AIMS Mathematics, 10(3): 7290-7318.

R DOI: 10.3934/math.2025334
AIMS Mathematics Received: 08 February 2025

Eg Revised: 17 March 2025

Accepted: 24 March 2025
http://www.aimspress.com/journal/Math Published: 28 March 2025

Research article

Federated and ensemble learning framework with optimized feature
selection for heart disease detection

Olfa Hrizi', Karim Gasmi', Abdulrahman Alyami>*, Adel Alkhalil’, Ibrahim Alrashdi', Ali
Alqazzaz*, Lassaad Ben Ammar’, Manel Mrabet®, Alameen E.M. Abdalrahman' and Samia
Yahyaoui®

! Department of Computer Science, College of Computer and Information Sciences, Jouf University,

Sakaka 72388, Saudi Arabia

Department of Information Systems, College of Computer and Information Sciences, Jouf
University, Sakaka, Saudi Arabia

Department of Software Engineering, College of Computer Science and Engineering, University of
Hail, Hail, 81481 Saudi Arabia

College of Computing and Information Technology, University of Bisha, Bisha 61922, Saudi Arabia
3 Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia

Department of Physics, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia

* Correspondence: Email: am.yami@ju.edu.sa.

Abstract: Predictive models for early identification of heart disease must be precise and efficient
because it is a major worldwide health concern. To improve classification performance while
protecting data privacy, this study investigated a combined method that uses ensemble learning,
feature selection, and federated learning (FL). The ensemble-based approaches proved the most
predictive after testing several different machine learning (ML) models, including random forests, the
light gradient boosting machine, support vector machines, k-nearest neighbors, convolutional neural
networks, and long short-term memory. We used particle swarm optimization (PSO) for feature
selection, which optimized the most relevant features in conjunction with voting and stacking
approaches to further increase the model’s performance. In addition, federated learning was
implemented to allow decentralized training while preserving sensitive medical data. The results
highlight the effectiveness of combining these techniques in the detection of heart disease, providing a
scalable and privacy-preserving solution for real-world healthcare applications. Two benchmark
datasets were used to validate the proposed approach, ensuring the reliability and generalizability of
the findings. Furthermore, we used four performance metrics, namely accuracy, precision, recall, and
Flscore, to evaluate the selected models. Finally, federated learning was included to handle privacy
issues and guarantee safe access to private medical data. This distributed method allows model
training without centralizing patient data, so it is compatible with strict data privacy rules. With up
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to 95% precision, our method shows a notable increase in prediction accuracy according to the testing
results. This work offers a strong, scalable, and safe solution for the early identification of
cardiovascular diseases by combining ensemble learning, feature selection, and federated learning,
opening the way for more general uses in medical diagnostics.

Keywords: heart disease detection; machine learning; federated learning; feature selection;
optimization
Mathematics Subject Classification: 62H30, 68T05, 92C50, 68U35, 90C59

1. Introduction

Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide, accounting for
approximately 17.9 million deaths annually, according to the World Health Organization (WHO) [1].
Early and accurate detection of heart disease is crucial for reducing mortality rates and improving
patient outcomes. However, traditional diagnostic methods, such as electrocardiograms (ECG) and
clinical tests, often rely on manual interpretation of one-dimensional data, leading to limited accuracy
and high variability in diagnosis. Furthermore, these conventional methods lack the ability to integrate
diverse and complex patient data for improved decision-making.

Machine learning (ML) has emerged as a promising tool to improve heart disease detection by
leveraging large datasets to identify hidden patterns in clinical characteristics [2]. Various ML
techniques have been explored, including decision trees, support vector machines (SVM), random
forests, and deep learning architectures such as convolutional neural networks (CNN) and
long-short-term memory (LSTM) networks. Although these approaches have shown potential in
predictive accuracy, they suffer from limitations such as overfitting, data set bias, and the inability to
generalize effectively between diverse populations [3-5]. Furthermore, existing ML models often
require centralized data storage, raising significant privacy concerns in medical applications.

Several studies have investigated ML techniques for the diagnosis of heart disease. For example,
Chaithra and Madhu [3] analyzed transthoracic echocardiography data using artificial neural networks
(ANN), J48, Naive Bayes (NB), and decision trees (DT), finding that ANN yielded superior results.
Kipp et al. [4] reviewed the role of artificial intelligence (Al) in cardiology and emphasized the
effectiveness of deep learning (DL) models in improving diagnostic precision. Furthermore,
Sarangam Kodati and Vivekanandam [5] proposed a predictive system based on data mining tools
such as Waikato Environment for Knowledge Analysis (WEKA) and Orange, utilizing algorithms
such as SVM, NB, and KNN to extract meaningful insights from medical data.

Although these individual models have demonstrated high accuracy, their performance often
depends on specific data sets and parameter configurations, leading to variability in the results.
Consequently, ensemble learning, which combines multiple models to enhance robustness and
predictive power, has emerged as a promising approach to improving heart disease detection. Studies
by Shalet et al. [6] and Uyar and lhan [7] have shown that ensemble methods can significantly
improve classification accuracy by leveraging the strengths of multiple ML models.

To address these challenges, our study proposes a federated and integrated learning framework with
optimized feature selection for heart disease detection. The novelty of our approach lies in integrating
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ensemble learning techniques with particle swarm optimization (PSO) to select features while using
federated learning (FL) to ensure data privacy. Our methodology consists of three key components.

(1) Ensemble learning: We combine multiple ML classifiers (e.g., random forest, the light gradient
boosting machine (LightGBM), and CNN) to enhance the model’s robustness and accuracy.

(2) Feature selection optimization: We employ PSO to identify the most relevant predictive features,
reducing model complexity while maintaining high accuracy.

(3) Federated learning integration: To mitigate privacy concerns, we adopt FL, which enables
decentralized training across multiple healthcare institutions without sharing raw patient data.

(4) By addressing the shortcomings of standalone ML models and centralized learning approaches,
our framework provides an efficient, scalable, and privacy-preserving solution for heart disease
detection. This research contributes to the growing field of Al-driven healthcare care by
enhancing predictive accuracy while safeguarding sensitive patient information.

The remainder of this paper is organized as follows. Section 2 reviews related work on heart disease
detection using machine learning. Section 3 describes our proposed methodology, including ensemble
learning, feature selection, and federated learning. Section 4 details the experimental setup and
datasets. Section 5 presents the results and analysis, followed by a conclusion and future directions in
Section 6.

2. Related work

Many studies have investigated the detection and classification of cardiovascular disease (CVD)
using machine learning and deep learning methods, applied to various datasets. These papers stress
several approaches and techniques, as well as algorithms.

Combining the decision tree and adaptive boosting (AdaBoost) algorithms, Khader Basha et al. [8]
create a hybrid model using the Framingham Heart Laboratory dataset, a subset of the Framingham
Heart Study (FHS). This data set, which focuses on genetic and environmental factors in
cardiovascular disease, was divided into 70% training and 30% tests, containing 16 characteristics.
Putting emphasis on the future potential of Al, Kipp W. Johnson et al. [4] summarized the
applications of Al and ML in cardiology. Techniques like deep learning (DL) and neural networks
(NN) have shown promising results in the diagnosis of cardiovascular diseases. Although these
methods require specialized knowledge, they have the potential to transform the field and become
more accessible in the near future. Using stochastic gradient descent (SGD), decision trees, and
random forest algorithms, Jahed et al. [9] analyzed the effects of stratifying a Kaggle dataset by
gender and race. They found that stratification improved accuracy significantly, highlighting the
importance of customized data analysis for cardiovascular prediction.

Based on four classification algorithms, random forest, decision trees, logistic regression, and
naive bayes, Rajdhan et al. [10] developed a system. The data were divided into two subsets for
training and testing, and performance was assessed using a confusion matrix. Random forest achieved
the highest accuracy at 90.16%. Das et al. [11] extensively investigated heart disease detection using
various machine learning techniques, including XGBoost, bagging, random forest, decision trees,
K-nearest neighbors (KNN) and naive bayes. Their study utilized the Kaggle dataset “Key Indicators
of Heart Disease” [12], featuring 319,795 cases and more than 300 features. The preprocessing
included data cleaning, duplicate removal, and categorical variable transformation, with the models
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being evaluated based on precision, sensitivity, precision, the F1 score, and area under the curve
(AUC). To identify cardiovascular diseases, Chopra et al. [13] employed principal component analysis
(PCA) to reduce the dimensionality of the data from the Cleveland dataset, which contains 303 cases
and 14 features. Testing models such as random forest, KNN, decision trees, and naive bayes, the use
of PCA significantly improved detection accuracy. To address cardiac rhythm classification, Li
et al. [14] employed a deep residual network achieving an impressive accuracy of 99.06%. Similarly,
Marinho et al. [15] combined NB, SVM, and the optimum-path forest (OPF), reaching an accuracy
of 94.30%. Pandya et al. [16], using the Heart-200 and PhysioNet databases, investigated the acoustic
events of heart rhythms. Their InfusedHeart methodology outperformed other models, such as CNN,
LSTM, and RNN, showing remarkable performance in identifying auditory abnormalities.

In another effort, Mohan et al. [17] introduced the hybrid random forest linear model (HRFLM).
This model integrates decision tree partitioning, error minimization, discriminative feature extraction,
and final classification, demonstrating robust performance across multiple datasets. Focusing on cloud
security for medical data, Arun R. and N. Deepa [18] utilized naive bayes (NB) and the advanced
encryption standard (AES) for their methods. The proposed encryption and re-encryption techniques
improved privacy while efficiently handling sensitive patient data. In the context of reinforcement
learning, Prasanna et al. [19] used the Cleveland dataset and focused on features such as the resting
blood pressure (trestbps), cholesterol, and age. Their Q-learning-based model surpassed traditional
machine-learning methods by associating state_action pairs with positive or negative rewards.
Bagavathy et al. [20] compared the K-means clustering and MapReduce techniques to identify heart
diseases. By integrating MapReduce into distributed systems, they achieved higher accuracy due to its
dynamic linear scaling, despite batch processing-induced latency.

To address data imbalances, Abdellatif et al. [21] applied the synthetic minority oversampling
(SMOTE) technique. @ By combining SMOTE with the extra trees method and hyperband
hyperparameter tuning, they achieved improved accuracy. Their process included rigorous data
cleaning, normalization, and balanced evaluation metrics. Uyar and Ilhan [7] proposed a prediction
model combining the genetic algorithm (GA) and recurrent fuzzy neural networks (RFNN). Tested on
a dataset of 297 cases, the model achieved a high accuracy of 97,78%, emphasizing the importance of
metrics such as root mean square error (RMSE) and F-scores.

In their investigation, Ramesh et al. [22] analyzed a Kaggle dataset, finding that 55% of the
samples had CVD while 45% did not. Correlation analysis revealed strong relationships, with
gradient boost and random forest outperforming other techniques for features like chest pain type and
maximum heart rate achieved (MaxHR). Shail et al. [23] assessed machine learning methods,
including random forest, decision trees, KNN, and logistic regression, in diverse datasets such as
Framingham and UCI. Their findings confirm that logistic regression consistently delivered superior
performance. Ali et al. [24] design an expert system using two SVM models optimized using the
hybrid grid search algorithm (HGSA). The system outperformed traditional techniques on six
evaluation metrics, including AUC and sensitivity. Mahmud et al. [25] explored ensemble learning
methods, including bagging, voting, and stacking. With base classifiers such as SVM, decision trees,
random forest, and XGBoost as the meta-classifier, they achieved superior results compared with
standalone methods. Tama et al. [26] developed a three-phase system for CVD detection. This system
integrated XGBoost, gradient boosting machine (GBM) and Random Forest in a two-level set-up and
used PSO for feature selection, yielding remarkable validation results on datasets like Cleveland and
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Z-Alizadeh. Lastly, Yildirim et al. [27] proposed a deep bidirectional long short-term memory with
weighted sum (DBLSTM-WS) model, achieving an extraordinary accuracy of 99.39%. Their use of a
wavelet-based layer significantly improved performance, demonstrating the potential of advanced
deep learning methods in cardiac diagnosis. Fitriyani et al. [28] designed a decision support system
(DSS) for early diagnosis using XGBoost and structured clinical data. Their model delivers high
predictive accuracy, demonstrating its utility in assisting clinical decision-making processes.

Using WEKA tools, Devansh Shah et al. [29] implemented supervised learning methods to predict
the risks of heart disease. Four categorization models were evaluated: NB, KNN, random forest (RF),
and decision tree (DT). Among these, KNN achieved the highest accuracy, highlighting its suitability
for such predictive tasks. Using Svetlana Ulianova’s CVD dataset, which has 12 characteristics and one
target variable, Jin et al. [30] implemented tree-based feature selection methods, including the extra tree
classifier and recursive feature elimination (RFE). Tree-based selection evaluated the relevance of the
features using the Gini index, while RFE removed the less important features iteratively. Among the
models tested, namely random forest, SVM, KNN, and neural networks, neural networks demonstrated
the best performance. Furthermore, Shukla et al. [31] focused on data pre-processing by combining a
genetic algorithm with recursive feature elimination (GARFE) to select the most relevant features [32].
Missing values were addressed using multivariate imputation by chain equations (MICE). The study
used standard normalization and synthetic minority oversampling (SMOTE) to balance classes. Their
analysis revealed maximum performance with Logistic Regression and random forest among other
algorithms such as naive bayes, SVM, and AdaBoost.

Before employing machine learning methods, Varshini et al. [33] applied the relief feature selection
approach and principal component analysis (PCA). PCA identified data patterns, while relief selection
retained the most pertinent features. Using the Heart Disease dataset with 11 clinical features and 1,190
cases, random forest outperformed other algorithms. Through a web application, Saranya et al. [34]
proposed a cost-effective and time-efficient method to predict heart diseases. After data pre-processing
from a hospital in Coimbatore, random forest and KNN achieved accuracies of 100% and 91.36%,
respectively. Furthermore, an ensemble model integrating logistic regression demonstrated accuracies
of 98.77% and 95.06% with and without logistic regression, respectively.

In this context, Manpreet Singh et al. [35] introduced a heart disease prediction system (HDPS)
using structural equation modeling (SEM) and a fuzzy cognitive map (FCM). Drawing from the
Canadian Community Health Survey (CCHS), the system used 80% of the data for training and 20%
for testing. Despite requiring considerable computation time, this approach achieved 74% accuracy.
Sen et al. [36] employed soft voting in an ensemble learning method where the final class label was
derived from the averaged probabilities of several models. Their approach incorporated models such
as LightGBM, XGBoost, random forest, multilayer perceptron (MLP), gaussian NB, and CatBoost.
By aggregating data sets from the UCI Stalog group and the UCI Heart Disease group, they
minimized false negatives, a key factor in cardiovascular diagnosis. Furthermore, Gola et al. [37]
presented a novel feature selection method based on satin bowerbird optimization (SBO). Their
pipeline included handling missing data, normalization, and feature weighting with a modified
Kalman filter. ~ By integrating backpropagation and min-max normalization, this approach
outperformed conventional techniques.

Using WEKA tools, Jaymin Patel et al. [38] analyzed decision tree-based methods, including J48,
the logistic model tree, and the random forest. Although the system effectively identified hidden
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patterns within large datasets, its scalability and accuracy required further improvements. Pandita
et al. [39] developed a web application to predict heart disease using five machine learning methods.
Designed with HTML/CSS and Flask, the tool allowed users to input medical data for risk evaluation.
KNN achieved the best accuracy (89.06%), followed by logistic regression (84.38%). Finally, Akella
et al. [40] demonstrated that neural networks achieved the highest precision (93.03%) and recall
(93.8%) among six models tested in the UCI dataset. The results indicated minimal false negatives,
underscoring the accuracy of neural networks in the prediction of heart disease. Random forest,
decision trees, KNN, and logistic regression were tested across multiple datasets by Shail et al. [23],
including the Framingham, Cleveland, and UCI datasets.  Logistic regression consistently
outperformed the other models, validating its robustness in the prediction of cardiovascular disease.

This detailed review of the current work emphasizes the variety of approaches used for CVD
detection, whether conventional methodologies, ensemble models, or hybrid methods. These analyses
also underline the need for feature selection, imbalance control, and algorithm modification to
improve model’s performance.

3. Proposed model for heart detection

In this article, we propose an innovative approach to classify CVD using machine learning models
embedded in an ensemble learning framework. To optimize the efficiency and accuracy of our model,
we implemented a feature selection technique based on the PSO algorithm. This approach reduces the
dataset’s dimensionality by retaining only the most relevant and discriminative features, thereby
enhancing the classification model’s performance and accuracy. Additionally, we incorporate
federated learning in the classification stage to ensure the privacy and security of sensitive medical
data. Federated learning enables decentralized model training, where the data remain distributed
across local nodes, mitigating the risks associated with centralized data storage while maintaining
high performance. Figure 1 presents all the steps of our approach.
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Figure 1. Proposed model for heart disease detection.
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Algorithm 1 Proposed approach for heart disease detection

1: Input: Dataset D with features F' = {fi, f>,..., fa}

2: Output: Heart disease detection H

3. Steps:

4: procedure PREPROCESSING

5: Clean the data: Handle missing values, remove duplicates, and rectify outliers
6

7

8

9

Transform the data: Convert features into suitable formats for analysis
Normalize the data: scale features to a standard range
Balance the data: address class imbalances using techniques like SMOTE
. end procedure
10: procedure FEATURE SELECTION
11 Initialize the PSO algorithm

12: for each particle p; in the swarm do

13: Select a subset of features F; C F

14: Compute the fitness function: Fitness(F;) = Accuracy(M, F;)
15: end for

16: Select the optimal feature subset F*

17: end procedure
18: procedure EnseMBLE MODEL TRAINING
19: Train base models: SVM, KNN, LightGBM, and CNN on F*

20: Combine predictions using ensemble techniques:

21: - Hard voting: Majority class prediction

22: - Soft voting: Weighted average of probabilities

23: - Weighted average voting: Assign weights to classifiers
24: - Stacking: Use the meta-classifier for final predictions

25: end procedure
26: procedure FEDERATED LEARNING INTEGRATION

27: Initialize global model w’

28: for each node i do

29: Train local model w! on D; using selected features F*
30: Compute model updates Aw! = wi*! — w!

31 end for . ,

32: Aggregate updates: w'*! = %

33: Distribute updated global mocllél w1 to all nodes

34: end procedure
35: Return: Heart disease detection H

3.1. Dataset

The first cardiovascular disease dataset used in this paper comprises 12 variables and has 70,000
instances that were acquired via medical examinations. The first 11 variables are considered input
characteristics, while the 12th variable is considered the output characteristics, indicating whether or
not cardiovascular disease is present. The fact that this data set has a significant number of duplicate
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values and extreme outliers is something that should be noted. Consequently, during the preprocessing
stage, duplicated values and cases with extreme outliers were eliminated, resulting in a reduction in the
total number of records to 62,267. In addition, the attributed age was taken from days and translated
into years. For the purpose of conducting a more thorough analysis, the systolic and diastolic blood
pressure readings were converted from numerical to nominal using the normal range established by the
American Heart Association.

The second data set contains 1190 instances that were obtained by combining five original datasets
across 11 shared variables and one attribute that served as a predictor to determine whether or not a
patient had cardiovascular disease. Five original datasets were incorporated into the creation of this
data set. These datasets include: Cleveland (303 samples), Hungarian (294 samples), Switzerland
(123 samples), Long Beach, Virginia (200 samples), and Statlog data sets (270 samples).
Additionally, this dataset contains values that were missing or duplicated, which were eliminated
during the preprocessing step, reducing the total number of records to 918.

3.2. Dataset bias and class imbalance

The data sets used in this study provide valuable information on heart disease detection; however,
it is important to acknowledge potential biases, particularly in terms of class imbalance and
demographic skewness, which can affect the generalization of the model. Dataset 1 has a nearly
balanced class distribution, with 50.03% of samples labeled as nondisease and 49.97% as heart
disease cases, ensuring no strong class imbalance. However, Dataset 2 exhibits a mild imbalance,
with 52.86% of cases diagnosed with heart disease and 47.14% classified as non-disease cases.
Although this imbalance is not extreme, it may introduce a slight prediction bias toward the majority
class.

Both sets of data exhibit strong gender bias, in addition to the class imbalance that is present.
Dataset 1 has a gender imbalance of 65.04% percent male and 34.96% percent female participants.
However, Dataset 2 has an even more lopsided gender ratio, with 76.39% percent male participants
and only 23.61% percent female participants. A conclusion that can be drawn from this is that models
that have been trained on these datasets might be more reliable for male patients, but might be less
accurate for female patients. Furthermore, these data sets do not include clear demographic features
such as age distributions, ethnicity, or socioeconomic status. These attributes are critical in determining
whether or not a model is fair when applied to real-world healthcare applications. It is necessary to
conduct additional testing on populations that are more diverse and representative to determine whether
or not these demographic imbalances have an effect on the generalizability of models that were trained
on these datasets.

3.3. Data preprocessing

Data preprocessing is a crucial phase in machine learning, involving several tasks designed to
convert the information into a suitable format for efficient analysis and effective training. Initially, we
manage absent data, eliminate redundancies, correct errors, and confront outliers. This constitutes a
data cleansing phase that includes identifying and correcting errors or inconsistencies. This involves
the cleansing and conversion of data into optimal formats for analysis, enhancing the efficacy of
machine learning models by rendering the data more manageable and interpretable. The subsequent
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step involves the correcting of class disparities. This guarantees that the model does not preferentially
represent the majority class and can reliably generate predictions for all classes. Finally, we
standardize the data by scaling the characteristics to a uniform range. This mitigates the risk of any
characteristic exerting an excessively large impact on the learning process due to scale discrepancies.
The preparation stages ensure the data’s quality and efficacy for machine learning applications.

3.4. Ensemble learning

Combining several classifiers into an ensemble has successfully produced strong high-performance
prediction models. Using the strengths of individual classifiers, an ensemble technique improves input
instance-based decision-making. In this work, we used several basic classifiers in an ensemble
approach to identify cardiac disorders. Following an extensive review of many machine learning
algorithms, including decision trees, support vector machines (SVM), logistic regression, KNN,
AdaBoost, extra trees, random forest, a gradient boosting algorithm (LightGBM), and deep learning
models such as convolutional neural network (CNN) and long short-term memory (LSTM), these
classifiers were chosen.

3.4.1. Support vector machines

SVMs are supervised learning systems widely applied to classification and regression tasks. Their
accuracy in handling high-dimensional data and generating correct results is especially well known.
SVMs work by determining the ideal hyperplane in a N-dimensional feature space to divide the data
points into their respective classes.

3.4.2. Decision trees

Random forest is an ensemble learning technique that constructs many decision trees during training
and aggregates their output to improve classification or regression performance. It works by choosing
random subsets of data and features to reduce overfitting and improve model generalization. Using
feature significance analysis, this method provides great accuracy and interpretability, is robust to
noise, and performs effectively on large datasets.

3.5. Logistic regression

Binary and multiclassification problems use logistic regression as a statistical model. The logistic
function applied to a linear combination of input features approximates the probability that a given
input belongs to a particular class. When probabilities are needed and when linearly separable data
are involved, this method is appropriate, since it is computationally efficient, interpretable, and
straightforward to implement.

3.5.1. Long short-term memory

Designed to manage sequential data by learning long short-term dependencies, long-term memory
(LSTM) is a kind of recurrent neural network (RNN). It selectively stores and updates data using
gated memory cells (input, forget, and output), thus avoiding the vanishing gradient issue typical in
conventional RNNs. LSTMs is quite successful for jobs including speech recognition, natural language
processing, and time series analysis.
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3.5.2. K-nearest neighbors

Often used in both classification and regression, KNN is a non-parametric, instance-based learning
technique. Its simplicity resides in its method of classification, whereby the k-nearest data points guide
an input instance to the class most like it. A preset distance metric, say Euclidean distance, guides the
choice of neighbors.

3.5.3. Light gradient boosting machine

Developed by Microsoft in 2017, the LightGBM is a highly performing gradient boosting tool.
Based on decision tree techniques, LightGBM excels in ranking, classification, and regression
problems. Large-scale machine learning applications would find it perfect, since it is known for its
low memory usage and quick training periods, which help it to efficiently manage large datasets.

3.5.4. Convolutional neural networks

Convolutional neural networks (CNNs) reflect a deep learning architecture.  They use
convolutional operations in their layers and have been used in natural language processing (NLP)
applications, but their main applications are picture classification and recognition. CNN architectures
comprise fully connected layers for classification, pooling layers for dimensionality reduction, and
convolutional layers for feature extraction. CNNs are very strong for complicated data analysis, as
convolutional layers can detect spatial and hierarchical aspects.

3.5.5. Hard voting

In the ensemble learning method known as ” hard voting,” each base classifier votes for a predicted
class, and the majority vote decides the final prediction. It considers every classifier equally
independent of their respective performance. Implementing this approach is easy and works best
when the underlying classifiers are varied and accurate. It is appropriate for classification problems
when most classifier agreements are sought. In hard voting, the final prediction y is determined by
taking the majority vote among the predictions of the n classifiers as follows:

5} = mOde({yl’y2’ .. ’yn})

where: - 9: is the final predicted class; - yi, s, ..., V., 1s the predicted class labels of the n classifiers,
and - mode is the function that returns the class with the highest frequency among {y;, v, ..., y.}.

3.5.6. Soft voting

Soft voting compiles the expected probabilities of each base classifier for every class and chooses
the final prediction on the basis of the average probability. Unlike hard voting, it takes individual
classifiers’ confidence into account, thereby providing greater weight to those classifiers whose
predictions are more definite. Particularly in cases where the classifiers are probabilistic in character,
soft voting helps to increase accuracy. In soft voting, the final prediction y is based on the class k£ with
the highest average probability as follows:

. 1<
y = arg m]flx [Z ; P,-(k)]
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where: - J is the final predicted class, - P;(k)is the predicted probability of class k by the i-th classifier,
- n is the total number of classifiers, - arg max; is the function that identifies the class k with the highest
average probability.

3.5.7. Weighted average voting

In weighted average voting, base classifier predictions are aggregated under weights that correspond
to their individual dependability or performance. High-weight classifiers affect the final prediction
more strongly. Putting emphasis on the more accurate ones, this method balances the contributions
of classifiers and is particularly helpful in ensembles including classifiers with varying strengths. In
weighted average voting, the final prediction J is determined by the class k£ with the highest weighted

sum of probabilities
y = argmax [Zl w; - Pi(k)]

where - ¥ is the final predicted class, - w; is the weight assigned to the i-th classifier, - P;(k) is the
predicted probability of class k by the i-th classifier, - n is the total number of classifiers, and - arg max
is the function that identifies the class k with the highest weighted probability.

3.5.8. Stacking

Stacking is a sophisticated ensemble learning technique by which several base classifiers are
combined in the training of a metaclassifier on their output. The basis classifiers generate predictions
that the meta-classifier, learning how to best combine them, uses as input features. This method uses
the advantages of several models to provide better accuracy and flexibility, but must be carefully
tuned to avoid overfitting.

In stacking, the metaclassifier A, is trained on the output of the base classifiers
hy(x), hy(x), ..., h,(x), and the final prediction y is calculated as:

V= hy (h (%), ho (%), . ..., (X))

where: - J is the final predicted class, - h;(x), ho(x), ..., h,(x) is the predictions of the n base classifiers
for the input x, and - A, is the metaclassifier that learns to optimally combine the outputs of the base
classifier.

3.6. Feature selection

Inspired by the social behavior of flocks of birds or schools of fish, PSO is a metaheuristic
optimization method [41]. It is mostly used for feature selection to lower the dimensionality and
increase the performance of the model. In this work, we selected the most relevant features by using a
PSO applied to two datasets. We used PSO on two datasets: one has 12 features, and the other has 11.
The aim was to minimize the number of features chosen for every dataset, while improving the
accuracy of the classification model. Reducing the feature set helped us to strike a compromise
between computational economy and performance. Each particle in the swarm represents a subset of
features

X = [x1,x0,...,x4]
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where

x; € {0,1} indicates if the i-th feature is selected or not,

d 1s the total number of features in the dataset.

Velocity and position updates
The velocity and position updates for each particle are governed by the following equations:
Velocity update:

1
Vi = wvi i+ en(pig — Xij) + cara(g; — Xi ).

Position update:

LJ

e 1 if o(v;) > rand()
0 otherwise.

where

Vi ; 1s the velocity of particle i for feature j at iteration ¢,
X ; 1s the position of particle i for feature j at iteration 7,
w is the inertia weight,
c1, ¢, are the cognitive and social coefficients,
r1, ry are random values in [0, 1],
pi.j is the personal best position of particle i for feature j,

g 1s the global best position of the swarm for feature j,

o) = is the sigmoid function,

1+ev
rand() is a random number in [0, 1].

Fitness function: The fitness function evaluates the subset of characteristics of each particle according

to classification accuracy:
Fitness(X) = Accuracy(X),

where

Fitness(X) is the fitness score for the feature subset X,

Accuracy(X) is the classification accuracy achieved by the feature subset X.

Optimization aims to maximize accuracy while minimizing the number of selected features.
Optimization objective:

d
m}r(:lx Fitness(X) subject to Z x; is minimal.
i=1
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3.7. Federated learning for heart disease detection

The developing paradigm of decentralized machine learning known as federated learning (FL)
makes it possible for different clients to train a global model without actually sharing their raw data.
The protection of data privacy and security is ensured by this, which makes FL an excellent choice for
applications in the healthcare industry, where maintaining patient anonymity is of the utmost
importance. FL enables local devices to train models independently, sharing model updates only with
a central server for the purpose of aggregation, in contrast to traditional centralized learning, which
aggregates data in a single location.

The federated learning process can be described mathematically as follows:

Local model training
Each node i trains a local model w! using its private data set D; at iteration 7. The local objective
function is given by: |
L(w) = — f(w; x,
) = <x,;a,. (w3 %, )
where

L;(w)is the local loss function for node i,

|D;| is the size of the local dataset D,

£(w; x,y) 1s the loss function (e.g., cross-entropy) for a sample (x, y),
w is the model parameters.

Model updates
After training, each node computes its update Aw!, which represents the change in its model
parameters:

1
Awt = wit —w!

where

e Aw!is the change in model parameters for node i at iteration ¢,
e w! is the model parameters of node i at iteration ¢,

e wi*! is the updated model parameters of node i in iteration 7 + 1.

Server aggregation
The central server aggregates updates w! from all nodes to compute the global model w'*!. The most
common method is federated averaging (FedAvg):

ZZ] |Di|W§
>N 1Dy

t+1 _

where

w'*! is the global model parameters after aggregation,
N is the total number of nodes,

|D;| is the size of the local dataset for node i,

w! is the model parameters of node i in iteration .
Global model distribution

t+1 3

The global model w™" is distributed back to all nodes, where it serves as the starting point for the
next training round. The process repeats until convergence.
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3.7.1. Impact of FL. on communication efficiency and computational cost

As a result of the fact that several clients are required to communicate model updates with a central
server, one of the most significant issues that FL faces is the communication overhead. A direct
relationship exists between the number of communication rounds and the performance of FL. A lower
number of rounds reduces the strain on the network but it slows down convergence. On the other
hand, frequent updates improve learning but increase bandwidth utilization. In order to maximize the
effectiveness of our communication, we made use of an adaptive aggregation technique. This strategy
selectively updates just the most important model parameters, thus minimizing the number of
transmissions that are not necessary.

Due to the fact that each node is required to carry out local training prior to taking part in the global
update, FL has the additional effect of introducing additional computational constraints on the client
side. The computational cost is affected by a number of factors, including the batch size, the number
of local epochs, and the complexity of the model. It may be necessary to make careful modifications
to the local training process in order to accommodate resource-limited devices, which may result in
slower training. Through fine-tuning the FL parameters, we achieved a balance between computational
economy and performance in this study. This allowed us to guarantee steady model updates while
minimizing the resource overhead.

3.7.2. FL’s impact on model convergence and accuracy

Because of the variety of the data among various clients, which has an effect on model convergence,
FL training might be difficult to successfully complete. FL nodes train on different local datasets,
which can result in potential differences in model updates. This is in contrast to centralized learning,
which makes all of the data available throughout the entire process. The federated averaging (FedAvg)
algorithm, which aggregates local models in a weighted manner to improve stability of convergence,
is the solution that we employed in order to address this problem. The distribution of training data
across clients is another element that influences the performance of FL. When local datasets are not
identically distributed across nodes, the model may need more rounds of aggregation in order to achieve
stable learning. This is because datasets that are not independent and identically distributed (IID) are
not identically distributed. In order to answer this question, we investigated the influence that data
partitioning schemes and client heterogeneity have on the convergence of FL. In the Results section, a
complete analysis of FL’s performance is offered. This analysis includes an examination of its influence
on the quality of its accuracy and its convergence behavior.

The FL methodology is an effective method for collaborative machine learning because it offers
several significant benefits. One of the most important advantages is privacy protection, which is
achieved by maintaining data decentralization on local nodes. This prevents sensitive information
from being shared or exposed. Furthermore, this is of utmost importance in fields such as healthcare,
which are subject to severe regulations regarding data privacy. In addition, FL is very scalable, which
makes it possible to collaborate across different nodes, such as hospitals or universities, without the
need for data to be centralized. The framework improves efficiency with optimal feature selection. This
reduces the computational effort needed for training by focusing on the most relevant features of the
task. Furthermore, federated learning facilitates customization, allowing each node to adjust the global
model to accommodate its specific local dataset. This improves the performance and effectiveness of
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the model with diverse data distributions. Collectively, these advantages make federated learning an
appropriate option for conducting extensive collaborative machine-learning endeavors that prioritize
privacy considerations.

4. Experimental results and discussion

This section presents the experimental results obtained from the proposed model and evaluates
its performance in various classification approaches within the framework of machine learning. The
model was implemented using Python and was executed on a system equipped with 16 GB of RAM
and an RTX 2060 graphics card. To thoroughly assess the proposed model, we conducted multiple
experiments that utilized different deep learning architectures. The design of the model was structured
into four distinct scenarios.

(1) Scenario 1: Detection of heart disease using traditional machine learning models.

(2) Scenario 2: Classification of heart disease using hybrid machine learning models.

(3) Scenario 3: Classification of heart disease with an emphasis on feature selection methods.
(4) Scenario 4: Classification of heart disease based on federated learning approaches.

4.1. Evaluation metrics

To assess the performance of our classification approach, we employed standard evaluation metrics,
including accuracy, precision, recall, F1 score, and receiver operating characteristic-AUC. Precision
measures the accuracy of the model’s positive predictions, while recall evaluates the true positive rate.
The F1 score combines precision and recall to provide a balanced perspective on the model’s ability to
handle both false positives and false negatives.

Accuracy = TP + TN/(TP + TN + FP + fN), (4.1)
Precision = TP/(TP + FP), (4.2)

Recall = TP/(TP + FN)(3), (4.3)

F1 - score = 2/(1/P + 1/R)(4), (4.4)

where TP denotes true positives, FP denotes false positives, P denotes the precision rate, R indicates
the recall rate, TPR represents the true positive rate, and FPR signifies the false positive rate.

4.2. Performance comparison of machine learning models for heart disease detection

In this study, we evaluated multiple machine learning classifiers on a heart disease detection dataset,
analyzing their performance in terms of their accuracy, precision, recall, and F1 score. The results
highlight significant differences in the models’ effectiveness, providing insight into their predictive
capabilities.

The evaluation of numerous classifiers for the identification of heart disease reveals significant
performance discrepancies between the different models. Table 1 presents the results obtained from
various classifiers, which include accuracy, precision, recall, and the F1 score. This allows for a
thorough comparison of their prediction skills. The classifiers that were examined included random
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forest and LightGBM, which had the highest accuracy at 94.54%. Decision trees and KNN were close
behind, with accuracies of 90.34% and 88.66%, respectively. The results show that ensemble-based
models are generally better than standard classifiers when it comes to prediction power. LightGBM
and random forest also demonstrated great precision (94.70% and 93.38%, respectively) and recall
(95.42% and 96.95%, respectively), which means that they are very reliable when it comes to reducing
false positives while accurately identifying actual cases. KNN had the highest recall rate (93.13%),
which indicates that it is very good at identifying cases of heart disease. However, its precision rate
(87.14%) was slightly lower, meaning it has a higher false positive rate. Although decision trees had
the highest precision (93.55%), this method had a lower recall (88.55%), which means that it is a more
conservative model that decreases false alarms but may miss some actual cases.

Table 1. Performance comparison of machine learning models for heart disease detection:

Dataset 1.
Model Accuracy Precision Recall F1 Score
Logistic regression 0. 8613 0. 8712 0. 8712 0. 8745
KNN 0. 8866 0. 8714 0.9313 0. 9004
SVM 0. 8445 0. 8561 0. 8626 0. 8593
Random forest 0. 9454 0. 9338 0. 9695 0. 9513
AdaBoost 0. 8782 0. 8750 0. 9084 0. 8914
LightGBM 0. 9454 0. 9470 0. 9542 0. 9506
Decision trees 0. 9034 0. 9355 0. 8855 0. 9098
CNN 0. 8361 0. 8485 0. 8550 0. 8517
LSTM 0. 8529 0. 8582 0. 8779 0. 8679

Deep learning methods, such as CNN and LSTM, are often employed for complicated feature
extraction. However, they showed lower accuracy (83.61% and 85.29%, respectively) than typical
machine learning models. LSTM was able to surpass CNN in all criteria by a small margin by taking
advantage of its capacity to capture temporal relationships, although it still fell short of the ensemble
models. Ensemble approaches like random forest and LightGBM regularly produced high F1 scores
(95.13% and 95.06%, respectively), demonstrating their reliability. Although AdaBoost had good
performance (87.82% precision), it was not as good as random forest and LightGBM. This suggests
that boosting approaches can enhance performance but do not always outperform bagging-based
strategies. The SVM and logistic regression models achieved reasonable performance, with accuracy
rates of 84.45% and 86.13%, respectively. Because their recall is lower (85.26% and 87.12%), it is
possible that they will have difficulty recognizing all positive cases, making them less suitable for use
in high-risk medical situations.

The results shown in Table 2 demonstrate that the ensemble models, especially random forest and
LightGBM, are the best classifiers for the detection of cardiac disease. This is because they combine
high precision and recall, which makes them appropriate for use in clinical settings. Although deep
learning models did not perform better than standard classifiers, their effectiveness could be improved
with additional tuning and feature engineering. KNN and ensemble models should be prioritized for
applications where it is critical to have a high recall, such as when it is necessary to ensure that all
cases of heart disease are diagnosed. However, if minimizing false positives is the most important
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factor, decision trees and LightGBM provide excellent results.

Table 2. Performance comparison of machine learning models for heart disease detection
with the total ranking score (TRS).

Model Accuracy Precision Recall F1 Score TRS
Logistic regression 0.7234 0.7454 0.6798 0.7111 24
KNN 0.6279 0.6316 0.6167 0.6240 36
SVM 0.7284 0.7326 0.7285 0.7273 19
Random forest 0.7278 0.7402 0.7034 0.7213 23
AdaBoost 0.7294 0.7704 0.6550 0.7080 21
LightGBM 0.7397 0.7608 0.7005 0.7294 12
Decision trees 0.6351 0.6338 0.6426 0.6382 28
CNN 0.7326 0.7428 0.7328 0.7299 12
XGBOOST 0.7385 0.7609 0.6969 0.7275 11

Table 2 illustrates the performance of several classifiers in the second dataset, offering information
on the generalizability of different models in different data sets. The second dataset exhibits a more
equitable performance among classifiers, unlike the previous dataset, where the ensemble models
were the most effective. LightGBM achieved the highest accuracy at 73.97%, followed closely by
XGBoost at 73.85% and CNN at 73.26%. The results demonstrate that LightGBM remains a valuable
model, despite the overall performance metrics being inferior to those of the first data set. Logistic
regression and SVM exhibited comparable performance, achieving accuracy rates of 72.34%
and 72.84%, respectively. CNN performed better on this data set than on the initial one, indicating its
ability to comprehend non-linear patterns in the data.

When you take a closer look at precision and recall values, you can see the trade-offs between
models. LightGBM and XGBoost showed excellent precision (76.08% and 76.09%, respectively) but
lower recall values (70.05% and 69.69%, respectively), suggesting that they may be more conservative
in identifying positive situations. On the other hand, AdaBoost had the best precision (77.04%) but the
lowest recall (65.50%), which means that it is very selective but may miss some cases of heart disease.
The decision trees and KNN algorithms did not perform well in this dataset, achieving accuracy ratings
of 63.51% and 62.79%, respectively. This suggests that they have limited generalizability.

The total ranking score (TRS) evaluates the performance of the model using the accuracy, precision,
recall, and the F1 score. A lower TRS means higher performance across all measures. XGBoost
had the lowest TRS (11), making it the best model in this evaluation. XGBoost balances precision
and recall to perform well in categorization. LightGBM and CNN, both with a TRS of 12, both
showed strong predictive power, proving that ensemble-based models (for example, boosting) and
deep learning models (CNN) are good for heart disease detection. KNN had the highest TRS (36),
suggesting poorer performance in all criteria. KNN may fail to discriminate instances of heart disease
due to its sensitivity to feature scaling and the curse of dimensionality. The decision tree has a high
TRS (28), confirming its tendency to overfit with limited datasets. The results show that boost-based
models (XGBoost, LightGBM) and deep learning models (CNN) can capture complicated medical data
patterns and diagnose heart disease better. Ensemble learning methodologies boost model resilience,
as shown by XGBoost and LightGBM’s success.
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When comparing the findings from both datasets, it is clear that ensemble models such as
LightGBM and random forest perform well across various datasets, although their effectiveness may
change. In the second dataset, CNN and SVM produced more consistent findings, but KNN and
decision trees had less generalizability. The findings highlight how important the qualities of a dataset
are when it comes to affecting how well a model performs. The first data set produced better results
with tree-based ensemble models, while the second data set produced more competitive results across
various approaches, including CNN and SVM. These results indicate that there is no one model that is
better than all the others, and the choice of model should depend on the data set. In the future,
research could investigate model-assembling techniques to combine the characteristics of different
methodologies and further increase the prediction accuracy for heart disease detection.

4.3. Evaluation of enhancing heart disease detection through classifier combinations

To improve classification performance, we explored different combinations of models using voting
(hard and soft) and stacking techniques. Tables 3 and 4 present the accuracy results for various
pairings of classifiers across two datasets, providing information on how ensemble techniques
improve predictive capabilities. The results indicate that stacking consistently outperforms hard and
soft voting, reinforcing its effectiveness in leveraging multiple models’ strengths.

The combination of random forest + decision trees employing stacking achieved the highest
precision of 95. 80% for the first dataset, as shown in Table 3. This shows that tree-based models may
take advantage of their complementary capabilities when they are effectively integrated. In a similar
vein, logistic regression + random forest utilizing stacking achieved an accuracy of 95.38%,
demonstrating that a linear model can greatly benefit from a strong ensemble technique. LightGBM
performed well in hybrid ensembles, as demonstrated by the high precision of stacking when
combined with logistic regression and random forest (94.96% and 94.54%, respectively). Soft voting
performed a little better than hard voting, but stacking was still the best option. When AdaBoost was
used with other models, it achieved its highest accuracy of 94.96% when combined with LightGBM
using stacking, demonstrating its ability to successfully manage weak learners.

Table 3. Evaluation of enhancing heart disease detection through classifier combinations:

Dataset 1.
Model Random Forest AdaBoost SVM
Voting Hard Soft Stacking | Hard Soft Stacking | Hard Soft Stacking
Logistic regression 0. 9118 0.9412  0.9538 | 0. 8655 0.8655 0.8697 | 0.8571 0.8571 0. 8571
Random forest - - - 0.9202 0.9496 0.9538 | 0.9034 0.9286 0.9538
AdaBoost - - - - - - 0. 8697 0.8655 0.8655
SVM - - - - - - - - -
Model LightGBM Decision trees
Voting Hard Soft Stacking | Hard Soft Stacking
Logistic regression 0. 9034 0.9370 0.9496 | 0. 8655 0.9034 0.9034
Random forest 0.9454 0.9496 0.9454 | 0.9034 0.9034 0.9580
AdaBoost 0.9160 0.9496 0.9496 | 0.8739 0.9034 0.9118
SVM 0.8992 0.9412 0.9496 | 0.8571 0.9034 0.9034
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Table 4. Evaluation of enhancing heart disease detection through classifier combinations:

Dataset 2.
Model Random forest AdaBoost Decision trees
Voting Hard Soft Stacking | Hard Soft Stacking | Hard Soft Stacking
Logistic regression 0. 7216 0. 7334  0.7334 | 0. 7189 0.7301 0.7341 | 0. 6811 0.6351 0.7257
Random forest - - - 0.7254 0.7340 0.7362 | 0.6865 0.6351 0.7278
AdaBoost - - - - - - 0. 6860 0.6351 0.7316
Decision trees - - - - - - - - -
Model LightGBM KNN
Voting Hard Soft Stacking | Hard Soft Stacking
Logistic regression 0. 7276 0. 7377 0. 7389 | 0. 6704 0. 6829 0. 7242
Random forest 0.7346 0.7364 0.7383 | 0.6695 0.7010 0.7284
AdaBoost 0.7314 0.7387 0.7391 | 0. 6679 0.6795 0. 7331
Decision trees 0.6915 0.6351 0.7404 | 0.6286 0.6390 0. 6556

The second data set showed a similar pattern, with decision trees + LightGBM utilizing stacking to
achieve maximum accuracy (74.04%). This suggests that combining a tree-based model with gradient
boosting improves generalization. In a similar vein, AdaBoost + LightGBM using stacking achieved
an accuracy of 73.91%, demonstrating the advantages of combining boosting algorithms. When
random forest was paired with LightGBM by stacking, the accuracy reached 73.83%. This confirms
that ensemble learning improves performance even further. Compared with logistic regression, the
best combination was found to be LightGBM employing stacking (73.89%). This suggests that
combining a linear model with boosting techniques can help capture complex correlations in the data.
However, combinations that included KNN typically produced lower accuracy, indicating that it may
not be as successful in hybrid contexts.

Stacking was the most successful ensemble strategy, since it consistently improved classifier
performance across both datasets. Tree-based and boosting models (random forest, LightGBM, and
AdaBoost) continued to perform well, but their effectiveness was much greater when they were paired
with logistic regression and decision trees. The results indicate that stacking hybrid models is a more
precise and reliable method of detecting cardiac disease, especially in clinical settings where accurate
predictions are essential. Future studies could investigate how to increase the models’ performance
even more by improving feature selection and hyperparameters inside stacking frameworks.

4.4. Evaluation of optimized heart disease detection using PSO-based feature selection

After evaluating various classifier combinations, we further optimized our model by implementing
PSO to select the most significant features, aiming to enhance predictive accuracy while reducing
computational complexity. Tables 5 and 6 present the performance results of models trained with
different subsets of selected features using PSO for the first and second datasets. The results indicate
that optimal feature selection significantly impacts the models’ performance across both datasets.

Table 5 shows that the first data set performed the best when nine features were selected. The results
were a precision of 95.80%, a precision of 94.81%, a recall of 97.71%, and an F1 score of 96.24%. This
indicates that choosing a more specific collection of features improves a model’s ability to maintain
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a balance between precision and recall. It is interesting to note that employing all available features
did not result in any improvement. Both the 10-feature and all-feature models achieved an accuracy
of 95.38%, suggesting that some features may add redundancy or noise. The model that was trained
with eight features also performed well, achieving an accuracy of 94.54%. This shows that a slightly
reduced feature count still retains good predictive potential. It should be mentioned that the model
achieved an accuracy of 91.18% when only six features were selected, indicating that the model was
still able to classify quite well even with a smaller number of features.

Table 5. Evaluation of optimized heart disease detection using PSO-Based Feature Selection:
Dataset 1. Wilcoxon signed-rank test p-values compare each feature selection configuration
against the baseline (all features).

Number of features Accuracy Precision Recall F1 score p-value
All features 0.9538 0.9478 0.9695 0.9585 -
6 09118 0.9231 0.9160 0.9195 0.125
8 0.9454 0.9538 0.9466 0.9502 0.250
9 0.9580 0.9481 0.9771 0.9624 0.125
10 0.9538 0.9478 0.9695 0.9585 -
7 0.9160 0.9512 0.8931 0.9213 0.250

Table 6 shows the best performance for the second dataset. This was reached when nine
characteristics were selected, resulting in an accuracy of 74.11%, a precision of 76.13%, a recall
of 70.37%, and an F1 score of 73.13%. This result is very similar to the performance of the
seven-feature model (73.95% accuracy), suggesting that it is important to use a balanced amount of
features to maintain the accuracy of the classification. Interestingly, using all available features
resulted in slightly lower accuracy (73.97%). This further supports the theory that feature selection
reduces redundancy while boosting a model’s generalization. The model with eight selected features
performed similarly well (74.06% accuracy), reinforcing the need to optimize feature selection for
better generalization. On the other hand, when the number of features was reduced to three or four,
the performance dropped dramatically, with accuracy falling to 70.37% and 71.39%, respectively.
This indicates that these subsets did not have enough information to reliably classify.

Table 6. Evaluation of optimized heart disease detection using PSO-based feature selection:
Dataset 2. Wilcoxon signed-rank test p-values compare each feature selection configuration
against the baseline (all features).

Number of features Accuracy Precision Recall F1 score p-value
All features 0.7397 0.7608 0.7005 0.7294 -

7 0.7395 0.7572 0.7064 0.7309 0.875
3 0.7037 0.7324 0.6436 0.6851 0.125
4 0.7139 0.7512 0.6410 0.6918 0.125
9 0.7411 0.7613 0.7037 0.7313 0.125
8 0.7406 0.7640 0.6975 0.7292 0.875

By comparing both datasets, PSO-based feature selection consistently improved performance by
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identifying the most relevant features, reducing computational complexity while maintaining or even
enhancing predictive accuracy. The results highlight that removing irrelevant or redundant features
enhances generalization and prevents overfitting, making feature selection a crucial step in medical
applications where interpretability and efficiency are essential. Future work could explore the
integration of PSO with deep learning architectures to further refine the importance of characteristics
and optimize hybrid models for heart disease detection.

Analyzing the statistics for Dataset 1 shows that feature selection affected model performance
differently. The feature subsets with six, eight, and nine features had Wilcoxon p-values of 0.125 and
0.250, indicating that they performed similarly to the baseline model trained on all features. The
model trained with nine features performed closest to the baseline (p-value = 0.125), showing that a
well-optimized feature selection technique can reduce dimensionality without compromising the
model’s efficacy. However, feature sets with fewer features (for example, seven features, p = 0.250)
had slightly higher variability, suggesting that feature selection procedures could be improved. The
Wilcoxon test of Dataset 2 showed moderate changes from the baseline for feature subsets of three
features (p = 0.125), four features (p = 0.125), and nine features (p = 0.125). Using “seven features”
(p = 0.875) and “eight features” (p = 0.875) did not differ significantly from using all features. This
shows that these two feature selections preserved the predictive capacity of the model while lowering
the input complexity. These results show that a well-chosen subset of features can perform as well as
the whole feature set, improving computational economy without losing accuracy.

4.5. Comprehensive evaluation: Federated learning with optimized feature selection and classifier
integration

To take full advantage of the benefits of federated learning (FL), we used an FL-based strategy
that used the best-performing classifier and the optimized feature set that we gained from previous
tests. Federated learning improves privacy and security by training models on different devices without
sharing data centrally. This is especially beneficial in healthcare applications, where data sensitivity is
an important concern. We demonstrated the usefulness of our proposed model by comparing its results
with those of other state-of-the-art techniques to identify heart disease in both data sets.

The findings, shown in Tables 7, show that, in terms of classification accuracy, our federated
fearning-based model, refined by feature selection, exceeded earlier approaches. Our proposed model
outperformed the ensemble model of Nazari et al. [42] based on GA (88.43%) and Mokeddem
et al. [43] GA + Naive Bayes technique (85.50%). With an accuracy of 92.25%, this notable progress
emphasizes how well feature selection, improved classifier selection, and federated learning together
provide a stronger and more accurate model for detecting heart disease. Similarly, in Dataset 2, our
federated learning-based model achieved an accuracy of 73.58%, slightly outperforming the
GA-ANN method proposed by Arroyo et al. [44] (73.43%). Although the difference in performance is
marginal in this case, it reinforces the viability of federated learning in maintaining accuracy while
addressing privacy concerns in healthcare data.

The results show that, centralized machine learning approaches, integrating federated learning with
optimal feature selection and classifier selection frequently increases models’ performance. Thus, it is
interesting to note that there were several cases in which the results obtained by centralized learning
were only somewhat better than those obtained by federated learning. Given the nature of FL, where
data are scattered among numerous clients and results in smaller training datasets for every node, this
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discrepancy is expected, even if it is not very great.

Table 7. Comprehensive evaluation: Federated learning with optimized feature selection and
classifier integration.

Dataset 1
Methods Accuracy (%)
Proposed model Federated . 92.25
Based on feature selection
Nazari et al. [42] Ensemble model based on GA 88.43
Mokeddem et al. [43] NB+GA 85.50
Dataset 2
Methods Accuracy (%)
Proposed model federated ) 73.58
Based on feature selection
Arroyo et al. [44] ANN+GA 73.43

Particularly in the medical field, where data exchange is highly sensitive and limited, federated
learning has more advantages than any performance gap, even if one exists. Training models jointly
without disclosing patient data guarantees compliance with data privacy criteria and builds confidence
in medical applications using artificial intelligence. Furthermore, as our dataset is not very large,
distributing it among several customers in federated learning reduces the available training data to
each client, therefore affecting learning efficiency. However, the findings show that FL. may continue
to achieve competitive accuracy while simultaneously guaranteeing privacy protection, proving that it
is still promising.

Moreover, our method outperforms the genetic algorithm (GA)-based techniques, suggesting that
using PSO for feature selection combined with a better classifier produces a more exact feature subset
that increases predictive power. Although the improvement in Dataset 2 is less obvious, it shows the
adaptability of FL, demonstrating its competitiveness even in comparison with deep learning-based
solutions such as GA-ANN.

Finally, by eliminating centralized data collection, FL. improves privacy but increases the training
time, computational cost, and communication efficiency. FL involves many local training iterations and
communication with a central aggregator, unlike standard machine learning methods that train models
on a single dataset. This increases client training time and requires careful aggregation frequency
tuning to reduce the network overhead.

Although less accurate than centralized models, FL-based models perform competitively and
improve data privacy, according to our study. The FL. communication overhead depends on the model
update size and communication rounds. Our strategy avoids superfluous parameter exchanges to
improve performance and ensure only significant updates to the global model.

FL also faces data heterogeneity across clients, where local datasets affect model updates. This
can slow convergence, requiring more aggregation rounds to stabilize learning. Our results show that
FL-based training preserves privacy without degrading performance. The modest accuracy trade-off
is offset by FL's improved security and feasibility in real-world healthcare settings, where regulatory
constraints restrict data exchange.
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FL adds computing overhead and connectivity constraints, but its ability to train models without
revealing sensitive patient data makes it vital for medical Al applications. Compression methods can
improve the communication efficiency, and federated deep learning can improve models’ performance
in heterogeneous medical datasets.

4.6. Impact of dataset bias on model generalization

The impact of data set bias on generalization is an important factor to consider, despite the fact that
our models show competitive precision. In Dataset 2, there is a small imbalance between the classes,
which could result in a slight bias in the predictions. This bias would require additional validation
of the balanced data sets. In a similar vein, the large gender imbalance that exists between the two
datasets shows that models may perform better on male patients than they do on female patients. This
presents a potential concern in clinical applications where it is crucial to achieve equivalent prediction
performance across demographics.

Reweighting and oversampling are two examples of bias mitigation approaches that should be
investigated in future research to solve these constraints. These techniques will ensure that models
learn equally from all groups of patients. Transfer learning and domain adaptation techniques could
also help adapt models that were trained on a single data set to other populations with different
distributions. Alternately, fairness-aware training is a viable approach that incorporates adversarial
debiasing strategies to minimize the discrepancies that exist between individual demographic groups.

The need to ensure that prediction models are both fair and strong cannot be overstated in light of
the growing integration of Al in medical diagnostics. Evaluation of model fairness across a variety
of demographic groupings, validation of performance on datasets that are geographically diverse, and
investigation of methods to eliminate data representation bias in training should be the primary focus
of next-generation research. These procedures will ensure that artificial intelligence is ethically and
reliably deployed in the healthcare industry, thus increasing the applicability of predictive models to a
wider range of populations.

4.7. Computational cost and deployment feasibility

There are a number of computational issues that arise when federated learning (FL) is implemented
in real-world healthcare settings. These challenges include the amount of time required for training
and inference, the scalability limits, and the availability of resources. We performed an analysis of
the computational cost of our suggested method as well as practical deployment issues to determine
whether it is feasible.

4.7.1. Scalability considerations

The scalability of FL is affected by network latency, device availability, and the amount of
computational power available at local nodes. However, FL offers benefits that protect patients’
privacy by maintaining the decentralization of patient data sources. FL. must be able to accept a wide
range of client device capabilities in real-world healthcare settings. These capabilities can range from
high-performance hospital servers to low-power edge devices such as mobile health monitors.
Adaptive aggregation techniques, which reduce the frequency of model updates based on local
performance improvements, can be used to alleviate the higher communication overhead associated
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with FL. Additionally, federated dropout techniques might be developed to allow clients with lower
resources to train only a subset of the model. This would reduce the amount of computational strain
that these clients have to bear while still contributing to the global model.

4.7.2. Model deployment challenges and mitigation strategies

When using FL-based heart disease detection systems in real-world applications, there are several
issues that need to be solved, including. limitations on bandwidth and concerns regarding security and
privacy. Because FL requires frequent contact between clients and the central aggregator, it results
in increased bandwidth utilization. Compression strategies, such as quantized updates and sparsified
gradients, can be utilized to achieve optimal performance in this regard.

Despite the fact that FL improves data privacy, it is still susceptible to assaults such as data poisoning
and model inversion. Secure aggregation methods, such as homomorphic encryption and differential
privacy, can be used to prevent the leakage of sensitive data. There are many hospitals and clinics that
rely on traditional Al systems, which require centralized data processing. Integration with existing
medical systems is something that needs to be done. The deployment of FL requires modifications
of the infrastructure to facilitate decentralized learning without interrupting the workflows already in
place. In spite of these obstacles, the results of our experiments show that FL. achieves an accuracy
comparable with that of centralized models while also providing considerable advantages in terms
of privacy. Optimization of FL for real-time medical applications, reducing computational overhead,
and improving the model’s robustness in diverse healthcare contexts will be the main focus of future
developments.

5. Conclusions

In this study, we explored various machine learning approaches to enhance the accuracy and
efficiency of heart disease detection. Our method integrates classical classifiers, ensemble learning,
feature selection, and FL to improve predictive performance while addressing crucial data privacy and
distributed learning challenges.

We examined different classifiers, including random forest, LightGBM, SVM, KNN, AdaBoost,
and deep learning models such as CNN and LSTM. Our findings indicate that ensemble-based
methods, particularly random forest and LightGBM, consistently outperformed individual classifiers,
demonstrating their effectiveness in improving robustness and generalization. Incorporating voting
(hard or soft) and stacking further reinforced predictive performance, highlighting the benefits of
ensemble strategies in medical diagnostics. Using PSO for feature selection, we improved the
efficiency of the model by ensuring that only the most relevant features were utilized. Choosing the
most effective subset of predictive features, this optimization process reduced the number of
redundant activities and improved the classification performance. Furthermore, we implemented FL
to keep our predictive power intact while improving personal information protection. Our technology,
built on FL, effectively enabled decentralized learning, ensuring that sensitive medical data remained
on local devices while contributing to advances in global models. However, the FL technique is a
realistic alternative for real-world healthcare applications because of its privacy protection and
scalability advantages. This is despite presenting a few problems, such as heterogeneity in data
distribution and a limited amount of local training data.
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In the future, research should focus on extending FL. models with deep learning architectures such
as LSTM or federated CNNs to continue improving the accuracy of feature extraction and
classification. It is also possible that the efficiency of the model could be improved by optimizing
feature selection strategies using hybrid metaheuristic approaches. An inquiry could also be directed
in a helpful direction by addressing the heterogeneity of data in FL through the implementation of
specific aggregation algorithms. In conclusion, implementing and validating our FL-based heart
disease detection system in clinical settings would provide more information on its practical
application, hence strengthening its potential as a solution that is both secure and mindful of privacy
in the context of Al-driven medical diagnostics.
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