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Abstract: This work accomplished a novel approximate solution of the time-fractional regularized long-
wave (TFRLW) equation. This equation is an appropriate mathematical model in physical sciences that
designates the nature of ion acoustic waves in plasma and waves of shallow water. A cubic B-spline
(CBS) collocation procedure was used for the spatial discretization, offering greater flexibility and
accuracy compared to traditional spline methods. For time discretization, the finite difference method
was used, ensuring computational efficiency, while the time-fractional derivative was settled by Caputo’s
definition. The Rubin-Graves linearization procedure was involved to handle the nonlinear term. To
demonstrate the possessions of different constraints and variables on the displacement, the approximate
solutions were shown in tabular as well as graphical forms. The method’s unconditional stability was
confirmed through a detailed von Neumann stability analysis, making it particularly robust for long-term
simulations. The order of convergence was also estimated numerically. Three invariant capacities
analogous to mass, momentum, and energy were assessed for further justification. Obtained solutions
established the exactitude and efficiency of the anticipated method. Furthermore, unlike many existing
methods, this approach can be tailored to handle the complexity of higher-order equations while
maintaining stability and accuracy over large-scale problems.
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1. Introduction

First, Peregrine [1] promulgated the regularized long-wave (RLW) equation to describe the
propagation of unidirectional weakly nonlinear dispersive water waves. Furthermore, the authors
of [2,3] engaged this equation to illuminate an enormous class of real-world problems as a substitute
of the well-known Korteweg—De Vries (KdV) equation. These studies revealed that the RLW equation
is more impressive than the latter one. The RLW equation takes part as a fundamental role in the study
of the non-linear dispersive waves that have a lot of norms in various precise areas, e.g.,
magnetohydrodynamic waves as well as ion acoustic plasma waves, longitudinal dispersive and
pressure waves in elastic rods and liquid-gas bubble mixtures, and rotating flow down a tube. Bona et
al. [4] proposed an integer-ordered formulation of the RLW equation for describing the surface water
wave’s propagation in a channel.

The RLW equation has been studied by means of numerous procedures. For instance, this equation
has been approximated, numerically, by the Galerkin finite element method (FEM) [15,16,34], Petrov-
Galerkin FEM [17], least squares FEM [18], CBS and least squares CBS finite element methods (FEMs)
[19,25], respectively, least squares quadratic B-spline (QdBS) FEM [20], splitting methods with CBS and
QdBS FEMs [21,22], respectively, quintic B-spline Galerkin finite element method (QBS-GFEM) [23],
linearized implicit finite difference method (FDM) [24], splitting-up technique with CBS and QdBS [26],
quartic B-spline, QBS, and fourth-order CBS collocation techniques [27-29], respectively, CBS
differential quadrature method [30], and lumped Galerkin QdBS FEM [33].

It is generally recognized that the trajectory’s characteristic of the fractional derivatives is non-
local as the remembrance outcome [5]. Many researchers prove that fractional differential equations
(FDESs) are more appropriate than integer-order ones, as fractional derivatives demonstrate the memory
and inherited possessions of several materials and processes [6-9].

Furthermore, the time-fractional partial differential equations (TFDEs) have generated further
consideration for a number of real-life applications such as signal processing, electrical network
systems, optics, financial estimation and forecast, mathematical biology, electromagnetic control
theory, fluid flows in multi-dimension, material science, acoustics, biological systems associated with
predator-prey models, etc. [10-13]. The application of fractional models is rising for enhanced
precision in real-life models, and points out substantial necessities for improved fractional
mathematical models. In [14], the author implemented Caputo’s fractional derivative for dynamical
investigation of a generalized tumor model. This derivative is being used for modeling of biological
systems, comprising tumor growth. In biomedical research, tumor growth models have been
expansively used to examine the dynamics of tumor expansion and estimating possible treatments.

Recently, the TFRLW equation was approximated by some analytical and numerical methods.
For instant, the authors of [8] applied a method based on the g-homotopy analysis transform for
approximating the TFRLW equation, while in [9], they presented a new fractional extension of the
RLW equation. Besides, they used the fixed-point theorem to prove the existence and uniqueness of
the solutions. Nikan et al. [35] obtained the traveling-wave solutions of the TFRLW equation using
the radial basis function (RBF) collocation technique. Maarouf et al. [38] systematically examined the
Lie group analysis technique of the TFRLW equation with the Riemann-Liouville fractional derivative.
Naeem et al. [39] developed numerical methodologies that use the Yang transform, the homotopy
perturbation method (HPM), and the Adomian decomposition method (ADM) to analyze this equation.

The TFRLW equation is one of the most substantial nonlinear evolution equations used to model
various physical phenomena such as ion-acoustic plasma waves, shallow water waves, and
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longitudinal waves in elastic rods. Hossain et al. [40] used a modified simple equation integral
technique in the TFRLW equation to create kink waves, anti-kink waves, brilliant and dark bell waves,
double periodic waves, and combinations of solitons and periodic waves. The fractional RLW
equations were used to mathematically model the nonlinear waves in the ocean, and similarly, the
fractional RLW equations are used to describe the huge ocean waves known as tsunamis [41].
According to [42], the TFRLW equation can be used to study many phenomena such as plasma waves
in complex media, water wave propagation in shallow water, and long-wave occupancy dynamics in
the ocean, including tsunamis and tidal waves. Results in [43] can aid in understanding ion-acoustic
waves in plasma, shallow water waves in oceans, and the development of a three-dimensional wave
packet with finite depth on water under weak nonlinearity using the TFRLW. In [44], the authors
obtained the soliton and periodic wave solutions for the TFRLW, which is the first step toward
understanding ocean models' structural and physical behavior and coastal and harbor regions of the
oceans. The Kudryashov approach was used to investigate the TFRLW problem in [45], which has
prospective applications in applied science, nonlinear dynamics, mathematical physics, and
engineering and is also important in biosciences, neurosciences, plasma physics, geochemistry, and
fluid mechanics.

The most important part of this work is that the Caputo fractional derivative is used in the RLW
equation for analyzing the nature of the displacement of shallow-water waves and ion acoustic plasma
waves. It takes a broad view of the RLW equation for interpretation of the water waves. In
interpretation of the excessive significance of fractional derivatives, we consider a TFRLW equation
emerging in ion acoustic plasma waves (1). We use the cubic CBS collocation procedure to discretize
the spatial derivatives. The Caputo’s definition is used for time-fractional derivative.

ZZZVJr;?S—V;—FBWPS—g—[{%:f({J),aS(Sb,0<a<1, (1)

with the initial and boundary conditions
w(g,0)=4(<), ()
w(a,7) =y, (7), w(b, 1) =y, (7), 3)

where p is a positive integer, 7, ﬁ and dissipative term 4 are positive constants, w({,7)
represents the vertical displacement of the water surface, and the function f(¢{,7) denotes a source

a

term. The notation indicates the Caputo’s time-fractional derivative as

o

o"w _ r(l-a)s ov @)
or” .
ow(gr) ool
or

Definition 1.1. Caputo’s integral and derivative of g(r)eR of order >0 are, respectively,
defined by

WO =]y (-6 2@ a0, 70,
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and

CDo”f,g(T)Z_;_[T(r-é)k_a_l g(z)(f)dé, >0, k-l<a<keZ".

2. Discretization of the TFRLW equation

This part implements the discretization process of the TFRLW equation by means of the CBS

collocation procedure. First, we fix an identical partition of [0, T ] with size A7 = % , where N

124

is the partition’s number of the time variable. Now, we discretize the fractional derivative Py for
T
O<a<l at 7=7,, bythe Ll formula[20,30,31] as follows:
0% w/™! . ik ok, &yl
- =ay ) 2 (W W)+ 8 j=0L2.N, (5)
v k=0

where q, = A :(Z+1)1_a ~1I"*, j=0,1,....,N, and &’/*' is the truncate error termed by

lﬁ’ Zl

S5/ < L Ar? %, where the constant [ isassociatedto w.

Lemma 2.1. The element y,, arising in Eq (5), fulfils the following possessions:

2,50, k=0,1,..,N,
=y >0, > 2> > Xy Xy 2 0asN >

Next, the CBS collocation procedure is used to discretize derivatives of the spatial variable. The

b-a by ¢ =a+ih, i=0,1,...,M , such that

domain [a,b] is apportioned consistently with 4 =A¢ =

a=¢,<¢,<¢,<...<¢,, =b. Now, we define CBS functions Y;(x) for i=-1, 0, ..., M +1 as:

(£-¢a) Celinndin)
|- ) -4(6-¢n) celdnng)
Y=V (G -¢) 4G -¢) . Seldndi) (6)
(¢na=¢) Cel6inntin)
0, otherwise,

where {Y,,Y,,...Y,,, Y} arepreferred so that they form a basis over [a,b] .The Y,(&), Yi’(g”) ,

and Yi"(g” ) at knot points are valued by the subsequent table (see Table 1).
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Table 1. The values of Y,(<), Yl.,({) , and Yi"(g“) at knots.

gi—z gi—l é/i §i+1 §i+2
Y, (&) 0 01 o) 0 0
Yi(§) 0 03 0 -o3 0
Y($) 0 o 20 g, 0

where o =1, 0,=4, o, = l, and o, = i We define the approximate solutions as
1 2 3 h 4 hZ

M+1

w(¢,7,) = D 0,(£)C (), j=0.1....N, (7)
i=—1
where C (Z'j) are unknown extents. The variation of w({ , rj) is defined by
i+1
w(¢r)= 2 1,(£)C, (7). j=0.1L....N. (8)

m=i—1

Using Eq (8), we approximate W and its first-and second-order derivatives W, and Wy,

respectively, with respect to ¢ as

W =G, +0,C +0C,. ©)
W) =-0C,+o,C,, (10)
and
(W ) =0,C, ~20,C +0,0,. (11)
At 7=7,,, using the Eq (5) for Z(::} and the & scheme, we discretize problem (1) as

aoi;(k (14){'_]‘)rl —Wij_k)+0 };(Wg)j+1 +(1—9)79(w§)f +6 ﬁA’(wpwg)jJrl +
k=0
A J (Wgr ){.+1 ‘(W@“ )J :
(1-O)B(whw, ) - = - Lo f =01, M, j=0,1,...,N. (12)
i T

) ) ) J+l )
Now, to linearize the nonlinear term (w”w , we use the Rubin-Graves procedure as:
9 é’ ;

(wrw, ) (W) () p(w ) () Wl = p(w ), (w, ) +O(AT), p=1.2,.... (13)

i i

Taking & :% and using Eq (13) in (12) with some manipulation, we have
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A/w" 4B (w, )" +D(we ) =R i=01, M, j=12,..N, (14)
where
Al'-j =a, +%[§p(wp_l)j (Wg): R B,‘-j Z%);-Fl,é(wp)ja D :_ﬁ, Rl.j :aowl-j _aoglk (wf’”l -

. 1. 1 . :
wl k)‘§7(wa),-]+§ﬁp(wp),( o), ‘_ﬂ( ) () Do )+ £
Next, using the CBS collocation technique, we get

(O'lAlj — o, B/ +0'4D)Cl/:1 +(0'2A7~j —20'4D)Cij+1 +(O'1A7~j + 0, B/ +0'4D)C/+J]1 R/,
i=1,2,.,M -1, j=12,...N, (15)

where

R/ —ao(alCl | +0,CY +01Cl+1) aozk 1 {(UICJ ke +02Cl~j7k+1+alC/+1k+l)

j— - 1 1 -
(O-lcij—lk + O-ZCIJ ¢ + O-lclj-i-lk )} _5}/( O-3Clj 1t O-3C1+1)+5/8( O-3C1 1t O-3C1+1)
(0101-’;1 +0,C/ + alC,fH) (p 1)+D(O'4CJI -20,C/ +0'4Cl]+1)+ £

The Eq (15) forms a linear system with M +1 equations and M + 3 unknowns. For making it
uniquely solvable, we use the boundary conditions w(a,7)=¢,(z) and w(b,7)=gp,(7) as

(0, +0,C) + 0,00 ) =9/ (7)), (16)
(O-ICA];[—I + O_zcﬁj/'[ +O_1C1{4+1) = %j (T) (17)
From Egs (16) and (17), we have

Cl=—22cl -l Ll (r) and €, =-22Cl—Cl + gl (z). (18)

2 O, 2 o,

For i=0 and i= M, inverting the Eq (18) in (15), we get

(“2“3 B -4 +Egjcg“ +20,B/C/" =R/ —i(Zg -0, )¢/", j=0.1..N, (19)

O, 0, 2

and

o . . . A .
~203B{,C{, +(—%Bﬂfl —%Aﬁg +BJ{4JCJ{;1 =R}, —;(A]{l +03B] )pi*, j=0,1,...N,(20)
1 1 1

where

| _02037 0'20'3,8 i\ o,0,D - P
RO]_[_ 20, | 20 (/) (p‘l)—T—2DG4]Cé+(ﬂffs(¢!) (p-1)-
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- ' ' - i > o (p-1)3, . , ,
703)(:1]_‘1022:1%/{{(0{ k+1_¢1] k}+[a0_0'37_ 3(1’ )ﬂ((p{)P+ﬂj¢lj+ 0]+1_

20 20y o

o . A . ’ 3 ‘ D
Ry = (703 ~(of)’ (p—l)ﬁ%)%l +(0§ny - Gézﬂ(p—l)(% J -T2

20, o, 20

. : . . o -1 . D % . .
2Do_4)C]{/[_aOZZ=IZk(¢2] k+1_¢2] k)+(aO+M(¢2])p+a4__ﬂJ¢2] +f]é+1.

Equations (19), (15) and (20) form the following system of linear equations:

Blj ~0,B/ Dlj Blj +0,B/ 0 0 Clo
0 B/ -o,B,  DJ B] +0,B] - 0 C
0 0 Bj ,-oB),, Di., B, ,-oB., |C,.,
0 ... 0 0 —20'331{;1 ;11{/1 L C/(\)/I

A N
R ——(4 =05 )"
0
R
R}

J
RM -1

R -O_i(zﬁg +o,B) )l
1

1)

~ . G O' . O' —_— —_ ~ . ~ .
where 4] =—22B/-—24/+B] , B/ =04 +o,D , D/ =0,4'-20,D , and
O;

o 1

~ 0,03 i Oy =i =i
J 273 pJj 2 4] J
0 0

To solve the system (21), it is necessary to define the initial vector (Cg ,CL,.,CY L CY ) from

w(£,0)=9(¢) which provides M +1 equations with M +3 unknowns. To take out C?l and

Cyr> weuse wy(a,0)=9,(a) and w,(b,0)=9,(b) which gives
8-(D)

4-(a
%@ and Cy,, =Ch+ .
73 73

Ci)l = CIO -

(22)

Now using Eq (22) and the initial condition, we have the subsequent system of linear equations:
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[z, 20, 0 0 0] G % +(‘9§) 7/73

n 1, 1 O 0l ¢ 4

0 7, 7, 1 0| ¢ _ 9 23)
L0 0 0 27 17 c?, _SM —(5%) 7,/

3. Stability analysis

This section establishes the stability for the discretized system of the TFRLW equation using the
von Neumann scheme [32]. According to Duhamels’ principle [36], the stability of an inhomogeneous
system is the same as the stability of the corresponding homogeneous system. Therefore, we choose f =0,

A

and taking (wg )P =k aslocally constant to linearize w” w,,and 6= %, the Eq (12) can be written as

“OW+I+1(7+B’€1P)(W¢)Z+I A[;(W;q)ﬁl—“oz( =) w2, )

A

L. Anr / . .
(P BR" ) (), g ) L =00 ML =01 (24)
With the help of Egs (9)—(11), we get
-1
(A* "‘E*)Ci]:l +B°¢/" +<A* _E*)Cij—? = aOJZ:(Zk ~ i1 (Ulcij—_lk +0,C +01Cz]+1k)
k=0
+X; (O'IC ) +0,C0 +01C+1)+(—E*03 —0'4D) C/, +20,DC/ +(E*0'3 0'4D) Cl., (25

* * 7 « 1(. an
where 4 =ay0,—-0,D, B =ay,0,+20,D, D:Ai’ and £ =E(y+ﬁk1p).
T

Now, using the Fourier mode’s growth factor C/ =&/e™" | where 1=+~1, & is the constraint
depending on time, and we have

, -
(2A*cosgh+B*—2lE*sin<9h)§JJrl Z( ~ ) €7 k+;(J§ )(20‘1 coseh+0,)

+ (204D —204Dcoseh+ 2ZE*03 sin gh) &l (26)

Now, we define &/ = max £ ‘ .
<i<j
j-1
Using it in the Eq (26), and by means of the property Z( — X+l ) +X; ) 1, we have
k=0
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Sy

|Efs—FTL—|
S +(8-8)

27)

*2 . *
where S| =(2ay0, cos eh + a0, +20,D —20,D cos gh)2 +4F 0'32 sin” ¢h, and S, = (2A coseh +

*\2 %2 . . * * * . P
B ) +4E" sin? gh . Using the values 4 ,B ,D, E , o,, 03, 04, and simplifying terms, we have

4 12 .2
Sz—Slz(h—ztm—l)+4jsm eh=0. (28)

Hence, we conclude that |£|<1. So, the discretized system of the TFRLW equation is
unconditionally stable.

4. Result and discussion

This division provides an example of the TFRLW equation to investigate the efficacy and
validation of the projected technique. For this purpose, we use

u 1/2
L22(2|W(§i>r)_w(§iar)|2j ’ Lw:OIBaE|W(é,i’T)_W(§i’T)]'|’
i=0 =

| W(C ;5 Tn1) = W(E;5Ty) |

and approximate error = ,

RUCERI]

In(err(h)/err(hy))
In(/y/hy) ’

the terms err(h)and err(h,) represents errors with A, and #,, in that order. The conservation

where W represents the exact solution. The ROC is analyzed by ROC = where

possessions belonging to the TFRLW equation are measured by calculating quantities analogous to
mass, momentum, and energy, respectively, as follows:

b M
I = j wd{ =h> W, (29)
o i=0
; 2 A 2 A 2 . 2
Izzj(w +,u(w§) )d(;hZ((Wl) +ﬂ(W§)i ) (30)
p i=0
2 3 2 M 3 2
13:j(w +3(w;) )d(;hZ((W,) +3(W§)i ) (31)
p i=0

Now, we consider the TFRLW equation (1) with y=1= B = 1= p together with initial and
boundary conditions w(¢,0)=3psech’(n¢) and w(a,7)=w(b,z)=0. Here, 3p is the amplitude

1 . . . .
and 7 =— P When « =1, the TFRLW equation has the subsequent single solitary wave solution

2\ 1+p
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w(¢,7)=3psech’(né —or+¢,), where @ :%«/p(Hp) , ¢, 1s an arbitrary constant, and 7 and

@/n represent the width and velocity, respectively. For all calculations, we have chosen ¢,=0.
Figure 1 signifies the estimated solution w(¢{,7) with admiration of the time 7 for several values
of p.From this figure, it can be revealed that the estimated solution w({,7) increases as the value of
p increases. The approximate solutions with 2=0.4, A7 =0.01, p=0.03 attimes 7 =15, 7, 10 and
20 are demonstrated in Figure 2 for time-fractional orders o = 0.3, 0.5, 0.7, and 0.8. The figures show
the influence of the Caputo order « of'the fractional derivative on the evolution of the obtained solutions

over time. An apparent dependence of « on the solutions can be seen clearly when the time is large.
Table 2 shows the approximate errors together with an ROC for o =0.9 with p=0.1, £=0.2, and

7=0.1 with respect to various time intervals. It can be perceived that the errors are very small and the

projected method is linearly convergent with respect to the time variable. Table 3 shows the approximate
errors for @ =0.4 with p=0.03, £ =0.2, { =2 and 4 for various time intervals at 7 =1 while Table 4

illustrates the approximate errors with o =0.1, £ =0.2 for fractional orders « =0.5, and 0.7 at times
7 =5 and 10. It can be noticed from these tables that the approximate errors are small which confirms
the accuracy of the proposed technique.

0.3 037

....... p=0.03
o smie g 00

o5 [ \ e

0.25

0.2 0.2
= o
[aw] i
015 5 0.15
0.1 0.1
0.05 0.05
0 : : : 0
20 20 A0 0 10 20

Figure 1. The approximate solutions comportment for distinctive values of p with A=
0.1, Az=0.01 for a=0.9 (left) and « =0.5 (right) of Example 1.

Table 2. The approximate errors for ¢ =0.9 with p=0.1, h=0.2, and 7=0.1 for

various time intervals.

AT g =2 ROC ¢ =4 ROC
0.05 2.08570e-04 -- 4.03268¢-04 --

0.001 1.04198¢-04 1.0010 2.01542¢-04 1.0006
0.0005 5.20759¢-05 1.0006 1.00746e-04  1.0004
0.00025 2.60318¢-05 1.0003 5.03664¢-05 1.0002
0.0002 2.08245¢-05 1.0002 4.02919¢-05 1.0001
0.000125 1.30143e-05 1.0001 2.51814e-05 1.000
0.00001 1.04112¢-05 1.0001 2.01448¢-05 1.000
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—_—a=03 —_—a=0.3
008} —a=05 0.08f —a=05
—a =07 —a =07
007 —a=038 007Fr —a=2038
0.06 t 0.06 ¢
= 0.05} = 0.05¢
o =
3 0.04 ¢ 3 0.04¢
0.03} 0.03}
0.02t 0.02+
0.01} 0.01¢
0 : : 0 ‘ : :
-40 -20 0 20 40 -40 -20 0 20 40
¢ ¢
(a) (b)
0.09 0.09
—— O = 03
0.08f --=-a=05 0.08
—w—a =07
0.07f —«=08 0.07
0.06 | 0.06 |
© 0.05¢1 = 0.05¢
Z =
3 0.04¢ 3 0047}
0.03} 0.03}
0.02} 0.02}
0.01¢t 0.01}
0 : 0
-40 -20 0 20 40 -40
¢
(c) (d)

Figure 2. The approximate solutions with 4#=0.4, A7z =0.01, p=0.03 attimes (a) 7=

5,(b) 7=7,(c) =10, and (d) 7 =20 (right) for different values of fractional order «
for Example 1.
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Table 3. The approximate errors for o =0.4 with p=0.03, #=0.2, and 7=1 for

various time intervals.

At §=2 ROC ¢ =4 ROC
0.05 3.126¢-05 -- 7.786e-04 --

0.025 1.181e-05 1.40 3.791e-04 1.04
0.0125 5.020e-06 1.23 1.870e-04 1.02
0.01 3.879¢-06 1.56 1.493e-04 1.01
0.008 3.017e-06 1.13 1.192e-04 1.01
0.00625 2.299¢-06 1.10 9.295e-05 1.01

Table 4. The approximate errors with p=0.1, #=0.2, and 7=10 at £ =4 for various

time intervals.

At a=05, 7=5 =05, =10 a=0.7, =5 a=0.7, =10
0.05 3.0576e-04 5.9194e-04 1.1811e-03 2.0957¢-03
0.025 1.5319¢-04 2.9497e-04 5.9586¢e-04 1.0434e-03
0.0125 7.6638e-05 1.4723e-04 2.9914e-04 5.2055e-04
0.01 6.1314¢e-05 1.1775e-04 2.3950e-04 4.1626e-04
0.008 4.9054¢-05 9.4173e-05 1.9171e-04 3.3289¢-04
0.001 3.0660e-05 5.8834¢e-05 1.1992¢-04 2.0794e-04

Table 5 shows the ROC with respect to the space variable including errors in invariants for o =1
with p=0.1, A7 =0.01 at 7=1. It can be noticed from this table that the projected method is

second-order convergent in space as well as that the small difference among the numerical and
analytical values of [;, I,,and I; that extends in the invariants remains almost inconsistent for the

duration of the computer run.

Table 5. The order of convergence including errors on invariants for ¢ =1 with p=0.1,
Ar=001,at 7=1.

h L, ROC L, ROC  AJ, Al Al

0.8 1.232e-04 -- 5.282e-05 -- 1.324e-05 4.253e-07 1.982¢-09
0.5 4.675e-05 2.06 2.023e¢-05 2.04 1.358e-05 3.550e-08 1.253e-10
0.4 2.976e-05 2.02 1.295¢-05 2.00 1.369¢-05 3.645¢-09 3.864e-11
0.25 1.166e-05 1.99 5.050e-06 2.00 1.389¢-05 5.448e-09 2.081e-12
0.2 7.558e-06 1.94 3.235¢-06 1.99 1.389¢-05 5.448e-09 2.081e-12
0.125 3.290e-06 1.77 1.725e-06 1.34 1.397e-05 2.662¢-09 1.059¢-12

Table 6 demonstrates a comparison between the projected method and those available in refs.
[18,19,33,34] in terms of L, and L, errors. The values of the single solitary wave’s invariants
are also compared for =1 with p=0.1, h=0.125, Ar= 0.1, and ¢ e [40,60] at various
times. It is observed from Table 6 that the magnitudes in the invariants keep almost insistent in the
course of the computer run. At 7=16, the difference among the numerical and analytical values
of the conservation constants are Al,=4.815941e-05, Al,= 1.856193e-06, Al,=2.651635¢-08. It
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is obvious from the table that the L, error norms at each time achieved by the projected method are
much lower than those given in refs. [18,19,33,34], However, the L, error norm is only higher than
in [18] and is lower than the others. Also, the L, and L, errorsin[33] are slightly smaller than those
achieved by the projected method.

Table 6. Invariants with L, and L, errors for the single solitary wave for « =1 with

p=0.1, h=0.125, Ar=0.1, { e [40,60] at various times.

Time Methods L L, I, I I
Present 5.279e-05 | 2.118¢-05 | 3.979955 | 0.810463 |2.579007
4 Ref. [33] 4.8e-05 1.9¢-05 |3.97993 | 0.810465 |2.57901
Ref. [19] 1.09¢-03 4.87¢-04 |3.98041 | 0.810111 |2.57785
Ref. [18] 1.00e-05 1.46e-04 | 3.97709 | 0.809641 |2.57630
Ref. [34] 1.16e-04 5.4e-05 |3.98039 | 0.810610 |2.57950
Present 1.05¢-04 4.252¢-05 |3.979976 | 0.810463 | 2.579007
Ref. [33] 9.4¢-05 3.8¢-05 |3.97993 | 0.810465 |2.57901
=38 Ref. [19] 2.109¢-03 | 8.92¢-04 |3.98085 | 0.809749 | 2.57666
Ref. [18] 3.0e-06 5.79¢-04 |3.97332 | 0.808320 |2.57194
Ref. [34] 2.24¢-04 1.00e-04 | 3.98083 | 0.810752 |2.57996
Present 1.5395¢-04 | 6.216e-05 | 3.9799927 | 0.810463 | 2.579007
1y |Ref[33] 1.38¢-04 5.6e-05 | 3.97992 | 0.810465 |2.57901
Ref. [19] 3.049¢-03 | 1.224e-03 |3.98128 | 0.809390 | 2.57547
Ref. [18] 6.0e-06 9.22e-04 |3.97911 | 0.806774 |2.56684
Ref. [34] 3.25¢-04 1.39¢-04 | 3.98125 | 0.810884 | 2.58041
Present 2.012e-04 | 7.994e-05 |3.979997 | 0.810464 | 2.579007
e |Ref[33] 1.80e-04 7.1e-05 | 3.97991 | 0.810465 |2.57901
Ref. [19] 3.905e-03 | 1.510e-03 |3.98169 | 0.809030 | 2.57428
Ref. [18] 1.2e-05 1.215e-03 | 3.96534 | 0.805461 | 2.56251
Ref. [34] 4.17¢-04 1.71e-04 | 3.98165 | 0.811014 | 2.58083

Table 7 compares the projected method and existing methods refs. [19,23,33,34,37] in terms of
L, and L, errors as well as invariants for ¢=1 with p=0.1, A=0.125, Ar= 0.1, and

¢ €[-40,60] at timez = 20. It can be perceived from this table that the L, and L, error norms

achieved by the projected method are very much smaller than those obtained in [19,23,33,34,37],
whereas, the errors obtained by the QBGMI1 are almost similar to the projected method. The
magnitudes in the invariants keep on nearly consistent in the course of the computer run. It is found
that the difference among the numerical and analytical values of /;, [,,and I, are Al,=2.496862¢-
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05, AlL=2.642822¢-06, and Al,= 3.886086¢-08. Table 8 compares the invariants obtained by the
projected method with ref. [37] and analytical quantities for a =0.5 with p=0.03, 2=0.1, Ar=

0.0001 at various times 7. It can be remarked from this table that the obtained invariant quantities are
very close to analytical values and are much better than what is presented in ref. [37]. Table 9 shows
the absolute errors in the invariants obtained by the projected method and analytical quantities for « =
0.6 with p=0.03, 2=0.2, Az=0.001 at various times 7. It can be seen that the invariant quantities

are nearly 10 accurate.

Table 7. The comparison of L, and L, errors and invariants obtained by the projected
method and existing methods for @ =1 with p=0.1, £=0.125, Az= 0.1, { e [40,60]

at 7=20.

Methods L L, I, I A
Present 2.4627e-04 9.6078e-05 3.979975 0.810465 2.579007
Ref. [19] 4.688e-03 1.755e-03 3.98203 0.808650 2.57302
Ref. [37] 2.20e-04 8.60e-05 3.97989 0.810467 2.57902
Ref. [33] 2.19e-04 8.60e-05 3.97988 0.810465 2.57901
QBGMI1 (Ref. [23]) 1.9215¢-04 7.337e-05 3.9798832 0.8104612 2.5790031
QBGM2 (Ref. [23]) 3.5489e-04 1.2848e-04 3.9798830 0.8104616 2.5790043
Ref. [34] 5.11e-04 1.98e-04 3.98206 0.811164 2.58133

Table 8. The comparison of invariants obtained by the projected method with ref. [37] and
analytical quantities for o =0.5 with p=0.03, 2 =0.1, Ar=0.0001 at various times 7.

T Methods 1, A I
Present 2.104795105493023 | 0.127311100687075 | 0.388792279082409
0.01 | Exact values | 2.109407499749634 | 0.127301718625667 | 0.388805990353852
Ref. [37] 0.197709389335031 | 0.126849748687847 | 0.387166785333068
Present 2.104793676163467 | 0.127306603010193 | 0.388778144598822
0.02 | Exact values | 2.109407499749634 | 0.127301718625667 | 0.388805990353852
Ref. [37] 0.197709389335031 | 0.126832805997773 | 0.387113999130940
Present 2.104792339908470 | 0.127301823129927 | 0.388763112448558
0.03 | Exact values | 2.109407499749634 | 0.127301718625667 | 0.388805990353852
Ref. [37] 0.197705310408835 | 0.126802946718958 | 0.387058367254051
Present 2.104791052954834 | 0.127296885458673 | 0.388747577127724
0.04 | Exact values | 2.109407499749634 | 0.127301718625667 | 0.388805990353852
Ref. [37] 0.197698761277219 | 0.126780218019371 | 0.387001260827619
Present 2.104789799868593 | 0.127291842792910 | 0.388731706486992
0.05 | Exact values | 2.109407499749634 | 0.127301718625667 | 0.388805990353852
Ref. [37] 0.197690652584066 | 0.126757804752181 | 0.386943215828569
AIMS Mathematics Volume 10, Issue 3, 5651-5670.
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Table 9. The absolute errors in invariants obtained by the projected method and analytical
quantities for o =0.6 with p=0.03, 2=0.2, Az=0.001 at various times 7.

z s 1, 1,

0.01 | 4.750272418178¢-03 | 3.379346449474130e-04 | 1.087110202561¢-03
0.02 | 4.755032046523¢-03 | 3.758097931880755¢-04 | 1.206502603342¢-03
0.03 | 4.756680570585¢-03 | 3.896019672482709¢-04 | 1.249979299056¢-03
0.04 | 4.757509362131¢-03 | 3.967863361757640e-04 | 1.272626452249¢-03

0.05 | 4.758004486260e-03 | 4.012071170268194¢-04 | 1.286562027427¢-03

Figure 3 demonstrates the plots of the estimate solution w({,7) contrasted with spatial as well
as time variables ¢ and 7, respectively, for the values of o =0.5and a = 0.75 showing that the

appearances of this figure are stable with ref. [35] (Figures 2 and 3). Figure 4 illustrates the
approximate errors for o =0.5 with p=0.1, 4 =0.1 for various time interval sizes Az at 7=0.1.

It can be seen from this figure that the approximate errors are decreasing on increasing A7 . Also, it

is observed that the approximate errors are less than 10~ which shows the accuracy of the projected
method. The 3D plot of the approximate errors for ¢ =0.9 with p=0.1, £=0.2, Az=0.001, and

7€[0,0.1] isdepicted in Figure 5. The depiction of single solitary wave solutions with absolute errors
by assuming =1, h=0.3, Ar=0.1for p=0.1and p=0.03at 7 =1 isdescribed in Figure 6.

/

0.09

’l:: 0.06

w(¢

0.03

Figure 3. The surface behaviors of the numerical w({,7)for « =0.5 (left),and «a =0.75
(right) with p=0.3, 7=0.2, 7€[0,0.1],and Az =0.01 for Example 1.
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Figure 5. The 3D plot of the approximate errors for & =0.9 with p=0.1, 7=0.2, Ar
=0.001, and 7€[0,0.1].
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Figure 6. The single solitary wave solutions’ performance with absolute errors with o =
I, h=03, Ar=0.1for p=0.1 (up)and p=0.03 (down)at 7=1.

5. Conclusions

The traveling-wave solutions are obtained for the TFRLW equation via a CBS collocation
technique. The spatial derivatives are discretized by the aforesaid technique while the time-fractional
derivative is discretized through Caputo’s definition. The nonlinear term is commenced by the Rubin-
Graves linearization procedure. The von-Neumann analysis confirms that the discretized structure of
the TFRLW equation is enthusiastically stable. It is also established that the technique is second-order
convergent in the spatial variable while linearly convergent in time. Three invariant capacities
corresponding to mass, momentum, and energy are assessed for further justification. It is demonstrated
that these invariants remain almost inconsistent for the duration of the computer run, and absolute
errors are very small, approximately ~107° to 107. It is also observed that the obtained results by
the projected technique are much better than the existing ones in [18,19,23,33,34,37].
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