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1. Introduction

Probability distributions are very important in modeling and fitting random phenomena in all
areas of life. In the literature on distribution theory, there are various probability distributions for
analyzing and predicting multiple kinds of data in many sectors, including life, biology, medical
science, insurance, finance, engineering, and industry [1–9]. Based on existing findings, industrial
data often exhibits a thick right tail, and many authors have developed several well-known right-skewed
families. Afify et al. [10] defined the power-modified Kies-exponential distribution. Coşkun et al. [11]
introduced the modified-Lindley distribution, and Gómez et al. [12] proposed the power piecewise
exponential model. In addition, Dhungana and Kumar [13] proposed an exponentiated odd Lomax
exponential distribution, while Hassan et al. [14] introduced the alpha power transformed extended
exponential distribution. In the same line, Karakaya et al. [15], presented a unit-Lindley distribution,
and Tung et al. [16] developed the Arcsine-X family of distributions.

To bring further flexibility to these generated distributions, various approaches of well-known
models have been defined and used in several applied sciences to allow the smoothing parameter to
vary across different locations in the data space. One of the new model-generating techniques is the
error function (EF) transformation, which was first proposed by Fernández and De Andrade [17]. The
cumulative distribution function (CDF) and the corresponding probability distribution function (PDF)
of the EF transformation are as follows:

∆(y) = erf
(

H(y)
1 − H(y)

)
, y ∈ R, (1.1)

and

δ(y) =
2h(y)

√
π(1 − H(y))2

exp

−
(

H(y)
1 − H(y)

)2
 . (1.2)

The EF transformation is a novel method for generalizing a given model, which transforms a
distribution without adding any parameters. It is a modified version of traditional probability
distributions for the relative importance or worth of data points. This strategy improves flexibility,
allowing analysts to better explain real-world scenarios in which traditional random sampling fails to
capture the underlying data structure. The derivation of the new attractive EF transformation to modify
the existing distribution helps the fitting power of the existing distributions. The proposed method
has many applications that extend to fitting, especially in industrial domains. However, recent works
considering the EF technique, such as [18, 19].

The inverse Weibull (IW) distribution is widely used in reliability and lifetime modeling for
mortality rates, especially when studying extreme events. Since it captures tail behavior effectively,
it is effective in understanding the upper quantiles of life expectancy or survival time. The CDF of the
IW distribution, denoted as G(x), is defined as follows:

G(x) = e−θx
−β

, ; x, θ, β > 0. (1.3)

In reference to G(x) as stated in Eq (1.3), the PDF g(x) is formulated as:

g(x) = θβ x−(β+1) e−θx
−β

. (1.4)
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The IW model has undoubtedly established itself as a crucial tool for data modeling across nearly
all sectors. However, despite its widespread use and advantages, the IW distribution is constrained
by its inherent limitations. One of the primary constraints of the IW distribution is its capacity to
represent solely monotonic forms of hazard functions, as it can only model situations where the hazard
rate increases or decreases consistently over time. More papers have used the IW model for many
different statistical models, such as the following : Alzeley et al. [20] discussed statistical inference
under censored data for IW model, Hussam et al. [21] discussed fuzzy vs. traditional reliability models,
Ahmad et al. [22] derived the new cotangent IW model, Mohamed et al. [23] discussed Bayesian and
E-Bayesian estimation for an odd generalized exponential IW model. Abdelall et al. [24] introduced
a new extension of the odd IW model. Al Mutairi et al. [25] obtained Bayesian and non-Bayesian
inference based on a jointly type-II hybrid censoring model. Hassan et al. [26] discussed the statistical
analysis of IW based on step-stress partially accelerated life testing. Alsadat et al. [27] presented novel
Kumaraswamy power IW distribution with data analysis related to diverse scientific areas.

In this paper, we focus on providing a new form of the IW distribution for analyzing the datasets
of different areas and highlighting specific characteristics. We extend this distribution by using the
approach discussed in equation (1.1), and the resultant distribution is named the error function inverse
Weibull (EF-IW) model. This heightened flexibility allows for a better fit to datasets with diverse
kurtotic characteristics, enhancing the model’s applicability across various scenarios. Further, the key
objectives of the current study are as follows.

(1) The primary objective was extending the EF-IW distribution using the error function method,
allowing for the derivation and investigation of its essential mathematical characteristics.

(2) The second main goal was to estimate the models’ parameters using two different estimation
methods, such as the maximum likelihood estimator (MLE) and Bayesian estimator, under
different loss functions via Metropolis-Hastings (MH) algorithms. We conduct a detailed
simulation study to demonstrate the behavior of derived estimators and pinpoint the most efficient
estimation method.

(3) Two data sets from the industry field are utilized to illustrate the applicability and utilization of
the proposed distribution.

The following is the organization of the study. Section 2 introduces the model description and
the extension distribution, while Section 3 discusses various statistical properties such as moments,
quantiles, and moment-generating functions. In Section 4, parameters are estimated using two different
estimation methods. The performance of the EF-IW distribution using simulation is carried out and
illustrated using three real industrial data sets in Sections 5 and 6, respectively. Finally, Section 7
presents the concluding remark of the paper.

2. Model construction

Here, we provide the inverse Weibull distribution as a classical distribution. Plugging Eqs (1.3)
and (1.4) into Eqs (1.1) and (1.2) gives the CDF and PDF of the new EF-IW model:

Ξ(z) = erf
 e−θz

−β

1 − e−θz−β

 , z, θ, β > 0, (2.1)

AIMS Mathematics Volume 10, Issue 3, 7463–7488.



7466

and

ξ(z) =
2θβ z−(β+1) e−θz

−β

√
π(1 − e−θz−β)2

exp

−
 e−θz

−β

1 − e−θz−β

2 , (2.2)

where erf(x) =
2
√
π

∫ x

0
e−z2

dz. The plots of the EF-IW PDF for some parameter values given in

Figure 1 reveal that this function can be decreasing, unimodal, and skewed depending on the parameter
values.
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Figure 1. PDF curves for the EF-IW model based on various selected parameter values.

Suppose the random variable Z has a CDF denoted by Ξ(z). Then, its survival function (SF) and
hazard rate function (HRF) can then be expressed as

S (z) = 1 − erf
 e−θz

−β

1 − e−θz−β

 , (2.3)
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and

h(z) =
2θβ z−(β+1) e−θz

−β

√
π(1 − e−θz−β)2 [1 − erf (t)]

exp {−t}, (2.4)

with t =
 e−θz

−β

1 − e−θz−β

2

.

Next, the cumulative hazard rate function (CHRF) and reversed hazard rate function (RHRF) of the
random variable Z can be expressed as

H(z) = − log
1 − erf

 e−θz
−β

1 − e−θz−β

 , (2.5)

and

R(z) =
2θβ z−(β+1) e−θz

−β

√
π(1 − e−θz−β)2 erf

 e−θz
−β

1 − e−θz−β

 . (2.6)
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Figure 2. HRF curves for the EF-IW model based on various selected parameter values.

AIMS Mathematics Volume 10, Issue 3, 7463–7488.



7468

Figure 2 shows HRF plots of EF-IW for different sets of parameter values. It has increasing,
unimodal, and decreasing shapes.

3. Statistical properties of the EF-IW distribution

3.1. The quantile function

The quantile function Ξ−1(u) holds significant importance in simulation studies across various
disciplines due to its ability to generate random variables with desired distribution characteristics .The
quantile function of the new EF-IW model can be expressed as

Ξ−1(u) =
[
−

1
θ

log
(

erf−1(u)
1 + erf−1(u)

)]−1/β

, 0 ≤ u ≤ 1, (3.1)

where erf−1(x) = Φ−1(x) is the standard normal quantile function.
Proof. By setting the Eq (2.1) equal u, we get

erf
 e−θz

−β

1 − e−θz−β

 = u,

e−θz
−β

1 − e−θz−β
= erf−1(u),

e−θz
−β

(1 + erf−1(u)) = erf−1(u),

e−θz
−β

=
erf−1(u)

1 + erf−1(u)
,

θz−β = − log
(

erf−1(u)
1 + erf−1(u)

)
,

z =
[
−

1
θ

log
(

erf−1(u)
1 + erf−1(u)

)]−1/β

.

The quantile function can be used to compute the first, second, and third quantiles by replacing u
with 1

4 , 1
2 , and 3

4 .
Additionally, the Bowleys skewness (N) and Moors kurtosis (M) of the EF-IW model are described

as

N =
Ξ−1(1/4) + Ξ−1(3/4) − 2Ξ−1(1/2)

Ξ−1(3/4) − Ξ−1(1/4)
,

and

M =
Ξ−1(7/8) − Ξ−1(5/8) + Ξ−1(3/8) − Ξ−1(1/8)

Ξ−1(6/8) − Ξ−1(2/8)
.

3.2. Mixture representation of the EF-IW

In this part, we provide a series representation of the EF-IW CDF and PDF by employing the erf
series, see Fernández and De Andrade [17] and Ajongba et al. [18],

erf(t) =
2
√

(π)

∞∑
l=0

(−1)lt2l+1

l!(2l + 1)
,
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and by applying the expansion
t

1 − t
=

∞∑
j=0

t j, |t| < 1,

the corresponding CDF of the EF-IW distribution can be rewritten as:

Ξ(z) =
2
√

(π)

∞∑
l=0

(−1)l

l!(2l + 1)

 ∞∑
j=0

e−θz
−β


2l+1

.

Now, consider the series expansion  ∞∑
j=0

a jt j


k

=

∞∑
n=0

Dk,n tn,

whereDk,0 = ak
0 andDk,n =

1
n a0

n∑
s=1

(sk − n + s) as Dk,n−s, n ≥ 1.

Consequently, the EF-IW CDF takes the expression

Ξ(z) =
2
√
π

∞∑
l=0

∞∑
n=0

(−1)lD2l+1,n

l!(2l + 1)
e−θ(n+2l+1)z−β =

∞∑
l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β ,

with Cl,n =
2(−1)lD2l+1,n
√
πl!(2l + 1)

,D2l+1,n =
1
n

n∑
s=1

[2s(l + 1) − n]D2l+1,n−s andD2l+1,0 = 1.

Similarly, the density of the recommended EF-IW model becomes

ξ(z) = θβ
∞∑

l=0

∞∑
n=0

Hl,n z−β−1 e−θ(n+2l)z−β ,

withHl,n = Cl,n(n + 2l + 1).

3.3. Moments and related measures

One of the efficient statistical criteria that can calculate symmetry, spread-ness, and asymmetry is
the ordinary moment. The r-th moment of the EF-IW distribution, whose PDF is given in Eq (2.2), can
be determined as follows:

µ′r = θ

∞∑
l=0

∞∑
n=0

Hl,n

Γ

(
1 −

r
β

)
[θ(2l + n)]1− r

β

, (3.2)

where Γ(.) represents the gamma function.
Thus, for r = 1 and r = 2, the mean (µ′1) and second moment (µ′2) of the EF-IW distribution are

defined, respectively, as

µ′1 = θ

∞∑
l=0

∞∑
n=0

Hl,n

Γ

(
1 −

1
β

)
[θ(2l + n)]1− 1

β

,
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and

µ′2 = θ

∞∑
l=0

∞∑
n=0

Hl,n

Γ

(
1 −

2
β

)
[θ(2l + n)]1− 2

β

.

The variance (Varz) with a corresponding coefficient of variation (CV) for the EF-IW model are
obtained to be

VarZ = µ
′
2 − µ

′2
1 ,

and
CV =

VarZ

µ′1
.

Table 1 defined various proposed mathematical characteristics of the suggested EF-IW. In addition,
Figure 3 shows the 3D plots of these statistical properties.

Table 1. Statistical properties of EF-IW with different values of parameters.

β µ1 VarZ CV N M

θ=0.4 0.3 0.0874 0.0234 1.7508 4.3227 30.106
0.6 0.2287 0.0351 0.8190 1.5817 3.3285
0.9 0.3488 0.0369 0.5506 0.8949 0.7335
1.2 0.4412 0.034 0.4179 0.5665 0.0143

θ=0.6 0.3 0.3375 0.3492 1.7508 4.3227 30.106
0.6 0.4495 0.1355 0.8190 1.5817 3.3285
0.9 0.5473 0.0908 0.5506 0.8949 0.7335
1.2 0.6186 0.0668 0.4179 0.5665 0.0143

θ=0.8 0.3 0.8806 2.3770 1.7508 4.3227 30.106
0.6 0.7260 0.3535 0.8190 1.5817 3.3285
0.9 0.7534 0.1721 0.5506 0.8949 0.7335
1.2 0.7862 0.1080 0.4179 0.5665 0.0143

θ=1.2 0.3 3.4022 35.479 1.7508 4.3227 30.106
0.6 1.4270 1.3659 0.8190 1.5817 3.3285
0.9 1.1822 0.4238 0.5506 0.8949 0.7335
1.2 1.1022 0.2122 0.4179 0.5665 0.0143

θ=1.5 0.3 7.1581 157.05 1.7508 4.3227 30.106
0.6 2.0699 2.8737 0.8190 1.5817 3.3285
0.9 1.5149 0.6958 0.5506 0.8949 0.7335
1.2 1.3274 0.3078 0.4179 0.5665 0.0143
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Figure 3. Plots for µ1, VarZ, ID, N , andM for distinct parameter choice.

The moment generating function (MGF), M(t) of the KMIW model is derived as

M(t) = θ
∞∑

l=0

∞∑
n=0

∞∑
r=0

Hl,n tr

r!

Γ

(
1 −

r
β

)
[θ(2l + n)]1− r

β

.

3.4. Order statistics of KMIW

The PDF of the rth-order statistics for a sample of size m taken from the EF-IW model is expressed
as follows:

k(r)(z) =
m!ξ(z)

(r − 1)!(m − r)!
[Ξ(z)]r−1[1 − Ξ(z)]m−r
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=
m!

(r − 1)!(m − r)!
θβ

∞∑
l=0

∞∑
n=0

Hl,n z−β−1 e−θ(n+2l)z−β
 ∞∑

l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
r−1

×

1 − ∞∑
l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
m−r

.

In a special case, the PDF of the minimum 1th and maximum mth order statistics of the EF-IW
distribution can be given below as

k(1)(z) = mθβ
∞∑

l=0

∞∑
n=0

Hl,n z−β−1 e−θ(n+2l)z−β
1 − ∞∑

l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
1−r

,

and

k(m)(z) = mθβ
∞∑

l=0

∞∑
n=0

Hl,n z−β−1 e−θ(n+2l)z−β
 ∞∑

l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
m−1

.

The corresponding CDF of the EF-IW model can be written as

K(r)(z) =
m∑

k=0

Ξk(z)[1 − Ξ(z)]m−k

=

m∑
k=0

 ∞∑
l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
k 1 − ∞∑

l=0

∞∑
n=0

Cl,n e−θ(n+2l+1)z−β
m−k

.

4. Parameter estimation

In this part of the study, we estimate the models’ parameters η = (β, θ) using two different estimation
methods. For this purpose, the maximum likelihood and Bayesian estimators are the estimation
methods used.

4.1. Maximum likelihood estimation

Assuming {z1, z2, . . . , zm} are the observed values of a random sample {Z1,Z2, . . . ,Zm} from the EF-
IW distribution with vector of parameters η = (β, θ), the log-likelihood function can be obtained to
be

LL(z) =

m∑
i=1

log ξ(z)

=

m∑
i=1

log

2θβ z−(β+1) e−θz
−β

√
π(1 − e−θz−β )2

exp

−
 e−θz

−β

1 − e−θz−β

2


∝ m log θ + m log β − 2
m∑

i=1

log(1 − e−θz
−β
i ) − θ

m∑
i=1

z−βi − (β + 1)
m∑

i=1

log zi −

m∑
i=1

 e−θz
−β
i

1 − e−θz
−β
i

2

. (4.1)

With the vector of the parameters η = (β, θ), the corresponding partial derivatives of Eq (4.1) are
obtained as:
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∂LL(z;ϑ)
∂θ

=
m
θ
− 2

m∑
i=1

z−βi e−θz
−β
i

1 − e−θz
−β
i

−

m∑
i=1

z−βi + 2

 m∑
i=1

z−βi e−3θz−βi

(1 − e−θz
−β
i )3
+

m∑
i=1

z−βi e−2θz−βi

(1 − e−θz
−β
i )2

 , (4.2)

and

∂LL(z;ϑ)
∂β

=
m
β
−

m∑
i=1

log z−βi − θ

m∑
i=1

z−βi log zi + 2θ

 m∑
i=1

z−βi log zi e−3θz−βi

(1 − e−θz
−β
i )3

+

m∑
i=1

z−βi log zi e−2θz−βi

(1 − e−θz
−β
i )2

 . (4.3)

The parameter estimates for the parameters η = (β, θ) can be obtained by solving the above non-
linear equations with respect to the parameters. It might be difficult to obtain a precise solution to the
derived equations, and thus one option to optimize them is to use techniques like the Newton-Raphson
algorithm. We used the R software’s optimize function in this case.

4.2. Bayesian estimation

We proceed based on the information available on the unknown parameters obtained from the
opinions of the researchers. The interpretation of the informative prior is rarely precise enough to
determine a single prior distribution. However, there are laws calibrated according to the distribution
of observations, called the conjugate prior or the gamma prior. For more details, see Xu [28] and
Zhuang [29]. Assuming that the unknown parameters β and θ are random variables that have a Gamma
distribution with PDF expressed as

π1(θ) =
ba1

1

Γ(a1)
θa1−1 e−b1θ, θ, a1, b1 > 0,

and

π1(β) =
ba2

2

Γ(a2s)
βa2−1 e−b2β, β, a2, b2 > 0.

Henceforth, the joint prior PDF of η = (β, θ) can be derived as

π(ϑ) ∝ θa1−1 βa2−1 e−b1θ−b2β.

Next, the joint posterior PDF of η = (β, θ) is

π∗(ϑ | z) = L(ϑ))π(ϑ) | z)

∝ θm+a1−1 βm+a2−1 eb1θ−b2β
m∏

i=1

=
z−(β+1)

i e−θz
−β
i

(1 − e−θz
−β
i )2

exp

−
 e−θz

−β
i

1 − e−θz
−β
i

2
 .

The Bayes estimates of the parametric function η = (β, θ) under the assumption of the square error loss
function (BSE) is the posterior mean of η. The BSE is

f̂S E =

∫
η

f π∗(ϑ | z) dη. (4.4)
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Now, the Bayes estimator under linear exponential loss function (BLI), can be written f = eδ(η−η̂) −

δ(η − η̂). The BLI is

f̂LI = −
1
δ

log
∫
η

e−δ f π∗(η | z) dη
 . (4.5)

In the end, the Bayes estimator under general entropy loss function (BGE), defined as f =
(
η̂
η

)δ
−

δ log
(
η̂
η

)
− 1, is

f̂GE =

∫
η

f −δ π∗(η | z) dη
−1/δ

, (4.6)

with δ , 0. It is difficult to obtain analytical expressions of Eqs (4.4)–(4.6). To solve this issue, we
have considered the Metropolis Hasting (MH) algorithm for this purpose.

5. Simulation investigation

In this section, a detailed simulation study is carried out to examine the behavior of two derived
estimators using the R software to evaluate the efficiency of the recommended estimators. The
results are presented for various sample sizes m = {30, 60, 80, 100} from the proposed EF-IW
distribution and several parameter values of η = (β, θ) (Set 1: (0.5, 0.75), Set 2: (0.8, 1.25), and
Set 3: (1.2, 1.5)) to provide more accurate and comprehensive results. The Monte Carlo simulations
are repeated 1000 times, and the estimates are assessed based on the mean estimate (AEs) and mean
squared errors (MSEs). The empirical results are illustrated in Tables (2)–(4), and in this simulation, we
choose δ = 1.5 to compute the BLI and BGE. To check that the iterative non-linear method converges
to the MLEs, we have applied the Newton Raphson technique with some other initial estimates, and
it converges to the same set of estimates, which ensures that the estimates obtained via the suggested
Newton Raphson method converges to the MLEs. The following conclusions are drawn from these
tables.

(1) All estimation approaches produce estimates that converge toward the true parameter values as
the sample size increases, which confirm that they are consistent and asymptotically unbiased.

(2) In most cases, the value of MSEs decreases as the value of m increases.
(3) As m increases, the Bayes estimates tends to perform efficiently based on MSE as an optimal

criterion. On the contrary, BSE is more appropriate than BLI and BGE.
(4) Figure (4) ensures the same conclusion.
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Table 2. Numerical values of EF-IW model simulation for Set 1.
m MLE BSE BLI BGE

Mean MSE Mean MSE Mean MSE Mean MSE
30 θ 0.4919 0.0039 0.4502 0.0035 0.4505 0.0037 0.4496 0.0039

β 0.7802 0.0115 0.7496 0.0008 0.7497 0.0101 0.7494 0.0103
60 θ 0.4928 0.0018 0.5093 0.0010 0.5093 0.0013 0.5085 0.0015

β 0.7681 0.0051 0.7395 0.0007 0.7396 0.0009 0.7393 0.0101
80 θ 0.5007 0.0011 0.4888 0.0006 0.4888 0.0008 0.4886 0.0010

β 0.7586 0.0034 0.7882 0.0005 0.7883 0.0008 0.7880 0.0009
100 θ 0.4943 0.0010 0.5091 0.0004 0.5093 0.0005 0.5087 0.0008

β 0.7591 0.0024 0.7577 0.0004 0.7581 0.0006 0.7573 0.0008

Table 3. Numerical values of EF-IW model simulation for Set 2.

m MLE BSE BLI BGE
Mean MSE Mean MSE Mean MSE Mean MSE

30 θ 0.7998 0.0055 0.8643 0.0039 0.8645 0.0041 0.4816 0.0043
β 1.2981 0.0309 1.3373 0.0121 1.3384 0.0123 1.3364 0.0125

60 θ 0.8001 0.0024 0.8358 0.0015 0.8359 0.0017 0.8357 0.0019
β 1.2646 0.0148 1.1742 0.0075 1.1746 0.0078 1.1738 0.0079

80 θ 0.7993 0.0023 0.7856 0.0014 0.7859 0.0016 0.7852 0.0018
β 1.2641 0.0075 1.2241 0.0017 1.2244 0.0020 1.2239 0.0021

100 θ 0.7948 0.0014 0.8046 0.0007 0.8048 0.0009 0.8044 0.0011
β 1.2673 0.0072 1.2320 0.0011 1.2322 0.0013 1.2319 0.0015

Table 4. Numerical values of EF-IW model simulation for Set 3.

m MLE BSE BLI BGE
Mean MSE Mean MSE Mean MSE Mean MSE

30 θ 1.2240 0.0188 1.2206 0.0051 1.2217 0.0053 1.2196 0.0055
β 1.5799 0.0559 1.6200 0.0245 1.6225 0.0248 1.6184 0.0249

60 θ 1.2049 0.0065 1.2310 0.0032 1.2316 0.0034 1.2306 0.0036
β 1.5556 0.0215 1.5530 0.0058 1.5538 0.0061 1.5526 0.0062

80 θ 1.2035 0.0040 1.2276 0.0023 1.2280 0.0025 1.2272 0.0028
β 1.5524 0.0159 1.4679 0.0032 1.4685 0.0034 1.4676 0.0035

100 θ 1.2139 0.0041 1.2160 0.0019 1.2165 0.0022 1.2157 0.0024
β 1.5158 0.0113 1.4818 0.0022 1.4822 0.0023 1.4815 0.0025
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Figure 4. MSE plots based on all proposed estimators using various selected parameter
values.
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6. Practical application of the EF-IW model

In this section, we utilized two data sets from the industrial field to show the EF-IW model
introduced in Section 2. We demonstrate the flexibility of this new distribution by analyzing two
real-world datasets drawn from industrial areas in the Kingdom of Saudi Arabia (KSA).

6.1. First application

The data set represents the quarterly evolution of the number of foreign licenses in the construction
sector in KSA. It was obtained from https://datasaudi.sa/en/sector/construction#

real-sector-indicators. The values of the data set are summarized in Table (5).

Table 5. The quarterly evolution of the number of foreign licenses data set.

8 6 8 16 23 20 28 40
43 50 54 32 52 29 33 42
41 52 56 79 155 84 95 111
136 161 204 241

6.2. Second application

The second application introduced the scale efficiency of the construction industry in KSA
between 2013 and 2022. The suggested data set was considered by Yu et al. [30], and the values
are presented in Table (6).

Table 6. The scale efficiency of the construction industry data set.

Zone 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Mecca 9.39 9.71 9.83 9.96 9.97 9.95 9.98 9.97 10.005 9.96
Eastern 8.92 9.23 9.43 9.56 9.58 9.71 9.78 9.72 9.82 9.87
Al-Madinah 7.46 7.47 7.81 8.52 8.62 8.61 8.73 8.43 8.74 8.77
Jizan 6.66 6.69 6.84 7.64 7.71 7.75 7.75 7.68 7.82 7.82
Al-Qassim 6.6 6.62 6.67 7.47 7.51 7.53 7.67 7.6 7.73 7.73
Tabuk 5.31 5.46 5.66 6.41 6.54 6.52 6.54 6.43 6.67 6.6
Ha’il 4.23 4.27 4.29 5.31 5.47 5.47 5.59 5.14 5.62 5.72

6.3. Third application

This recommended data set is about the efficiency of the pure technical construction industry
between 2013 and 2022 in the KSA. The proposed data was considered by Yu et al. [30], and its
records can be reported in Table 7.
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Table 7. The efficiency of the pure technical construction industry data set.

Zone 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Eastern 2.55 3.90 4.59 6.37 7.11 7.38 7.55 7.17 7.89 8.54
Al Madinah 3.26 3.46 3.47 4.99 6.38 6.42 6.81 6.16 6.77 7.21
Asir 3.41 3.81 3.98 4.65 5.47 5.74 5.92 6.17 6.13 6.53
Jizan 3.42 3.39 3.62 4.46 5.37 5.71 5.56 5.49 5.64 5.80
Al-Qassim 3.43 3.45 3.37 4.11 4.46 4.81 5.10 5.07 5.24 5.45
Tabuk 2.99 2.78 2.96 3.96 4.48 4.96 4.82 4.75 4.89 5.13
Ha’il 2.89 2.59 2.73 3.59 4.19 4.59 4.52 4.50 4.70 4.75
Al Jawf 2.29 2.75 2.48 3.35 4.22 4.42 4.55 4.44 4.63 4.71
Najran 2.83 2.92 2.62 3.33 4.02 4.38 4.47 4.44 4.61 4.8
Northern Borders 1.51 1.51 1.6 2.79 3.95 4.04 3.99 4.08 4.4 4.48

Table (8) presents a statistical summary of the three data sets. Furthermore, Figure 5 shows several
significant plots (scaled total time on test (TTT), quantile-quantile (Q-Q), and box plots) derived from
the three industrial datasets. These plots help analyze the historical performance of the industrial
sectors.

Table 8. Numerical values of descriptive statistics based on the three data sets.

Data Q1 Q2 µ′1 Q3 CV N M

1 28.75 46.50 67.82 27.60 54.57 1.31 0.83
2 6.55 7.72 7.67 9.35 0.35 -0.18 -0.96
3 3.445 4.475 4.521 5.39 0.35 0.3589 -0.0846
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Figure 5. Various non-parametric plots of the suggested data sets.
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Additionally, we would like to select the more appropriate fitting model for the two proposed data
sets. We consider several renowned competitive probability distributions to compare with the results of
EF-IW, including the inverse Weibull (IW), error function Weibull (EF-W), error function exponential
(EF-E), power Burr X (PBX), and generalized exponential (GE) models.

Akaike information criterion (A), Bayesian information criterion (B), Hannan-Quin information
criterion (C), correction Akaike information criterion (D), Kolmogorov-Smirnov (KS) statistics with
its associated P-values are considered when comparing the model and recommending the best model.
By calculating and comparing the proposed measures, we gain a clear understanding of the relative
performance of each model. Models with the lowest values for these statistics will be considered
for the best fit of the given data set. This approach reflects the strengths of the new distribution
in terms of its suitability for different data structures and ensures that the model selection process
takes into account both the complexity of the model and the goodness of fit across multiple aspects of
the data distribution. Table (9) summarizes the final estimates of the unknown parameters with their
corresponding log-likelihood (LL). Consequently, the recommended EF-IW model emerges as the
most favorable distribution for modeling the three data sets. Henceforth, the empirical v.s. the fitted
(PDF and CDF) plots for the proposed model with its competitors are generated and reported in Figures
(6)–(8) using the two data sets. These visual plots demonstrate that the EF-IW distribution works well
with the three data sets.
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Finally, the estimates of the model parameters using the Bayesian technique under several loss
functions of the EF-IW distribution by applying the three data sets are computed and reported in
Table (10). Also, Figures (9)–(11) show the histogram and trace plots of MH results.

Table 10. Bayesian estimates under various loss functions for the EF-IW model using the
three data sets.

Data Par Bayes
BSE BLI BGE

1 θ 10.468 10.470 10.468
β 0.5765 0.5766 0.5764

2 θ 168.989 168.990 168.989
β 2.457 2.457 2.457

3 θ 11.692 11.689 11.694
β 1.5635 1.5637 1.5634
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Figure 9. Histogram and trace plots applying MH technique for the first data set.
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Figure 10. Histogram and trace plots applying MH technique for the second data set.
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Figure 11. Histogram and trace plots applying MH technique for the third data set.
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7. Conclusions

This study introduces a new probability distribution, and its mathematical properties are thoroughly
explored. The new model is named the error function inverse Weibull distribution. The model
parameters are estimated using two different estimation methods, and extensive simulation studies
are conducted to identify the most efficient estimation technique. To demonstrate the versatility
and practical usefulness of the EF-IW distribution, the new distribution is applied to three datasets,
demonstrating its ability to adapt to varied data properties. The findings of these applications show that
the EF-IW distribution surpasses considered competitive probability distributions previously studied in
the literature, giving more accurate and efficient outcomes in terms of fit and prediction. These findings
show the novel distribution’s potential as a robust tool for modeling data across several domains,
providing a promising alternative to established models.

8. Future work

Future work on the EF-IW distribution may include expanding modifications, estimation, and
applications. Some potential directions include the following

(1) New extended forms of the EF-IW distribution can be proposed, such as truncation, zero-inflation,
and Neutrosophic extension for imprecise datasets.

(2) The progressive censoring type may also be used to obtain the model parameter estimations.
(3) Future studies should focus on the utilization of the EF-IW distribution to handle ranked set

sampling data, which is frequently seen in survival and reliability analysis studies. Enhancing the
distribution applicability and usefulness will require developing parameter estimation approaches
for censored and uncensored data with a cure fraction.
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Deriving the new cotangent Fréchet distribution with real data analysis, Alex. Eng. J., 105 (2024),
12–24. https://doi.org/10.1016/j.aej.2024.06.038

23. A. A. Mohamed, R. M. Refaey, G. R. AL-Dayian, Bayesian and E-Bayesian estimation for odd
generalized exponential inverted Weibull distribution, J. Bus. Environ. Sci., 3 (2024), 275–301.

24. Y. Y. Abdelall, A. S. Hassan, E. M. Almetwally, A new extension of the odd inverse Weibull-
G family of distributions: Bayesian and non-Bayesian estimation with engineering applications,
Comput. J. Math. Stat. Sci., 3 (2024), 359–388. https://doi.org/10.21608/cjmss.2024.285399.1050

25. A. Al Mutairi, R. H. Khashab, E. M. Almetwally, O. E. Abo-Kasem, G. M. Ibrahim,
Bayesian and non-Bayesian inference for inverse Weibull model based on jointly type-II
hybrid censoring samples with modeling to physics data, AIP Adv., 13 (2023), 105120.
https://doi.org/10.1063/5.0173273

26. A. S. Hassan, A. E. L. Hagag, N. Metwally, O. H. Sery, Statistical analysis of inverse Weibull based
on step-stress partially accelerated life tests with unified Hybrid censoring data, Comput. J. Math.
Stat. Sci., 4 (2025), 162–185. https://doi.org/10.21608/cjmss.2024.319502.1072

AIMS Mathematics Volume 10, Issue 3, 7463–7488.

https://dx.doi.org/https://doi.org/10.22436/jnsa.012.04.05
https://dx.doi.org/https://doi.org/10.24200/sci.2022.58409.5712
https://dx.doi.org/https://doi.org/10.32604/csse.2021.014270
https://dx.doi.org/https://doi.org/10.47974/JSMS-1216
https://dx.doi.org/http://doi.org/10.15446/rce.v47n2.110213
https://dx.doi.org/https://doi.org/10.1155/2021/2167670
https://dx.doi.org/https://doi.org/10.3390/axioms12060582
https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.06.038
https://dx.doi.org/https://doi.org/10.21608/cjmss.2024.285399.1050
https://dx.doi.org/https://doi.org/10.1063/5.0173273
https://dx.doi.org/https://doi.org/10.21608/cjmss.2024.319502.1072


7488

27. N. Alsadat, A. Ahmad, M. Jallal, A. M. Gemeay, M. A. Meraou, E. Hussam, et al., The novel
Kumaraswamy power Frechet distribution with data analysis related to diverse scientific areas,
Alex. Eng. J., 70 (2023), 651–664. https://doi.org/10.1016/j.aej.2023.03.003

28. A. Xu, G. Fang, L. Zhuang, C. Gu, A multivariate student-t process model for dependent tail-
weighted degradation data, IISE Trans., 2024. https://doi.org/10.1080/24725854.2024.2389538

29. L. Zhuang, A. Xu, Y. Wang, Y. Tang, Remaining useful life prediction for two-phase degradation
model based on reparameterized inverse Gaussian process, Eur. J. Oper. Res., 319 (2024), 877–890.
https://doi.org/10.1016/j.ejor.2024.06.032

30. H. Yu, Z. Shang, F. Wang, Analysis of the current situation of the construction industry in
Saudi Arabia and the factors affecting it: An empirical study, Sustainability, 16 (2024), 6756.
https://doi.org/10.3390/su16166756

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 7463–7488.

https://dx.doi.org/https://doi.org/10.1016/j.aej.2023.03.003
https://dx.doi.org/https://doi.org/10.1080/24725854.2024.2389538
https://dx.doi.org/https://doi.org/10.1016/j.ejor.2024.06.032
https://dx.doi.org/https://doi.org/10.3390/su16166756
https://creativecommons.org/licenses/by/4.0

	Introduction
	Model construction
	Statistical properties of the EF-IW distribution
	The quantile function
	Mixture representation of the EF-IW
	Moments and related measures
	Order statistics of KMIW

	Parameter estimation 
	Maximum likelihood estimation
	Bayesian estimation

	Simulation investigation
	 Practical application of the EF-IW model
	First application
	Second application
	Third application

	Conclusions
	Future work

