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1. Introduction

Fractional partial differential equations (FPDEs) are acquiring significance in a variety of scientific
and engineering fields due to their unique ability to articulate complex physical processes, which
outperforms the restrictions imposed by conventional integer-order PDEs [1, 2]. FPDEs are applied
to represent system with reminiscent and inherited features, where the system’s reaction is determined
by its earlier states [3, 4]. They can simulate complex phenomena in fields such as finance, physics,
engineering, and biology, as they effectively capture long-range dependencies and power-law behaviour
[5–7]. FPDEs also offer several advantages over traditional integer-order PDEs, including the ability
to describe complex physical processes with greater precision, capture long-range dependencies and
manage non-local interplays. The use of FPDEs is expected to increase in the future, as they provide a
more accurate and complete understanding of complex physical phenomena.

Finding analytical solutions for FPDEs is a challenging task, and multiple numerical and analytical
approaches have been established to tackle this issue. Researchers often prefer analytical solutions
over numerical methods because they provide a better understanding of the fundamental physical
processes and reveal the real-world behaviour of the modeled system. As a result, developing analytical
solutions for FPDEs is a significant field of research, for which researchers have developed several
mathematical methods. Many of these have been used to solve FPDEs analytically, including the
fractional variational iteration method [8], Adomian decomposition method [9], optimal homotopy
analysis method [10], variable separable method [11], integral transforms method [12], differential
transform method [13] , exp-function approach [14], elliptic expansion technique [15, 16], Hirota
bilinear method [17], Bäcklund transformation bilinear method [18,19], fractional reduced differential
transform method (FRDTM) [20], and the Khater method (KM) [21, 22].

Among these approaches, some researchers have employed the generalized Bernoulli equation
method (gBEM) [23, 24] to generate soliton solutions for nonlinear fractional partial differential
equations (NFPDEs). In this technique, a variable transformation is used to transform NFPDE into an
nonlinear ordinary differential equations (NODE). The proposed procedure then adopts a series-form
solution with specific factors for the subsequent NODE, leading to an algebraic system of equations
that gives soliton solutions for the proposed NFPDE. For finding a broad range of soliton solutions for
NFPDEs, the gBEM presents substantial advantages over other approaches. For instance, the gBEM
provides multiple families of soliton solutions. This makes it possible for researchers to forecast the
behaviour of the system they are modelling with greater accuracy and to obtain a deeper knowledge of
the physical processes that underlie the system. The approach, which yields novel families of soliton
solutions, including chaotic perturbed soliton solutions, can a shed light on many aspects of system
behaviour including decay over time, dispersion, and wave propagation.

Our current research efforts are intend to demonstrate that the suggested gBEM is effective for
analyzing the soliton solutions of the conformable coupled Maccari system (CCMS), a fractional
generalization of the Complex Maccari System (CMS). The CMS is a mathematical model initially
developed to simulate hydraulic systems and nowadays used in a wide range of applications, namely
for non-linear systems with complex structures. In particular, it is extensively applied used in fluid
dynamics to model non-Newtonian behaviors emerging, for example, in viscoelastic fluids. Fluids
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in this category can exhibit pseudoplastic or dilatant properties. These fluids do not follow a linear
relationship between pseudoplastic and dilatant that is depends of Newtonian fluids. Instead, they
display more complex behaviour that depends on the applied stress or shear rate. The CMS is modelled
in the following system of equations [25]:

iQt + Qxx + RQ = 0,
iS t + S xx + RS = 0,
iNt + Nxx + RN = 0,
Rt + Ry + |Q + S + N|2x = 0,

(1)

in which functions Q, S ,N, and R are complex valued functions and depend on x, y, and time t. The
CCMS is a useful tool for modeling complex nonlinear systems, particularly for characterizing the
behaviour of capped waves within a small region. Several researchers have solved CCMS with the
help of different methodologies. Baskonus et al. [25], for example, used the Sine-Gordon expansion
approach to produce soliton solutions to the coupled nonlinear CCMS. Demiray et al. [26] solved the
CCMS using the generalized Kudryashov method. In [27], Ahmad et al. obtained certain soliton and
other numerical solutions for CCMS in integer-order. Maccari’s model was used to characterize rogue
waves in [28]. Based on the currently available literature, the chaotic soliton solutions for CCMS have
not been determined and examined prior to this investigation. Thus, by applying gBEM to investigate
the chaotic behavior of soiltons within the framework of CCMS, the current study closes this research
gap.

The behavior of viscoelastic fluids cannot be described using traditional integer-order derivatives
in CCMS. Integer-order derivatives were developed to describe the behavior of Newtonian fluids and
assume that the fluids reaction is immediate and linear. These assumptions are not accurate for non-
Newtonian fluids, and when applied, they contribute to inaccurate predictions and limited applicability.
Fractional calculus allowing the use of fractional derivatives to better describe of time-dependent and
non-linear behaviors of viscoelastic fluids. These fractional derivatives are developed with non-integer
orders and can consider the deformation history of the fluid, thus yielding a more accurate description
of its behavior. Thus, the CCMS has become the object of our research in this paper. The CCMS
is a type of the CCMS in which NPDEs are replace with the NFPDEs to account for the behaviour
of complex nonlinear systems. The CCMS helps to achieve a more detailed representation of the
nonlinear systems with complex structures such as in heat transfer and fluid dynamics. The CCMS is
denoted as follows: 

iDα
t Q + D2β

x Q + RQ = 0,
iDα

t S + D2β
x S + RS = 0,

iDα
t N + D2β

x N + RN = 0,
Dα

t R + Dγ
yR + Dβ

x|Q + S + N|2 = 0,

(2)

where 0 < α, β, γ ≤ 1 denotes the order of the conformable fractional derivatives. By applying
fractional derivatives in the CMS, it becomes possible to more accurately represent the non-Newtonian
behavior of the viscoelastic fluids, resulting in more accurate predictions and a deeper understanding
of their behavior. This is particularly important for example, for fluid behavior, in vats used in the
industry; or in medicine. Smalls et al. noted that one of the advantages of the fractional calculus
employed in the CMS is that it describes the behavior of viscoelastic fluids in a precise and realistic
manner, which provides benefits when it comes to predicting and recognizing their behavior in reality.
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Another unique feature of the CCMS is that it may contain fractional derivatives, which enables
boundary conditions to be define at an initial stage of the problem. As a result, we can model
systems with anomalous diffusion or non-local transport phenomena, which standard integer-order
models cannot model.

The current study aims to construct and analyze chaotic solitons in CCMS using gBEM. Solitons
are stable, localized wave solutions that preserve their form and velocity while traveling through
matter. These are distinctive solutions observed in some nonlinear FPDEs. They have proven to
be exceptional solutions due to their ability to maintain their shape and coherence after collision
with other solitons. First, by converting the CCMS into a collection of NODEs, we establish a new
set of soliton options. The rational, trigonometric, hyperbolic, and exponential functions are used
to express these perturbed soliton solutions. A series of 3D and counter plots are used to visually
represent the chaotic perturbations of some obtained solitons in order to aid in their interpretation.
This indicates that there are two types of perturbations exhibited by solitons in CCMS: axial
and periodic. Moreover, the approach and findings presented here enable engineers and scientists to
address increasingly intricate systems and unearth novel occurrences in the field of nonlinear dynamics.

2. Method & materials

This section describes the conformable fractional derivative and outlines the working mechanism
of the proposed gBEM.

2.1. Conformable fractional derivative

Recently, various types of fractional derivative operators have been introduced in the literature, such
as Riemann-Liouville, Caputo, Hadamard, Erdelyi-Kober, Grunwald-Letnikov, Marchaud and Riesz by
means of the Fourier or Mellin integral transforms [29, 30]. The advantages of conformable fractional
derivatives over other fractional derivative operators allow them to be used to achieve explicit soliton
solutions to nonlinear FPDEs. Interestingly, some alternate formulations of fractional derivatives do
not yield the soliton solutions for Eq (2) because they violate the chain rule [31, 32]. Conformable
fractional derivatives were so incorporated into Eq (2). Recently, a new local, limit-based definition of
the conformable derivative was formulated in [33–35] as follows:

Dα f (t) = lim
ε→0

f (εt1−α + t) − f (t)
ε

. (3)

Note that, the derivative Dα( f )(t) = t1−α f
′

(t) exists if function f is fully differentiable at t.
Furthermore, we provide a new definition and derive several outcomes, including the sum rule, power
rule, constant rule, product rule, and chain rule. Starting with a generalization of the conformable
fractional derivative, we have the following definition.

Definition 2.1. If a function f : [Υ, b] → < is given with 0 ≤ Υ < b, then the Υ-conformable
fractional derivative of the given function f of order ς is defined as

DΥ
ς ( f )(t) = lim

ε→0

f (t + εt−ς(t − Υ)) − f (t)
ε(1 − Υt−ς)

for all t > Υ, tς , Υ, ς ∈ (0, 1). (4)
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If f is (ς,Υ)-differentiable in some (Υ, b), Υ > 0, limt→Υ+ DΥ
ς exists, then define

DΥ
ς ( f )(t) = lim

t→Υ+
DΥ
ς ( f )(t). (5)

If the Υ-conformable fractional derivative of a given function f of order ς exists, then we simply
say that f is (ς,Υ)-differentiable.
Theorem 2.1. Let h(t) and g(t) be the (Υ, ς)-differentiable functions on (ς, b), and let c1, c2 ∈ <. Then,
the function ζ(t) = c1h(t) + c2g(t) is (Υ, ς)-differentiable on (ς, b), and its (Υ, ς)-conformable fractional
derivative is given by

DΥ
ς (ζ)(t) = c1DΥ

ς (h(t)) + c2DΥ
ς (g)(t). (6)

Theorem 2.2. Let ζ(t) = tp where p ∈ < and ζ is defined on (ς, b). The (Υ, ς)-conformable fractional
derivative of ζ is given by

DΥ
ς (ζ)(t) = p tp−Υ. (7)

Theorem 2.3. Let ζ(t) = c where c is a constant. The (Υ, ς)-conformable fractional derivative of ζ is
zero:

DΥ
ς (ζ)(t) = 0. (8)

Theorem 2.4. Let h(t) and g(t) be (Υ, ς)-differentiable functions on (ς, b). Then the product ζ(t) =

h(t)g(t) is (Υ, ς)-differentiable on (ς, b), and its (Υ, ς)-conformable fractional derivative is given by

DΥ
ς (ζ)(t) = h(t)DΥ

ς (g)(t) + g(t)DΥ
ς (h)(t), . (9)

With these definitions in hand, we can present the following properties for (ς,Υ)-diferentiable
functions. Regarding the conformable fractional derivative, Khalil et al. [35] defined further properties
such as the Laplace transformation, Taylor’s series expansion, Gronwall’s inequality, and several
integration techniques. However, the main result that we use here is the chain rule, which we discuss
in the following theorem.
Theorem 2.5. Let f (t) and h(t) be arbitrary differentiable functions; then

DΥ
ς ( f ◦ h)(t0) = f ′(h(t0))DΥ

ς h(t0). (10)

Proof. If the function h is a constant in a neighbourhood t0, then DΥ
ς ( f ◦ h)(t0) = 0. However, we make

the following assumption about non-constant function h in the vicinity of t0. Here, we are able to find
an ε > 0 3 h(t1) , h(t2) for any t1, t2 ∈ (t0 − ε0, t0 + ε0). Thus, since the function h is continuous at t0,
for t0 > Υ, tς0 , Υ (where Υ ≥ 0), we obtain that

DΥ
ς ( f ◦ h)(t0) = lim

ε→0

f (h(t0 + εt−ς0 (t0 − Υ))) − f (h(t0))

ε(1 − Υt−ς0 )

= lim
ε→0

f (h(t0 + εt−ς0 (t0 − Υ))) − f (h(t0))

h(t0 + εt−ς0 (t0 − Υ)) − h(t0)
·

h(t0 + εt−ς0 (t0 − Υ)) − h(t0)

ε(1 − at−ς0 )

= lim
ε1→0

f (h(t0) + ε1) − f (h(t0))
ε1

·
h(t0 + εt−ς0 (t0 − Υ)) − h(t0)

ε(1 − at−ς0 )

= f ′(h(t0))DΥ
ς (h)(t0).
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Theorem 2.6. Suppose that if a function f : [Υ, b] → < is (ς,Υ)− differentiable with 0 ≤ Υ < b and
ς ∈ (0, 1] at t0 > Υ, tς0 , Υ, then f is continuous at t0.

Proof. Since

f (t0 + εt−ς0 (t0 − Υ)) − f (t0) =
f (t0 + εt−ς0 (t0 − Υ)) − f (t0)

ε(1 − Υt−ς0 )
ε(1 − Υt−ς0 ),

we have

lim
ε→0

f (t0 + εt−ς0 (t0 − Υ)) − f (t0) = lim
ε→0

f (t0 + εt−ς0 (t0 − Υ)) − f (t0)

ε(1 − Υt−ς0 )
lim
ε→0

ε(1 − Υt−ς0 ),

let h = εt−ς0 (t0 − Υ). Then, we get limε→0 f (t0 + h) − f (t0) = DΥ
ς ( f )(t0).0, which implies that f

is continuous at t0.

2.2. The working methodology of gBEM

In the following section, we present the operational procedure of gBEM, an elegant technique for
solving nonlinear FPDEs. The basic structure of FPDEs is summarized as follows:

G(u,Dβ
xu,D

δ
yu,D

α
t u,Dϕ

z u,Dδ
yDβ

xu,D
α
t Dβ

xu, ...) = 0,where t > 0 and 0 < β, δ, α, ϕ < 1, (11)

where u represents an unknown function that depends upon x, y, z, and t, and Dα
t , Dβ

x, Dδ
y, and Dϕ

z are
conformable fractional derivative operators. To solve Eq (11), we shall do the following:
Step 1: We begin our adventure by applying a variable transformation in the following manner:

u(x, y, z, t) = U(ξ), where ξ = k1
tα

α
+ k2

xβ

β
+ k3

yδ

δ
+ k4

z$

$
. (12)

By using several definitions of the function ξ, we design a transformation that transforms Eq (11)
into the next NODE.

G(U, k1U′, k1k2U′′, k3
3U′′′, ...) = 0. (13)

Step 2: Following that, we consider a solution to Eq (13) derived using a series-based technique. This
technique not only speeds our study, but also shows an orderly and visually appealing solution to the
equation.

U(ξ) =

N∑
i=−N

Bi Gi(ξ), (14)

here, Bi represents non-zero constants while G(ξ) is the solution for the following ordinary differential
equation (ODE).

G′(ξ) = τG(ξ) + µG2(ξ). (15)
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Step 3: The nonlinear component and the highest-order derivative of Eq (13) are then balanced
homogeneously to obtain the positive integer N, as shown in Eq (14). This balancing technique is
crucial because it ensures that the resulting equation may be effectively handled using the analytical
approaches outlined below.
Step 4: By inserting Eq (14) into Eq (13), we establish an algebraic system of equations by grouping
all terms with the same power of G(ξ) and putting them equal to zero.
Step 5: Following that, the established system is handled using Maple, which generates the computed
values for the relevant parameters.
Step 6: The sets of soliton solutions are then produced by combining the values of parameters in
Eq (14) with the suitable solution in (15). In addition, the many soliton solutions for Eq (15) applied
to the various conditions are presented below:

Family1: For any non-zero real numbers τ and µ with the conditions τ2 > 0 and µ , 0, respectively,
Eq (13) generates the following families of solutions:

G1(ξ) = −
1
2

τ + tanh
(

1
2 τ ξ

)
µ

, (16)

G2(ξ) = −
1
2

τ + coth
(

1
2 τ ξ

)
µ

, (17)

G3(ξ) = −
1
2
τ + τ tanh (τ ξ) ± (iτ sech (τ ξ))

µ
, (18)

G4(ξ) = −
1
2
τ + τ coth (τ ξ) ± (iτ csch (τ ξ))

µ
, (19)

G5(ξ) = −
1
4

2 τ + τ tanh
(

1
4 τ ξ

)
+ τ coth

(
1
4 τ ξ

)
µ

, (20)

G6(ξ) =
τ
√

M2 + N2 − τM cosh (τ ξ)
2 µM sinh (τ ξ) + 2 µN

−
1
2
τ

µ
, (21)

G7(ξ) =
−τ
√

N2 − M2 − τM sinh (τ ξ)
2 µM cosh (τ ξ) + 2 µN

−
1
2
τ

µ
, (22)
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where N2 − M2 > 0, for all M and N non-zero real constants.

G8(ξ) =
±

(
τ eτ ξ

)
µ ∓ (µ eτ ξ)

, (23)

G9(ξ) =
±

(
τ eτ ξ

)
iµ ∓ (µ eτ ξ)

, (24)

G10(ξ) =
τ
√

M2 − N2 ±
(
τ

(
Meτ ξ − iN

))
∓ (µM (eτ ξ − e−τ ξ)) ± (2 iµN)

, (25)

where M2 − N2 > 0, for all M and N non-zero real constants.

G11(ξ) = −
τ χ eτ ξ

µ + µ χ eτ ξ
, (26)

G12(ξ) = −
τ eτ ξ

µ χ + µ eτ ξ
, (27)

where χ is arbitrary unknown constant.
Family2: If τ = 0 and µ , 0, the solution of Eq (13) is:

G13(ξ) = −
1

µ ξ + Ψ
. (28)

3. Execution of the gBEM

We apply the following variable transformation to derive innovative soliton solutions for the CCMS
given in (2):

Q(t, x, y) = eΩu(t, x, y),
S (t, x, y) = eΩv(t, x, y),

N(t, x, y) = eΩw(t, x, y).
(29)

Where Ω = i(λ tα
α

+ K xβ
β

+ j yδ

δ
) + m, and λ, K, j and m are arbitrary constants to be defined later.

Substituting (29) by considering ξ = η( xβ
β

+
yδ

δ
− 2K tα

α
) into (2), we get:

i
(
Dα

t u + 2kDβ
xu

)
+ D2β

x u − (λ + K2)u + uR = 0,
i
(
Dα

t v + 2kDβ
xv

)
+ D2β

x v − (λ + K2)v + vR = 0,
i
(
Dα

t w + 2kDβ
xw

)
+ D2β

x w − (λ + K2)w + wR = 0,
Dα

t R + Dγ
yR + Dβ

x(u2) = 0.

(30)
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Using the transformation u = U(ξ), v = V(ξ), w = W(ξ), and R = R(ξ), where ξ = η( xβ
β

+
yδ

δ
− 2K tα

α
)

to (30) yields the following set of equations:
η2U′′ − (λ + K2)U + UR = 0,
η2V ′′ − (λ + K2)V + VR = 0,
η2W ′′ − (λ + K2)W + WR = 0,
(1 − 2K)∂R

∂ξ
+ ∂

∂ξ
(U + V + W)2 = 0.

(31)

When we integrate the fourth part (31) with regard to ξ, we get:

R = −
(U + V + W)2

(1 − 2K)
. (32)

Substituting Eq (32) into the first three sections of (31) gives the following result:
η2U′′ − (λ + K2)U − (U+V+W)2U

(1−2K) = 0,
η2V ′′ − (λ + K2)V − (U+V+W)2V

(1−2K) = 0,
η2W ′′ − (λ + K2)W − (U+V+W)2W

(1−2K) = 0.

(33)

We may simplify the system of equations in (33) to a single NODE in U, assuming values for V
and W with arbitrary constants K1 and K2, such that,

V = K1U, W = K2U. (34)

By substituting (34) with (33), we get the following NODE:

η2∂
2U
∂ξ2 − (λ + K2)U −

(K2 + K1 + 1)2

(1 − 2K)
U3 = 0, (35)

We get N = 1 by applying the balancing principle to the largest derivative U
′′

(ξ) and the nonlinear
term U3 in (35).

U(ξ) =

N∑
i=−N

Bi Gi(ξ). (36)

Putting (36) in (35) and collecting all the terms with the same power of G(ξ) provides an expression
in G(ξ). We obtain a system of algebraic equations by equating each coefficient of the expression to
zero. Using Maple and solving the resulting system yields the following three scenarios of solutions
for the relevant parameters:
Case 1:

B−1 =
B0τ

µ
, B0 = B0, B1 = 0,K = K,K1 = −K2 − 1,K2 = K2, λ = −K2 + η2τ2, η = η. (37)

Case 2:

B−1 = B−1, B0 = B0, B1 = B1,K = K,K1 = −K2 − 1,K2 = K2, λ = −K2, η = 0. (38)
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Case 3:

B−1 = 0, B0 =
1
2

B1τ

µ
, B1 = B1,K = K,K1 = −Ω,K2 = K2, λ = −K2 −

1
2
η2τ2, η = η. (39)

Where −2 η2µ2+4 η2µ2K+K2B1
2+B1

2

B1
2

Assuming Case 1, we obtain the subsequent families of soliton solutions for CCMS given in (2):

Family 1.1. For any non-zero real numbers τ and µ with the conditions τ2 > 0 and µ , 0, respectively,
Eq (35) for Case 1 generates the following families of solutions:

Q1,1(t, x, y) = eΩ

(B0

(
−τ + tanh

(
1
2 τ ξ

))
τ + tanh

(
1
2 τ ξ

) )
,

S 1,1(t, x, y) = K1eΩ

(B0

(
−τ + tanh

(
1
2 τ ξ

))
τ + tanh

(
1
2 τ ξ

) )
,

N1,1(t, x, y) = K2eΩ

(B0

(
−τ + tanh

(
1
2 τ ξ

))
τ + tanh

(
1
2 τ ξ

) )
,

R1,1(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,1(t, x, y),

(40)

where U1,1(t, x, y) =
B0(−τ+tanh( 1

2 τ ξ))
τ+tanh( 1

2 τ ξ)
.

Q1,2(t, x, y) = eΩ

(B0

(
τ + coth

(
1
2 τ ξ

))
−τ + coth

(
1
2 τ ξ

) )
,

S 1,2(t, x, y) = K1eΩ

(B0

(
τ + coth

(
1
2 τ ξ

))
−τ + coth

(
1
2 τ ξ

) )
,

N1,2(t, x, y) = K2eΩ

(B0

(
τ + coth

(
1
2 τ ξ

))
−τ + coth

(
1
2 τ ξ

) )
,

R1,2(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,2(t, x, y),

(41)

where U1,2(t, x, y) =
B0(τ+coth( 1

2 τ ξ))
−τ+coth( 1

2 τ ξ)
.
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Q1,3(t, x, y) = eΩ

(
−2 B0

1 + tanh (τ ξ) ± (isech (τ ξ))
+ B0

)
,

S 1,3(t, x, y) = K1eΩ

(
−2 B0

1 + tanh (τ ξ) ± (isech (τ ξ))
+ B0

)
,

N1,3(t, x, y) = K2eΩ

(
−2 B0

1 + tanh (τ ξ) ± (isech (τ ξ))
+ B0

)
,

R1,3(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,3(t, x, y),

(42)

where U1,3(t, x, y) = −2 B0
1+tanh(τ ξ)±(isech(τ ξ)) + B0.

Q1,4(t, x, y) = eΩ

(
−2 B0

1 + coth (τ ξ) ± (icsch (τ ξ))
+ B0

)
,

S 1,4(t, x, y) = K1eΩ

(
−2 B0

1 + coth (τ ξ) ± (icsch (τ ξ))
+ B0

)
,

N1,4(t, x, y) = K2eΩ

(
−2 B0

1 + coth (τ ξ) ± (icsch (τ ξ))
+ B0

)
,

R1,4(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,4(t, x, y),

(43)

where U1,4(t, x, y) = −2 B0
1+coth(τ ξ)±(icsch(τ ξ)) + B0.

Q1,5(t, x, y) = eΩ

(
B0

2 cosh
(
1
4
τ ξ

)
sinh

(
1
4
τ ξ

)
− 2

(
cosh

(
1
4
τ ξ

))2

+ 1
2 )

,

S 1,5(t, x, y) = K1eΩ

(
B0

2 cosh
(
1
4
τ ξ

)
sinh

(
1
4
τ ξ

)
− 2

(
cosh

(
1
4
τ ξ

))2

+ 1
2 )

,

N1,5(t, x, y) = K2eΩ

(
B0

2 cosh
(
1
4
τ ξ

)
sinh

(
1
4
τ ξ

)
− 2

(
cosh

(
1
4
τ ξ

))2

+ 1
2 )

,

R1,5(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,5(t, x, y),

(44)

where U1,5(t, x, y) = B0

(
2 cosh

(
1
4 τ ξ

)
sinh

(
1
4 τ ξ

)
− 2

(
cosh

(
1
4 τ ξ

))2
+ 1

)2
.
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Q1,6(t, x, y) = eΩ

(B0

(
T sinh (τ ξ) + N +

√
T 2 + N2 − T cosh (τ ξ)

)
√

T 2 + N2 − T cosh (τ ξ) − T sinh (τ ξ) − N

)
,

S 1,6(t, x, y) = K1eΩ

(B0

(
T sinh (τ ξ) + N +

√
T 2 + N2 − T cosh (τ ξ)

)
√

M2 + N2 − M cosh (τ ξ) − M sinh (τ ξ) − N

)
,

N1,6(t, x, y) = K2eΩ

(B0

(
M sinh (τ ξ) + N +

√
M2 + N2 − M cosh (τ ξ)

)
√

M2 + N2 − M cosh (τ ξ) − M sinh (τ ξ) − N

)
,

R1,6(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,6(t, x, y),

(45)

where U1,6(t, x, y) =
B0

(
M sinh(τ ξ)+N+

√
M2+N2−M cosh(τ ξ)

)
√

M2+N2−M cosh(τ ξ)−M sinh(τ ξ)−N
.

Q1,7(t, x, y) = eΩ

(
−

B0

(
M cosh (τ ξ) + N −

√
N2 − M2 + M sinh (τ ξ)

)
√

N2 − M2 − M sinh (τ ξ) + M cosh (τ ξ) + N

)
,

S 1,7(t, x, y) = K1eΩ

(
−

B0

(
M cosh (τ ξ) + N −

√
N2 − M2 + M sinh (τ ξ)

)
√

N2 − M2 − M sinh (τ ξ) + M cosh (τ ξ) + N

)
,

N1,7(t, x, y) = K2eΩ

(
−

B0

(
M cosh (τ ξ) + N −

√
N2 − M2 + M sinh (τ ξ)

)
√

N2 − M2 − M sinh (τ ξ) + M cosh (τ ξ) + N

)
,

R1,7(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,7(t, x, y),

(46)

where U1,7(t, x, y) = −
B0

(
M cosh(τ ξ)+N−

√
N2−M2+M sinh(τ ξ)

)
√

N2−M2−M sinh(τ ξ)+M cosh(τ ξ)+N
.

Where N2 − M2 > 0, for all M and N non-zero real constants.

Q1,8(t, x, y) = eΩ

(B0

(
1 ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

S 1,8(t, x, y) = K1eΩ

(B0

(
1 ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

N1,8(t, x, y) = K2eΩ

(B0

(
1 ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

R1,8(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,8(t, x, y),

(47)

where U1,8(t, x, y) =
B0(1∓(eτ ξ))
±(eτ ξ) + B0.
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Q1,9(t, x, y) = eΩ

(B0

(
i ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

S 1,9(t, x, y) = K1eΩ

(B0

(
i ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

N1,9(t, x, y) = K2eΩ

(B0

(
i ∓

(
eτ ξ

))
± (eτ ξ)

+ B0

)
,

R1,9(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,9(t, x, y),

(48)

where U1,9(t, x, y) =
B0(i∓(eτ ξ))
±(eτ ξ) + B0.

Q1,10(t, x, y) = eΩ

(B0

(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
√

M2 − N2 ± (Meτ ξ − iR)
+ B0

)
,

S 1,10(t, x, y) = K1eΩ

(B0

(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
√

M2 − N2 ± (Meτ ξ − iR)
+ B0

)
,

N1,10(t, x, y) = K2eΩ

(B0

(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
√

M2 − N2 ± (Meτ ξ − iR)
+ B0

)
,

R1,10(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,10(t, x, y),

(49)

where U1,10(t, x, y) =
B0(∓(M(eτ ξ−e−τ ξ))±(2 iR))
√

M2−N2±(Meτ ξ−iR) + B0.

Where M2 − N2 > 0, for all M and N non-zero real constants.

Q1,11(t, x, y) = eΩ

(
−

B0

(
1 + χ eτ ξ

)
χ eτ ξ

+ B0

)
,

S 1,11(t, x, y) = K1eΩ

(
−

B0

(
1 + χ eτ ξ

)
χ eτ ξ

+ B0

)
,

N1,11(t, x, y) = K2eΩ

(
−

B0

(
1 + χ eτ ξ

)
χ eτ ξ

+ B0

)
,

R1,11(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,11(t, x, y),

(50)

where U1,11(t, x, y) = −
B0(1+χ eτ ξ)

χ eτ ξ + B0.
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Q1,12(t, x, y) = eΩ

(
−

B0

(
χ + eτ ξ

)
eτ ξ

+ B0

)
,

S 1,12(t, x, y) = K1eΩ

(
−

B0

(
χ + eτ ξ

)
eτ ξ

+ B0

)
,

N1,12(t, x, y) = K2eΩ

(
−

B0

(
χ + eτ ξ

)
eτ ξ

+ B0

)
,

R1,12(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,12(t, x, y),

(51)

where U1,12(t, x, y) = −
B0(χ+eτ ξ)

eτ ξ + B0.
Where χ is an arbitrary unknown constant.

Family 1.2. If τ = 0 and µ , 0, the solution of Eq (35) for Case 1 is:

Q1,13(t, x, y) = eΩ

(
−

B0τ (µ ξ + Ψ)
µ

+ B0

)
,

S 1,13(t, x, y) = K1eΩ

(
−

B0τ (µ ξ + Ψ)
µ

+ B0

)
,

N1,13(t, x, y) = K2eΩ

(
−

B0τ (µ ξ + Ψ)
µ

+ B0

)
,

R1,13(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

1,13(t, x, y).

(52)

Where U1,13(t, x, y) = −
B0τ (µ ξ+Ψ)

µ
+ B0.

Assuming Case 2, we get the subsequent families of soliton solutions for CCMS given in (2):

Family 2.1. For any non-zero real numbers τ and µ with the conditions τ2 > 0 and µ , 0,
respectively, Eq (35) for Case 2 generates the following families of solutions:

Q2,1(t, x, y) = eΩ

(
−2 B−1µ

τ + tanh
(

1
2 τ ξ

) + B0 −
B1τ + B1 tanh

(
1
2 τ ξ

)
2 µ

)
,

S 2,1(t, x, y) = K1eΩ

(
−2 B−1µ

τ + tanh
(

1
2 τ ξ

) + B0 −
B1τ + B1 tanh

(
1
2 τ ξ

)
2 µ

)
,

N2,1(t, x, y) = K2eΩ

(
−2 B−1µ

τ + tanh
(

1
2 τ ξ

) + B0 −
B1τ + B1 tanh

(
1
2 τ ξ

)
2 µ

)
,

R2,1(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,1(t, x, y),

(53)
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where U2,1(t, x, y) =
−2 B−1µ

τ+ tanh( 1
2 τ ξ)

+ B0 −
B1τ+ B1 tanh( 1

2 τ ξ)
2 µ .

Q2,2(t, x, y) = eΩ

( 2 B−1µ

− τ + coth
(

1
2 τ ξ

) + B0 +
− B1τ + B1 coth

(
1
2 τ ξ

)
2 µ

)
,

S 2,2(t, x, y) = K1eΩ

( 2 B−1µ

− τ + coth
(

1
2 τ ξ

) + B0 +
− B1τ + B1 coth

(
1
2 τ ξ

)
2 µ

)
,

N2,2(t, x, y) = K2eΩ

( 2 B−1µ

− τ + coth
(

1
2 τ ξ

) + B0 +
− B1τ + B1 coth

(
1
2 τ ξ

)
2 µ

)
,

R2,2(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,2(t, x, y),

(54)

where U2,2(t, x, y) =
2 B−1µ

− τ+ coth( 1
2 τ ξ)

+ B0 +
− B1τ+ B1 coth( 1

2 τ ξ)
2 µ .

Q2,3(t, x, y) = eΩ

(
− 2

B−1µ

τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
+ B0 −

B1τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
2 µ

)
,

S 2,3(t, x, y) = K1eΩ

(
− 2

B−1µ

τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
+ B0 −

B1τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
2 µ

)
,

N2,3(t, x, y) = K2eΩ

(
− 2

B−1µ

τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
+ B0 −

B1τ (1 + tanh (τ ξ) ± (isech (τ ξ)))
2 µ

)
,

R2,3(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,3(t, x, y),

(55)

where U2,3(t, x, y) = −2 B−1µ

τ (1+tanh(τ ξ)±(isech(τ ξ))) + B0 −
B1τ (1+tanh(τ ξ)±(isech(τ ξ)))

2 µ .

Q2,4(t, x, y) = eΩ

(
− 2

B−1µ

τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
+ B0 −

B1τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
2 µ

)
,

S 2,4(t, x, y) = K1eΩ

(
− 2

B−1µ

τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
+ B0 −

B1τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
2 µ

)
,

N2,4(t, x, y) = K2eΩ

(
− 2

B−1µ

τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
+ B0 −

B1τ (1 + coth (τ ξ) ± (icsch (τ ξ)))
2 µ

)
,

R2,4(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,4(t, x, y),

(56)

where U2,4(t, x, y) = −2 B−1µ

τ (1+coth(τ ξ)±(icsch(τ ξ))) + B0 −
B1τ (1+coth(τ ξ)±(icsch(τ ξ)))

2 µ .

AIMS Mathematics Volume 10, Issue 3, 6664–6693.



6679

Q2,5(t, x, y) = eΩ

(
−4 B−1µ(

2 + tanh
(

1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

+ B0 −
B1

(
2 + tanh

(
1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

4 µ

)
,

S 2,5(t, x, y) = K1eΩ

(
−4 B−1µ(

2 + tanh
(

1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

+ B0 −
B1

(
2 + tanh

(
1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

4 µ

)
,

N2,5(t, x, y) = K2eΩ

(
−4 B−1µ(

2 + tanh
(

1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

+ B0 −
B1

(
2 + tanh

(
1
4 τ ξ

)
+ coth

(
1
4 τ ξ

))
τ

4 µ

)
,

R2,5(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,5(t, x, y),

(57)

where U2,5(t, x, y) =
−4 B−1µ

(2+ tanh( 1
4 τ ξ)+ coth( 1

4 τ ξ))τ
+ B0 −

B1(2+ tanh( 1
4 τ ξ)+ coth( 1

4 τ ξ))τ
4 µ .

Q2,6(t, x, y) = eΩ

(2 B−1µ

τ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1

+ B0 +
B1τ

2µ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1 )

,

S 2,6(t, x, y) = K1eΩ

(2 B−1µ

τ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1

+ B0 +
B1τ

2µ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1 )

,

N2,6(t, x, y) = K2eΩ

(2 B−1µ

τ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1

+ B0 +
B1τ

2µ

 √M2 + N2 − M cosh (τ ξ)
M sinh (τ ξ) + N

− 1
−1 )

,

R2,6(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,6(t, x, y),

(58)

where U2,6(t, x, y) =
2 B−1µ

τ

( √
M2+N2−M cosh(τ ξ)

M sinh(τ ξ)+N − 1
)−1

+ B0 + B1τ
2µ

( √
M2+N2−M cosh(τ ξ)

M sinh(τ ξ)+N − 1
)−1

.

Q2,7(t, x, y) = eΩ

(
−

2B−1µ

τ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
−1

+ B0 −
B1τ

2µ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
 ),

S 2,7(t, x, y) = K1eΩ

(
−

2B−1µ

τ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
−1

+ B0 −
B1τ

2µ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
 ),

N2,7(t, x, y) = K2eΩ

(
−

2B−1µ

τ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
−1

+ B0 −
B1τ

2µ

 √N2 − M2 − M sinh (τ ξ)
M cosh (τ ξ) + N

+ 1
 ),

R2,7(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,7(t, x, y),

(59)
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where U2,7(t, x, y) = −
2B−1µ

τ

( √
N2−M2−M sinh(τ ξ)

M cosh(τ ξ)+N + 1
)−1

+ B0 −
B1τ
2µ

( √
N2−M2−M sinh(τ ξ)

M cosh(τ ξ)+N + 1
)
.

Where N2 − M2 > 0, for all M and N non-zero real constants.

Q2,8(t, x, y) = eΩ

(B−1µ
(
1 ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (1 ∓ (eτ ξ))

)
,

S 2,8(t, x, y) = K1eΩ

(B−1µ
(
1 ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (1 ∓ (eτ ξ))

)
,

N2,8(t, x, y) = K2eΩ

(B−1µ
(
1 ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (1 ∓ (eτ ξ))

)
,

R2,8(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,8(t, x, y),

(60)

where U2,8(t, x, y) =
B−1µ (1∓(eτ ξ))

τ±(eτ ξ) + B0 +
B1τ±(eτ ξ)
µ (1∓(eτ ξ)) .

Q2,9(t, x, y) = eΩ

(B−1µ
(
i ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (i ∓ (eτ ξ))

)
,

S 2,9(t, x, y) = K1eΩ

(B−1µ
(
i ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (i ∓ (eτ ξ))

)
,

N2,9(t, x, y) = K2eΩ

(B−1µ
(
i ∓

(
eτ ξ

))
τ ± (eτ ξ)

+ B0 +
B1τ ±

(
eτ ξ

)
µ (i ∓ (eτ ξ))

)
,

R2,9(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,9(t, x, y),

(61)

where U2,9(t, x, y) =
B−1µ (i∓(eτ ξ))

τ±(eτ ξ) + B0 +
B1τ±(eτ ξ)
µ (i∓(eτ ξ)) .

Q2,10(t, x, y) = eΩ

(B−1µ
(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
τ

(√
M2 − N2 ± (Meτ ξ − iR)

) + B0 +
B1τ

(√
M2 − N2 ±

(
Meτ ξ − iR

))
µ (∓ (M (eτ ξ − e−τ ξ)) ± (2 iR))

)
,

S 2,10(t, x, y) = K1eΩ

(B−1µ
(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
τ

(√
M2 − N2 ± (Meτ ξ − iR)

) + B0 +
B1τ

(√
M2 − N2 ±

(
Meτ ξ − iR

))
µ (∓ (M (eτ ξ − e−τ ξ)) ± (2 iR))

)
,

N2,10(t, x, y) = K2eΩ

(B−1µ
(
∓

(
M

(
eτ ξ − e−τ ξ

))
± (2 iR)

)
τ

(√
M2 − N2 ± (Meτ ξ − iR)

) + B0 +
B1τ

(√
M2 − N2 ±

(
Meτ ξ − iR

))
µ (∓ (M (eτ ξ − e−τ ξ)) ± (2 iR))

)
,

R2,10(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,10(t, x, y),

(62)

AIMS Mathematics Volume 10, Issue 3, 6664–6693.



6681

where U2,10(t, x, y) =
B−1µ (∓(M(eτ ξ−e−τ ξ))±(2 iR))

τ
(√

M2−N2±(Meτ ξ−iR)
) + B0 +

B1τ
(√

M2−N2±(Meτ ξ−iR)
)

µ (∓(M(eτ ξ−e−τ ξ))±(2 iR)) .

Where M2 − N2 > 0, for all M and N non-zero real constants.

Q2,11(t, x, y) = eΩ

(
−

B−1µ
(
1 + χ eτ ξ

)
τ χ eτ ξ

+ B0 −
B1τ χ eτ ξ

µ (1 + χ eτ ξ)

)
,

S 2,11(t, x, y) = K1eΩ

(
−

B−1µ
(
1 + χ eτ ξ

)
τ χ eτ ξ

+ B0 −
B1τ χ eτ ξ

µ (1 + χ eτ ξ)

)
,

N2,11(t, x, y) = K2eΩ

(
−

B−1µ
(
1 + χ eτ ξ

)
τ χ eτ ξ

+ B0 −
B1τ χ eτ ξ

µ (1 + χ eτ ξ)

)
,

R2,11(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,11(t, x, y),

(63)

where U2,11(t, x, y) = −
B−1µ (1+χ eτ ξ)

τ χ eτ ξ + B0 −
B1τ χ eτ ξ

µ (1+χ eτ ξ) .

Q2,12(t, x, y) = eΩ

(
−

B−1µ
(
χ + eτ ξ

)
τ eτ ξ

+ B0 −
B1τ eτ ξ

µ (χ + eτ ξ)

)
,

S 2,12(t, x, y) = K1eΩ

(
−

B−1µ
(
χ + eτ ξ

)
τ eτ ξ

+ B0 −
B1τ eτ ξ

µ (χ + eτ ξ)

)
,

N2,12(t, x, y) = K2eΩ

(
−

B−1µ
(
χ + eτ ξ

)
τ eτ ξ

+ B0 −
B1τ eτ ξ

µ (χ + eτ ξ)

)
,

R2,12(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,12(t, x, y),

(64)

where U2,12(t, x, y) = −
B−1µ (χ+eτ ξ)

τ eτ ξ + B0 −
B1τ eτ ξ

µ (χ+eτ ξ) .
Where χ is an arbitrary unknown constant.

Family 2.2. If τ = 0 and µ , 0, the solution of Eq (35) for Case 2 is:

Q2,13(t, x, y) = eΩ

(
− B−1 (µ ξ + Ψ) + B0 −

B1

µ ξ + Ψ

)
,

S 2,13(t, x, y) = K1eΩ

(
− B−1 (µ ξ + Ψ) + B0 −

B1

µ ξ + Ψ

)
,

N2,13(t, x, y) = K2eΩ

(
− B−1 (µ ξ + Ψ) + B0 −

B1

µ ξ + Ψ

)
,

R2,13(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

2,13(t, x, y).

(65)

Where U2,13(t, x, y) = −B−1 (µ ξ + Ψ) + B0 −
B1

µ ξ+Ψ
.
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Assuming Case 3, we get the subsequent families of soliton solutions for CCMS given in (2):
Family 3.1. For any non-zero real numbers τ and µ with the conditions τ2 > 0 and µ , 0, respectively,
Eq (35) for Case 3 generates the following families of solutions:

Q3,1(t, x, y) = eΩ

(
−

1
2

B1 tanh
(

1
2 τ ξ

)
µ

)
,

S 3,1(t, x, y) = K1eΩ

(
−

1
2

B1 tanh
(

1
2 τ ξ

)
µ

)
,

N3,1(t, x, y) = K2eΩ

(
−

1
2

B1 tanh
(

1
2 τ ξ

)
µ

)
,

R3,1(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,1(t, x, y),

(66)

where U3,1(t, x, y) = −1
2

B1 tanh( 1
2 τ ξ)

µ
.

Q3,2(t, x, y) = eΩ

(1
2

B1 coth
(

1
2 τ ξ

)
µ

)
,

S 3,2(t, x, y) = K1eΩ

(1
2

B1 coth
(

1
2 τ ξ

)
µ

)
,

N3,2(t, x, y) = K2eΩ

(1
2

B1 coth
(

1
2 τ ξ

)
µ

)
,

R3,2(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,2(t, x, y),

(67)

where U3,2(t, x, y) = 1
2

B1 coth( 1
2 τ ξ)

µ
.

Q3,3(t, x, y) = eΩ B1τ

µ

(
−

1
2

tanh (τ ξ) −
1
2
± (isech (τ ξ))

)
,

S 3,3(t, x, y) = K1eΩ B1τ

µ

(
−

1
2

tanh (τ ξ) −
1
2
± (isech (τ ξ))

)
,

N3,3(t, x, y) = K2eΩ B1τ

µ

(
−

1
2

tanh (τ ξ) −
1
2
± (isech (τ ξ))

)
,

R3,3(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,3(t, x, y),

(68)

where U3,3(t, x, y) = B1τ
µ

(
− 1

2 tanh (τ ξ) − 1
2 ± (isech (τ ξ))

)
.
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Q3,4(t, x, y) = eΩ B1τ

2 µ

(
− coth (τ ξ) − 1 ± 2 (icsch (τ ξ))

)
,

S 3,4(t, x, y) = K1eΩ B1τ

2 µ

(
− coth (τ ξ) − 1 ± 2 (icsch (τ ξ))

)
,

N3,4(t, x, y) = K2eΩ B1τ

2 µ

(
− coth (τ ξ) − 1 ± 2 (icsch (τ ξ))

)
,

R3,4(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,4(t, x, y),

(69)

where U3,4(t, x, y) = B1τ
2 µ

(
− coth (τ ξ) − 1 ± 2 (icsch (τ ξ))

)
.

Q3,5(t, x, y) = −eΩ B1τ

4 µ

(
tanh

(
1
4
τ ξ

)
+ coth

(
1
4
τ ξ

) )
,

S 3,5(t, x, y) = −K1eΩ B1τ

4 µ

(
tanh

(
1
4
τ ξ

)
+ coth

(
1
4
τ ξ

) )
,

N3,5(t, x, y) = −K2eΩ B1τ

4 µ

(
tanh

(
1
4
τ ξ

)
+ coth

(
1
4
τ ξ

) )
,

R3,5(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,5(t, x, y),

(70)

where U3,5(t, x, y) = − B1τ
4 µ

(
tanh

(
1
4 τ ξ

)
+ coth

(
1
4 τ ξ

) )
.

Q3,6(t, x, y) = eΩ

(1
2

(√
M2 + N2 − M cosh (τ ξ)

)
B1τ

µ (M sinh (τ ξ) + N)

)
,

S 3,6(t, x, y) = K1eΩ

(1
2

(√
M2 + N2 − M cosh (τ ξ)

)
B1τ

µ (M sinh (τ ξ) + N)

)
,

N3,6(t, x, y) = K2eΩ

(1
2

(√
M2 + N2 − M cosh (τ ξ)

)
B1τ

µ (M sinh (τ ξ) + N)

)
,

R3,6(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,6(t, x, y),

(71)

where U3,6(t, x, y) = 1
2

(√
M2+N2−M cosh(τ ξ)

)
B1τ

µ (M sinh(τ ξ)+N) .
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Q3,7(t, x, y) = eΩ

(
−

1
2

(√
N2 − M2 − M sinh (τ ξ)

)
B1τ

µ (M cosh (τ ξ) + N)

)
,

S 3,7(t, x, y) = K1eΩ

(
−

1
2

(√
N2 − M2 − M sinh (τ ξ)

)
B1τ

µ (M cosh (τ ξ) + N)

)
,

N3,7(t, x, y) = K2eΩ

(
−

1
2

(√
N2 − M2 − M sinh (τ ξ)

)
B1τ

µ (M cosh (τ ξ) + N)

)
,

R3,7(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,7(t, x, y),

(72)

where U3,7(t, x, y) = −1
2

(√
N2−M2−M sinh(τ ξ)

)
B1τ

µ (M cosh(τ ξ)+N) .
Where N2 − M2 > 0, for all M and N non-zero real constants.

Q3,8(t, x, y) = eΩ

(B1τ

µ

1
2
±

(
eτ ξ

)
1 ∓ (eτ ξ)

 ),
S 3,8(t, x, y) = K1eΩ

(B1τ

µ

1
2
±

(
eτ ξ

)
1 ∓ (eτ ξ)

 ),
N3,8(t, x, y) = K2eΩ

(B1τ

µ

1
2
±

(
eτ ξ

)
1 ∓ (eτ ξ)

 ),
R3,8(t, x, y) =

(K1 + K2 + 1)2

(2K − 1)
U2

3,8(t, x, y),

(73)

where U3,8(t, x, y) = B1τ
µ

(
1
2 ±

(eτ ξ)
1∓(eτ ξ)

)
.

Q3,9(t, x, y) = eΩ

(B1τ

µ

1
2

+
±

(
eτ ξ

)
i ∓ (eτ ξ)

 ),
S 3,9(t, x, y) = K1eΩ

(B1τ

µ

1
2

+
±

(
eτ ξ

)
i ∓ (eτ ξ)

 ),
N3,9(t, x, y) = K2eΩ

(B1τ

µ

1
2

+
±

(
eτ ξ

)
i ∓ (eτ ξ)

 ),
R3,9(t, x, y) =

(K1 + K2 + 1)2

(2K − 1)
U2

3,9(t, x, y),

(74)

where U3,9(t, x, y) = B1τ
µ

(
1
2 +

±(eτ ξ)
i∓(eτ ξ)

)
.
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Q3,10(t, x, y) = eΩ

(B1τ

µ

1
2

+

√
M2 − N2 ± Meτ ξ − iR

∓ (M (eτ ξ − e−τ ξ)) ± (2 iR)

 ),
S 3,10(t, x, y) = K1eΩ

(B1τ

µ

1
2

+

√
M2 − N2 ± Meτ ξ − iR

∓ (M (eτ ξ − e−τ ξ)) ± (2 iR)

 ),
N3,10(t, x, y) = K2eΩ

(B1τ

µ

1
2

+

√
M2 − N2 ± Meτ ξ − iR

∓ (M (eτ ξ − e−τ ξ)) ± (2 iR)

 ),
R3,10(t, x, y) =

(K1 + K2 + 1)2

(2K − 1)
U2

3,10(t, x, y),

(75)

where U3,10(t, x, y) = B1τ
µ

(
1
2 +

√
M2−N2±Meτ ξ−iR

∓(M(eτ ξ−e−τ ξ))±(2 iR)

)
.

Where M2 − N2 > 0, for all M and N non-zero real constants.

Q3,11(t, x, y) = eΩ

( (1
2
µ−1 −

χ eτ ξ

µ (1 + χ eτ ξ)

)
B1τ

)
,

S 3,11(t, x, y) = K1eΩ

( (1
2
µ−1 −

χ eτ ξ

µ (1 + χ eτ ξ)

)
B1τ

)
,

N3,11(t, x, y) = K2eΩ

( (1
2
µ−1 −

χ eτ ξ

µ (1 + χ eτ ξ)

)
B1τ

)
,

R3,11(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,11(t, x, y),

(76)

where U3,11(t, x, y) =

(
1
2 µ
−1 −

χ eτ ξ

µ (1+χ eτ ξ)

)
B1τ.

Q3,12(t, x, y) = eΩ

(1
2

B1τ

µ
−

B1τ eτ ξ

µ (χ + eτ ξ)

)
,

S 3,12(t, x, y) = K1eΩ

(1
2

B1τ

µ
−

B1τ eτ ξ

µ (χ + eτ ξ)

)
,

N3,12(t, x, y) = K2eΩ

(1
2

B1τ

µ
−

B1τ eτ ξ

µ (χ + eτ ξ)

)
,

R3,12(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,12(t, x, y),

(77)

where U3,12(t, x, y) = 1
2

B1τ
µ
−

B1τ eτ ξ

µ (χ+eτ ξ) .

Where χ is an arbitrary unknown constant.
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Family 3.2. If τ = 0 and µ , 0, the solution of Eq (35) for Case 3 is:

Q3,13(t, x, y) = eΩ

(1
2

B1τ

µ
−

B1

µ ξ + Ψ

)
,

S 3,13(t, x, y) = K1eΩ

(1
2

B1τ

µ
−

B1

µ ξ + Ψ

)
,

N3,13(t, x, y) = K2eΩ

(1
2

B1τ

µ
−

B1

µ ξ + Ψ

)
,

R3,13(t, x, y) =
(K1 + K2 + 1)2

(2K − 1)
U2

3,13(t, x, y).

(78)

Where U3,13(t, x, y) = 1
2

B1τ
µ
−

B1
µ ξ+Ψ

.

4. Discussion and graphs

The current study’s primary objective was to use gBEM to solve CCMS, which offered several
families of soliton solutions. Furthermore, our present method may be considered an efficient extension
of simple BEM, resulting in a comprehensive tool for several nonlinear situations. The findings
of our suggested fractional-order solutions are noteworthy, in contrast to those of the conventional
and previously employed integer-order solutions, which are unable to accurately depict all physical
phenomena. Our method eliminates the necessity to linearize the equation, which is required by certain
other previously published methodologies, and allows acquiring the precise solution to nonlinear
problems in the physical sciences. Additionally, the gBEM technique employed in this study is a
reliable tool with demonstrated effectiveness in a range of physical phenomena, underscoring their
applicability and versatility in resolving complex nonlinear problems.

In the field of CCMS, we identified chaotic solutions with axial and periodic perturbations that
may be linked to a variety of hydraulic systems. The term chaotic perturbation refers to the complex
behavioral shifts that can occur in soliton frameworks as a consequence of envisaged or unanticipated
shocks that resemble chaos. In our study, these perturbations manifest as structural alterations in
solitons, where certain kink solitons transform into fractal-like forms, while predicted periodic solitons
become breather solitons among chaotic perturbations. The behavior of fluid flow is significantly
impacted by these chaotic solitons. In the context of hydraulic systems, such chaotic solitons can
manifest as unpredictable and irregular flow patterns, resulting in intricate system dynamics. The axial
and periodic perturbations in the chaotic solitons, which can be linked to variations or perturbations in
the flow characteristics, may have an impact on the overall behavior and robustness of the hydraulic
system. Axial and radial velocities are two flow variables that may be directly impacted by these
obtained chaotic solitons from CCMS. These chaotic solitons with perturbations cause the flow to
become irregular and nonlinear, which impacts the fluid’s dynamics and velocity distribution in
hydraulic systems. Such phenomena may simplify the overall behavior and effectiveness of the
hydraulic system, especially with regard to energy dissipation and flow stability. The existence of
disturbed chaotic solitons might indicate complicated nonlinear dynamics in the system, which can
result in a number of phenomena that impact the overall behavior and performance of the hydraulic
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system, such as complex wave interactions, vorticity, and turbulence. It is essential to comprehend the
relationships between chaotic solitons and system phenomena in order to comprehend the intricate
behavior of hydraulic systems under nonlinear settings. Moreover, Figure 1 shows the perturbed
chaotic fractal-like solition solutions Q1,1 and R1,1 in (40). Figure 2 shows the perturbed chaotic kink
solition solutions Q1,3 and R1,3 in (42). Figure 3 shows the perturbed chaotic hump-breather solition
solutions Q1,8 and R1,8 in (47). Figure 4 shows the perturbed chaotic kink solition solutions Q2,2 and
R2,2 in (54). Figure 5 shows the perturbed chaotic fractal-like periodic solition solutions Q2,6 and R2,6

in (58). Figure 6 shows the perturbed chaotic parabolic solition solutions Q2,9 and R2,9 in (61). Figure
7 shows the perturbed chaotic fractal-like kink solition solutions Q3,4 and R3,4 in (69). Finally, Figure
8 shows the perturbed chaotic kink solition solutions Q3,10 and R3,10 in (75). In hydraulic models,
each of these solitons reflects unique wave dynamics subject to perturbations. A moving wavefront
that connects two distinct fluid states, for example, is known as a perturbed kink soliton. It is altered
by external perturbations like turbulence, viscosity, or external forces, resulting in variations in wave
form or velocity. A perturbed breather soliton is a confined, oscillating wave structure that experiences
recurring energy exchanges as a result of minor perturbations, which frequently result from changes
in the pressure or flow velocity in shallow water channels. Frequently observed in flow transitions
over barriers or in stratified fluid layers, a perturbed parabolic soliton is a single wave with a parabolic
pattern that undergoes external perturbations, resulting in asymmetric deformation. Lastly, a perturbed
periodic soliton is a wave train that comprises repeating structures that are affected by perturbations,
leading to modulations in phase, frequency, or amplitude. These are frequently seen in hydraulic leaps
or tidal waves.

Figure 1. 3D and contour plots of the perturbed chaotic fractal-like solition solutions Q1,1 and
R1,1 in (40) for B0 = 100, τ = 10 i, µ = 20, B−1 = B0τ

µ
,K2 = −300,K1 = −K2 − 1, λ = −K2 +

η2τ2, α = 0.8, β = 0.6, δ = 0.4, λ = 0.0012, j = 0.00032,m = 0.00090, η = 0.00010, t =

1, andK = 0.0004.
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Figure 2. 3D and contour plots of the perturbed chaotic kink solition solutions Q1,3 and R1,3

in (42) for B0 = 90, τ = 3 i, µ = 2, B−1 = B0τ
µ
,K2 = 0.6,K1 = −K2 − 1, η = −0.30, λ =

−K2 + η2τ2, α = 0.7, β = 0.6, δ = 0.3, j = 0.002,m = 0.009, t = 10, andK = 0.1.

Figure 3. 3D and contour plots of the perturbed chaotic hump-breather solition solutions
Q1,8 and R1,8 in (47) for B0 = 100, τ = 10 i, µ = 20, B−1 = B0τ

µ
,K2 = 300,K1 = −K2 − 1, λ =

−K2 + η2τ2, α = 0.8, β = 0.6, δ = 0.4,K = 20, j = 302,m = 90, η = 9, and t = 0.

Figure 4. 3D and contour plots of the perturbed chaotic kink solition solutions Q2,2 and R2,2

in (54) for B0 = 100, B1 = 40, τ = 120 i, µ = 20, B−1 = −300,K2 = −300,K1 = −K2 − 1, λ =

−K2, α = 0.8, β = 0.6, δ = 0.9,K = 0.010, j = 0,m = 0.009, η = 0.00030, and t = 0.

AIMS Mathematics Volume 10, Issue 3, 6664–6693.



6689

Figure 5. 3D and contour plots of the perturbed chaotic fractal-like periodic solition solutions
Q2,6 and R2,6 in (58) for B0 = 100, B1 = 400, τ = 120 i, µ = 20, B−1 = 300,K2 = −300,K1 =

−K2 − 1, λ = −K2, α = 0.8, β = 0.6, δ = 0.9,K = 0.003, j = 0.50,m = 0.09, η = 0.9, t =

0,M = 20, andN = −60.

Figure 6. 3D and contour plots of the perturbed chaotic parabolic solition solutions Q2,9 and
R2,9 in (61) for B0 = 10, B1 = 40, τ = 10 i, µ = 400, B−1 = 300,K2 = 300,K1 = −K2 − 1, λ =

−K2, α = 0.8, β = 0.6, δ = 0.9,K = 120, j = 320,m = −9, η = 10, t = 100,M = 20, and
N = −60.

Figure 7. 3D and contour plots of the perturbed chaotic fractal-like kink solition solutions
Q3,4 and R3,4 in (69) for B1 = 10, B0 = 1/2 B1τ

µ
, τ = 10 i, µ = 400,K2 = 90,K1 =

−
−2 η2µ2+4 η2µ2K+K2B1

2+B1
2

B1
2 , λ = −K2 − 1/2 η2τ2, α = 0.2, β = 0.6, δ = 0.1,K = 0.00120, j =

0.00320,m = 0.009, η = 0.0010, t = 100,M = 20, and N = −60.
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Figure 8. 3D and contour plots of the perturbed chaotic kink solition solutions Q3,10 and R3,10

in (75) for N = −60,M = 200, δ = 0.1,K = 130, η = −220, j = 320,m = −9, µ = 400, t =

100, τ = 10 i, α = 0.2, β = 0.6, λ = −K2 − 1/2 η2τ2, η = 10, B0 = 1/2 B1τ
µ
, B1 = 10,K1 =

−
−2 η2µ2+4 η2µ2K+K2B1

2+B1
2

B1
2 , and K2 = 90.

5. Conclusions

In conclusion, we used the gBEM to investigate the chaotic nature of solitons in CCMS, a fractional
generalization of a nonlinear CMS initially created to simulate hydraulic systems. The proposed gBEM
converted the CCMS into a set of NODEs to construct a new set of soliton solutions in the form
of rational, trigonometric, hyperbolic, and exponential functions. To comprehend the dynamics of
acquired solitons in CCMS, a series of 3D and counter plots graphically illustrated and revealed two
types of chaotic perturbations, namely axial and periodic perturbations, in the acquired solitons. The
discovered chaotic soliton solutions with axial and periodic perturbations were further analyzed and
linked to a variety of hydraulic systems. Furthermore, the efficiency and adaptability of our method
in handling a range of nonlinear models in mathematical science and engineering were confirmed by
our computational work. While the suggested approach advanced our comprehension about soliton
analysis, it has some limitations. In particular, this approach fails when the nonlinear term and the
highest derivative term do not balance homogeneously as this imbalance between nonlinearity and
dispersion hinders the method’s ability to provide soliton solutions, which depends on this exact
balance. Finally, future works will aim to analyze the chaotic nature of the model with the aid of
knot theory in fractional sense.
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soliton solutions and Bäcklund transformation, Phys. Scr., 98 (2023), 095225.

20. B. K. Singh, Fractional reduced differential transform method for numerical computation of a
system of linear and nonlinear fractional partial differential equations, Int. J. Open Probl. Comput.
Sci. Math., 238 (2016), 20–38.

21. S. T. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma Tasso-Olever (STO)
equation of fractional order, Results Phys., 7 (2017), 4440–4450.

22. A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for
nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series,
Symmetry, 14 (2022), 1944.

AIMS Mathematics Volume 10, Issue 3, 6664–6693.

http://dx.doi.org/http://doi.org/10.1186/1687-1847-2012-188
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2023.107205
http://dx.doi.org/https://doi.org/10.1140/epjp/i2016-16244-x


6693

23. S. Phoosree, O. Suphattanakul, E. Maliwan, M. Senmoh, W. Thadee, Novel Solutions to
Fractional Nonlinear Equations for Crystal Dislocation and Ocean Shelf Internal Waves via
the Generalized Bernoulli Equation Method, Math. Modell. Eng. Probl., 10 (2023), 821.
http://doi.org/10.18280/mmep.100312

24. O. T. Kolebaje, O. O. Popoola, Exact solution of fractional STO and Jimbo-Miwa equations with
the generalized Bernoulli equation method, Afr. Rev. Phys., 9 (2014).

25. H. M. Baskonus, T. A. Sulaiman, H. Bulut, On the novel wave behaviors to the coupled nonlinear
CMS with complex structure, Optik, 131 (2017), 1036–1043.

26. S. T. Demiray, Y. Pandir, H. Bulut, New solitary wave solutions of Maccari system, Ocean Eng.,
103 (2015), 153–159.

27. J. Ahmad, S. Rani, N. B. Turki, N. A. Shah, Novel resonant multi-soliton solutions of time
fractional coupled nonlinear Schrödinger equation in optical fiber via an analytical method, Results
Phys., 52 (2023), 106761.

28. A. Maccari, The Maccari system as model system for rogue waves, Phys. Lett. A, 384 (2020),
126740.

29. U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218
(2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062

30. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, In: Theory and
Applications, Yverdon: Gordon and Breach, 1993.

31. V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 30
(2016), 1–4. https://doi.org/10.1016/j.cnsns.2015.06.007

32. J. H. He, S. K. Elagan, Z. B. Li, Geometrical explanation of the fractional complex transform and
derivative chain rule for fractional calculus, Phys. Lett. A, 376 (2012), 257–259.

33. M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J.
Appl. Eng. Math., 9 (2019), 792–799.

34. T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.

35. R. Khalil, horani M. Al A. Yousef and M. Sababheh, A new definition of fractional derivative, J.
Comput. Apll. Math., 264 (2014), 65–70.

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 3, 6664–6693.

http://dx.doi.org/http://doi.org/10.18280/mmep.100312
http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.03.062
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2015.06.007
http://creativecommons.org/licenses/by/4.0

	Introduction
	Method & materials
	Conformable fractional derivative
	The working methodology of gBEM

	Execution of the gBEM
	Discussion and graphs
	Conclusions 

