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1. Introduction

Since the 20th century, the probability theory has gained profound and extraordinary applications
in the fields of mathematical statistics, information science, finance, and economics. The probability
limit theory is an important branch of the probability theory. The probability limit theory has a broad
range of applications. In the course of development, many important theorems and concepts have been
proposed, such as the central limit theorem and the law of large numbers. These theorems are not only
important in theory, but are also widely used in practical applications. Under the classical probability
space, the mathematical expectation is additive, where one can solve many deterministic problems in
real life. However, with the development of the society, many uncertainty phenomena have appeared
in many new industries, such as insurance, finance, risk management, and other industries. In order
to solve these uncertainty phenomena, Peng [1-4] broke away from the theoretical constraints of the
classical probability space, constructed a sublinear expectation theoretical framework, and created a
complete axiomatic system, which provides a new direction for solving these uncertainty problems.

Many important results and theorems in classical probability spaces can be proven and applied
to the sublinear expectation spaces. Therefore, some important research directions in the classical
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probability space can also be extrapolated to the sublinear expectation space. More and more
scholars have begun to study the related theoretical achievements under sublinear expectations. For
example, Xu and Kong [5] proved the complete integral convergence and complete convergence of
negatively dependent (ND) random variables under sublinear expectations. Hu and Wu [6] proved
the complete convergence theorems for an array of row-wise extended negatively dependent (END)
random variables utilizing truncated methods under sublinear expectations. Wang and Wu [7] used
truncated methods to derive the complete convergence and complete integral convergence of the
weighted sums of END random variables under sublinear expectations. In addition, many scholars
have received numerous theoretical results about the law of large numbers and the law of iterated
logarithms from their investigations, and have obtained many theoretical achievements under sublinear
expectations. Chen [8], Hu [9, 10], Zhang [11], and Song [12] studied the strong law of large
numbers for independent identically distributed (IID) random variables under different conditions.
Wu et al. [13] established inequalities such as the exponential inequality, the Rosenthal inequality,
and obtained the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of
m-widely acceptable random variables under sublinear expectations. Chen and Wu [14] established
the weak and strong law of large numbers for Pareto-type random variables, so that the relevant
conclusions in the traditional probability space were extended to the sublinear expectation space.
Chen et al. [15] studied the properties associated with weakly negatively dependent (WND) random
variables and established the strong law of large numbers for WND random variables under sublinear
expectations. Zhang [16] studied the limit behavior of linear processes under sublinear expectations
and obtained a strong law of large numbers for linear processes generated by independent random
variables. Zhang [17] provided the sufficient and necessary conditions of the strong law of large
numbers for IID random variables under the sub-linear expectation. Guo [18] introduced the concept
of pseudo-independence under sublinear expectations and derived the weak and strong laws of
large numbers. Zhang [19] established some general forms of the law of the iterated logarithms
for independent random variables in a sublinear expectation space. Wu and Liu [20] studied the
Chover-type law of iterated logarithms for IID random variables. Zhang [21] studied the law of iterated
logarithms for sequences of END random variables with different conditions. Guo et al. [22] studied
two types of Hartman-Wintner iterated logarithmic laws for pseudo-independent random variables with
a finite quadratic Choquet expectation and extended the existed achievements.

The goal of this article is to prove the Marcinkiewicz-Zygmund type weak law of large numbers
for an array of row-wise WND random variables, and the strong law of large numbers for linear
processes generated by WND random variables under sublinear expectations. The rest of the paper
is as follows: in Section 2, we recall some basic definitions, notations, and lemmas needed to prove the
main theorems under sublinear expectations; in Section 3, we state our main results; in Section 4, the
proofs of these theorems are given; in Section 5, we conclude the paper.

2. Preliminaries
We use the framework and notation of Peng [1-4]. Considering the following sublinear expectation

space(Q, H,E), if X, X,,--- ,X, € H, theny (X,, X5, ---, X,,) € H for each ¢ € CpLip (R"), where
Cy,1ip (R") denotes the linear space of functions  satisfying the following bounded Lipschitz condition:

Wl <C, W) -¢yWI<Clx—yl, Yx, yeR",

AIMS Mathematics Volume 10, Issue 3, 7540-7558.



7542

where the constant C > 0 depending on .
Definition 2.1. [4] A sublinear expectation E is a functional :  — R satisfying the following:
(a) Monotonicity: BX) <BY)ifX<Y;
(b) Constant preserving: E(c) = ¢ for ¢ € R;
(c) Sub-additivity: For each X, Y € H, BE(X + Y) < B(X) + E(Y);
(d) Positive homogeneity: B(1X) = AB(X), for A > 0.
The triple (Q, H, E) is called a sublinear expectation space.
Through a sublinear expectation , we can use £X = —B(-X),VX € H to define the conjugate
expectation of .
From the above definition, for any X, Y € H we obtain the following:

EX)<EX),EX+0)=EX) +c,

EX-V|<EX-Y,EX-EW<EX-Y).

Definition 2.2. [23] A function V : ¥ — [0, 1] is said a capacity satisfying the following:

@ V(@) =0,V =1

(b)V(A)<V(B),YACB,A,BeT.

It is called to be sub-additive if V(AU B) < V(A)+ V(B) forany A, B€ ¥ with AU B € F. Let
(Q, ‘H, E) be a sub-linear expectation space; we define capacities of a pair (V, V) by the following:

V(@A) := inf{E(f) o P < 7{}, VA =1-V(A°), VAeTF.
From the above definition, we have the following:

E(f) VA <EW, if f<IA)<h fi, heH. 2.1)

Because V may be not countably sub-additive in general, we define another capacity V*.
Definition 2.3. [19] A countably sub-additive extension V* of V is defined by the following:

V*(A) = inf {Z V(A,) : A C UA,,} CVH(A) = 1 — V(A9),A € F.

n=1 n=1

Then, V* is a countably sub-additive capacity with V*(A) < V(A) and the following properties:
(a) If V is countably sub-additive, then V* = V;
(b) If I(A) < g, g € H, then V*(A) < E(g). Furthermore, if F is countably sub-additive, then

E(f) V(A < V@A) <B(g), Vf<IA)<g f.geH,
(c) V* is the largest countably sub-additive capacity satisfying the property that V*(A) <
E(g)whenever I(A) < g € H (i.e., if V is also a countably sub-additive capacity satisfying V(A) < E(g)
whenever I(A) < g € H, then V(A) < V*(A)).

Definition 2.4. [24] In a sublinear expectation space (Q, H, E) let ¢ be a monotonically bounded
function if for any X, Y € H that satisfies

Ble(X + V)] < B[Ble(x + V)] ex], (2.2)
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then the random variable Y is said to be  WND on X under sublinear expectations. {X;,i € Z} is
said to be a sequence of WND random variables if X, is WND on (X, Xp-n+1,--.,Xm-1) for
any m € Z,n € N*,

Remark 2.1. By Chen [15], if {X,,n > 1} is a sequence of WND random variables under sublinear
expectations, then for any X, € H, 1 < k < n, we have the following:

exp (Z ch)] < l_[ E[exp(cXy)], VceR. (2.3)
k=1

k=1

E

Definition 2.5. [3] The Choquet integral of X with respect to V is defined as following:

00 0
Cv(X) = f V(X > t)dt + f [VIX > -1]dt
0 —c0

Usually, we denote the Choquet integral of V and V by Cy and C+, respectively.
Definition 2.6. [25] If a sublinear expectation [ satisfies E[X] < Z B[X,] < oo, then E is said to be
n=1

countably sub-additive, where X < Z X, <00, X, X,eH,and X, X, >0,n > 1.
n=1
Next, we need the following notations and lemmas. Let C be a positive constant that takes on

different values in different places as needed. /(A) stands for the indicator function of A. Given a
capacity V, a set A is said to be a polar set if V(A) = 0. Additionally, we say a property holds “quasi-
surely” (q.s.) if it holds outside a polar set. In this paper, the capacity V is countably sub-additive and
lower continuous. Similar to Hu [10], we let ®. denote the set of nonnegative functions ¢(x) defined
on [0, c0), and ¢(x) satisfies the following:

(o8]

1
(1) Function ¢(x) is positive and nondecreasing on (0, o), and the series Z )
ng(n
n=1

(2) For any x > 0 and fixed a > 0, there exists C > 0 such that ¢(x + a) < Ce(x).
For example, functions (In(1 + ) and x*(a > 0) belong to the ®..
Lemma 2.1. [8] (Borel-Canteli’s Lemma) Let {A,,n > 1} be a sequence of events in ¥. Suppose that

< 005

V is a countably sub-additive capacity. If Z V (A,) < oo, then

n=1

V@A, io)=0

(o] [ee]
where {4, i.0. :ﬂUA,
=1

n=1 i=n

Lemma 2.2. Let {X, X,,,m > 1} be a sequence of random variables under the sublinear expectations
space.
(1) Chebyshev inequality [8]: Function f (x) is positive and nondecreasing on R; then

E[f (0] lf 0]
—_— X —_—.
foo o TEEYETR

(2) C, inequality [3]: Let X1, X5, - -+, X,, € H for m > 1; then

VX =x) <

BIXi + X+ + X[ S CBIX [ +BIXof + - + BIX,[],
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where

1 <1
Cr:{ » O<r<1,
m=', r>1.

(3) Markov inequality [8]: For any VX € H, we have

E (X
V(X = x) < (|p|), Vx> 0,p>0.
X

Lemma 2.3. [26] Let {x,,,m > 1} and {b,,,m > 1} be sequences of real numbers with 0 < b,, T co. If

o) m

m o1
the series ; Z—m < o0, then r}l1_r)r010 E ; x; =0.
Lemma 2.4. [21] Suppose that E is countably sub-additive; then, for any X € H, we have E(X)) <

Cy(1XD).
Lemma 2.5. Let {X,;,1 <i <k, n>1} be an array of row-wise random variables under sublinear
expectation (Q, H, ) and supCy ((|X,lP = ¢)*) = 0,¢ — o0,p € (0,2); if B is countably sub-additive

i>1

for any X,; € H, then we have supF [(|X,[> — ¢)*'] = 0, ¢ — .

i>1

Proof. From Lemma 2.4, we have E(IXI) < Cy(IX]). Let X = (IX,;]° — ¢)*; then, we have

supl (X" = )" [ < supCy (Xl = ©)").

i>1

Thus, we get suplE [(1XlP —¢)"] = 0,¢ — oo.
i>1
Lemma 2.6. If {X,;,1 <i<k,n>1}is an array of row-wise random variables under sublinear

expectations, and supCy ((|(X,;[° — ¢)") — 0,¢ — oo, p € (0, 2), then we have the following:

i>1

lim quxn,w > ak,) = a>0.

n—0o0o

Proof. From the condition supCy ((|X,;[> — ¢)*) — 0,c — oo and the definition of a Choquet integral,
izl
it follows that for any a > 0, we have the following:

2 &
— P
Zvax,a > aky) < Zf V (X, = at)dt

< 2supf V (|1 X,,il°P > at) dt
kn

< 2sup f V (1X,lP > at) dt
kn

i>1

© 1 k,
= 25upf V(—IX,,,-Ip - > t) dt
i>1 Jo a 2

2 k,\"
= ZsupCy [(|Xm-|*’ e ) ]
i>1 2
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When k, — oo, we obtain the following:

& 2 ak, \*
ZV('anlp > ak, ) < —SUPCV [( ni n) ] — 0.

=1 a >
Thus, the proof of lim Z V (IX,;[° > ak,) = 0 is finished.
n—o00 1
Lemma 2.7. [10] If E|X| < co, then |X| < o0, q.s.V.

1
Lemma 2.8. [10] Suppose ¢(x) € @.; then, Z — < 0.

n=1 n¢(ln(f+n))
Proof. Since ¢(x) € ®., we have ¢ (1n({1+n)) #(/n); it is only necessary to show that Z

n(\/_)

1
From Z nb00) < oo, we obtian the following:

)

n=1 i=1 2<n<(i+1)?

n¢(\/_ ) Zld)(l) Z,2¢(,)

Then, the Lemma 2.8 is proven.
Lemma 2.9. [10] If {g;,i € Z} is a sequence of random variables, and there exists a constant ¢ > 0

such that |g,| < ln(szn), Vn > 1, supE[lelo(lel)] < oo, ¢p(x) € B¢, and {a;, i > 0} is a sequence of real
i€Z
numbers, a,_; = Z a;, T = sup|ay| < oo, then for any t > 1,
r=0 k=0
N tin(1 +
suptin(1l + n)|a,_;|E [lgilln(l n( n)l Al ,|)] n— oo. 2.4)
1<i<n

2cn
Proof. Becase |g,| < Tl +n),\7’n > 1, then

tIn(1 +
- 1n(1 ; an_,-na,w)
n

tIn(1 + tIn(1 + 2
et 1+ 22X ) 1 < )+ e 14+ 2D ) 1t < jed < =),
n n In(1+n)]"

Let I; = |gj| ln(l + —‘1"(:l+”) Ia,,_,-lle,-l)l(ls,-l < n%), since T = sup|ay| < oo, when n — oo, we have
k>0
tT In(1 +
I < n -ln(l + M)
ns
In(1 +
< pind+n)

1
ns3

(2.5)
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Let I, = leln(1+2 g, lel)I(n <led < 722), and [(x) = 22; thus, we obtian the
following:
ln 1 + tT In(1+n) . 2cn
n In(1+n
I < ledg(lei) ( - )
¢(n3)
In (1 + 2¢tT)
< lelp(le)———F—
¢(n3)
In (1 + 2¢tT)
< ledg(lel) — - (2.6)
In(1 +n)l (n?)
Since ¢(x) € d,, the function /(x) = ln(fij—)x) — o00,x — oo; then, combining (2.5) and (2.6), when

n — oo, we have the following:

. tin(1 +
suptin(l + n)la,|E [Ieil In (1 + MIotn-illeil)]
1<i<n n

,(In(1 + n))? tTIn(1 + n)In (1 + 2¢tT)

<(T)*———— + supE [leilg(lsi)] —
ns 1<i<n ln(l + n%)l (n%)
2
<(TY? (In(1 —rn)) + supfh leid(eD] tTIn(1 + n) l?(l +l2ctT)
n3 i€z In(1 +n3)l(n3)

—0.

Thus, the proof is finished.

n—i

Lemma 2.10. [16] Suppose that {@;,i > 0} is a sequence of real numbers, a,_; = Z a;, T = suplay| <

p—r k>0
0. {g;, 1 € Z}1s a sequence of WND random variables under the sublinear expectation space (Q, H, E)
Ble] = i, supE [leilp(lei)] < o0, d(x) € D¢, and there exists a constant ¢ > 0 such that |g; — 1| < ln(zl"ii),
i€Z
Vi > 1; then, forany t > 1,
. tin(1l + n) <
supf [exp [M > anite - ﬁ)) < co. 2.7)
n>1 n =1
Proof. For any x € R, we have the inequality e* < 1 + x + |x|In(1 + |x])e?M. Let x = Wan_i(si - j);
then,
tIn(1 + n) _
Xp|———an-i(&:i — 1)
n
tin(1 + tin(1 +
<l+ Mdﬂ—i(&' -+ n(—n)an—i(si - ﬁ)|
tIn(1 + 2tIn(1 +
In (1 N L P )exp (Man_i(si - /1)) | 2.8)
n
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Since T = sup|ay| < oo, for any i < n, we have the following:
k=0

tIn(1 + n) | tIn(l+n) . 2ci
—— —a, (s - )| < T _ < 2etT. 2.
i (81 = 1) 7 mi =" 2.9)

By supl [|eip(€i])] < oo and ¢(x + a) < C¢(x), we have the following:
i€Z

supE [le; — il ¢ (le; — @] < supE [(le + |a) ¢ (el + )] < CsupE [(&] + | plei)] < oo

i€Z i€Z i€Z,
Thus, {€; — f1,i € Z}satisfies the conditions of Lemma 2.9; furthermore, we have

tln(1 + N tin(1 + C
sup 20t [|el- T 1n(1 + 0y e, —p|)] <= (2.10)

1<i<n
Taking [ for both sides of (2.8) and combining (2.9) and (2.10), we have the following:
N [ (tln(l +n)
p —_—

n

C 4c T

C
E [ex a,_i(& —ﬁ))] <1+ =e*T <en
n

From (2.3), we obtain the following:

E [eXp (@ Z an-i (&; — ﬂ)]

i=1

3. Main results

Theorem 3.1. Let {k,,n > 1} be a sequence of positive numbers, and lim k, = co. Assume that B is

countably sub-additive. For any i,n > 1, BX,] = i S[Xm] =
(1) Let {X,;,1 <i<k,n>1} be an array of row-wise random variables under the sublinear
expectation (Q, H, E). Suppose that sup Cy ((|X,u]> — ¢)*) = 0,¢ — oo for any p € (0, 1); then,
i>1
kl‘l
Z Xni

limV[ :
= e

(2) Let {X,;,1 <i<k,,n>1} be an array of row-wise WND random variables under sublinear
expectation (Q, H, E). Suppose that supCy ((|X,:[° — ¢)*) = 0,c — oo for any p € [1,2); then,
i>1

,}E?OV[{ ZX lliﬁni+s}U{ ZX ) —g}]:o. (3.2)

(k )p i=1 n)P i=1 (k )p P (k) —ni

For a fixed n > 1 in Theorem 3.1, we obtain the Corollary 3.1.

> 8) =0. (3.1
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Corollary 3.1. Assume that E is countably sub-additive.
(1) Let {X;,i>1} be a sequence of random variables under the sublinear expectation
space (Q, H, E). Suppose that supCy ((IX;]P — ¢)*) = 0,¢ — oo for any p € (0, 1); then,
izl

. 1
JEE‘OV(H—; >

i=1

X;

> 8) =0. (3.3)

(2) Let {X;,i > 1} be a sequence of WND random variables under the sublinear expectation
space (Q,H,E) and for any i > 1,E[X;] = &, 8[X/] = I Suppose that supCy ((XiP —¢)") —

i>1

0,c — oo forany p € [1,2); then,

limV[{ ZXzil’ }U{i]znlx,-si ”# }]:0, (3.4)
n—eo npll ne P 7

1
i=1 nr -1 nre ;-

Theorem 3.2. Suppose that I is countably sub-additive. Let {e;, i > 0} be a sequence of real numbers

satisfying Z iy < oo, Z a; =A >0, and {¢g;,i € Z} be a sequence of WND random variables under
i=0 i=0
sublinear expectations satisfying Ble] = ﬁ,é[si] = U, supE [ledp(le])] < o0, € De. {X,t > 1} is a
- ez
sequence of linear processes satisfying X; = Z «;&_;. Note that T,, = Z X;; then,
i=0 t=1

T, T,
Y ({hm inf - < A,u} U {lim sup —= > A,a}) = 0. (3.5)
n—o0 n n

n—oo

Remark 3.1. Under the sub-linear expectations, the main purpose of Theorem 3.1 is to extend the
range of p and improve the result of Fu [24] from the Kolmogorov type weak law of large numbers to
the Marcinkiewicz-Zygmund type weak law of large numbers.

Remark 3.2. Under the sub-linear expectations, the main purpose of Theorem 3.2 is to improve
the result of Zhang [16] from IID random variables to WND random variables under a more general
moment condition.

4. Proof

The proof of Theorem 3.1. (1) For a fixed constant ¢, let ¥,,; = ((—¢) \VV X)) Acand Z,; = X,,; — Y.
Using the C, inequality and the Markov inequality in Lemma 2.2, we obtain the following:

kn kn
| Y il |Z,i
ZXm >e|<V T > E +V T > 5
(k )p - (ky)? (kp)®
vl 8, Zp ille
ko™ 2) ke |G
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c e » & .
V| 25|+ o 2 EIZ]
(kq)» iy
20
<V Cl_ S —supE [|Z,:"] .
k)p™'  2) &P
Thus,
k)'l 2p
lim V| —— > Xl > 8| < Ssupf[1Z,]. 4.1)
e k)P [ & izl
Therefore,

|Zil? = 1ZulP L (1Xil < ©) + | ZulPT (1Xil > ©)
= ZulP 1 (Xi > ©) +1Z,ul" 1 (Xpi < =)
= X =PI (Xpi > ©) + [ Xpi + clPI (X, < =€)
< (1Xuil = L (Xl > ©)
< C(IXul’ = o).

Taking E for both sides of the above inequality, when ¢ — oo, we have the following:

supE [1Z,] < Csupl (X, = ¢)*) < CsupCy ((IX,ul® = )7) — 0. 4.2)
i>1 i>1 i>1
Substituting (4.2) into (4.1), we get that (3.1) holds.
(2) When 1 < p < 2, we construct a function ¥(y) € Ci(R); for any £ > 0, we have ¥(y) = 0 when
y<0,0 <Yy <1when0 <y<eg and ¥(y) = 1 wheny > &. It is obvious that I(y > &) < Y¥(y).
Let Y,; = X, — [i,;; then, we have the following:

| &

V 1
(kn)P =1

Ym-Ze]sE

Il

&
—_—N—

[es}]

s
—

[E—

1=

5

bl

(k)? S

} . 4.3)

Leth(y)=E [‘P (y 4 Lo ]; by Definition 2.4 and the sub-additivity of E, then we obtain the following:
(k)P

= )

TEnS

N 1 &
Ble|— ) v,
: ( 2, ) (ko)r

(ko)? S
8 EHN Y"ml)
(ky)?
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<sup {A(y) = ¥(»)}

yeR

=sup {E [‘I’ (y + Ynml )] - ‘I’(y)}
R (k)7

Yl’ll’ﬂ
1) - ‘I’(y)] .
(ky)P

4.4)

Let g(x) € Ci1ip(R); for any x, we have 0 < g(x) < 1, g(x) = 1 when |x] < y, and g(x) = 0

when |x| > 1. Then, we have the following:

I(x] < o) < g() < [l < 1),
(x> 1) < 1 - g(x) < [ > o).

For any 1 < m < k,, there exist A, A, € [0, 1] such that
Ynm ’ Ynm Y 4 Ynm
‘P()’+ 1)—‘I’(Y)=‘P(‘/) 1+[‘P[y+/1nm )—‘P(‘/))—l,
(ky )P (ky )P (k)7 (kp)?

Yum Yum Yum
\P (y + /1nm ) \P ()’) (y + /lnm/lnm ) /lnm_l-
k)P (ky)? (k)?

(4.5)

(4.6)

Since W(y) € C?(R) , then we have [¥(y)| < sup[¥(y)l < C [¥'(y)| < sup/¥'(y)| < C and [¥" ()| <

yeR yeR

sup|¥”(y)| < C. Combining (4.5), (4.6), and the Cr-inequality in Lemma 2.2, then for any & > 0, we

yeR
have the following:
Ynm
¥ (y +— ) -Y©»)
fen)?
’ Y ’ Y
<¥ (y) +‘P[y+/lnm ]—‘I’(y) |”’”1|
2)? K)? (k)7
Yum Yum . 1
<Cc—" | [yunm ] Y )‘ ok (Xl > 50K
(k)7 k)? (kn)?
Y Y
+ ¥ [ymnmanm ] PWLLCE 11Xl < 6(k,)7)
(ka)? )P
Y 2C 1 c 1
<C= b = Xl (Xl > 6k} ) + = - [l (1Xom| > 6k,)7 )
)t (ko) ()P
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2C

1 c 1
—— X1 (Xl < 6067 ) + = - ol (Xoum] < 6(k)? )
(ks )? (ky)?
Y 2C 1 2C|itpm
ccXm 2 P (Xl > 6(h)) + Pl
(kp)yr  Knd® (k) 5P
2C6%P 2C
+ : |Xnm|p + 5 |/'_lnm|2
n (ky)?
Yom 2C 1
<C | (Xl = k)" + Kl (Xl > 6(K)7 )|

Gk R0

2C |t 2C6%P 2
+ M - 1X, + ¢ : |Xnm|p + Cz ' |/~_lnm|2
(k,)p*'op n (k)P

(Xonl? = k)" + =01 (ol > 66K?)

+

Tk 0!
2C |t 2C6%P 2C
# - 1X + . |Xnm|p + .
(k)™ 60 " (k)7
Y 2C 2C Xoum

<C 1 t— 1 (|Xnm|p k ) + P 1- 1

(kyyr  Kn0®” W PR
2C |t 2C6%7P 2C
+ # N XmlP + N XmlP + >
(k)7 0P " (k)7
Substituting (4.4), (4.7), into (4.3), then combining (2.1) and (4.5), we obtain the following:

ZY,,,>5]

2

(k )p i=1
2C
- — 1% PSP
<o SUpB (Xl = k)" + 2 ZV<|Xnm| > W08k
2Clfn i _
+ 2]y (X, ) + 26577 - SupCy (XolP) + —o - i

(k,)poP m=1 m=1 (k,)»~

Taking the limit of the above inequality at both sides, then by Lemma 2.6, we obtain

lim V Z Y, > &| = 2C8% PsupCy ((Xml?) -
n—oo (k )p P m>1

Because supCvy((|X,| — ¢)*) — 0,c — co means supCy (|X,,,|P) < oo, and from the arbitrariness of ¢,

m>1 m>1
we obtain the following:

lim V

n—oo

ky,
Z ) - 0. (4.8)
i=1

1 @ 1 &
X, < - u o - 8) =0. 4.9)
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Using the sub-additivity of V and combining (4.8) and (4.9), we obtain the following:
e k
Xni > Xni < u }J =
{(k)p; (k)P; }U{(k)"zz; (k)PlZ‘_

The proof of Theorem 3.1 is completed.
The proof of Theorem 3.2. To prove Theorem 3.2, we only need to show that

3

IimV

n—oo

T,
\Y (lim sup — > Aﬁ) =0, (4.10)
n—oco N
and
T,
V(hmlnf— <A,u):0 “4.11)
n—o00 n

First, we prove Eq (4.10); then, we need to show that

T,

V(limsup — > A+ e) =0, Ve>O0.
n—oo n

It is obvious that

=

(o)

- Z PN
t=1 i=0
n n—i
a;&—; + Zsiz a;:=N,+M,.

t=1 i=t i=1 t=0

=

Mg

It is only necessary to show that

N,
lim — =0, q.s.V, 4.12)
n—oco n
and
. M, _
V(hmsup— >A,u+e):0, Ve > 0. (4.13)
n—oo0 n

To prove(4.12), we need to prove lim Z a;g—; = 0,q9.s.V.
t—o0 &

=t
For any € > 0, using the Chebyshev inequality in Lemma 2.2, and the countable sub-additivity of
I, we obtain the following:
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A

o

S

&

)
|M
INg

B

1 . (o)
supBle] ) ilai] < oo,

€ icz 1

>6]=0.

lim ;& = 0, qSV
t—oo -
=t

By Lemma 2.1, it follows that

(o)
E ;&

i=t

A\ (lim sup

t—o0

Therefore, by the arbitrariness of €, it follows that

n—i

Thus, (4.12) holds. Let a,,_; = Z a; and T = sup |a;| < co; we prove Eq (4.13) in two steps.
p—r k=0
2ci

Step 1: If for any i > 1 we have |g; — 1] < ma € > 0, then we can directly utilize the conclusion
of Lemma 2.10; for any t > 1, we have the following:

supE [eXp [@ Z an-i (& — /_l))

n>1 =1

< 00.

n n

Z i Z an-i(g; — 1)

Since lim — = A, then V| lim sup = sel=0is equivalent to (4.13). Choosing a

n—oo n 00 n

suitable t, such that t > %, using the Chebyshev inequality in Lemma 2.2, we have the following:
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D, dn-ile; = ) tn(l +n) } a,-i(e; = i)
ViEL > el=V =l > etin(l + n)
n n

<

supE

i=1

(1 +n)t s

By Lemma 2.10 and the convergence of infinite series Z we obtain the following:

1
(1 + )

n

. Zan (i = 1) . -
ZV >€ Z} d1nr tSlE)E [eXp (@ Zan i(&i — ,U)J

n=1 i=1

< 00.

By Lemma 2.1, it follows that

Vi{limsup —— > €| = 0.

n—00 n

Therefore, (4.13) is proven.

Step 2: Assume that {g;,i € Z} only satisfies the conditions of Theorem 3.2. Let g(x) € C;1;,(R);
for any x, we have 0 < g(x) < 1, g(x) = 1 when |x| < u, and g(x) = 0 when |x| > 1. Then we have the
following:

I(]x] < p) < g(x0) < I(|x] < 1),
I(|x| > 1) <1 —g(x) < I(|x| > w).

(#(Si—ﬁ)iln(l +i) )] (M(S:—M) 1n(1+l))

(4.14)

+ i; for any i > 1, we have B (&) = [

n

Let é,‘ = —E [(8,‘ - ﬂ)g + (81 ,Lt)g

and |&; — | < ln(zlcj—z) Then, {&;,i > 1} satisfies the conditions of Lemma 2.10. Let M, = a,_;&;;

i=1
similar to the proof of step 1,we obtain the following:

M,
V(lim sup — > Al + e) =0, Ve>0. (4.15)
n

n—oo

By the definition of &;, we have the following:

_ (i =@ In(1 + )
(& —,u)g( ; )

8i:§i+E

.o [1 _ g(u(a- ~)In(1 + z‘)) |

1
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Since T = sup |ai| < oo, then we have the following:

k>0
M, T < (e = @ In(l + i)
k- +;;E[(5i_ﬂ)g( ; )
T < _ (g — @) In(1 + i)
+;;<si—u>[1—g( l. )
Note that
El(& _ﬁ)g(m —ﬂ)iln(l + i)) <2e —m(l ~ g(ms,- —ﬂ)iln(l + i)))}_

Substituting (4.17) into (4.16), we only need to prove

1. s — @) In(1 +i
1im—ZE[lsi—p|(1—g(’“‘(‘9 mInt ’))) -0,
noe AT !

and
1 ¢ i— @ In(l +i
lim = |gi—p|[1—g(”(8 A In( “)) -0, qs.V.
n—oo N} l
i=1

By (4.14), we have the following:

_ p(e; — @) In(1 + 1)
le; — il 1—8( ; )

) ) i
slsi—ull(|8i‘“|>1n(1+i))_ ¢(—)

In(1+i)

Then, combining supE [le; — @l ¢(le; — @l)] < oo and Lemma 2.8, we obtain the following:

i€Z
Z %E ['81' - Al (1 —g (“(31' - ﬁ)iln(l + i)))

i=1

<supB [Je; — ilg(le; — )] Y ———
iz i1 19 (ln(1+1))

<00.

By Lemma 2.3, (4.18) holds.
Since E is countably sub-additive, we have the following:

e 1 i — ) In(1
a Z;m—m(l—g(“@ ) In +z)))

i=1

(o)

2

~|»—

From Lemma 2.7, we obtain the following:

Z %l«%‘ — (1 - g(,u(si _ﬁ)l.ln(l i i))) <oo, @s.V.
i=1

_ lei— Al (e~ i)

[Iel ( g(,u(si—ﬂ)ilﬂ(l +i))) “ o

(4.16)

(4.17)

(4.18)

(4.19)
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By Lemma 2.3, (4.19) holds. Combining (4.14), (4.18), and (4.19), it follows that (4.13) holds .
Similarly, for {—¢;,i € Z}, and Bi(-g) = —i1, we obtain the following:

T
V(lim inf = < Au) =0.

n—oo N

Using the sub-additivity of V, the proof of Theorem 3.2 is completed.
5. Conclusions

In the framework of sublinear expectations, we established the Marcinkiewicz-Zygmund type weak
law of large numbers, and the strong law of large numbers for WND random variables using the
Chebyshev inequality, the C, inequality, and so on. Theorem 3.1 extends the result of Fu [24] from the
Kolmogorov type weak law of large numbers to the Marcinkiewicz-Zygmund type weak law of large
numbers. Theorem 3.2 extends the result of Zhang [16] from IID random variables to WND random
variables under a more general moment condition. In the future, we will try to develop broader results
for other sequences of dependent random variables under sublinear expectations.
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