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Abstract: Although fractional calculus is about three centuries old, it has become the key to
understanding many complex real-world phenomena. During the past few decades, many fractional
derivatives have appeared. Among these, the fractal-fractional derivatives have shown acceptance in
describing some real-world problems. In this paper, the Caputo, Atangana-Baleanu, and Caputo-
Fabrizio fractal-fractional operators were applied to generate complex dynamics in a 4D dynamical
system. Some conditions for the exact solutions’ existence and uniqueness were demonstrated when
the fractal-fractional operators are implemented into the mentioned 4D dynamical system. Some Ulam-
Hyers stability results were demonstrated in the indicated fractal-fractional systems. Computation
processes were carried out to demonstrate some graphical results that showed the existence of several
complex dynamics in the considered system as the fractal-fractional operators are implemented.
Furthermore, the computations of the system’s Lyapunov exponents and the bifurcation diagrams were
used to illustrate the wide range of chaotic dynamics that exist in the considered fractal-fractional 4D
system. Existence of hidden chaotic attractors were also found. This interesting dynamical
phenomenon was validated by the bifurcation diagrams and basin set of attraction.
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1. Introduction

For more than three centuries, Leibniz and I’Hospital initiated the problem of fractional-order
differentiation when they tried to generalize the calculus for integer order [1]. Afterwards, many
fractional derivatives appeared such as the Caputo type [2], Caputo-Fabrizio type [3], and Atangana-
Baleanu type [4]. They also provide better scenarios for understanding real-world phenomena.

Recently, the combination of the concept of fractional derivative and the concept of the fractal
derivative set up the so-called fractal-fractional derivative (FFD) [5]. Thus, a new degree of freedom
(the fractal parameter) appeared in the fractional operators, which makes them better candidate to
handle the real-world problems. Therefore, some new FFDs have been developed such as the FFD in
the Caputo sense, the FFD in the Atangana-Baleanu sense, and the FFD in the Caputo-Fabrizio sense.

Chaos theory was explored in many fields of science and engineering [6]. It can be used to
precisely determine the unpredictable behaviors of dynamical systems. The chaotic dynamics can be
verified by calculating the Lyapunov exponents (LEs) [7] and demonstrating the related bifurcation
diagrams, which are considered effective means of clarifying the complex dynamics of the system.
Some integer-order (I0) chaotic systems arising from science and engineering were reported such as the
10 Lorenz system [8], the IO Rdssler system [9], the IO moditied autonomous Van der Pol- Dufting (ADVP)
system [10] and the IO 4D dynamical system proposed by Matouk [11]. The fractional-order (FO) versions
of'the fore mentioned systems display chaotic dynamics such as the FO Lorenz system [12], the FO Rdssler
system [13], the FO modified ADVP system [14], and the FO 4D dynamical system proposed by
Matouk [15]. The last FO system was represented by four equations with three quadratic terms. It is
designed to display hyperchaotic attractors and also to feedback control one of its state variables.
Therefore, it is suitable to display variety of chaotic and hyperchaotic dynamics.

On the other hand, mathematical modeling using the FFDs has recently become the focus of
attention of scientists and researchers in various fields. In [16], Qureshi and Atangana designed a
nonlinear epidemiological model based on the FFD in the Caputo sense. In [17], Sami et al. analyzed
a food chain model under the FFD in the Caputo sense. In [18], Almutairi et al. discussed a pneumonia
disease model under the FFD in the Atangana-Baleanu sense. In [19], Arif et al. investigated a fluid
flow model using the FFD in the Caputo sense. In [20], Khan et al. studied a model for tuberculosis
using the FFD. In [21], Shah and Abdeljawad studied a model of CO, emanations from energy sector
using the FFD. Moreover, the FFDs show the effectiveness to generate chaotic attractors in dynamical
systems. For example, Dlamini et al. demonstrated chaotic attractors in Lorenz system under the FFD
in the Caputo-Fabrizio sense [22]. Ul Haq et al. investigated chaotic behaviors in a 3D dynamical
system using the FFDs with exponential decay type kernels [23]. Saber succeeded to achieve chaos
control in the Burke-Shaw system under the FFD in the Caputo-Fabrizio sense [24]. However, the LEs
and bifurcation diagrams were not provided in any of the previous references.

The major contributions of this manuscript are outlined as follows: The Caputo, Atangana-
Baleanu, and Caputo-Fabrizio fractal-fractional derivatives are applied to the mentioned 4D dynamical
system. Then, the existence and uniqueness of the solutions of the resulting systems are proven based
on Arzeld-Ascoli theorem and Schauder’s fixed point lemma. Some Ulam-Hyers (U-H) stability results
are proven in the indicated fractal-fractional systems. The simulation results show that the indicated
fractal-fractional operators generate chaotic attractors and other complex dynamics in the considered
4D dynamical system. In addition, computations of the LEs, bifurcation diagrams and basin set of
attraction are carried out to illustrate the wide range of chaotic dynamics and hidden chaos that exist
in the considered 4D dynamical system. To the best of my knowledge, their implementation in fractal-
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fractional systems is presented here for the first time.

The organization of this manuscript is outlined as follows: In Section 2, definitions of the FFDs
are presented. In Section 3, the considered 4D dynamical system is described. In Section 4, the
existence and uniqueness analysis of the considered 4D dynamical system involving the FFDs are
carried out based on Arzela-Ascoli theorem and Schauder’s fixed point lemma. In Section 5, the
systems’ U-H stability analysis is discussed. In Section 6, numerical simulations of the considered 4D
dynamical system under the FFDs are carried out. In Section 7, the conclusions are drawn.

2. Fractal-fractional calculus

First, we introduce the fractal-fractional integral operators (FFIOs) as follows [5]:
1) The ¢&th-order FFIO with power law type kernel is given as

157 (p(e)) = 1l (£ — )5 X (0 TE), W

where ¢ eC(a,b),&>0,7<m and meN.
2) The £&th-order FFIO with exponentially decaying type kernel is given as

TE (0(2)) = [n¢ I X" p(x)dx + (1L - &) ()] M(&), (2)

where @peC(a,b), &>0,n<m, meN and M(&) is a normalization function satisfying
M(D) =M(0) =1.
3) The £&th-order FFIO with Mittag-Leffler type kernel is given as

YIS (p(2) = [ I X" p(x)(z = x) T dx + (L - &) 7" ()] AB(S), A3)
where ¢ eC(a,b), £>0,7<m, meN and AB(¢) =%+1—§.

Assume that | =ceil(¢) e N,77 € (I -1,1). Hence, according to the above-mentioned FFIO, the
following FFDs [5] are defined as

I) The ¢&th-order FFD with power law type kernel is given as

: d r £
D5 () = 5 [ (1= 0" p()dx] /T - &), (4)
0
where % =lim,_,, M This type of FFDs is also called fractal-fractional Caputo (FF-C)
T -7
derivative.

I1) The ¢&th-order FED with exponentially decaying type kernel is given as

AIMS Mathematics Volume 10, Issue 3, 6233-6257.
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D5 () =

gs

This FFD is also called fractal-fractional Caputo-Fabrizio (FF-CF) derivative.
[11) The ¢&th-order FED with Mittag-Leffler type kernel is given as

z (z - X)}O(X)dxl IA-2). (5)

DS (p(r)) = [AB(E) - [, (TWWWW§) 6)
dro

where 0<&,7<1 and E.() represents the Mittag-Leffler function. The operator " "Dg” is also
equivalent to the Atangana-Baleanu FFD of the Caputo sense, or simply "~ **¢ Dg 7. Hence, the

corresponding FFIO is

ST (p(2) = [F’é /] j X" p(X)(r = X)¢ Ldx + (L — )T p(r)] M(&). (7)

To conclude this, the FFD-ABC is denoted by

FF— ABCDe ”((0(’[)) [AB(S) dd7j.E§|:_ I é:é: (r - X)§:|(p(x)dX] 1A-E). (8)
The FFD-C is denoted by
D (1)) = nUv X)"p(x)dx]/ (1 - &), 9)

The FF-CF is denoted by

D5 (o(r) =

gs

: (z - X)}/}(X)dX] IA-2). (10)

3. The 4D dynamical system

The 4D dynamical system given by Matouk [11] was first introduced in terms of ODEs as follows:

do, ldz=a'(p, = p,)+VipL — PiPs)
dp, 1dz = B'p, + ps — P13,

dp, /dz = p} —op,,
dp,/dz=56p,.

(11)

The system’s parameters are «',f',6',v',0’' € R. System (11) displays chaotic dynamics when
a'=-3,4' =156 =-0.000L,v' =-1.5,6'=0.6. The physical meaning of these parameters can be
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realized form the following circuital equations that relate to system (11):

do, /dr =— 1 + 1 - 1 - L
01 R,C, Pa RC, P2 R.C, P1 R.C, P1Pus
1 1 1
do,/dzr = + - ,
O3 R.C, P1 R.C, Pa R.C, P1P3
1 1
do./d7r = 2 _ ,
L3 R,C, P1 R,C, P
dp, ldz =— Pas
104

where R, =R, =R, =Ry =1kQ, R, =R, =0.3333kQ2, R, =0.6667kQ, R, =0.0667k, Ry =1kQ,
R, =1.6667k, R, =10000kQ2 and C, =10nF,i=1234. System (11) has three equilibria as
follows:

P, =(0.000) P = (2121 AV 50), Pl = (<A ”",',ﬂ 0). ' =B

The equilibrium P, is a saddle point when v' <0 and a8’ <0 since it has the eigenvalues:

(i !2_4 1ot
A =8N, ——o" and A}, = ENO) ZAal

2

Then, we replace the integer-order derivatives with FFDs as follows:

D5 (7)) = &' (ps = ) F VDL~ P14
D57 P, (7) = oy + Py — P15
D57 py(z) = pf —ops,
D p, () = 5,

where * D(‘f " refers to an arbitrary FFD. Obviously, the RHS of last fractal-fractional system has the

dimension of prv Hence, to avoid dimensional discrepancy, one sets
ime

D57 py(r) = alp, — py) + VoL — PP
D57 p,(t) = Bpy + Py — P13,
D57 ps(7) = pi —opy,
FDE P, (7) = 5p,,

where a=a'(n,&),f=41,8),0=5'(n%),v=v'(n&),oc=c'(n,&). This system has three
equilibria as follows:

AIMS Mathematics Volume 10, Issue 3, 6233-6257.
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P, = (00.00), P, = (1, %Y 8,0), P, = (-4~ Y. ,0), 4= .
(24 a

Here, motivated by the previous discussion, P, can be a saddle point under specific selections
of the system’s parameters «, f3,0,Vv,o, the fractal dimension 7 , and the fractional parameter &.
In addition, any equilibrium point P, i1=12 is locally asymptotically stable (LAS) if A is a
negative real number, where A is an arbitrary eigenvalue of the linearized part of the above-
mentioned fractal-fractional system.

4. Existence and uniqueness analysis of the 4D dynamical system under the FFDs

System (11), using the operator ™ *8¢ D(f 7, can be formulated as
FroABe D(;f,fpl = 777”71;(1 (,01, P2y Pss ,04)1
FF?ABCD([)E,:Y/OZ = 7777771)(2 (p1'p2!p3:p4)a (12)
FroAee Défps = 7777771?(3 (P1s P21 P32 P4)s
FroARe D(i:?p4 = 7777771)(4 (P1, P2s P31 P4)-
System (12) can also be rewritten in general form as
FF-ABC Ds”X(z) =nt" ¥ (r,X(7)), 720, (13)
X(0) = X,.
Applying the FFIO (3), one gets
T _ n-1
X(5) = X(0) =2 [ X7 (x, X(O)(r —x) o LT HEXE@) g
M(EI(S) 5 M(¢)
4
Then, the norm |[X|=max,g,1,D_p;(7)| is defined in the Banach space B=®x®x®x®, such
i1

that ®=C[0,T]. Hence, the operator J:B—B is defined as follows:

)= &n [ ) n@-&)r" ¥ (z, X(r))
JX()—X(O)+M(§)F(§) ! X7 (x, X(X)(7 — X)Ldx + e . (@5)

We consider the following Lipschitz hypotheses:
Cl: vXeB,3L>0 and L, S.T. |¥(r,X(r))<L|X(z)|+L,, where L and L, are constants.

C2: vX,X,eB, 3L, >0 S.T. |‘I’(r, X(1)) —‘P(T,Xa(r))| < La|X(r) - Xa(r)|, where L, is a constant.

C3: VX, X,eBdL, >0 S.T |‘P(r,X(z‘))—‘I’(r,Xa(r))|£La|X(r)|—|Xa(r)|, where L, is a

a

constant.
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Now, we present the following existence theorem:
Theorem 1. Suppose that C1 holds. If there exists a continuous function A:[0,T]xB—R, then at

least one solution must exist for system (12).
Proof. One first defines the set ® ={X eB: ||X|| <¢,e€R"}. Hence, using the assumption X B,

one gets
WMIQ%XwH”TE@QW( X() lmangi-wuxumrxfwx
<X(0)+’7’—E1§)§)[L||x||+ L]+ [OT]M(§)F(§ ! (7= X)5 W (%, X ()|

< X(0)+77T—21§§)[L|| [+L,]+ M(g)r@[L||x||+ LIS BE ) <R,

where f(&,n) refers to the beta function. Consequently, it has been proven that J is uniformly
bounded. In addition, one gets

‘ ¢ 772-2—(5) h n-1 T, — ¢-1
”\]X( 2) JX ( 1)” rrE(z)iT] M(&) Y(r Ty X(zr 2)) M(§)F(§)I W (X, X(X))( , X)L dx
771(1 9:) ! TP (x X . e
M(<) ¥ X)) M(é)r(g ,([ (X, X(X)) (7, —x)° " dx
_1(1 5) 577 LIx L §+77 "
:7—1 (1 f) B 577 LIl L 1perrt
M(f) Ve M(§)F((§)[ X[+ L 1e5 " B(& ).
Obviously, JX(TQ)_JXa(Tl)”—)() as 7, — 7,, which means that the operator J is equi-continuous.

Thus, based on the Arzela-Ascoli theorem, operator J is completely continuous. Then, according to
the Schauder’s fixed point lemma [25], it is clear that the solution of system (12) exists.

To discuss the uniqueness of the solution, one presents the following theorem:
Theorem 2. Suppose that C2 holds. System (12) has a unique solution if K <1, where

n-gq g4l
K{’?T(”M‘f”T pEm) L. (16)

M(&)  M(OI(S)

Proof. Assume that X, X, €B, one gets

( ~ &) 577 N 1
Tt I EXE) e X, (N S [ )7 00 X00) ¥k X, 00N

T a-g) , &yt JX‘ X
(T et e -l

9X - IX, || =

re[O T]
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Thus, J has been shown to be a contraction mapping. According to the Banach contraction principle,
it has been proven that system (12) has a unique solution.

To discuss the existence and uniqueness for the solutions of system (11) using the FF-C derivative,
one writes the system as follows:

FFCD(ffX(r) ="' (r,X(r)), 72>0,0<¢&,n<], an

X(0)=X,.
Applying fractional integral (1), one gets

X(r) =X(0)+ =~ o) j X7 (x, X(X))(z = X)*dx. (18)
Hence, the operator J:B — B is defined as follows:

_ N [y e
JX(7) = X(0) + —— | X" (X, X(X))(z — x)°~dx. 19
361 )

Therefore, based on the fixed point theory [25], the following theorem holds.
Theorem 3. Assume that J:B—>B, is a fully-continuous  mapping. As

=(J) ={XEB:X:tJ(X), t e(O,l)} is bounded, the operator J defined in Eq (19) has at least a

fixed pointin B.
Theorem 4. Suppose that W :[0,T]xB — R is a continuous function, then the operator J shows

the compactness.
Proof. One first defines the set ®, ={vXeB3iL, eR":

X e®,, one gets

¥ (r,X(r))|<L,}<=B. Hence, when

|9x] = r(g) max j X" (r = x)*dx
77L Tt (20)
< @) — o BEn).

Consequently, it has been proven that J is uniformly bounded. Moreover, for every 7,,7, €[0,T]
and X eB, one gets

X (z,) - IX(z)|| =

j X" (r, =X) 7 dx— [ X" (7, = x) ¥ dx
0

1"(5) Te[o T] (21)
< L B(&.n) z_2§+:7—1 T1.§+;7-1]
I'($)

Clearly, |JX(12) - JX(rl)” — 0 as 7, - 7,, which implies that the operator J is equi-continuous.

Thus, J is bounded and continuous as well. Then, according to the Arzela-Ascoli theorem, operator
J s relatively-compact, which implies that J is completely continuous. Therefore, according to the
Schauder’s fixed point lemma, it has been proven that the solution of system (17) exists.

AIMS Mathematics Volume 10, Issue 3, 6233-6257.
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The uniqueness of the solution of system (17) is proved as follows:
Theorem 5. Suppose that C3 holds. System (17) has a unique solution if K'<1, where

TG )
()

(22)

M BEMYe  of Then
L(&)—nT =B )L, ’

one defines

Proof. Let Trg%|\11(r,o)|zya<oo, S.T.

A ={XeY: 1| < r}. Hence, one gets

[‘(5, 9) re(0,
A (x4, )
()

SM(L r+Y,)
() v

[9x] = =2~ max j X" (r = X)W (2, X(2)) - ¥(z,0)| + [¥ (,0) [dx

<r.

Thus, J(X) < A,. Based on (19) and the condition C3, it is found that

[9X = IX, || = —L— max
F(g) 7¢(0,T)

<K|X-X,|

j'[x”‘1 (z = X)W (X, X(X)) = X" (z = X)W (X, X, (X))]dX

Hence, J has been shown to be a contraction mapping. Therefore, the Banach contraction principle
implies that system (17) has a unique solution.
Finally, system (11) using the FF-CF derivative can be formulated as

(23)

DX (r) =" (7, X (7)), 720,0<&,7<],
X(0) =X,.

The existence of a unique solution of system (23) can be obtained via similar analysis.

5. U-H stability

In this section, a small perturbation &(z) € C[0,T], which is only dependent on &(0)=0 , is
considered. Furthermore,

o(r)<e for £>0,

FF Dé;”X(r) =Y (r,X(7))+ (7).

Definition 1. A system governed by the FFD is U-H stable if 3N, >0 S.T. for any &>0 and
vX e (C[O0,T],R) fulfils the following inequality:

AIMS Mathematics Volume 10, Issue 3, 6233-6257.



6242

|7FD§ 7 (X(2)) - W (7, X(0))|< £,7 € [0,T],

and there exists a unique solution Z € (C[0,T],R) such that |X(T) — Z(r)| <eN,,, 0<z<T.
Consider the following perturbed solution of system (12):

{FFM D7 X(r) = ¥ (2, X(2)) +6(z), 720, o

X(0)=X,,

where O(r) € C[0,T].
Based on hypothesis C2 and the above-mentioned analysis, system (24) fulfils the following
inequality:

N(7) - ( 0)+ X7 (x, X(x))( - x)" e + ZEZE)T s X(T»j‘%é;n, (25)

AB(?)F(é) I AB(¢)

where
=4, &
AB(§)  AB(OT(S)

Lemma 1. The solution of system (12) is U-H stable if K <1, and the inequality (25) holds.
Proof. Suppose that X,Z € B and the solution X is unique.

Ein = B(S.m).

X(r) - 2(z) =

o [ O+ gy ¥ e e IS Z(T))J‘
sx(r)—[z(onABé;?r@] K, X () X7 e+ LS B(gf X(T»j‘
+[x(0) AB@F@ S [ (x, XO0) (e — ) 145 S BZ&Y X‘T”%

-|z(0) AB@)H@ j X7 (x, Z(X))(z - )"+ 1L 5);];(‘2’)“ 2()

<efl, +K[X(r) - Z(2),

Consequently,
IX(z)-2Z(z)| < &N,

*

where N, = 15% Hence, system (12) is U-H stable.

Consider the following perturbed solution of system (17):

AIMS Mathematics Volume 10, Issue 3, 6233-6257.
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PDsTX(7) = (7, X(2)) + S(z), 720, (26)
X(0) = Xo
where o(r) € C[0,T].
Based on the above-mentioned analysis, system (26) fulfils the following inequality:
n r &1 &1 nT §+’7_1ﬂ (&, m)
X(7)—| X(0)+ —— | x*"¥(x, X(x))(r — x) de < [— E. 27
( @1 () &7

By similar analysis, the following lemma is straightforwardly proven.
Lemma 2. The U-H stability is demonstrated by C2 and the inequality (27). The solution of system

(17) is U-H stable if (Mj L, <1.
r'()

6. Numerical simulations of the 4D dynamical system under the FFDs

Throughout this section, the system’s parameters are fixed at the following parameter sets
a=-3,=1506=-0.000L,v=-156=06. and a=-2 4=1506=-0.15v=-7.7750c =0.45.

Systems (12), (17), and (23) are numerically integrated based on the scheme given in [26].
6.1. Local stability of the equilibrium points

Using the parameter values o =-3, =156 =-0.000%,v =-1.506=0.6, systems (12), (17),
and (23) are numerically integrated. The simulation results (See Figures 1 to 6) show that the non-
origin equilibrium points (P, , ) of system (17) are LAS when the fractional-order and fractal dimension
are below 0.7, simultaneously. In addition, the equilibrium points P, of system (12) are LAS when

the fractional-order is below 0.85 and fractal dimension is below 0.61, simultaneously. Furthermore,
the equilibrium points P,, of system (23) are LAS when the fractional-order is below 0.78 and fractal

dimension is below 0.01, simultaneously. Otherwise, they are not LAS.

£%0.98 and o= 0,98 £%0.903nd nu07
| | W /i
h ' }
AL
LRI |
e 11T LAY TTTS

1) ey || w1 ()M
\ v | A 1 U ]
'y ‘,.a“l "‘J:."'

AIMS Mathematics Volume 10, Issue 3, 6233-6257.



6244

R — z-umu-u _ @ £=06and =08
S
| R (‘. | /
wM\j\ \} \/ ! ;
S \il I J ‘ s —
2 3 =y
a1 a5 | “‘ T =
: ]’fﬂ f% \Il i)\\l )"Vl ‘ g s ¢ o
" ‘“; 1.\”} \./ ’, |. - '
! l \ y \-‘ ‘I u‘. | r

! ]

Figure 1. The plot of state variables of system (17) vs. time shows the local stability of
P, =(31.5150) as & and 7 are changed.
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Figure 2. The plot of state variables of system (17) vs. time shows the local stability of
P, =(-3-15150) as & and 7 are changed.
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Figure 3. The plot of state variables of system (12) vs. time shows the local stability of
P, =(31.5150) as & and 7 are changed.
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Figure 5. The plot of state variables of system (23) vs. time shows the local stability of

P, =(B15150) 45 ¢ and 7 are changed.

£=0.96und o= 058

o x »x @ t ] L d n » w wa

Slaw waation
- 3 @ o =R

n

£=09md =07

w0 IU xr 40 ” w n m W o

Slats wantatyes

E20 0 andyc s

H & B

-
S

£=0.78and =001

o n » 40 ® w n L L »o
1

Figure 6. The plot of state variables of system (23) vs. time shows the local stability of
P, =(-3-1.5150) as & and 7 are changed.
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For the parameter set « =-2, #=15,6 =—-0.15,v =—7.775,0 =0.45, £ =0.9975 and 7 =0.99,
the points P, =(2.59810.1,15,0) and P, =(—2.598,-10.115,0) are LAS as shown in Figure 7.

£=0.9975 and 4 = 0.99

£ 08978 and = 0.99

1T T T v B8 20770 (e A A TR .
\] WA

u..

VT

(a) (b)

Figure 7. The plot of state variables of system (23) vs. time shows the local stability of
(a) P, =(2.59810.115,0) and (b) P, =(-2.598,-10.115,0).

6.2. Chaotic and hidden chaotic attractors

The attractors illustrated in the Figures 8 to 14 are obtained using step size of 0.01 and initial
data p,(0)=0,p,(0)=1, p,(0) =2, p,(0) =0.02.

Figure 8. Chaotic dynamics in system (12) are shown when £=0.98 and 7 =0.98.
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—
A

Figure 9. Complex dynamics in system (12) are shown when £=0.98 and 7=0.7.

Figure 10. Complex dynamics in system (12) are shown when &£=0.90 and 7=0.7.
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Figure 12. Complex dynamics in system (17) are shown when £=0.98 and 7 =0.7.
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Figure 14. Complex dynamics in system (23) are shown when £=0.98 and 7 =0.7.
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The systems’ bifurcation diagrams are also carried out to compute their local maxima. Figures 15
to 17 show the bifurcation diagrams of systems (12), (17), and (23) as the fractional or fractal-fractional
parameters are varied. These figures are helpful to illustrate the wide scale of chaotic dynamics that

exist in these systems.
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Figure 15. The bifurcation diagram of system (17) as (a) & varies and (b) 7n varies.
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Figure 16. The bifurcation diagram of system (12) as (a) & varies and (b) 7n varies.
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Figure 17. The bifurcation diagram of system (23) as (a) & varies and (b) 7 varies.

The systems’ LEs are calculated using the above-mentioned parameter values. The results are
illustrated in Figures 18-20, showing show the variation of the maximal Lyapunov exponents (MLEs)
against the parameter & or the parameter 7. The previous figures show that chaotic dynamics
continue to occur in these systems over relatively large ranges of fractional and fractal-fractional
parameters.

(a) (b)
Figure 18. The MLEs of system (17) as (a) &£ wvaries and (b) 7 varies.
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(a) (b)
Figure 19. The MLEs of system (12) as (a) & varies and (b) 7 varies.
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Figure 20. The MLEs of system (23) as (a) & varies and (b) 7 varies.

On the other hand, hidden chaotic attractors are interesting dynamical phenomenon that exist in
the considered system. This phenomenon is observed when any basin set of attraction of the hidden
attractor does not touch small neighborhoods of any existing equilibrium point [27]. For example,
when the Caputo-Fabrizio fractal-fractional operators are used, a hidden chaotic attractor appears for
a=-2,=156=-0.15v=-77750=045 £=09975 and 7 =0.99. The explanation is
provided as follows: The LAS equilibrium points P, =(2.59810.115,0) (P, = (—2.598,-10.1,15,0))

attract all trajectories emanating close enough to them (sinks). Thus, any chaotic attractor starting near
the saddle origin equilibrium point that does not intersect the sinks would form the hidden attractor. In
Figure 21, the green domain refers to the hidden chaotic attractor that is swinging between the positive
and negative parts of the p, axis. In addition, this figure shows that the hidden chaotic attractor is
surrounding, and not touching, the sinks, which converge to the non-origin equilibrium points. These
sinks are represented by blue and red domains. The corresponding bifurcation diagrams and basin set
of attraction are illustrated in Figures 22 and 23, respectively. The hidden chaos is visible through the
green area at the top right of Figure 22. In Figure 23, the color bar illustrates the existence of the

AIMS Mathematics Volume 10, Issue 3, 6233-6257.
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multistability phenomenon as follows; the red domain refers to a hidden chaotic attractor, and the dark
blue domain refers to another type of hidden chaos. The yellow domain refers to the one-point attractor
related to P, =(2.598,10.115,0), while the light blue domain refers to the one-point attractor related

to P, =(—2.598,—10.115,0). Finally, the green domain at the top left and bottom right of the Figure
23 refer to divergent attractors.

Figure 21. A hidden chaotic attractor of system (23).

£, max

n
Figure 22. The combined bifurcation diagrams of system (23) as 7 varies.

The fixed parameters are at o =-2,=1506=-0.15v =-7.7750=0.45 and ¢&=0.9975.
The green, red, and blue domains refer to the initial conditions

p(0)=0,0,00)=1p,(0)=2,0,(0)=0.02,  p,(0) =2.7, p,(0) =10.6, p, (0) =15, p, (0) = 0.0001
and p,(0)=-2.7, p,(0) =-10.6, p,(0) =15, p, (0) = 0.0001, respectively.
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Figure 23. The attraction basin for system (23) as a cross-section in p, p, —plane for
ps =15p,=0.0001, with «a=-2,8=1506=-0.15v=-7.7750=0.45 & =0.9975
and 7 =0.99.

7. Conclusions

In this work, the Caputo, Atangana-Baleanu, and Caputo-Fabrizio fractal-fractional operators
have been applied to generate chaotic attractors and complex dynamics in a 4D dynamical system.
Some conditions for the exact solutions’ existence and uniqueness have been demonstrated when the
fractal-fractional operators are implemented into the proposed system. Some U-H stability results have
been demonstrated in the indicated fractal-fractional systems. Computation processes have been
carried out to demonstrate some graphical results that show the existence of several complex dynamics
in the considered system as the fractal-fractional operators are implemented. The MLEs have been
depicted, and the corresponding bifurcation diagrams have been illustrated based on the systems’ local
maxima of a state variable to illustrate the wide scale of chaotic dynamics that exist in the considered
systems. Finally, the basin set of attraction is computed to illustrate the interesting dynamical
phenomenon of hidden chaotic attractors that exist in the considered system.

Investigating the conditions for local stability of a generalized fractal-fractional system will be
studied in future works.
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