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Abstract: Although fractional calculus is about three centuries old, it has become the key to 

understanding many complex real-world phenomena. During the past few decades, many fractional 

derivatives have appeared. Among these, the fractal-fractional derivatives have shown acceptance in 

describing some real-world problems. In this paper, the Caputo, Atangana-Baleanu, and Caputo-

Fabrizio fractal-fractional operators were applied to generate complex dynamics in a 4D dynamical 

system. Some conditions for the exact solutions’ existence and uniqueness were demonstrated when 

the fractal-fractional operators are implemented into the mentioned 4D dynamical system. Some Ulam-

Hyers stability results were demonstrated in the indicated fractal-fractional systems. Computation 

processes were carried out to demonstrate some graphical results that showed the existence of several 

complex dynamics in the considered system as the fractal-fractional operators are implemented. 

Furthermore, the computations of the system’s Lyapunov exponents and the bifurcation diagrams were 

used to illustrate the wide range of chaotic dynamics that exist in the considered fractal-fractional 4D 

system. Existence of hidden chaotic attractors were also found. This interesting dynamical 

phenomenon was validated by the bifurcation diagrams and basin set of attraction. 
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1. Introduction 

For more than three centuries, Leibniz and l’Hospital initiated the problem of fractional-order 

differentiation when they tried to generalize the calculus for integer order [1]. Afterwards, many 

fractional derivatives appeared such as the Caputo type [2], Caputo-Fabrizio type [3], and Atangana-

Baleanu type [4]. They also provide better scenarios for understanding real-world phenomena. 

Recently, the combination of the concept of fractional derivative and the concept of the fractal 

derivative set up the so-called fractal-fractional derivative (FFD) [5]. Thus, a new degree of freedom 

(the fractal parameter) appeared in the fractional operators, which makes them better candidate to 

handle the real-world problems. Therefore, some new FFDs have been developed such as the FFD in 

the Caputo sense, the FFD in the Atangana-Baleanu sense, and the FFD in the Caputo-Fabrizio sense. 

Chaos theory was explored in many fields of science and engineering [6]. It can be used to 

precisely determine the unpredictable behaviors of dynamical systems. The chaotic dynamics can be 

verified by calculating the Lyapunov exponents (LEs) [7] and demonstrating the related bifurcation 

diagrams, which are considered effective means of clarifying the complex dynamics of the system. 

Some integer-order (IO) chaotic systems arising from science and engineering were reported such as the 

IO Lorenz system [8], the IO Rössler system [9], the IO modified autonomous Van der Pol- Duffing (ADVP) 

system [10] and the IO 4D dynamical system proposed by Matouk [11]. The fractional-order (FO) versions 

of the fore mentioned systems display chaotic dynamics such as the FO Lorenz system [12], the FO Rössler 

system [13], the FO modified ADVP system [14], and the FO 4D dynamical system proposed by 

Matouk [15]. The last FO system was represented by four equations with three quadratic terms. It is 

designed to display hyperchaotic attractors and also to feedback control one of its state variables. 

Therefore, it is suitable to display variety of chaotic and hyperchaotic dynamics. 

On the other hand, mathematical modeling using the FFDs has recently become the focus of 

attention of scientists and researchers in various fields. In [16], Qureshi and Atangana designed a 

nonlinear epidemiological model based on the FFD in the Caputo sense. In [17], Sami et al. analyzed 

a food chain model under the FFD in the Caputo sense. In [18], Almutairi et al. discussed a pneumonia 

disease model under the FFD in the Atangana-Baleanu sense. In [19], Arif et al. investigated a fluid 

flow model using the FFD in the Caputo sense. In [20], Khan et al. studied a model for tuberculosis 

using the FFD. In [21], Shah and Abdeljawad studied a model of 2CO  emanations from energy sector 

using the FFD. Moreover, the FFDs show the effectiveness to generate chaotic attractors in dynamical 

systems. For example, Dlamini et al. demonstrated chaotic attractors in Lorenz system under the FFD 

in the Caputo-Fabrizio sense [22]. Ul Haq et al. investigated chaotic behaviors in a 3D dynamical 

system using the FFDs with exponential decay type kernels [23]. Saber succeeded to achieve chaos 

control in the Burke-Shaw system under the FFD in the Caputo-Fabrizio sense [24]. However, the LEs 

and bifurcation diagrams were not provided in any of the previous references. 

The major contributions of this manuscript are outlined as follows: The Caputo, Atangana-

Baleanu, and Caputo-Fabrizio fractal-fractional derivatives are applied to the mentioned 4D dynamical 

system. Then, the existence and uniqueness of the solutions of the resulting systems are proven based 

on Arzelá-Ascoli theorem and Schauder’s fixed point lemma. Some Ulam-Hyers (U-H) stability results 

are proven in the indicated fractal-fractional systems. The simulation results show that the indicated 

fractal-fractional operators generate chaotic attractors and other complex dynamics in the considered 

4D dynamical system. In addition, computations of the LEs, bifurcation diagrams and basin set of 

attraction are carried out to illustrate the wide range of chaotic dynamics and hidden chaos that exist 

in the considered 4D dynamical system. To the best of my knowledge, their implementation in fractal-



6235 

AIMS Mathematics  Volume 10, Issue 3, 6233–6257. 

fractional systems is presented here for the first time. 

The organization of this manuscript is outlined as follows: In Section 2, definitions of the FFDs 

are presented. In Section 3, the considered 4D dynamical system is described. In Section 4, the 

existence and uniqueness analysis of the considered 4D dynamical system involving the FFDs are 

carried out based on Arzelá-Ascoli theorem and Schauder’s fixed point lemma. In Section 5, the 

systems’ U-H stability analysis is discussed. In Section 6, numerical simulations of the considered 4D 

dynamical system under the FFDs are carried out. In Section 7, the conclusions are drawn. 

2. Fractal-fractional calculus 

First, we introduce the fractal-fractional integral operators (FFIOs) as follows [5]: 

1) The  th-order FFIO with power law type kernel is given as 

( ) ),(/])()([)(
0

11,

,0 



 −= 

−− dxxxxFFP  (1)  

where mbaC   ,0),,(  and .Nm   

2) The  th-order FFIO with exponentially decaying type kernel is given as 

( ) ),(/)]()1()([)( 1

0

1,

,0  



 −+= −−

 dxxxFFE  (2)  

where ),( baC  , ,,0 m    Nm   and )(   is a normalization function satisfying 

.1)0()1( ==  

3) The  th-order FFIO with Mittag-Leffler type kernel is given as 
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Assume that ),1(,)( llNceill −=  . Hence, according to the above-mentioned FFIO, the 

following FFDs [5] are defined as 

I) The  th-order FFD with power law type kernel is given as 

( ) ),(/])()([)(
0

1,

,0 










 −−= 

−− ldxxx
d

d
D lFFP  (4)  

where .
)()(

lim
)(

 







−

−
= →

t

t

d

d
t  This type of FFDs is also called fractal-fractional Caputo (FF-C) 

derivative. 

II) The  th-order FFD with exponentially decaying type kernel is given as 
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This FFD is also called fractal-fractional Caputo-Fabrizio (FF-CF) derivative. 

III) The  th-order FFD with Mittag-Leffler type kernel is given as 
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where 1,0    and (.)  represents the Mittag-Leffler function. The operator 

,

,0DFFM  is also 

equivalent to the Atangana-Baleanu FFD of the Caputo sense, or simply .,

,0


DABCFF−   Hence, the 

corresponding FFIO is 
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To conclude this, the FFD-ABC is denoted by 
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The FFD-C is denoted by 
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The FF-CF is denoted by 
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3. The 4D dynamical system 

The 4D dynamical system given by Matouk [11] was first introduced in terms of ODEs as follows: 

./

,/
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,)(/

44

3

2
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31412

411241


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=

−=

−+=

−+−=

dd

dd

dd

dd

 (11)  

The system’s parameters are R  ,,,,  . System (11) displays chaotic dynamics when 

.6.0,5.1,0001.0,15,3 =−=−==−=   The physical meaning of these parameters can be 
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realized form the following circuital equations that relate to system (11): 
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where ,1,0667.0,6667.0,3333.0,1 874328651 ========= kRkRkRkRRkRRRR

== kRkR 10000,6667.1 109   and .4,3,2,1,10 == inFCi   System (11) has three equilibria as 

follows: 
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The equilibrium 0  is a saddle point when 0  and 0  since it has the eigenvalues: 
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4)( 2
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Then, we replace the integer-order derivatives with FFDs as follows:  
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where 

,

,0DFF  refers to an arbitrary FFD. Obviously, the RHS of last fractal-fractional system has the 

dimension of .
1

time
 Hence, to avoid dimensional discrepancy, one sets 
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where ).,(),,(),,(),,(),,(  =====   This system has three 

equilibria as follows: 
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.),0,,,(),0,,,(),0,0,0,0( 210 








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Here, motivated by the previous discussion, 0  can be a saddle point under specific selections 

of the system’s parameters  ,,,, , the fractal dimension   , and the fractional parameter  . 

In addition, any equilibrium point 2,1, = ii   is locally asymptotically stable (LAS) if    is a 

negative real number, where    is an arbitrary eigenvalue of the linearized part of the above-

mentioned fractal-fractional system. 

4. Existence and uniqueness analysis of the 4D dynamical system under the FFDs 

System (11), using the operator 

,

,0DABCFF− , can be formulated as  
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System (12) can also be rewritten in general form as 
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Applying the FFIO (3), one gets 
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We consider the following Lipschitz hypotheses: 

C1: 0,  L  and aL  S.T. ,)())(,( aLL +   where L  and aL  are constants. 

C2: 0,,  aa L  S.T. ,)()())(,())(,(  aaa L −−  where aL  is a constant. 

C3: 0,,  aa L   S.T. ,)()())(,())(,(  aaa L −−   where aL   is a 

constant. 
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Now, we present the following existence theorem: 

Theorem 1. Suppose that C1 holds. If there exists a continuous function ,],0[: RT →  then at 

least one solution must exist for system (12).  
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where ),(    refers to the beta function. Consequently, it has been proven that J   is uniformly 

bounded. In addition, one gets 

dxxxxx

dxxxxxJJ
T

a

1

1

0

1

11

1

1

1

2

0

1

22

1

2

],0[
12

)())(,(
)()(

))(,(
)(

)1(

)())(,(
)()(

))(,(
)(

)1(
max)()(

1

2

−−

−

−−

−



−


−


−
−

−


+


−
=−












































 

).,(][
)()(

][
)(

)1(

),(][
)()(

][
)(

)1(

1

2

1

2

1

1

1

1



























−+

−

−+

−

+


−+


−
−

+


++


−


aa

aa

LLLL

LLLL

 

Obviously, 0)()( 12 →−  aJJ  as ,12  →  which means that the operator J  is equi-continuous. 

Thus, based on the Arzelá-Ascoli theorem, operator J  is completely continuous. Then, according to 

the Schauder’s fixed point lemma [25], it is clear that the solution of system (12) exists. 

To discuss the uniqueness of the solution, one presents the following theorem: 

Theorem 2. Suppose that C2 holds. System (12) has a unique solution if ,1  where 
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Proof. Assume that ,,  a one gets 
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Thus, J  has been shown to be a contraction mapping. According to the Banach contraction principle, 

it has been proven that system (12) has a unique solution.  

To discuss the existence and uniqueness for the solutions of system (11) using the FF-C derivative, 

one writes the system as follows: 







=

= −

.)0(

,1,0,0)),(,()(

0

1,

,0  
DFFC

 (17)  

Applying fractional integral (1), one gets 
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
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Hence, the operator →:J  is defined as follows: 
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  (19)  

Therefore, based on the fixed point theory [25], the following theorem holds. 

Theorem 3. Assume that ,: →J   is a fully-continuous mapping. As 

 )1,0(),(:)( == tJtJ   is bounded, the operator J   defined in Eq (19) has at least a 

fixed point in .  

Theorem 4. Suppose that RT → ],0[:  is a continuous function, then the operator J  shows 

the compactness. 

Proof. One first defines the set .}))(,(:{ = 
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 (20)  

Consequently, it has been proven that J  is uniformly bounded. Moreover, for every ],0[, 21 T  

and ,  one gets 
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 (21)  

Clearly, 0)()( 12 →−  JJ  as 12  → , which implies that the operator J  is equi-continuous. 

Thus, J  is bounded and continuous as well. Then, according to the Arzelá-Ascoli theorem, operator 

J  is relatively-compact, which implies that J  is completely continuous. Therefore, according to the 

Schauder’s fixed point lemma, it has been proven that the solution of system (17) exists. 
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The uniqueness of the solution of system (17) is proved as follows: 

Theorem 5. Suppose that C3 holds. System (17) has a unique solution if ,1  where 
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Thus, .)( rJ   Based on (19) and the condition C3, it is found that 

.

))](,()())(,()([max
)(

11

0

11

),0(

a

a
T

a dxxxxxxxxxJJ

−

−−−


=− −−−−

 












 

Hence, J  has been shown to be a contraction mapping. Therefore, the Banach contraction principle 

implies that system (17) has a unique solution. 

Finally, system (11) using the FF-CF derivative can be formulated as 







=

= −−

.)0(

,1,0,0)),(,()(

0

1,

,0  
DCFFF

 (23)  

The existence of a unique solution of system (23) can be obtained via similar analysis. 

5. U-H stability 

In this section, a small perturbation ],0[)( TC , which is only dependent on 0)0( =  , is 

considered. Furthermore, 

 )(  for 0 , 

)())(,()(,

,0 
 +=DFF

. 

Definition 1. A system governed by the FFD is U-H stable if 0,    S.T. for any 0   and 

)],,0[( RTC  fulfils the following inequality: 
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( ) ],0[,))(,()(,

,0 TDFF − 
 , 

and there exists a unique solution )],,0[( RTC  such that .0,)()( , T−     

Consider the following perturbed solution of system (12):  
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 (24)  

where ],0[)( TC . 

Based on hypothesis C2 and the above-mentioned analysis, system (24) fulfils the following 

inequality: 
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Lemma 1. The solution of system (12) is U-H stable if ,1  and the inequality (25) holds. 

Proof. Suppose that ,  and the solution   is unique.  
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Consequently,  

,)()( , −  

where .
1

*

,

,
−
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


 Hence, system (12) is U-H stable. 

Consider the following perturbed solution of system (17): 



6243 

AIMS Mathematics  Volume 10, Issue 3, 6233–6257. 


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where ],0[)( TC . 

Based on the above-mentioned analysis, system (26) fulfils the following inequality: 
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By similar analysis, the following lemma is straightforwardly proven. 

Lemma 2. The U-H stability is demonstrated by C2 and the inequality (27). The solution of system 

(17) is U-H stable if .1
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6. Numerical simulations of the 4D dynamical system under the FFDs 

Throughout this section, the system’s parameters are fixed at the following parameter sets 

.6.0,5.1,0001.0,15,3 =−=−==−=    and .45.0,775.7,15.0,15,2 =−=−==−=   

Systems (12), (17), and (23) are numerically integrated based on the scheme given in [26].  

6.1. Local stability of the equilibrium points 

Using the parameter values 6.0,5.1,0001.0,15,3 =−=−==−=   , systems (12), (17), 

and (23) are numerically integrated. The simulation results (See Figures 1 to 6) show that the non-

origin equilibrium points ( 2,1 ) of system (17) are LAS when the fractional-order and fractal dimension 

are below 0.7, simultaneously. In addition, the equilibrium points 2,1  of system (12) are LAS when 

the fractional-order is below 0.85 and fractal dimension is below 0.61, simultaneously. Furthermore, 

the equilibrium points 2,1  of system (23) are LAS when the fractional-order is below 0.78 and fractal 

dimension is below 0.01, simultaneously. Otherwise, they are not LAS. 

 



6244 

AIMS Mathematics  Volume 10, Issue 3, 6233–6257. 

 

Figure 1. The plot of state variables of system (17) vs. time shows the local stability of 

)0,15,5.1,3(1 =  as   and   are changed. 

 

 

Figure 2. The plot of state variables of system (17) vs. time shows the local stability of 

)0,15,5.1,3(2 −−=  as   and   are changed. 
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Figure 3. The plot of state variables of system (12) vs. time shows the local stability of 

)0,15,5.1,3(1 =  as   and   are changed. 

 

  

Figure 4. The plot of state variables of system (12) vs. time shows the local stability of 

)0,15,5.1,3(2 −−=  as   and   are changed. 
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Figure 5. The plot of state variables of system (23) vs. time shows the local stability of 

)0,15,5.1,3(1 =  as   and   are changed. 

 

 

Figure 6. The plot of state variables of system (23) vs. time shows the local stability of 

)0,15,5.1,3(2 −−=  as   and   are changed. 
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For the parameter set ,45.0,775.7,15.0,15,2 =−=−==−=  9975.0=  and 99.0= , 

the points )0,15,1.10,598.2(1 =  and )0,15,1.10,598.2(2 −−=  are LAS as shown in Figure 7.  

 

(a)                            (b) 

Figure 7. The plot of state variables of system (23) vs. time shows the local stability of 

(a) )0,15,1.10,598.2(1 =  and (b) )0,15,1.10,598.2(2 −−= . 

6.2. Chaotic and hidden chaotic attractors 

The attractors illustrated in the Figures 8 to 14 are obtained using step size of 01.0  and initial 

data .02.0)0(,2)0(,1)0(,0)0( 4321 ====   

 

 

Figure 8. Chaotic dynamics in system (12) are shown when 98.0=  and 98.0= . 
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Figure 9. Complex dynamics in system (12) are shown when 98.0=  and 7.0= . 

 

Figure 10. Complex dynamics in system (12) are shown when 90.0=  and 7.0= . 
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Figure 11. Chaotic dynamics in system (17) are shown when 98.0=  and 98.0= . 

 

 

Figure 12. Complex dynamics in system (17) are shown when 98.0=  and 7.0= . 
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Figure 13. Chaotic dynamics in system (23) are shown when 98.0=  and 98.0= . 

 

 

Figure 14. Complex dynamics in system (23) are shown when 98.0=  and 7.0= . 
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The systems’ bifurcation diagrams are also carried out to compute their local maxima. Figures 15 

to 17 show the bifurcation diagrams of systems (12), (17), and (23) as the fractional or fractal-fractional 

parameters are varied. These figures are helpful to illustrate the wide scale of chaotic dynamics that 

exist in these systems. 

 

(a)                                     (b) 

Figure 15. The bifurcation diagram of system (17) as (a)   varies and (b)   varies. 

 

(a)                                     (b) 

Figure 16. The bifurcation diagram of system (12) as (a)   varies and (b)   varies. 
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(a)                                      (b) 

Figure 17. The bifurcation diagram of system (23) as (a)   varies and (b)   varies. 

The systems’ LEs are calculated using the above-mentioned parameter values. The results are 

illustrated in Figures 18–20, showing show the variation of the maximal Lyapunov exponents (MLEs) 

against the parameter    or the parameter   . The previous figures show that chaotic dynamics 

continue to occur in these systems over relatively large ranges of fractional and fractal-fractional 

parameters. 

 

(a)                                        (b) 

Figure 18. The MLEs of system (17) as (a)   varies and (b)   varies. 
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(a)                                       (b) 

Figure 19. The MLEs of system (12) as (a)   varies and (b)   varies. 

 

(a)                                      (b) 

Figure 20. The MLEs of system (23) as (a)   varies and (b)   varies. 

On the other hand, hidden chaotic attractors are interesting dynamical phenomenon that exist in 

the considered system. This phenomenon is observed when any basin set of attraction of the hidden 

attractor does not touch small neighborhoods of any existing equilibrium point [27]. For example, 

when the Caputo-Fabrizio fractal-fractional operators are used, a hidden chaotic attractor appears for 

,45.0,775.7,15.0,15,2 =−=−==−=  9975.0=   and .99.0=  The explanation is 

provided as follows: The LAS equilibrium points )0,15,1.10,598.2(1 =  ( )0,15,1.10,598.2(2 −−=    

attract all trajectories emanating close enough to them (sinks). Thus, any chaotic attractor starting near 

the saddle origin equilibrium point that does not intersect the sinks would form the hidden attractor. In 

Figure 21, the green domain refers to the hidden chaotic attractor that is swinging between the positive 

and negative parts of the 1  axis. In addition, this figure shows that the hidden chaotic attractor is 

surrounding, and not touching, the sinks, which converge to the non-origin equilibrium points. These 

sinks are represented by blue and red domains. The corresponding bifurcation diagrams and basin set 

of attraction are illustrated in Figures 22 and 23, respectively. The hidden chaos is visible through the 

green area at the top right of Figure 22. In Figure 23, the color bar illustrates the existence of the 
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multistability phenomenon as follows; the red domain refers to a hidden chaotic attractor, and the dark 

blue domain refers to another type of hidden chaos. The yellow domain refers to the one-point attractor 

related to )0,15,1.10,598.2(1 = , while the light blue domain refers to the one-point attractor related 

to )0,15,1.10,598.2(2 −−= . Finally, the green domain at the top left and bottom right of the Figure 

23 refer to divergent attractors. 

 

Figure 21. A hidden chaotic attractor of system (23). 

 

Figure 22. The combined bifurcation diagrams of system (23) as   varies. 

The fixed parameters are at 45.0,775.7,15.0,15,2 =−=−==−=    and .9975.0=  

The green, red, and blue domains refer to the initial conditions 

,02.0)0(,2)0(,1)0(,0)0( 4321 ====    0001.0)0(,15)0(,6.10)0(,7.2)0( 4321 ==== 

and 0001.0)0(,15)0(,6.10)0(,7.2)0( 4321 ==−=−=  , respectively. 
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Figure 23. The attraction basin for system (23) as a cross-section in −21  plane for 

,0001.0,15 43 ==    with ,45.0,775.7,15.0,15,2 =−=−==−=  9975.0=  

and .99.0=  

7. Conclusions 

In this work, the Caputo, Atangana-Baleanu, and Caputo-Fabrizio fractal-fractional operators 

have been applied to generate chaotic attractors and complex dynamics in a 4D dynamical system. 

Some conditions for the exact solutions’ existence and uniqueness have been demonstrated when the 

fractal-fractional operators are implemented into the proposed system. Some U-H stability results have 

been demonstrated in the indicated fractal-fractional systems. Computation processes have been 

carried out to demonstrate some graphical results that show the existence of several complex dynamics 

in the considered system as the fractal-fractional operators are implemented. The MLEs have been 

depicted, and the corresponding bifurcation diagrams have been illustrated based on the systems’ local 

maxima of a state variable to illustrate the wide scale of chaotic dynamics that exist in the considered 

systems. Finally, the basin set of attraction is computed to illustrate the interesting dynamical 

phenomenon of hidden chaotic attractors that exist in the considered system. 

Investigating the conditions for local stability of a generalized fractal-fractional system will be 

studied in future works. 
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