drive significant
advancements across multiple disciplines and industries.

In response to the constraints of the classical coupled dynamic theory of thermoelasticity,
researchers have developed a variety of extended theories aimed at tackling the intricate challenges of
heat conduction and the coupling between thermal and mechanical processes in contemporary
engineering and scientific contexts. Notably, the Green—Naghdi (GN) theories [14—16] and the Moore-
Gibson-Thompson (MGT) equation [17,18] have emerged as pivotal advancements in the
thermoelasticity field.

The Green—Naghdi theories [14—16] were formulated to extend classical thermoelasticity by
accounting for the subtleties of energy dissipation. These theories enhance the understanding of heat
conduction and thermal stresses within materials, offering comprehensive frameworks that address
dynamic thermoelastic problems more effectively. Furthermore, the MGT heat equation [17] has
emerged as a pivotal tool in modern thermoelasticity and fluid dynamics. This equation is rooted in a
third-order differential framework, which generalizes traditional heat conduction models by
incorporating thermal relaxation concepts and higher-order time derivatives. This formulation provides
a novel perspective that contrasts with earlier models, particularly the Fourier and Cattaneo—Vernotte
heat conduction theories [19,20], by explicitly acknowledging the finite propagation speeds of thermal
waves and the effects of thermal inertia. As a result, the MGT equation is particularly well-suited for
systems undergoing rapid thermal changes.

Developments in this area have further expanded the application potential of the MGT equation.
For instance, Quintanilla has introduced a new heat conduction model within the MGT framework,
enhancing its relevance and utility. Additionally, researchers such as Abouelregal et al. [21-24] have
modified the MGT-based heat equation by incorporating a relaxation parameter, which extends the GN
Type III model. This modification provides a more refined description of energy dissipation and the
propagation of thermal waves, particularly when relaxation effects are significant.

The applications of the MGT equation are particularly significant in fluid dynamics, where the
interactions between thermal and viscous effects are essential for accurate modeling. Furthermore, it
has proven indispensable in micro- and nanoscale heat transfer scenarios, where classical models often
fail to capture the complex dynamics of thermal waves at such scales [25,26]. Through these
groundbreaking theories and their applications, researchers are advancing the understanding of
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thermoelastic behavior, laying the foundation for improved designs and enhanced performance in
engineered systems.

The development of thermoelastic models represents a substantial advancement over traditional
approaches; however, these new models encounter challenges when addressing materials that exhibit
nonlocal interactions and memory-dependent behaviors. Such complexities arise in systems where
both spatially nonlocal effects and temporal histories play a significant role in influencing mechanical
and thermal responses. Consequently, there is a growing demand for sophisticated modeling techniques
capable of accurately capturing the dynamic and intricate nature of these materials.

In traditional continuum mechanics, constitutive equations describe how response variables at a
material point depend solely on variables measured at that same point, adhering to the principle of
local action. This principle asserts that a material point’s state is unaffected by conditions at distant
points within the material. However, the significance of length scales becomes crucial in evaluating
the validity of this local approach [27]. When a material’s external characteristic length, such as
structural dimensions or wavelengths, significantly exceeds its internal characteristic length, like
atomic spacings or heterogeneity sizes, classical constitutive laws provide reliable predictions.
Conversely, when the external and internal length scales are comparable, local theories fail to capture
the actual mechanical behavior of the material, necessitating the adoption of nonlocal methods.
Nonlocal continuum field theories address this limitation by incorporating long-range interaction
forces, wherein a material point’s response is influenced by the states of surrounding points, expressed
through response functionals [28].

The growing focus on nanoscience and nanotechnology has made nonlocal continuum mechanics
indispensable for modeling and optimizing miniaturized smart devices. With applications in
engineering, the goal is to develop effective methods to capture size-dependent behavior and design
small-scale structures, leveraging nonlocal mechanics as an alternative to computationally intensive
atomistic models [29].

Mathematically, nonlocal theories extend conventional constitutive laws by incorporating long-
range interactions through internal characteristic lengths. Eringen’s integral elasticity theory [30,31]
models stress as the convolution of the elastic strain field with an averaging kernel determined by an
internal length, resulting in a strain-driven nonlocal framework. While this approach has proven
effective in addressing issues such as screw dislocations and surface waves, it has faced challenges in
structural applications [32]. Specifically, conflicts between its constitutive law and the necessary
equilibrium conditions have led to contradictory outcomes, as highlighted by prior research and
subsequently clarified in follow-up studies. Moreover, the concept of spatiotemporal nonlocality is
crucial for linking spatial and temporal aspects in modeling. This idea becomes particularly significant
in materials where long-range interactions and historical influences are dominant factors [33]. By
offering a comprehensive framework for analyzing material responses, spatiotemporal nonlocality
facilitates a profound understanding, especially for nanostructured materials, where conventional
models frequently fail to capture the full complexity [34].

The importance of these advancements in nonlocal and spatiotemporal models cannot be
overstated. They establish a robust foundation for designing materials with tailored properties and
significantly enhance the ability to predict complex phenomena such as wave dispersion, thermal
relaxation, and stress redistribution within next-generation materials. This progress represents a pivotal
milestone in materials science and engineering, enabling the exploration of innovative studies that
emphasize the significance of advanced theoretical models in unraveling complex thermal and
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mechanical interactions within materials, offering profound contributions to thermoelasticity,
viscoelasticity, and their diverse practical applications in engineering and technology. In their study,
Abouelregal et al. [35] introduced a modified spatiotemporal nonlocal thermoelasticity theory that
incorporates higher-order phase delays. The findings of this study substantially advanced the
understanding of material behavior under rapid thermal loading conditions, providing valuable insights
for applications in materials science and engineering design.

Furthermore, Abouelregal et al. [36] presented a groundbreaking space-time nonlocal thermo-
viscoelastic model that accounted for two-phase lags in heat diffusion. They focused on analyzing heat
transfer in a half-space domain subjected to an external heat source. By developing this innovative
framework, the authors offered a comprehensive model for understanding the dynamics of heat
diffusion and its implications for material behavior under thermal stress, thereby addressing critical
challenges in modern materials engineering.

There are several studies that significantly contribute to our understanding of semiconductor
behavior under photothermal excitation, addressing critical factors such as moisture effects, nonlocal
interactions, and size-dependent phenomena. These investigations are indispensable for advancing
semiconductor technology, as they offer a deeper insight into how semiconductors respond to complex
environmental and operational conditions. El-Sapa et al. [37] examined photothermal excitation
processes in semiconductor materials, specifically considering the impact of moisture diffusivity. Their
analysis revealed how moisture alters the thermal and optical properties of semiconductors during
photothermal excitation, providing valuable insights into the performance and stability of these
materials under real-world conditions. Moreover, El-Sapa et al. [38] studied the application of the
Moore-Gibson-Thompson (MGT) theory to a nonlocal excited semiconductor medium. Their work
focused on the stability characteristics of the medium under various excitation conditions, offering a
profound understanding of how nonlocal effects influence the behavior of semiconductors when
subjected to photothermal excitation. Extending this line of inquiry, El-Sapa et al. [39] incorporated
the effects of moisture diffusivity into the MGT model for semiconductor materials under photothermal
excitation. Through a combination of theoretical frameworks and numerical simulations, they
demonstrated how moisture influences the photothermal response of semiconductors. These findings
are critical for improving the efficiency and reliability of semiconductor devices, particularly in humid
operational environments.

Conventional thermoelastic models, encompassing both classical and extended coupled theories,
face significant limitations in accurately capturing nonlocal interactions within materials where long-
range effects play a critical role in thermal and mechanical responses. Moreover, these models struggle
to account for memory-dependent behavior, where prior states profoundly influence current dynamics,
particularly in scenarios involving thermal relaxation and wave propagation. Additionally, local
theories often overlook microscopic-scale effects, which are essential in nanostructured and composite
materials. This study addresses these critical gaps by proposing a comprehensive theoretical
framework that integrates spatiotemporal nonlocality, thermal relaxation, and photothermal coupling,
thereby enabling more accurate predictions of material behavior at small scales.

We introduce the Moore-Gibson-Thompson Nonlocal Photothermal (MGTPT) theory, a
groundbreaking framework that integrates both spatial and temporal nonlocality to overcome the
limitations of traditional and advanced thermoelastic models. This approach is particularly important
for materials where microstructural features, memory-dependent behavior, and photo-excited
phenomena play pivotal roles. By combining the principles of nonlocal elasticity, MGT thermal
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relaxation, and photothermal effects, the MGTPT theory provides a unified and robust framework that
captures the intricate interactions among heat transfer, mechanical deformation, and photo-induced
processes.

Unlike other models, the proposed framework incorporates nonlocality in both space and time,
allowing for the accurate representation of long-range interactions and historical effects. The inclusion
of a thermal relaxation coefficient within the Moore-Gibson-Thompson (MGT) equation ensures
finite-speed propagation of thermal waves, addressing the unrealistic assumption of infinite heat
propagation in classical models. Moreover, the MGTPT theory uniquely integrates the effects of photo-
excited free carriers, thermal waves, and acoustic waves, offering a comprehensive and unified
description of photothermal and photoacoustic processes, particularly in semiconductors. By
introducing an internal length scale, the framework effectively accounts for size-dependent behaviors,
which are critical for nanostructured materials, thin films, and composite materials, enabling a more
accurate prediction of their mechanical, thermal, and photothermal responses at small scales.

2. Mathematical formulation

In this section, we present the interconnected equations that govern stress, strain, carrier density,
and thermal conductivity within nonlocal semiconductors, offering a holistic framework for
understanding the intricate interplay among plasma, heat, and elastic waves. These coupled equations
will elucidate the dynamics of energy transfer and wave interactions within the semiconductor material,
providing a comprehensive and unified model for this complex system.

Constitutive equation for thermoelasticity with electronic deformation [40,41]:

O'ij = Zﬂeij + Aekké‘ij - )/9611 - VTIN(SU (21)

The notations in Eq (2.1) are as follows: o;; represents the stress tensor components, while p and
A are the Lamé constants describing the material’s elasticity. e;; denotes the strain tensor, and ey
measures cubical dilatation (trace of strain tensor). y = (34 + 2u)a; is the strain-temperature
coefficient, a; is the coefficient of linear thermal expansion, and & = T — T, defines the temperature
change from a reference temperature Ty. ¥, = (34 + 2u)d,, refers to the electronic deformation
coefficient, d,, is the coefficient of electronic deformation, N represents the carrier density, and §;; is

the Kronecker delta. The strain-displacement relation:
ejj = %(ui,j + ;) (2.2)
where u; denotes the components of the displacement vector. Equation of motion [42]:
0ij,j + Fi = pt, (2.3)
where F; represents body force components and p Material density. Plasma-thermal-elastic wave

equation [43]:

oN 1
DEV2N=pE+;N+K9+G (24)

where Dy, is the diffusion coefficient for carrier density, describing the rate at which carriers spread
within the material. T represents the carrier lifetime, indicating the average time carriers exist before
recombination. k is the thermal activation parameter, capturing the influence of temperature on carrier
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dynamics. G denotes the carrier photogeneration source term, which quantifies the rate at which
carriers are generated due to optical excitation.
Energy balance equation for heat conduction [42]:

06 de

PCEE‘FVTOE:—V'CI"'Q (2.5)

where Cy denotes the specific heat at constant volume, ¢ represents the heat flux vector, and Q
signifies the external heat source.

In semiconductor materials experiencing plasma and photoexcitation, the energy equation gains
additional complexity due to the interactions among thermal fields, electronic deformation, and plasma
waves. These intricate interactions are fundamental to accurately modeling the energy transfer
processes within the material. Consequently, the revised energy equation, which accounts for these
factors, is expressed as follows [43]:

20 ] S E
pCEE+yTOa—i=—V-q+Q+TgN. (2.6)

The supplementary term EgN /7 represents the energy impact caused by the generation and
recombination of electron-hole pairs resulting from photon absorption when the photon energy exceeds
E,4. This term is vital as it quantifies the contribution of these processes to the energy dynamics of the
semiconductor, highlighting the critical role of photon absorption in altering the system’s energy state.

The heat flux vector, ¢, is conventionally defined by Fourier’s law, expressed as [44]:

qg=—-KVo (2.7

where K is the thermal conductivity. However, Fourier’s law assumes an infinite speed of heat
propagation, which is physically unrealistic, particularly in rapid transient thermal processes or in
materials with low thermal conductivity. This shortcoming highlights the need for more sophisticated
heat conduction models that account for finite thermal propagation speeds and memory-dependent
effects. To address the assumption of infinite thermal propagation speed, the Cattaneo-Vernotte (CV)
law incorporates a time-relaxation parameter, 7, thereby modifying Fourier’s law as [19,20]:

(1470 5)d=—-KVo. (2.8)

The Green-Naghdi (GN) models [15,16] enhance classical thermoelasticity by introducing the
concept of thermal displacement, 8,;, which interacts with both the mechanical displacement and the
temperature fields. In the GN-III model, the heat flux equation includes an additional thermal
displacement gradient term, K~ V8, resulting in the following modified expression [15]:

qg=—-KVO—K*Vo, (2.9)

where K* represents thermal conductivity rate and thermal displacement satisfies 8; = 6. Expanding
on the CV framework and integrating it with the Fourier law of the third kind (GN-III) involves
incorporating memory-dependent effects and interactions that are pivotal to modern thermoelastic
models. Within this context, the adjusted GN-III model can be expressed as follows [17,18]:

2\ > *
(1+702)G=-KVo—K" VI, 2.10)

To enhance the understanding of memory effects and nonlocal interactions, fractional derivatives
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are integrated into heat conduction models. The fractional derivative operator D{* (with @ within the
range of (0,1) broadens traditional heat conduction equations by introducing time-dependent memory
effects, which are crucial for materials exhibiting hereditary characteristics.

Thus, the MGT heat equation can be extended by incorporating fractional derivatives, resulting
in the following formulation [45,46]:

(1+1§D¥)q = —K VO — K* VTy,. (2.11)

The fractional derivative operator Dff can assume various forms depending on the chosen
approach, such as the Caputo, Riemann-Liouville, or Griinwald-Letnikov formulations [47,48], as well
as the Caputo—Fabrizio (CF) [49] and Atangana—Baleanu (AB) [50] operators. Each of these
formulations offers unique methodologies for tackling fractional calculus, providing flexibility in
modeling and capturing the intricate behaviors of systems influenced by memory effects and nonlocal
interactions.

In this study, we focus solely on the AB fractional operator of degree a, where a € (0,1). This
particular operator is defined as follows [50]:

M(a) ct d
601010 = 22 12 v e, (- 7). 212

Here, M(a) acts as a normalization constant, satisfying the conditions M(0) = 1 and M(1) = 1.
By incorporating the fractional derivative-based Eq (2.10) into Eq (2.6), we derive a revised fractional
heat conduction equation that effectively accounts for memory effects within the system. This newly
formulated equation can be expressed as follows:

aai[ 99 ge _ _E_ga_N]_i : (K*

(1 +§Df) o pCr 5+ Toy P vl B atV (KV@)+ V- (K*V0). (2.13)
In the realm of nonlocal elasticity theory, the standard local stress-strain relationship is extended

to incorporate the effects of long-range interactions within a material. Unlike classical elasticity, which

assumes that stress at a specific location is influenced solely by the strain at that same location,

nonlocal elasticity integrates contributions from neighboring points within the material’s domain. The

nonlocal stress-strain relation can be mathematically expressed as follows [30,31]:
Ta() = [ Ga(XORAX - X'],£)d0X) (214)

where Ty (X) is the nonlocal stress tensor at the position X, g;(X") represents the local stress tensor
at a different point X’ in the material, A(|X — X'|,n) is the nonlocal kernel function that determines
the weighting of stress contributions from various spatial locations, ¢ is the internal length scale
parameter, which introduces size-dependent phenomena into the analysis, and Q is the material volume
over which the integral is computed.

The space-time nonlocal elasticity model represents a pivotal advancement in continuum
mechanics, as it incorporates both spatial and temporal dimensions into the stress-strain relationships
of materials. This progression addresses the limitations of classical elasticity theories, which often
assume that material behavior is purely local and instantaneous [51]. By accounting for long-range
interactions (spatial nonlocality) and memory effects (temporal nonlocality), the model provides a
more comprehensive understanding of material responses under dynamic, thermal, and mechanical
loading conditions.

Inspired by Eringen’s nonlocal elasticity model and the Boltzmann superposition integral, modern
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nonlocal elasticity incorporates both spatial and temporal dimensions. Stress and strain are represented
through convolution integrals, effectively capturing memory effects and spatial interactions. This
approach underscores that a material’s response is influenced by both its past states and its surrounding
regions, providing a more nuanced understanding of phenomena such as wave propagation, heat
transfer, and viscoelasticity. Mathematically, these interactions can be expressed as follows [52]:

TuX,t) = [* [, KX = X'|,t — t Do, (X', t)dQUX)dt'. (2.15)

In this context, the nonlocal stress tensor Ty; (X, t) represents the stress at a specific position X
and time t, while the local stress ay; (X', t") reflects the stress at a different location X’ and an earlier
time t’. The function K (|X — X'|,t — t") serves as the space-time nonlocal kernel, determining how
the influences of past and distant material points affect the stress experienced at the reference point X
at time t.

Choosing the kernel function K (|X — X'|,t — t') is crucial for shaping the extent and nature of
nonlocal interactions within space-time elasticity models. The kernel must satisfy certain properties to
ensure that the influence of distant stress interactions diminishes with increasing spatial and temporal
distances, thus maintaining the model’s physical plausibility [53]. By meticulously crafting the kernel,
it becomes possible to precisely depict how influences wane over distance and time, mirroring the
inherent response of materials to stress.

To establish a suitable kernel function formally, we treat it as analogous to a Green’s function for
a linear differential operator. This relationship can be mathematically expressed as follows [51]:

MK(X - X't —t)}=6(X - X)6(t —t'). (2.16)

Here, the notation §(-) denotes the Dirac delta function and A signifies a differential operator that
encompasses both spatial and temporal derivatives. This approach positions the kernel function as a
solution to a differential equation, ensuring that it accurately captures the nonlocal effects across both
temporal and spatial domains.

To simulate space-time nonlocal elasticity, we suggest employing the Klein-Gordon (KG)
operator, which effectively captures wave-like characteristics while incorporating both length and time
dependencies. Within this framework, the differential operator A is articulated as follows [52]:

— 1 _ 2292 2 0%
A=1-¢&Ve+7

= (2.17)

Here, & represents the internal length scale parameter, which regulates spatial nonlocality and
addresses effects that vary with size. Moreover, i1 denotes the characteristic time scale, which
embodies temporal nonlocality and encompasses aspects related to memory effects. Together, these
parameters play a pivotal role in shaping the behavior of materials under the framework of space-time
nonlocal elasticity.

Utilizing the KG operator A to the nonlocal stress tensor Ty; (X, t), we can derive the constitutive
equations for isotropic materials within the framework of KG-type nonlocal elasticity as
62
at?

(1 - EZVZ + 7’]2 )TU = O-l'j = Z,ueij + Aekké‘ij - y96lj - )/nNSLJ (218)

By applying Eq (2.4) to Eq (2.13), the equation of motion, in the absence of body forces, can be
reformulated as:
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62 62 i
i+ o+ 05— ¥0,; =yl = p (1 - 8202 42 ) 228 (2.19)

3. Statement of the problem

In this study, the thermal and mechanical responses of an infinite, isotropic, and homogeneous
semiconductor medium with perfect electrical conductivity is analyzed. The medium contains a
spherical cavity of radius Ry, where the inner surface is subjected to time-dependent heating and is
free from external forces, as illustrated in Figure 1. Furthermore, no internal heat sources or body
forces are present within the structure. Employing a spherical coordinate system (r,0,¢), the
governing equations will be investigated and solved, with all pertinent physical and mechanical
variables treated as functions of the radial distance r and time t, consistent with the system’s inherent
symmetry.

O(r,t) = G,H(t)

Figure 1. Configuration of the rotating solid semiconductor sphere.

The displacement vector and the displacement-strain relationships within the considered
semiconductor medium are described by the following components:

u, = u(r,t), Ug (r,t) =0,ug(r,t) =0,

E u (3-1)
r

€r =7, €pp = €0 = 5 €rp = €ro = €po = 0.

According to Eq (3.1), the dilatation e is expressed as:

] a(r2
e=err+e¢¢+e@@=a—:+232lﬂ. (3.2)

T r2 or

The relationships governing stress, strain, temperature, and carrier concentration take the
following forms:

62
at?

0
(1 — &2V2 + 12 )Trr =0 = (A+20) 5= +22= — (v6 + 7N, (3.3)
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a2 )
(1 — &2V? 4+ 2 ﬁ) Too = Opo = Opgp = Aa—lrl+ 2(u +l)%— (¥6 + y,N) (3.4)

2_ 1 3(21)
where V= ——(r°—).

The dynamic motion equation is expressed as:

OTyr

T+ 2Ty — = (Tyg + Too) = Py = (3.5)

Incorporating Egs (3.3) and (3.4) into Eq (3.5) results in:

9 (100%wY 98 N _ 202 4 .2 0%) 9%
(A+2u)6r(r2 ar ) Vor —In ar_p( BN atZ) a2’ (3.6)

By utilizing Eq (3.2), we can reformulate Eq (3.6) to present it in a more concise form:

(A +2u)V2% — Y720 — 1, V2N = p (1 - €272 412 2) 22
Ve —y Yn p §°VE+ - (3.7)

atz) a2

When there are no heat sources present (Q = 0), the equation for the generalized fractional
modified MGT heat transfer is given by:

(1 +7§DF) = pCs -+ ¥To = = 2 N| = KV?6 + K*V?6. (3.8)

In the absence of any carrier photogeneration source, the Plasma-thermal-elastic wave equation
(1.4) can be expressed as follows:

DpVN = pSi+ 2N + Kb, (3.9)

The governing equations can be effectively transformed into dimensionless forms by introducing
a set of dimensionless variables, which serve to simplify the analysis. The dimensionless variables are
defined as follows:

! ! * ! ! ! li 1A y
{r'u'} =vy6*{r,u}, {t', 15,7, 0"} = v35*{t, 10, T,1}, 0" = U29,
0

3.10)
1 C A+2 (
E=v8 E N = TN, = — Ty, 60 =2y = g

pY; T vl K p

If we choose to drop the prime notation, the governing equations can then be rewritten in the
following manner:

d a a %
A +28DP) 2|3+ &2 — ;N | = (5 + w*) V20, (3.11)
2
Ve — V20 — V2N = (1 — &2V2 + n? ;tz) g;’ (3.12)
2 aN
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02 ou u
<1—€2v2+nzﬁ>m=—+(1—ﬁ2);—9—N,

or (3.14)
0?2 ou u '
_ £2y2 2 — (1 — p2y_—~ _pI_p_
<1 §°Vi+n at2>T@@ (1 B)6r+(2 B)r 6 —N,
where
2 2T, K* E
ﬁz - H ’81 — )2/ 0 , w* — 2—,82 — y g ,
A+2p p?*Cguyg VyPpCE PT¥nCE 315
P 1 _ K¥Yn (3.15)
9= Dr5*’ 92 = DE6*T'g3 ~ y(6)2Dgvd’

4. Initial and boundary conditions of the problem

To solve the system of governing equations and thoroughly characterize the thermoelastic,
electronic, and nonlocal properties of the semiconductor medium containing a spherical cavity, the set
of initial and boundary conditions is defined as follows:

At the initial time t = 0, we assume that the medium is initially at rest, i.e.,

ou(r,t) 0 0%u(r,t) 0 23u(r,t)

or o9tz at3
aTij(r,t)

u(r,t) =0, =0,N(r,t) =0,

T;:(r,t) =0 =0,0(rt —oae(r‘t)—o
l](ry )_ FT_ ) (r) )_ ) ar -

At the inner surface of the spherical cavity, where r = R, the medium experiences a rapid
application of heat. The thermal boundary condition is expressed as:

(4.1)

O(Ry, t) = 6,H(t), t >0 (4.2)

where H (t) represents the Heaviside step function and 6, is a constant temperature value.
At the inner surface of the spherical cavity, r = R, nonlocal radial stress is assumed to be zero
because of the absence of a traction force. This condition is expressed mathematically as follows:

T (Ro, t) = 0. (4.3)

During the diffusion phase, charge carriers have a finite likelihood of recombining as they move
toward the sample’s surface. This situation results in a flux-type boundary condition for the carrier
density that can be described as:

ON _

Dg % = s,N at r =R, (4.4)

Here, s, represents the surface recombination velocity, a metric that quantifies the likelihood of
charge carriers recombining at the boundary. The surface recombination velocity (s ) is defined by the
equation: s, = J/A, where ] represents the recombination current density, which indicates the flux of
charge carriers at the surface, and An denotes the excess carrier concentration near the surface.

The surface recombination velocity (s, ) is a key parameter in semiconductor physics that
quantifies the rate at which charge carriers (electrons and holes) recombine at the material’s surface or
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boundary. It measures the efficiency of the recombination process occurring at the interface, where
defects or impurities typically act as recombination centers.

5. Solution in the domain of the Laplace transform
In this section, we explore solutions based on the Laplace transform to illustrate the interactions

among thermal, elastic, and plasma waves within nonlocal semiconductors. For a given function
g(r, t), the Laplace transform, symbolized by L[g(r, t) | or g(r,s), is defined as:

Llgr,t)]=g(r,s) = f g(r,t)exp(—st)dt, s > 0. (5.1)
0

Using the Laplace transform on the governing equations (3.11)—(3.14), the following transformed
equations are obtained:

(V2 - )0 = e & — L2, (5.2)
V20 + V2N = (1 + s282)V?%e — s2(1 + n%s?)e, (5.3)
(V2 = gu)N = g30, (5.4)
— d_ T — —_
(1+77252_€2V2)Trr=d_1:+(1_ﬁ2)%_9_N7 (5.5)
(140252 = §2V9)Tge = (1 - B+ 2 - f2 -0 N, (5.6)
where
s2(1+ 1§ F(9)) s
= JF(s) = ——————— g, = . .
(S+(A)*) (S) Sa(l—a)+1 ga gls+g2 (5 7)

By separating Eqs (5.2)—(5.4), we obtain a higher-order differential equation that governs the
variables 6, N, and é:

(V6 — g,V* + ,V* — go){6,N, e} = 0, (5.8)
where
gaXo + X,y 9aXy + X3p — g3X5 94X3 + g3X3X,
92 = X, ' GP1 = X, yGo = X, )
Xo =&, X, = %, X, =1+ %82, X5 = s%(1 + n%s?), (9)

X4_ = X2 + X3 - XO’XS = XO - X1X2.
Oftering p; (where i =1,2,3) into Eq (5.8) leads us to the expression:
(V2 = pD) (V2 = p5) (V2 = p){e,0,N} = 0. (5.10)

In this context, p?, p3 , and p3 represent the roots of the polynomial equation:
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P° = axp° + 419> — g0 = 0. (5.11)

which can be further detailed as follows:
£} = 3 [2A45in(B) + 421,
pi=— %Jl[sin(B) + V3 cos(B)]| + %42, (5.12)
P2 = %a‘l[\@ cos(B) — sin(B)]| + %@2
where

— 2 _ _ 11 _243—9%2%1‘*27%0
A = a* = 3a;, B =sin ( BT — ) (5.13)

The overall solution to Eq (5.10) can be expressed in the following manner:
= = _ 1
{0,N, e} = ﬁZ?:l{l’Li'Hi}CiKl/z (pir). (5.14)

The coefficients C; (with i =1,2,3) are required to be set and depend on s. Furthermore, L; and M;
are two separate factors linked to C;. By substituting Eq (5.14) into Eqgs (5.2) through (5.4), we arrive
at the following relationships:

g3 _ (2’91'2 —-Y) —X,L;

L= , H,
' #%2_.94 ' Xo

) i = 1I2I3 (5-15)

Upon applying the Laplace transform to Eq (3.2) and utilizing Eq (5.14), followed by integration
from 7 to infinity, while assuming that u tends toward zero at infinity, we derive:

_ 1 H;
U=-=% 7 Ak @), (5.16)

For large Y, the modified Bessel functions of the second kind, K; /,(Y) and K3, (Y), exhibit the

following asymptotic behavior:

Kl/z(y)~e‘y\%, Ks(Y) = e‘y\/%(l +%) (5.17)

When these asymptotic relations are substituted into the general solutions given by Eqs (5.14)
and (5.16), the following expressions are derived:

A

1 —p:
7 i=1{1, Ly, H}Cie™?" Py (5.18)

_ 1< HiC o LT (1+ 1 ) £ 19
u=—— —C:e ?i . )
Vr&ip: 2pir 2pir (.19)

By inserting the general solutions outlined in Eqs (5.18) and (5.19) into Egs (5.5) and (5.6), we
can deduce that the non-local thermal stresses conform to the following equations:

{6,N, e}
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T s Cie‘ff’ir(—;;izrz(1+Li)+Hi(1+;ai2r2+ﬁ2+pir(ﬁ2+1)))

Trr = ; i=1 (ﬁir)5/2(1+77252—§217i2) ) (520)
—piT( ,,2,.2 (p2_ 2 )

_— T w3 e~ ?i (;;i‘r (1+L1+Hl(ﬁ 1))+Hl/3 (1+,,lr))

Too = — /;Ziﬂci o) . (5.21)

The boundary conditions provided in Eqs (4.2)—(4.4) take the following forms after applying the
Laplace transform:

0(r,s) = < at r =Ry, (5.22)

T, (r,s) = 0, at r =R, (5.23)
oN —

Dp— = sgN(R,s)  at r = R,. (5.24)

By inserting the general solutions outlined in Eqs (5.18) and (5.20) into Egs (5.22)—(5.24), we
can obtain the following set of equations:

1 ic —piRo T _90
\/F, - le 2#71'R0 - Sl (525)
1=

3 CePifo (—;pl?Rgu + L) + H; (1 + p?R3 + % + Ro(B% + 1))) 526)
0, 5.26
Z @321 +n2s2 = §2p7)

i=1
° 1 ° 1
S
E L,Cie™®iRo | — (1 + p;R,) =D—f E LiCie™#iRo |—, (5.27)
=1 Pi E =1 Pi

We determine the values of the parameters C;, where i =1, 2, 3, by solving the system defined by
Eqgs (5.25) to (5.27).

6. Converting solutions from the Laplace domain to the time domain

The Gaver-Stehfest method, a powerful numerical tool for inverting Laplace transforms, plays a
vital role in transitioning solutions from the Laplace domain to the time domain. This method, widely
utilized in engineering and applied sciences, offers an efficient and reliable way to compute inverse
transforms, especially for functions challenging to invert analytically. To approximate the values of
g(r, t) across time intervals, the Gaver-Stehfest method utilizes the following formula [54,55]:

In(2)
t

g(r0) ~ =205 (r 7)), 6 21, £> 0. (6.1)

Here, w, represents the coefficients associated with each term in the series expansion, while £
indicates the total number of terms included in this expansion (this number must be even). The
coefficients w, are exclusively determined by the number of terms in the expansion £ and are defined
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as follows [56]:

min{6,£/2} £
72(24)!

T (3-4)!@ @i -8 G =Dt

wy = (—1)°*2 6211<t<6 (59

The method’s efficiency lies in its simplicity and speed, avoiding complex contour integrations
and symbolic inversions, thus reducing computational time significantly. Adaptability to a variety of
Laplace-transformed functions in fields like heat conduction and fluid dynamics further enhances its
utility. For smooth functions devoid of singularities, this method delivers precise results. Despite its
advantages, the Gaver-Stehfest method faces challenges such as numerical instability with increasing
£ values, potentially impacting accuracy. Careful selection of £ is crucial to balance precision and
stability, ensuring dependable outcomes in the inversion process.

7. Materials and methods

To validate the theoretical findings discussed in earlier sections, we conduct several case studies,
presenting numerical values generated using the Mathematica program for the examined physical
fields. Furthermore, we verify the proposed model, which incorporates the modified Moore-Gibson-
Thompson photothermal (MGTPT) heat equation and accounts for spatiotemporal non-locality. The
physical fields under investigation are illustrated through both graphical representations and tables.
For the numerical calculations during the theoretical analysis, isotropic silicon (S1) will be selected as
the solid semiconductor material. The physical parameters for silicon are provided as follows [57]:

A =3.64x10°Nm™2, u=5.46x 101°Nm~2, p =2330kgm3,
K =150Wm K™, C; =695%x10%]kg 1K™, d,=-9x 10731 m3,
E;=111eV, Dp =25x10"2m?s™!, sf=2ms™, 1=5x10""s.
ay = 4.14 x 107°K~1, T, = 300K.

We analyze the numerical outcomes for a specified time of ¢ = 0.12 and a radius parameter of
Ry = 1. These findings have been meticulously examined and are visually displayed in Figures 1
through 6, illustrating the calculated field variables across three scenarios.

7.1. Comparison of fractional derivative operators

In this section, we present a comparative analysis of the numerical results for different fields in
an elastic semiconductor medium, concentrating on the effects of the Atangana-Baleanu (AB) and
Caputo (C) fractional operators as opposed to the classical scenario with integer-order time derivatives
(a = 1). By examining the differences and implications of these fractional operators, we aim to gain
deeper insights into how they affect the behavior and characteristics of the fields within the
semiconductor medium. Our goal is to highlight the distinctive impacts and potential advantages of
using fractional operators in analyzing the dynamics of elastic systems governed by fractional
derivatives.

In this case study, we investigate how fractional orders influence the behavior of different fields
within an elastic semiconductor medium. We analyze three specific fractional orders: @ = 1 for the
conventional model, and @ = 0.85 and a = 0.65 for fractional operators. Our aim is to compare the

AIMS Mathematics Volume 10, Issue 3, 7559-7590.



7575

numerical results for radial displacement (u), temperature change (6), nonlocal radial thermal stress
(T,), and carrier density (N) within the spherical cavity of the infinite elastic semiconductor medium
across varying radial coordinates (7).

In this section, we explore and compare three variations of the Nonlocal Moore-Gibson-
Thompson Photothermal Model (NMGTPT), each customized for specific features and applications.
The NMGTPT serves as the baseline framework, utilizing integer-order derivatives with a = 1,
integrating nonlocal elasticity with finite-speed heat conduction for a conventional yet robust
perspective on photothermal processes. The fractional nonlocal NGT photothermal model with Caputo
operators (FNMGTPT-C) introduces Caputo fractional derivatives (0 < @ < 1), which bring in memory
effects and account for long-range interactions, enhancing our understanding of thermal and elastic
responses over time and distance. Last, the fractional nonlocal MGT photothermal model with AB
operators (FNMGTPT-AB) uses AB fractional derivatives, providing a smoother and refined nonlocal
response that captures complex dynamics, making it particularly suitable for analyzing intricate
photothermal phenomena.

The numerical results for these parameters will be presented in Tables 1-5, providing a structured
and clear representation of the variations in their behavior under different fractional orders. This
comparative analysis aims to offer insights into how fractional operators, with their varying orders,
influence the dynamics and characteristics of the fields studied. By examining the differences in
behavior, we seek to enhance our understanding of the role of fractional derivatives in affecting the
physical properties of the system.

The numerical results presented in Figure 2 offer a comprehensive examination of temperature
variations () within an infinite semiconductor medium containing a spherical cavity under various
fractional models. The comparison highlights the impact of fractional derivatives, specifically focusing
on the NMGTPT model (a = 1.00), the FNMGTPT-C model with fractional orders of (a = 0.85) and
(a =0.65), and the FNMGTPT-AB model for the same fractional orders.

6 1 —— NMGTPT Model { a = 1.00)
09 4
- —— FNMGTPT-C Model ( a = 0.85)
08
07 4 —— FNMGTPT-C Model { o = 0.65)

0.6 T
FNMGTPT-AB Model ( @ =0.85)

05 4
—— FNMGTPT-AB Model ( o = 0.65)

04 T

03 T
0.2 +

0.1 t

T
4.2 5

Figure 2. Variation of temperature () across different fractional operators.

Figure 2 highlights that the differences in temperature (6) between the models become more
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pronounced as the radial coordinates (r) increase. At r = 1.4, the NMGTPT model shows a higher
temperature of 0.566934 compared to the fractional models. In the case of the FNMGTPT-C model,
the temperature drops from 0.550915 (a = 0.85) to 0.539848 (a = 0.65). The FNMGTPT-AB models
reflect even lower temperatures, with readings of 0.534157 (a = 0.85) and 0.533669 (a = 0.65). This
trend demonstrates that as a decreases, the temperature values also decrease, underscoring the impact
of fractional operators. Additionally, the AB operators consistently result in slightly lower temperatures
than the C operators, indicating the stronger memory and nonlocal effects associated with the AB
formulation.

As 7 increases, the temperature (6) decreases more significantly, and the variations among the
models become clearer. At r =3, the NMGTPT model (@ = 1.00) produces a temperature of 0.0393976.
In comparison, the FNMGTPT-C models yield temperatures of 0.0282343 (a = 0.85) and 0.0209751
(a = 0.65). The FNMGTPT-AB models exhibit even lower temperatures, with values of 0.016073 («a
= 0.85) and 0.0126516 (a = 0.65). These results demonstrate that the AB fractional operators
consistently lead to lower temperatures than the C operators for the same fractional order. The decrease
in temperature with smaller a reflects the growing influence of memory effects and nonlocal
interactions in fractional models. This behavior indicates that the AB fractional operators are more
effective at capturing these effects, resulting in a more pronounced temperature decline as the radial
distance increases.

The graphical results demonstrate that as a decreases, the temperature values drop across all radial
positions, emphasizing the heightened memory effects and nonlocal interactions in fractional models,
particularly when « is less than 1. The AB fractional operators consistently deliver lower temperatures
than the C operators for the same «, reflecting their smoother responses and superior ability to account
for nonlocality and memory effects. Additionally, the NMGTPT model (a = 1.00) registers the highest
temperatures, underscoring its limitations in addressing the memory effects and nonlocal interactions
present in fractional models.

Therefore, based on this analysis, we can conclude that fractional models, particularly those
utilizing AB operators, provide a more precise depiction of temperature distribution in semiconductor
media exhibiting memory-dependent behavior. This characteristic renders them especially suitable for
analyzing complex thermal systems that surpass the limitations of classical models.

The graphical data presented in Figure 3 depict how radial displacement (u) varies in an
unbounded semiconductor medium across various fractional models. The models under consideration
encompass the nonlocal NMGPT photothermal model at (a =1.00), the fractional nonlocal FNMGPT-
C photothermal model with Caputo derivatives for (o =0.85) and (a =0.65), and the fractional nonlocal
FNMGPT-AB Photothermal model with AB derivatives for the corresponding fractional orders. The
subsequent analysis delves into the radial displacement behavior as a function of the coordinate (7).

From Figure 3, it is evident that displacement (u) decreases as r increases across all models.
However, the differences among the models diminish with increasing r. Additionally, the numerical
outcomes illustrated in Figure 3 show that the use of fractional operators results in reduced radial
displacement (u), with AB operators leading to a more pronounced decrease compared to C operators.
This pattern implies that fractional derivatives, particularly AB operators, improve the system’s
stiftness or resistance to deformation in the vicinity of the spherical gap. These results support the
notion that fractional operators, especially those with lower «, introduce significant nonlocal and
memory effects that help mitigate deformation. As a result, the medium becomes less prone to
displacement as r increases. The enhanced memory effects related to lower a effectively dampen the
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medium’s response, highlighting the essential role of fractional operators in elucidating the complex
dynamics of such systems.

— NMGTPT Model { & = 1.00)
03 -
—— FNMGTPT-C Model ( & = 0.85)

0.6 — FNMGTPT-C Model ( a = 0.65)

I FNMGTPT-AB Model ( a = 0.85)
04

— FNMGTPT-AB Model ( a = 0.65)

02 +

Figure 3. Displacement field (u) across fractional operators.

Analyzing Figure 3 reveals that radial displacement (u) decreases as the fractional order a
declines across all radial coordinates. This pattern implies that lower fractional orders strengthen the
medium’s rigidity and memory effects, thereby reducing its responsiveness to deformation. The
enhanced memory effects linked to lower a values allow the medium to resist displacement more
efficiently, underscoring the substantial impact of fractional operators on the mechanical behavior of
the system. Moreover, AB operators consistently yield lower displacement values than C operators at
all radial coordinates. This trend indicates that AB operators provide a more sophisticated framework
for modeling nonlocality and memory effects, effectively capturing the complex dynamics of the
medium’s response. The exceptional capacity of AB operators to incorporate these effects emphasizes
their potential for delivering a more accurate portrayal of the medium’s behavior under fractional-order
formulations.

The results highlight that fractional model, particularly those employing AB fractional operators,
offer a more precise description of the medium’s behavior by incorporating long-range interactions
and memory effects. As a result, these models are particularly advantageous for analyzing advanced
materials and systems, where traditional models may fail to capture the intricacies of deformation
dynamics.

The numerical findings depicted in Figure 4 reveal the behavior of nonlocal radial thermal stress
(T) in the semiconductor medium under various fractional differential operators. The comparison
between the NMGTPT model (@ = 1.00) and the fractional models (FNMGTPT-C and FNMGTPT-
AB) for different a values highlight the impact of memory effects and nonlocal interactions on thermal
stress distribution. It is observed that at » = 1, all models yield T, indicating that the stress is zero at
the inner boundary of the semiconductor medium. This suggests that, at this boundary, the effects of
fractional operators do not lead to changes in thermal stress.
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Figure 4. Nonlocal radial thermal stresses (T;.,-) across different fractional operators.

In Figure 4, it is illustrated that as r increases, the absolute value of T,.- decreases across all models;
however, clear distinctions arise among them. Specifically, the NMGTPT model (a = 1.00) generates
the highest compressive thermal stress of T,,. = —1.13917 at r = 1.4. Conversely, the fractional models
display progressively smaller stress values. This trend indicates that as a decreases, the influence of
memory effects becomes more significant, leading to a reduction in thermal stress. Moreover, the AB
operators, which are more responsive to nonlocality, further enhance this decrease in stress.

Figure 4 reveals that the NMGTPT model features the highest thermal stress values,
demonstrating the propensity of classical models to overstate stress by overlooking memory effects.
As the fractional order a decreases, a clear reduction in thermal stress is noted across all radial
positions, emphasizing the growing impact of memory effects and nonlocality in alleviating stress
concentrations within the semiconductor medium. Among the fractional operators, the AB operators
consistently yield lower stress magnitudes compared to the C operators for the same a, indicating their
more effective nonlocal influence. This suggests that AB operators enable a more efficient and gradual
stress relaxation in semiconductor materials, offering a significant benefit in accurately representing
realistic stress behaviors. Consequently, the results suggest that fractional models, especially those
utilizing AB operators, provide a more reliable representation of stress distribution, making them
highly relevant for semiconductor applications where effective thermal stress management is crucial.

In Figure 5, the variation in nonlocal hoop thermal stress (Tgg) Within a semiconductor medium
is shown, influenced by different fractional differential operators. By examining the values across
various radii (r) for the models (NMGTPT (a = 1.00), FNMGTPT-C (a = 0.85, a = 0.65), and
FNMGTPT-AB (a = 0.85, a = 0.65), we can see how these operators affect thermal stress distribution
within the medium. It is observed from Figure 5 that at r = 1, the NMGTPT model yields the highest
thermal stress of 0.130292. In comparison, the FNMGTPT-C model reduces the stress to 0.12198 for
a = 0.85 and further to 0.114549 for a = 0.65. The FNMGTPT-AB models show even lower values at
0.1021 for @ = 0.85 and 0.0969979 for @ = 0.65. This pattern suggests that fractional derivatives
effectively lower thermal stress, highlighting their importance in reducing stress under nonlocal
conditions. At r = 1.4, the trend appears to change, with the NMGTPT model showing a thermal stress
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(Tee) of 0.011188. In contrast, the FNMGTPT-C models exhibit an increase, reaching values of
0.0134008 for @ = 0.85 and 0.0154321 for a = 0.65. The FNMGTPT-AB models also follow a similar
trend, peaking at 0.0208603 for @ = 0.65. This observation indicates a complex relationship in which
lower fractional orders enhance the model’s sensitivity to thermal stress in this specific range.

NMGTPT Model ( o = 1.00)
FNMGTPT-C Model ( a = 0.85)

F FNMGTPT-C Model ( a = 0.65)
0.07 4

FNMGTPT-AB Model ( a = 0.85)

0.04 +
FNMGTPT-AB Model ( a = 0.65)

34 4.2
r

Figure 5. Nonlocal hoop thermal stresses (Tgg) across fractional operators.

According to Figure 5, beyond r = 1.8, all models, including NMGTPT, begin to produce negative
thermal stresses (Tgg), indicating a transition in the thermal behavior of the medium. For instance, the
FNMGTPT-C model records values of -0.0123442 for a = 0.85 and -0.00976649 for a = 0.65, while
the FNMGTPT-AB models demonstrate a more gradual decline. This observation highlights the role
of fractional derivatives in altering thermal stress behavior, particularly in nonlocal regions. At larger
radii (r > 3), the thermal stress values trend toward small negative levels across all models. For
example, at r = 5, the NMGTPT model forecasts -0.000425308, whereas the FNMGTPT-AB model
with a = 0.65 approaches -0.000624862. This convergence indicates decreasing discrepancies among
the models, leading to a more consistent thermal response as distance increases.

The results highlight that fractional differential operators have a profound impact on the
distribution of nonlocal hoop thermal stress (Tgg) in semiconductor materials. Although the NMGTPT
model estimates higher localized stress values, fractional models, particularly those using AB
fractional operators, reduce these stresses and expose intricate nonlocal interactions that are affected
by the value of a. This emphasizes the significance of fractional operators in portraying the detailed
thermal behavior of semiconductor media under various conditions.

The numerical results presented in Figure 6 illustrate the variation in carrier density (N) within a
semiconductor medium, as influenced by different fractional differential operators. The data is
categorized using various models, including the NMGTPT model and the fractional FNMGTPT-C and
fractional FNMGTPT-AB Models, with fractional orders of « = 1.00, 0.85, and 0.65. By examining
the carrier density (N) across varying radial distances (), meaningful insights can be drawn regarding
the impact of fractional operators on the distribution and retention of carriers within the medium.

From Figure 6, it is observed that at the cavity (r = 1), the NMGTPT model exhibits the highest
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carrier density (N) of 0.00210137, while the fractional models demonstrate a significant reduction in
carrier density. The FNMGTPT-C model shows a carrier density of 0.00185516 for @ = 0.85, which
further decreases to 0.00162501 for & = 0.65. The FNMGTPT-AB models report even lower densities,
suggesting that the fractional order has a substantial impact on carrier behavior. This trend implies that
fractional operators, particularly the AB operators, introduce nonlocal effects and memory
characteristics that contribute to the reduction of carrier density (N) near the origin. The reduction
becomes more pronounced as the fractional order decreases, emphasizing the role of fractional
derivatives in modifying the dynamics of carrier distribution (N).

x 10725
0.75

N —— NMGTPT Model { a = 1.00)
0.6 -
—— FNMGTPT-C Model ( a = 0.85)

0.45 - —— FNMGTPT-C Model ( a = 0.65)

FNMGTPT-AB Model ( a = 0.85)

0.3 -
I —— FNMGTPT-AB Model ( o = 0.65)

Figure 6. Carrier density (N) across fractional operators.

Figure 6 illustrates that as the radial distance increases, the carrier density (N) decreases across
all models, though the rate of this decline differs based on the fractional order and the specific operator
applied. At r = 1.4, the NMGTPT model indicates a carrier density (N) of 0.688725, while the
FNMGTPT-C models show lower values of 0.654672 for a = 0.85 and 0.623269 for a = 0.65. The
FNMGTPT-AB models follow a similar pattern, indicating even lower densities. This behavior
signifies that all models project a consistent reduction in carrier density with higher radial distances;
however, fractional operators, particularly those with lower fractional orders, exhibit a more substantial
impact on decreasing densities (V) at moderate distances. The AB models, in particular, reveal more
pronounced nonlocal effects, showcasing their capacity to effectively capture the complexities of
carrier dynamics.

At the greater radial distance of r = 2.6, the differences in carrier density (N) among the models
become less distinct, particularly for the FNMGTPT-C models, which maintain similar values of
carrier densities (N). For instance, the NMGTPT model predicts a carrier density (N) of 0.0663637,
while the FNMGTPT-C models yield comparable densities, signifying that the influence of fractional
order lessens as the radial distance increases. In contrast, the FNMGTPT-AB models consistently
report slightly higher carrier densities (V) than their FNMGTPT-C counterparts at the same fractional
orders, suggesting that the AB models are more effective at preserving carriers at larger distances. This
finding emphasizes the contribution of AB operators to a more gradual and refined decrease in carrier
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density (N).

As the radial distance continues to increase, particularly at r = 5, carrier densities (N) experience
a notable decline across all models. The NMGTPT model reports a carrier density of 0.0003877, while
the FNMGTPT-C models persist in their downward trajectory, with the lowest densities found in
models featuring the smallest fractional orders. Conversely, the FNMGTPT-AB models show a
relatively greater retention of carriers (N ), with the model for « = 0.65 producing a density of
0.000887086, which is noticeably higher than that of the corresponding FNMGTPT-C model. This
trend highlights the effectiveness of AB operators in alleviating the loss of carriers at larger distances,
demonstrating their superiority in capturing nonlocal carrier dynamics in semiconductor systems.

In conclusion, the findings from Figure 6 indicate that fractional differential operators play a
crucial role in influencing the behavior of carrier density () in semiconductor media. The NMGTPT
model, while predicting the highest carrier densities near the origin, does not consider the nonlocal and
memory effects that are intrinsic to fractional models. The FNMGTPT-C and FNMGTPT-AB models
incorporate these effects, leading to reduced carrier densities (N) and showcasing complex interactions
that are dependent on the fractional order @. Among these models, the AB operators consistently
exhibit superior carrier retention, especially at larger distances, which enhances their suitability for
accurately modeling carrier behavior (N) in semiconductor applications. These findings highlight the
significance of fractional calculus in furthering the understanding and forecasting of carrier dynamics
in complex materials.

1.2. Effects of length and time scale parameters

Many researchers have emphasized the critical importance of the intrinsic length scale () and
time scale (1) in accurately modeling the dynamic behavior of elastic nanomaterials under transient
thermal and mechanical loads. Despite this, limited research encompasses their influence on
semiconductor materials. By incorporating these parameters, it becomes possible to better account for
size-dependent phenomena, time-delayed responses, and nonlocal effects. This integration provides a
more precise framework for analyzing semiconductor nanomaterials, offering valuable insights that
can enhance their practical applications.

To address this gap, we investigate the thermoelastic and photoelastic responses within an elastic
semiconductor medium. Specifically, the study examines the non-dimensional radial displacement
field (u), carrier density (N), nonlocal thermal stresses (Tgg, Tr), and temperature variation (8).
Through this analysis, we aim to elucidate the interplay between these parameters and their influence
on the behavior of semiconductor nanomaterials.

Figure 7 illustrates the impact of the intrinsic length scale (§) and time scale (17) on the temperature
variation (0) in the semiconductor medium. At r = 1, the temperature remains constant at 1.0013015,
indicating negligible influence of ¢ and 1 near the gap surface. As r increases, higher values of & and
71 cause a more pronounced temperature reduction, reflecting stronger nonlocal effects. For instance,
at £ = 1.4, the temperature decreases from 0.539848 for & =0.000, n =0.000 to 0.431879 for £ =0.006,
1 = 0.005. This trend reflects the nonlocal effects introduced by the intrinsic length and time scales,
which tend to moderate the temperature distribution by accounting for long-range interactions and
memory effects. The combined increase in & and 7 results in a more pronounced thermal attenuation.
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Figure 7. Temperature variation () for various length and time scale parameters.

This trend is sustained at intermediate distances, such as r =2.2 and r = 3, where the temperature
gradually decreases due to enhanced thermal dissipation driven by nonlocal effects. These results
suggest that the nonlocal effects become more pronounced as the distance increases, leading to a
gradual reduction in temperature. The interplay between ¢ and 1 enhances the dissipation of thermal
energy, likely reflecting the role of spatial and temporal nonlocality in redistributing heat. However, at
larger distances (r = 4.6 and r = 5), the differences between parameter configurations narrow, and the
influence of ¢ and n diminishes, leading to converging temperature values. While the impact of
nonlocal parameters is present, it diminishes as the radial distance grows, indicating that their influence
weakens in far-field regions, possibly due to the diminishing contribution of nonlocal interactions.

In conclusion, ¢ and 7 significantly affect temperature variation (6) at medium distances by
introducing size-dependent and time-delayed effects, while their impact weakens at greater distances.
Thus, incorporating these parameters is crucial for accurately modeling the thermal behavior of
semiconductor materials.

The numerical results in Figure 8 illustrate the variation in the radial displacement field (u) within
a semiconductor medium under the influence of changing intrinsic length scale (§) and time scale (7).
At r =1, the displacement u is highest, starting at 0.864326 for & =0.000, n = 0.000 and progressively
decreasing to 0.691461 for & = 0.006, n = 0.005. This significant reduction indicates the strong effect
of nonlocal parameters near the medium’s origin, where long-range interactions and memory effects
are most pronounced. As 7 increases, the influence of £ and 1 on displacement u gradually diminishes,
though the reduction in u persists. For example, at r = 1.8, the displacement u decreases from
0.152534 for & = 0.000, n = 0.000 to 0.122027 for ¢ = 0.006, n = 0.005. Similarly, at r = 2.6, the
displacement u reduces from 0.0163456 to 0.0130765 across the same parameter range. This trend
reflects the moderation of displacement u as nonlocal effects dissipate with distance.

Also, at greater radial distances (e.g., r = 4.6 and r = 5), the displacement values become
exceedingly small, and differences between parameter configurations narrow further. For instance, at
r =5, the displacement u decreases from 1.89E-05 for & = 0.000, n = 0.000 to 1.51037E-05 for & =
0.006, n = 0.005. This convergence suggests that the nonlocal interactions have a minimal effect on
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far-field regions.
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Figure 8. Displacement field (u) for various length and time scale parameters.

Consequently, the intrinsic length scale () and time scale (1) significantly influence the radial
displacement field (u) at smaller and medium distances, introducing size-dependent and time-delayed
effects. However, their impact weakens at larger distances, leading to nearly uniform displacement
values. These findings highlight the critical role of nonlocal parameters in accurately capturing the
mechanical behavior of semiconductor materials.

1] + T T + T T T T . T
1.8 26 34 4.2
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0.22
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Figure 9. Nonlocal radial thermal stresses (7;-,-) for various length and time scale parameters.

The numerical results depicted in Figure 9 reflect the variation in radial nonlocal thermal stresses
(T,-) within a semiconductor medium, emphasizing the impact of the intrinsic length scale (£) and
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time scale (17). Notably, at a radius of r = 1, thermal stress remains at zero across all configurations.
This indicates that, at the gap surface, the nonlocal parameters do not influence the thermal stress (7}.-)
at this specific point.

As we move to greater radial distances, the effects of £ and n become increasingly prominent. At
r = 1.4, the thermal stress (T.) demonstrates a significant reduction, dropping from -0.952456 when
both ¢ and n are zero, to -0.761965 when set to & = 0.006 and 1 = 0.005. This notable decrease
highlights the size-dependent and time-delayed influences introduced by the nonlocal parameters,
which serve to alleviate the thermal stress distribution (7},.) within the material. This trend persists at
intermediate distances, such as r = 2.2 and r = 3. For instance, at r = 2.2, the thermal stress decreases
from -0.285536 to -0.228429 as ¢ and n are increased. Similarly, at r = 3, there is a drop from -
0.0567629 to -0.0454104. These consistent reductions indicate that as the radial distance increases, the
cumulative nonlocal effects of ¢ and 7 continue to effectively moderate the radial thermal stresses (T}.-)
in the semiconductor.

At larger distances, specifically at r = 4.6 and r = 5, the thermal stress (7T,,.) values shrink
significantly, and the discrepancies across the different configurations narrow even further. For
example, at r = 5, the stress value declines from -0.000831434 with £ = 0.000 and n = 0.000 to -
0.000665147 for £ = 0.006 and n = 0.005. This convergence at extensive radial distances implies that
the effects of nonlocal parameters tend to diminish as one moves further away, indicating a reduced
sensitivity of thermal stresses to size-dependent and time-delayed phenomena.

In conclusion, the observations affirm that both the intrinsic length scale (§) and time scale (1)
play critical roles in shaping radial nonlocal thermal stresses (T.-) at smaller and intermediate radial
distances, effectively reducing stress magnitudes through their nonlocal effects. Nevertheless, their
influence diminishes at larger distances, leading to a convergence of stress values. These findings
underscore the crucial importance of integrating & and 7 into models to accurately capture the thermal
stress behavior in semiconductor materials.

x 10725
0.7

N I — £=0.000, n =0.000
0.56
— £=0.002, n=0.000

042 + — £=0.004, n=0.001
£=0.004, n=0.003

0.28 +
— £=0.006, n=0.005

0.14 +

Figure 10. Carrier density (N)for various length and time scale parameters.

The numerical results displayed in Figure 10 illustrate the variation in carrier density (N) within
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a semiconductor medium as it responds to nonlocal parameters, namely the intrinsic length scale (£)
and time scale (7). These parameters play a crucial role in determining the behavior of carrier density
(N) across different radial distances. as noticed in Figure 10, at a radius of = 1, we observe that the
carrier density starts at 0.00162501 for the condition where ¢ and 1 are both zero. As the values shift
to £ = 0.006 and n = 0.005, the density (N) drops to 0.00130001. This notable reduction underscores
the substantial impact of nonlocal effects, reflecting the underlying size-dependent and time-delayed
interactions even in proximity to the origin.

Moving to intermediate distances such as r = 1.8 and r = 2.2, the trend of decreasing carrier
density (N) continues as both ¢ and 7 increase. For r = 1.8, the carrier density decreases from
0.379399 (when both parameters are at zero) to 0.303519 for £ = 0.006 and n = 0.005. Similarly, at r
= 2.2, we see a decline from 0.172419 to 0.137935 across the same parameter range. These
observations highlight the moderate influence that nonlocal parameters exert on carrier density (N) as
the radial distance increases, likely due to enhanced redistribution effects linked to the scaling factors
Eandn.

It can be seen from Figure 10 that at larger radial distances, particularly at r = 3.8 and beyond,
the carrier density (N) diminishes noticeably, and the differences between configurations become even
less pronounced. For instance, at r = 5, the carrier density decreases from 0.0005704 for £ = 0.000, n
= 0.000 to 0.00045632 for & = 0.006, n = 0.005. This convergence suggests that the influence of
nonlocal parameters significantly wanes in far-field regions, resulting in carrier density levels that
trend toward insignificance.

Accordingly, the intrinsic length scale (§) and time scale (1) significantly contribute to the
reduction of carrier density (N ) within the semiconductor medium, especially at smaller and
intermediate distances. These nonlocal parameters account for the size-dependent and time-delayed
effects that lead to a gradual decline in N as ¢ and 7 are increased. However, their influence diminishes
at larger distances, culminating in nearly convergent values for carrier density (N). These findings
emphasize the critical importance of incorporating nonlocal parameters into models to accurately
depict carrier transport in semiconductor materials.

8. Conclusions

We introduce the Nonlocal Moore-Gibson-Thompson Photothermal (NMGTPT) Theory, an
innovative framework that brings together spatial and temporal nonlocality to address the shortcomings
of both traditional and contemporary thermoelastic models. This theory is tailored for semiconductor
materials that exhibit microstructural effects, memory-related behavior, and phenomena driven by
photo-excitation. The major conclusions and results of this research are summarized as follows:

* In contrast to classical thermoelastic models, the NMGTPT theory integrates both spatial and
temporal nonlocality, which allows for a more precise depiction of long-range interactions and memory
effects in semiconductor materials.

* The introduction of the MGT thermal relaxation coefficient rectifies the unrealistic notion of
infinite heat propagation speed found in classical thermoelasticity, ensuring a thermal response that
has finite speed.

« Utilizing the AB fractional derivative significantly improves the model’s capability to account
for nonlocal and hereditary effects, making it especially suitable for materials that exhibit pronounced
memory characteristics.
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* The NMGTPT theory uniquely marries photothermal and photoacoustic processes, enabling a
holistic examination of photo-induced free carrier dynamics, heat propagation, and mechanical wave
movement within semiconductors.

* By integrating an internal length scale, the NMGTPT model adeptly captures size-dependent
phenomena, rendering it exceptionally relevant for nanostructured materials, thin films, and micro-
scale composites.

* The study assesses the impacts of C and AB fractional derivatives, revealing that AB-derived
models yield smoother and more realistic responses, whereas Caputo-based models demonstrate
sharper transient behavior.

* The NMGTPT model surpasses traditional frameworks by accurately forecasting stress
distribution, thermal diffusion, and carrier transport in semiconductor devices and optoelectronic
applications.

Despite its advancements, the NMGTPT model has limitations that need further investigation.
The inclusion of nonlocal interactions and fractional derivatives increases computational complexity,
requiring advanced numerical methods. It also relies on parameters that are not easily obtainable from
experiments, highlighting the need for further validation and calibration. While theoretically robust,
its accuracy in real-world applications remains unverified without experimental testing in
semiconductor materials. Additionally, its assumption of linear thermoelastic behavior limits its
applicability to nonlinear and multi-phase systems, posing a challenge for future development.

To enhance the NMGTPT model, future research should focus on experimental validation to
determine nonlocal and fractional parameters, extend the model to nonlinear and multi-scale
frameworks for complex interactions, and develop efficient numerical methods like finite element and
machine learning approaches. Applications in nanoelectronics, flexible electronics, MEMS/NEMS
devices, and quantum materials should be explored, alongside integrating electromagnetic interactions
to broaden its use in photonic and optoelectronic systems.
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