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Abstract: Null boundary controllability refers to the ability to drive the state of a dynamical system
to zero by applying suitable control inputs on the boundary of the domain. This research investigates
the sufficient conditions for the null boundary controllability of Atangana-Baleanu (A-B) fractional
stochastic differential equations involving fractional Brownian motion (fBm) within Hilbert space. We
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and stochastic analysis, to derive the desired results. An example is included to illustrate the application
of our findings.
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1. Introduction

Research on fractional stochastic differential equations (SDEs) has received considerable interest
lately due to their effectiveness in modeling complex systems affected by memory and uncertainty [1].
In contrast to conventional stochastic models, fractional SDEs use fractional derivatives, enabling them
to account for anomalous diffusion and long-range dependence characteristics often seen in fields like
finance, biology, and physics.

Numerous studies have explored fractional SDEs. For instance, Saravanakumar and
Balasubramaniam [2] studied the non-instantaneous impulsive Hilfer fractional stochastic differential
equations driven by fractional Brownian motion. Guo et al. [3] investigated the existence and Hyers-
Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm.
Ahmed [4] studied the Sobolev-type fractional stochastic integrodifferential equations with nonlocal
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conditions in Hilbert space. Makhlouf and Mchiri [5] studied the Caputo-Hadamard fractional
stochastic differential equations. The averaging principle for fractional stochastic differential equations
was investigated in [6—8]. Sufficient conditions for existence and uniqueness of fractional stochastic
delay differential equations were discussed in [9-11].

A key component of control theory is boundary controllability, which investigates whether a system
can be steered to a desired state by applying controls at the edges of its domain, for example,
Li et al. [12] studied the exact boundary controllability and exact boundary synchronization for a
coupled system of wave equations with coupled Robin boundary controls. Ahmed [13,14] investigated
the boundary controllability of nonlinear fractional integrodifferential systems. Baranovskii [15]
explored the optimal boundary control of the Boussinesq approximation for polymeric fluids. Katz and
Fridman [16] studied the boundary control of one dimension parabolic partial differential equations
under point measurement. Tajani and El Alaoui [17] discussed the boundary controllability of
Riemann-Liouville fractional semilinear evolution Systems. In the case of fractional SDEs, this
concept is especially complex because of the interaction between fractional dynamics and stochastic
effects, primarily represented by fBm. The distinctive characteristics of fBm, including its self-
similarity and long-range dependence, present both challenges and opportunities for controlling these
systems [18,19].

Null controllability is the capability to drive a dynamical system from any initial state to the zero
state (or equilibrium) in a finite time using suitable control inputs [20,21]. Few authors studied the null
controllability for stochastic differential systems, for example, Sathiyaraj et al. [22] investigated the
null controllability results for stochastic delay systems with delayed perturbation of matrices. Wang
and Ahmed [23] studied the null controllability of nonlocal Hilfer fractional stochastic differential
equations. Exact null controllability of Hilfer fractional stochastic differential equations with fractional
Brownian motion and Poisson jumps was discussed in [24,25].

The A-B fractional derivative plays a crucial role in modeling physical processes characterized
by non-locality and memory effects, which are prevalent in complex systems such as viscoelastic
materials, anomalous diffusion, and fluid mechanics. Unlike classical derivatives, which are local
operators, the A-B fractional derivative incorporates the entire history of a system using a non-
singular kernel. This approach provides a more accurate representation of processes where past states
significantly influence the current behavior. In the Caputo sense, the A-B fractional derivative has
been effectively applied to model heat flow in heterogeneous thermal media. For more comprehensive
details about the A-B fractional derivative and its applications, we direct readers to references [26-28].

Several authors have explored fractional differential equations (DEs) involving A-B fractional
derivatives. For instance, Dhayal et al. [29] investigated the approximate controllability of A-B
fractional stochastic differential systems with non-Gaussian processes and impulses. Kaliraj et al. [30]
examined the controllability of impulsive integro-differential equations using the A-B fractional
derivative. Ahmed et al. [31] studied the approximate controllability of Sobolev-type A-B fractional
differential inclusions under the influence of noise and Poisson jumps. Bahaa [32] proposed an
optimal control problem for variable-order fractional differential systems with time delay, involving
A-B derivatives. Dineshkumar et al. [33] established the existence and approximate controllability
results for Atangana-Baleanu neutral fractional stochastic hemivariational inequalities. Bedi et al. [34]
studied the controllability of neutral impulsive fractional differential equations with A-B Caputo
derivatives. Aimene et al. [35] investigated the controllability of semilinear impulsive A-B fractional
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differential equations with delay. Logeswari and Ravichandran [36] discussed the existence of
fractional neutral integro-differential equations in the concept of A-B derivative. However, there have
been no documented studies in existing literature concerning the null boundary controllability of A-B
fractional SDEs incorporating fBm. Inspired by this gap in research, this work aims to explore the null
boundary controllability of such A-B fractional SDEs with fBm in Hilbert space, structured as follows:

ABCDY (1) = an(t) + N(t, #(t) + W(t, x(t) 20, t e J = [0, 7],

yx(t) = Biy(t), t € J, (1.1)
x(0) = xy.
The expression ABCDg . represents the A-B Caputo fractional derivative of order ) € (%, 1). The function

»(-) operates in a Hilbert space denoted as K, equipped with an inner product (-, -) and norm || - ||. The
term B signifies a fBm on another separable and real Hilbert space Y, characterized by a Hurst
parameter% <H<I.

The control function ¥(-) is specified within £,(J, 1), where U represents another separable Hilbert
space. Lety : D(y) € C(J,L(Q,K)) — R(y) C K be a linear operator and let @ : D(a) C
C(J, 2,(Q,K)) — R(a) c K be a closed, densely defined linear operator. Let IT : K — K be the
linear operator defined by D(I1) = {x € D(«a); yx = 0}, IIx = ax, forx € DII), and B; : U - Kisa
linear continuous operator.

Additionally, there are nonlinear functions represented by

N:JxK—-Kand W: JxK — Y, K).
2. Preliminaries
Definition 2.1. [37] A-B Caputo fractional derivative of order O < 1) < 1 is characterized by the

following definition:
w@(h)

ABCDY o(t) = -1 9 "(HMy(—(t - 3)")ds, (2.1)
where the function 6 = 1%;’
_ - G"
My(G) = ) ———
' Z:(; T(nh+1)

denotes the Mittag- Leﬁ‘ler Jfunction. Additionally, the normalization function, denoted by w(l), is

expressed as (1 — b)) + == F(b) It is defined in such a way that @w(0) = w(1) = 1.

The expression for the fractional integral of A-B is given as

t
AB1H ( b) b —~b-1_/=\ 7=
Iy, a(t) = at) + ——=——= | t -3 g(5)ds. (2.2)
(b)) @w(H)I'(h) Jo

t > 0 is a fixed constant. (€, &, P) is a complete probability space equipped with a comprehensive
collection of right-continuous increasing sub o-algebras {&; : t € [0, T']} all nested within &.

Here, £(Y,K) represents the space of linear bounded operators from Y into K. We consider an
operator Q € 2(Y,Y), defined by the relation Qr, = b,7,, where the trace of Q, denoted by trQ, is
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finite. Here, b, > 0 and {r,} (n = 1,2, ...) forms a complete orthonormal basis in Y. || - || constitutes the
norm in £(Y, K), Y and K.
We establish the fBm in Y as follows:

(o)

B(1) = BLW) = D VomBlD.

n=1

The variables 8 represent real, independent fBms.
We introduce the space £9, denoted as L’g(f/ , K), encompassing all Q-Hilbert Schmidt operators
n : Y — K if the expression ||17||i0 = 3%, | Vbl is finite. Additionally, the space £, endowed
2

with (9, n>g(2) = Yo (¥1,,n7,), forms a separable Hilbert space.

Lemma 2.2. [38] If functionn : [0,T] — £)(Y,K) meets the condition fOT ||77(§)||§0 < oo, then we can
2

conclude that )

t
E f n(3)dBH (5)
0
Consider C(J, £,(Q,K)), the Banach space comprising all continuous mappings from J to
£,(Q,K), where each function satisfies the condition sup,; E IIe®|* < oo.
Let C denote the set {» : %(-) € C(J, ,(Q, K))}, with its norm || - || defined as

t
< 2HPH! f Im(3)]I3yds.
0

I llc = (sup Elle(t)):.
teJ
Through this work, the operator IT : D(IT) € K — K acts as the infinitesimal generator of a family of
h-resolvents denoted as (Sy(t))i0 and (Qy(1))i=0, defined on a separable Hilbert space K.

Definition 2.3. [39] The set of resolvent denoted p(I1), consists of complex numbers { for which the
operator ({ — II) : DII) — K is a bijective mapping. According to the closed graph theorem, the
operator R({,11) = (¢ — ID)7! is bounded for { € p(Il) on K, serving as the resolvent of 11 at (.
Consequently, for all { € p(I1), the equation 1TR({, 1) = CR(L, 11) — I holds true.

Definition 2.4. (See [39]) If 11 is a linear and closed sectorial operator, then there exist h > 0, 3 real,
and A within the interval |2, ], such that (s.t.)

(i) Xas={(e€C: #3, |arg({ - T)| < A} C p(ID).

(i) IR ID|| < Mf’—m J €Ay

are verified.

Let us impose the assumptions as follows:

(H1) D(a) € D(y) and the restriction of 7 to D(a) is continuous concerning the graph norm of D(«).

(H2) B : U — % is a linear operator s.t. Yy € U we have By € D(a), y(BY) = By and
IBy|| < C||B1yll, C is a constant.

(H3) There exists a constant M; > 0 s.t. |[TIQy(1)|| < M;.

(Hy) (Sp)(Di=0 and (Qp)(1)i=0 are compact. .

(Hs) The fractional linear system described by Eq (3.1) is exactly null controllable over J.

(Hg) N : J x K — K meets the following:

(i) N is continuous. Suppose N € C ¥ K € C, which guarantees A€ D} K € C exists.
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(i) Yq € M, q > 0, there exists a positive function N,(-) : J = R* s.t.

sup E[IN(t,2)|* < Ny(b),

llII*<a

s = (1= 5"IN,(5) € £1([0,1], R*), and

T N ) A i
lim inf =d<oo,teJ, 6>0.

q—oo q

(H)W:JxK — 2 >(], %K) fulfills the following:
OW:IxK— BO(R %) is a continuous function.
(if) Yq > 0; q € N, there exists a positive function g,(-) : J = R* s.t.

sup E[|W(t, X)IILO < gq(1),

llxl?<q

s — (t—5)""g,(5) € £'([0,t],R*), and 36 > O s. t.

jo (t — 5" ,(5)d5 _
lim inf =d<oo,teJ, 6>0.
q—00 q

Let x(t) be the solution of (1.1). Then, let X(t) = »(t) — By(t), X(t) € D(I). Thus, Eq (1.1) can be
represented using I and B as

{ ABCD) X(4) = TIX(Y) + aBy(t) — BAECD) y(t) + N(t, (1) + W(t, %(t))d{h(”, tel, 23)
X(0) = %(0) — By(0). '

Applying 2I)_ to both sides of (2.3), then, we obtain

x(t) = By(t) = o — By(0) + 21 The(t) — *21) TIBy(t) + *21) aBy(t)

= - AB b AB b %”(t)
—By(t) + By(0) + *P1), N(t, (1)) + P 1), W(t, %(1))
Hence,
x(t) = %O+ﬂnx(t)+ f (t — 5" TI(3)ds
w(b) (b)F(b)
- DByt t — 5" Y = IDBY(5)ds
+ (b)(a VBY(t) + ———— (b)F(b) fo (t=35)"" (a - IDBY(5)ds
1-9 b f bl e
— N, x(t t— 57 NG, d
+ g tx®) + ——— - 0( 5)"7 N(5,%(5))ds
+uW(t %(1)) H()+ b f t(t—f)b-‘W(i,%(s)dﬂsﬁ(g). (2.4)
@ (h) o (HI(H) Jo
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Definition 2.5. We define x € C as a mild solution to (2.4) if it meets the condition:

t) = FSy(t t—35"! t- 5"
(1) Sy(Dxo + V(b)F(b) f (t = 5" NG ()5 + T V(b)F(b) f (t— 5" 1x(5)ds
R Litial) f (@ — It — 5" By(ds + £ F1-9) f (t— 5"'W(5, %(5)dB" (3)
0

V(b)F(b) V(b)F(b)
2 2
‘E/)(b) Qp(t — SIN(S, #(5))ds + b(f)) 12yt = 5)x(5)ds
V(b)f(a IHQy(t — 5)BY(5)ds + V(b)fab(t WS, %(3)dBH(5),
where F = 9*(9°1 =)™ and p = 6" TN =)™, with 9* = 18, 6" = 75,
Syt) = Mb(—ptb):i_ f ST - p)71ds,
2ni o

_ bh—1 1 5t =h 1

Qo) = 7 My(—pt") = o fe ("I — p)~'ds,

and the path Y is lying on ), .
3. Null controllability investigation

Here, we examine the null controllability for (1.1).
If IT € I1%(0y, §0), then for C; > 0 and C, > 0, the following holds:
ISyl < Cre™ and |Qyd)]| < Cre”t(1 +71), for every t > 0, I > I,

Let C3 = sup ISy (DI, C4 = sup, C2e”'(1+1771). So we get [|Sy(H)]| < C3, [|QyD)I| < Cy 1771 [33].
To examine the null boundary controllability of Eq (1.1), we analyze the fractional stochastic

linear system

ABCDY A(t) = ad(t) + N(t) + W(t)d%dt“), teJ=10,T],

yAt) = Biy(®), te J,
A0) = Ao,

3.1

associated with the system (1.1).
Consider

T SOF(I f N
Loy = VL) (T -5 (a—-1ID)BY(5)ds

V(b)f QT = 5)a = IHBY()d5 : L,(J, 1) — K,

where 21y possesses a bounded inverse operator denoted as (2()”!, operating within the space

(J, W /ker(L]), and
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pF( —b)
V(HI'®H)

L 9F-1) . W f )
ZON0) f (T = 5 WEHSE) + 7 | ST - N s

2
3;) f QT — HW(E)AB(5) : K x &,(J,K) — K.

Definition 3.1. [40] The system described by Eq (3.1) is termed exact null controllable over J if
Imﬁg o) Im%g or there exists k > 0 s.t. ||(Qg)*/l||2 > Kll(ﬂig)*/lllzfor YA e K.

T
NN, W) = FS(T)A+ f (T - 5" 'N(5)d5s
0

Lemma 3.2. [41] Assume that (3.1) exhibits exactly null boundary controllability over the interval J.
Consequently, the operator (Eo)‘“ﬁg x (], K) — &(J,¥) is bounded, and the control

pF(1 - D) pF(1 —b)
V(HI'(h) V(HI'(h)

V(b)f Qy(T - s)N(s)ds+V(b)f Qy(T - s)W(s)deH(s)](t)

T T
Y(t) = —(20)‘1[F6b(T)/10 + f (T - 5" ING)d5 + f (T — 5" 'W(5)dB(5)

drives the system described by Eq (3.1) from an initial state Ay to the zero state. Here, £ represents
the restriction of 25 to [ker Qg 1+, while N belongs to 2,(J, K) and W belongs to 29 (J 24, K)).

Definition 3.3. The system defined by Eq (1.1) is deemed exactly null boundary controllable over J if
there exists a stochastic control y € L,(J, N) s.t. the solution x(t) of (1.1) meets the condition »(T) = 0.

Theorem 3.4. Let (H,) — (H;) hold, then (1.1) is exactly null boundary controllable over J s.t.

{325Tb + L66HT>H*0"1 [||50||2||F||2(1 - D)’ N I)2||F||4C§] N 16[IIsOIIIIFII(l - b)]ZIIHIIZT”)‘l
b V2(O)I2(D) V2(h) V(HI'(h) 2h—1

207, 12 M2 2 2y720-1
+16[b||F|| Ml] T}{l N 16”3”2”261”2([||50||||/E||(1 b)] (llerl[” + LI T

V(D) VI() 2H- 1
BIFIE P ladPC2T
+[V(b) ( 20— 1 +M1T))}<1' (3.2)

Proof. For any function x(-), the operator ® on C is defined in the following manner:

(@)1 = ng“”ﬁ% fo (= HING a5 + STLD V(b)F(b) f (t - 5" ' Tx(5)d5
% f t<a—H>(t—5)"‘11§¢<f>ds+% fo (t — 5" WS, %(5)dB" (3)
V(b)f Pt = HNG, ’“S))d“‘?(; 1Syt ()
3(;) (- H)Db(t—s)Bt,//(s)ds+m f St - WG KB ®).  (3)
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where

F(1
Yt) = —(ﬁo)‘l[FGb(T)%0+g‘)/é))r(b) f (T = 5)""'N(5, %(5)d5
LA l)

T
" k(5)ds
V(b)F(b) f (T = 5 ' IIx(5)ds

@F(l—b)fT e — _f
vor® Jo T WEABE® + 7o |- QT = HNG, #()d5

2
+\2(b) o - s)’“”dsm f DT = HWGE NS,

We will demonstrate that ®, mapping from C to itself, possesses a fixed point. For all integer q > 0,
put B, = {t € C, ||L||é < q}. We assume that there exists g > 0 s.t. P(B,) € B,. If it is not true, then,
Vq > 0, there exists a function %,(-) € B,, s.t. P(x,) ¢ B,. Specifically, It = t(q) € J, where t(q)
depends on g, s.t. IICD(%q))(t)IIZC > q.

From (Hg) in conjunction with the Holder inequality, we derive

F(1 -
up EHgo (1-D)
teJ

t bFz t 2
f (t — 5" 'N(5, %(5))d5 + 70 f Qu(t — 5N, %(5))ds

VO )
FIi(1 - b) FZC
< {{II@I&I@I)I(F (b)b)] +[b”vl(|b)4 [ f It = 5 NG %) ds]
IVFIC =00 (WPFCSP) g [ -5 pnacs s
< t— d t—5)E|N(S, d
< MVorar) e ) @9 [ a9 BN xoas
T (lIFIC =0 ORGPy [ oy o
?{[ VLD ]+[ V() ]}jo‘(t—s) Ny(5)ds. (3.4)

Also, from Burkholder-Gungy’s inequality and Lemma 2.2 along with (H7), it yields

supEHSOF (-5 f t(t—s)f’-lww %(5))dﬂsf’(s)+— f Qy(t — HW, %(s))d%H(s)
e I VOIr®m) Jy ’ vy Jo

s (TR = D) 2 b||F||2C4 f o ]
< 2HT {[ VT ]+[ Vo) [ It = 5" WS 2(9)l0dS
AFICL =) BIFIPC
< 2HT2”“{[||K)|‘U|(D|)|;(I))[))] +[b”vl(|b)4 f (t - 5)"d5 f (t= 5 EIWG, %()IEyds
QHTH! IIKJIIIIFII(I—b) b||F||2C4 f N
< t—5)" ds 3.5
= T {[ V(D)D) V(D) (t= 9" 9,(ds. G-2)
From (H3), we derive
WF(l_b)ft Sl L tHszt—- sail|
sup H Vor) J, ¢ TS+ it = S)e(E)as
IPIIFICL = B) PallllPT [BIFIRM, P
= [ ZOR0 ] 2H- 1 +[ V(D) ] (:0)
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However, from (3.4)—(3.6), we obtain

oFU-B) [ s )
e o fra=m= s thucsas g [[ame - oms]

V(D)
oot e
<{IFPCEIlP + ([%] +[b”€'(';c“]z) fo (- 5N
+2HT;H”’_1 ([llgol‘ulgl)l(rl(b—) b)]2 . [bll‘/jl(lz)Qr) fOT (T — 5 (5)ds
- 2 272h-1 2 2
[felFI0 0 P G (BN ) .

0 < ®C)DIZ = sup EIlOGe)DI

teJ
pF(1 -b)
V(b)r(b)

IA

16 sup E||F Sy (t)xo||* + 16 sup EH

teJ teJ

t
f (t = 5N, %(3))ds
0

V(I))fgb(t SIN(5, %(s))ds

WF(I _b) _ h-1 _f _
+16StleleE VL) f (@ —ID(t = 3" By (3)ds + V) (o = IDQy(t s)Bo,b(s)ds

9F(1 - 1) bF2 ("
16 E
oS E Vi) V(D)

pFAL=B) (" L SN
+16StEJPE V([®) I) (t =5 IIx(5)ds + V) HDI)(’[ Hn(3)ds

b _ 2 2 t
ISPl + ST (KL D) [HIFFC) ey ) f = 5N
0

2
Db(t — HW(5, %(5)dB"(3)

f (t = "' W(E,%(5)dB"(5) + ——

2

= o y L vorem | o1 vy
+32H7;) ([Ilsol‘%l)l(rl(b—)b)] +[b”€|(|b)c4] ) fo (t - 5)" g (5)d5
Lo r
+16[||p%|)|<r1(b)b>] il . +16[b”’;'lb])”1] o
oLve - )
+256||B||2||961||2([”80|‘%|)|(r1(b)b)] (o] ;gr_ml)rb +[b£;|)|) ](nanz 1)C4-T1 M)

IoIFI =) [BIFRC Y (7
X{IFIECElbxll + b([ VO ]+[ s [ fo (T = 5" Ny(5)ds

L 2HTH (e~ b)r . [annzar) fo T - 9505

b VO (D) 0
IOIIFICE = )P alTIETS  [HIFIRM, 2

| VOI(D) | -1 +| 0 [[or}
IOIIFICL = )P AlET® [olFIEM, P

+16[ VO ] ] +16[ T ]qT}. (3.8)
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By dividing both sides of (3.8) by q and letting g — +00, we obtain

{325Tb + 166HT>1+0"! [IIsOIIZIIFIIZ(1 - b)? N bzllFll“Cﬁ] N 16[II&OIIIIFII(I - b)]ZIIHIIZT%‘1
b VZ(O)I2(D) V2(h) V(H)I'(h) 2h—1

blIFI> M ? _ s (TIRIIFICE = B) P (e + TP T
+16[ V(D) ] T}{l + 161IBIFII ([ VO)L(D) ] M1
blIFIP P (lelPCIT>
+[ V(b)]( -1 +M1T))}21'

This contradicts (3.2). Therefore, ®(B,) € B,, for q > 0.

Indeed, ® maps B, into a compact subset of B,. To establish this, we begin by demonstrating that
B, (1) = {(Px)(1) : » € B} is precompact in K, ¥ t € J. This is trivial for t = 0, because B,(0) = {x,}.
Now, consider a fixed t, where 0 <t < T. For 0 < € < t, take

F(1 - e F(l — e
(D%)(t) = FSy(txo + f/(;)r(;))) fo (t — 5" 'N(3, %(3))d5 + S{X)/(E))I“(I?)) fo (t — 5" 'Ix(5)d5
PRAL=D) (i goF(l—b)f‘f e
V(b)I(h) L (@ —IDH — 5" By(5)ds + VD) J, (t =5 W(s, #(5)dB"(5)
b tEDt N ds b t_GHQt $)x(5)ds
+Wb) y(t = HN(S, %(5)) s+% p(t — $)x(5)ds

V(b) f (@ = DDyt — 5)BU)d5 + 21— 0 f Qy(t — HW(E, #(5)dBY(5).

From (Hy), the set BE(t) = {(Dx)(1) : » € B,} is a precompact set in K for all €, where 0 < € < .
Furthermore, for any » € B,, we have

I(@2)(t) — (D)(D)II%
= sup E[(@x)(t) — (@%)(H)|

teJ
— t 2 t ’
oF(1 —-1) (f 5IN(S, %(5))ds + —— bF Qb(t — S)N(5, #(5))ds

V(HI'(h) V()

IA

16 supEH

teJ

oF(1-1b) ~ e ﬂ v Ca P
+16st1€1}_)E VD) f (a — TI)(t — 5" By(5)d5 + Vo) (a/ Qy(t — 5)BY(5)ds
F(1 — 2 t 2
+16st1€11PE K“)/ (E))r (;’)) f (t = 5" 'W(5, %(5))dB" (5) + % Qy(t — HW(G, %(5))dB" (5)
oF(1 - D) e 2

f (t — 5" Ix(5)ds + — b

V(b)
16€” (TlilllIFIICL - b) blIFIRC, e
b ([ V(D)F(b) ] +[ V(D) ]) te(t 5)" No(3)ds

2H+E — 2
32HE ([Ilg)IIIIFII(l b) bIIFII f (t = ) gy (5)d5

+16sup £ HDb(t — 5)x(s)ds

e I VIOI(H)

b V(HI'(h) V(b)
+16[IIsOIIIIFII(l —b)]ZQIIHII2 zb 1 N [b”FHZMl]
V(HI(h) 2h -1 40
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lllIFICL - b)r(naW + P [anP]Z(llallza%ez"‘1 )
1

DI211a-112
61BN (| e T voy I\ 25 -1

s o € IPIAIL =P [OIFPCY (7
<{IFPCEIR + | vy ] ) |, 9 N
2HE Y oA =P [OIFRCEY (7 oy
T ([ VHI(h) ] +[ V(b) ]) p T =97 6(8)ds
IPIIFICL = B) Pl [BlFIPM, 2
+[ VHI(h) ] 25— 1 +[ 70) ]“6}'

We observe that V % € B, |[(Dx)(t) — ((DE%)(t)IIZC_ — 0 as € approaches 0*. Thus, there exists precompact
sets arbitrarily close to the set B,(1), indicating that V(1) itself is precompact in K.

Next, we demonstrate that {®x : x € B} is an equicontinuous family of functions. Let x € B, and
t;,t, € Jsuchthat0Q < t; <t,, then

I(@x)(t2) = (Dx)(E)IIE
L6]IF Sy (t2)%0 — F Sy(t1)xollg + 16]

OF(1-p) [
viry J,
oF(1-D) (™
VOIL®) Jo
OF(1-p) [
voIro) J,
F(1-b) (" A
f/(;)r(;))) f (@—-ID[(t, - 35" =t - E)"‘l]Bw(E)dillé
0
oF(1-p) [
vioro J,
oF(1-b) ("
VD) Jo
F(1 - °

@V(;)F(;))) ft (t — " WG 2(3)dB" (B
bF2 t l

+16”Wb) ; [Qy(ta — 5) — Qy(t; — 5IN(, %(E))di”zc-
bFz SN = = 12

+l6l|m Q[)(tz - S)N(S, %(S))dS”C

tr

bFZ t

+16”W ; [Qy(ta — 5) — Qy(t) — 5)]H%(§)d§||§
pF: M _ —\ =112

+16||W Qy(ty = HID(3)d5l| 5

ty

bFZ t

+16IIW ; (@~ ID[Qy(t2 = 5) = Qy(ts ~ HIBYG)A5IIE

pr(L-b)
VL) Jo

(t2 = )" N5, 2(3))d5llz

IA

[(t, — "' = (1 — "IN, %(9)d5]

+16||

+16||

[(t, — 9" = (1) — 9" TLe(3)d5[7.

+16||

(t — )" ' Th(5)d5]|.

+16||

16| (tr — 5" By(3)d5ll¢

+16||

[(t2 = 5)"" = (t = "' IW(E, (3)dB  (3)IIZ

+16||
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2 t)
+16ll% (@ — IDQy(t, — 5)BY(5)d3[%
16”Wb) f [Qy(tz — 5) — Qy(t; — HIW(E, %(5)dB" (3)IIZ
16llm f Qy(t, — HW(E, %(5)dB" (3)IIZ.

Based on the earlier observation, we note that ||(Dx)(t;) — (Dx)(t 1)||2C_ — 0 independently of » € B,
as t, tends to t;. The compactness of Sh(t) and Qbh(t) for t > 0 ensures that continuity is maintained in
the uniform operator topology.

Therefore, ®(B,) exhibits both boundedness and equicontinuity. According to Arzela-Ascoli
theorem, ®(B,) is precompact in K. Therefore, the operator ® is completely continuous on K. By
Schauder’s fixed point theorem, ® possesses a fixed point in B,. Any fixed point of ® serves as a mild
solution to (1.1) over J. Consequently, (1.1) has exact null controllability on J. O

4. Illustration

To validate the obtained results, we examine the A-B fractional stochastic PDE with fBm and
control on the boundary as follows:

ABCDE (t, ) = Lot D+ w(t ) + Nt (4 D) + Wt 2t SR, te ], fes,

x4, ) =y, §), teld, feA, (4.1)

%(0,7) = x0(), T € &,
where ABCD§ . 18 the A-B derivative, of order % = is a bounded open set in R that has A as sufficiently
smooth boundary, while 8% is a fBm. Let »(t)(f) = x(t, T), N(t, x(1))(f) = N(t, »(t, f)) and W(t, %(1))(f) =
W(t, «(1,7)).

Here, consider U = QZ(A) K=Y=2e*E),B = I where I is the identity operator and IT : D(I1)
K — Kis given by Il = 2 with DT = {x € K, & af are absolutely continuous, & 612 e L2(B)).

We define the operator U D(U) C L2(E) — L%(E) is given by Ux = I1x. Then, U can be written as

Ux = Z(—n)z(%,%,,)%,,, % € D(V).

n=1

In this context, x,(f) = (sin(nf)) \/g , n € N denotes the orthogonal set of eigenvectors of U.

For » € K, we have

(o)

a2
S()x = Z eﬁ(%,%n)%n, X E X

n=1

U generates a compact semigroup S(t),t > 0 on K with ||S(t)|| < 1.
Now, Eq (4.1) can be expressed in the abstract form of (1.1).
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Seth=2, H=1llpl=1L IFI=1, Vi) =1, TH)=1,6=001, T =1, C4 =1, M, = 1, |B|| =
0.5, ||536‘|| =1, |la]| = 0.1, |IIT|| = 0.1. Then, all the conditions of Theorem 3.4 have been satisfied,
along with

{32(5Tb + L66HTH*0"1 [IIsOIIZIIFIIZ(l - b’ N bZIIFII“Cﬁ] N 16[II@IIIIFII(I - b)rHHIIZT%_l
b VA2 () V2(D) V(HI'(h) 2h -1

blIFI> M, ? _ o o(TIRIIFICE = )1 (el + IT») 70!
+16[ 70 ] T}{l + 16MIBIFIE, ([ V(H)L(H) ] -1
bIFIP P lledPCiT> "
+[ V(b)]( 25— 1 +M1T))}< L

Therefore, (4.1) achieves exactly null boundary controllability over J.
5. Conclusions

This paper introduced a novel control model incorporating A-B fractional derivative and fractional
Brownian motion. This study investigated the sufficient conditions for null boundary controllability
of A-B fractional SDEs that involve fBm in a Hilbert space. Techniques such as fractional analysis,
compact semigroup theory, fixed point theorems, and stochastic analysis were commonly employed to
establish controllability results. An example is included to demonstrate the theoretical results.
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