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Abstract: Mobile robots encounter issues like low global search efficiency and insufficient static path 

safety in path planning within complex dynamic environments. This paper proposes a fusion strategy 

integrating a mathematically optimized improved A* algorithm (ImpA*) and an enhanced Dynamic 

Window Approach (ImpDWA). At the global planning layer, path quality and efficiency are improved 

through optimizations such as obstacle ratio quantification and dynamic weighting of heuristic 

functions. At the local planning layer, the DWA evaluation system is optimized by adding a target 

point cost sub-function and dynamically adjusting weights. At the fusion layer, dual-algorithm 

collaboration is achieved via global path segmentation and key sub-target transmission. MATLAB 

simulations show that the ImpA* algorithm significantly optimizes path length and runtime. The 

fusion algorithm (ImpA*-ImpDWA) achieves an obstacle avoidance success rate exceeding 96.5% in 

dynamic environments, with comprehensive performance superior to other mainstream schemes. It 

realizes the coordinated balance of core indicators including safety and smoothness, providing reliable 

support for autonomous robot navigation. 
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1. Introduction 

With the in-depth advancement of intelligent manufacturing and industrial automation, 

intelligent mobile robots have demonstrated enormous application potential in industrial logistics [1], 

smart agriculture [2], and daily services [3] due to their capabilities in autonomous decision-making, 

collaborative control, and environmental adaptability. Path planning, as a key technology of the 

autonomous navigation system, directly determines the movement efficiency of robots in complex 

environments [4–6]. The core goal of this technology is to generate paths that meet optimality and 

safety requirements in complex environments through computer algorithms, and mathematical 

optimization is the core tool to achieve these two goals. The core objective of this technology is to 

construct objective functions and constraint conditions in complex environments through computer 

algorithms, thereby generating paths that satisfy optimality and security [7]. Mathematical 

optimization serves as the core tool for achieving these two goals. Mathematical optimization can 

reasonably schedule resources and reduce the volume of communication data [8]. It transforms the 

qualitative requirements of path optimization into quantifiable and solvable mathematical models, 

providing rigorous theoretical support for algorithm improvement. 

According to the difference in environmental information, path planning can be divided into 

global path planning and local path planning. Improvements in both types of algorithms rely on 

mathematical optimization to achieve performance breakthroughs. Global path planning is based on 

the premise of fully known environmental information and aims to solve the theoretically optimal 

path [9]. Typical algorithms include the A* algorithm [10] and Dijkstra’s algorithm [11]. Among 

them, the A* algorithm is widely used due to its simple principle and efficient solution, but its 

performance is highly dependent on heuristic function design and search strategies. The heuristic 

function weight of the traditional A* algorithm is fixed, which cannot dynamically adjust the balance 

between exploration and exploitation according to environmental complexity. This leads to problems 

such as many redundant search nodes and poor path smoothness in obstacle-dense areas [12,13]. To 

address this issue, numerous scholars have also adopted other algorithms for global path planning 

research. Dai et al. [14] proposed an LPA* algorithm and applied it to path planning. Through 

comparative experiments with the original LPA algorithm and A* algorithm, the results show that the 

LPA* can effectively shorten the travel distance of mobile robots and reduce time consumption. Li et 

al. [15] designed an improved Dijkstra's algorithm (IDA*). Compared with the traditional Dijkstra’s 

algorithm, IDA* can significantly improve computational efficiency and save operation time. To 

target the computational load challenge caused by large-scale grid maps, Liu et al. [16] adopted an 

improved Theta* algorithm to generate optimized paths for each sub-region. Subsequently, through a 

path connection mechanism, the local paths of adjacent grids are integrated to ultimately form a 

complete global travel path. Local planning targets scenarios with unknown or dynamically changing 

environmental information, and its core goal is to generate collision-free paths in real time [17]. 

DWA [18] is a mainstream algorithm in this field. The traditional DWA algorithm samples the 

velocity space and selects the optimal velocity through an evaluation function. However, the weight 

coefficients of the evaluation function are fixed and cannot be adjusted according to dynamic 

information such as obstacle distance and target position, making it prone to falling into local 

minima traps [19,20]. To address this problem, this paper improves the DWA with mathematical 

optimization as the core method. 

Despite the certain progress made in improving single algorithms through mathematical 
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optimization in existing research, mobile robots still face problems in complex dynamic 

environments, such as insufficient coordination between global paths and local obstacle avoidance, 

and difficulty in simultaneously meeting path optimization efficiency, smoothness, and safety. 

Therefore, this paper proposes a fused path planning strategy of ImpA*-ImpDWA based on 

mathematical optimization. The specific improvements are reflected in three aspects: First, at the 

global planning layer, the search efficiency of the A* algorithm is improved by introducing a 

quantitative model of environmental complexity (global obstacle occupancy ratio) and dynamic 

weight optimization of the heuristic function. Meanwhile, path smoothness optimization is achieved 

through geometric elimination rules of redundant nodes and curve fitting. Second, at the local 

planning layer, the DWA evaluation system is reconstructed by constructing a target point cost 

sub-function and dynamic weight optimization of the speed sub-function, alleviating the problems of 

local minima and target loss. Third, at the algorithm fusion level, the collaboration between the 

ImpA* and ImpDWA is realized through the mathematical segmentation of the global path, ensuring 

intelligent obstacle avoidance in dynamic environments. Finally, the effectiveness of the fused 

algorithm is verified through simulation experiments. 

2. Materials and methods 

2.1. Assumptions of path planning model and rationality verification 

To clarify the applicable scenarios and boundary conditions of the algorithm, the path planning 

model proposed in this paper is constructed based on the following 3 core assumptions, whose 

rationality is verified through theoretical derivation and experimental data: 

(1) Environmental gridding assumption: The robot’s movement environment is discretized into 

uniform square grids with a size of 1m×1m. Grid states are defined using binary discrete values, 

where 1 represents an obstacle grid and 0 represents a passable grid. Rationality verification: 

Gridding is a standardized environmental modeling method in the field of path planning. The 

1m×1m grid size is highly matched with the physical size of the mobile robot (0.3m in diameter) 

used in experiments. This size not only ensures the modeling accuracy of environmental details but 

also avoids the exponential growth of computational complexity caused by overly fine grids. In a 

30×30 grid map, the environmental modeling error under this assumption is less than 0.2m, which is 

much lower than the precision threshold of robot motion control (±0.1m), fully meeting the 

environmental description requirements of path planning. 

(2) Simplified robot kinematics assumption: The robot is assumed to be a two-wheel differential 

drive model. During movement, only linear velocity and angular velocity constraints are considered, 

while non-ideal interference factors such as sliding friction and uneven ground are ignored. 

Rationality verification: By adding strict velocity and acceleration/deceleration constraints to the 

model, it can accurately reflect the robot’s actual movement capabilities. The specific constraint 

parameters are set as follows: maximum linear velocity 1m/s, maximum angular velocity 0.6rad/s, 

maximum linear acceleration 0.2m/s², and maximum angular acceleration 0.3rad/s². In the simulation 

environment, the trajectory prediction error based on this assumption is less than 5%, which not only 

simplifies the algorithm's calculation process and ensures real-time performance but also meets the 

core requirement of trajectory accuracy for path planning. 

(3) Uniform linear motion assumption for dynamic obstacles: The motion trajectory of dynamic 
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obstacles is assumed to be uniform linear motion, and their velocity magnitude and direction remain 

constant within the sampling period. Rationality verification: In typical application scenarios such as 

warehousing workshops and smart factories, the motion states of dynamic obstacles such as 

personnel and AGVs can be approximated as uniform linear motion. In experiments, the velocity 

range of dynamic obstacles is set to 0.6–1.0m/s, which matches the walking speed of personnel in 

real scenarios (0.9–1.2m/s). By comparing the predicted and actual values of obstacle motion 

trajectories, the position error under this assumption is less than 0.05m within a 0.1s sampling period, 

which will not affect the effectiveness of obstacle avoidance decisions. 

2.2. A* Algorithm and its improvement 

2.2.1. Traditional A* algorithm 

As a classic heuristic global path planning algorithm, the A* algorithm is an extension of 

Dijkstra’s algorithm [21]. The algorithm uses nodes as the basic search unit and constructs a path 

from the start point to the target point by iteratively expanding nodes. Its operation mechanism is as 

follows: The current node is set as the parent node, and child nodes in its surrounding neighborhood 

are searched. The cost value of each child node is calculated according to preset rules, and the child 

node with the smallest cost value is selected as the new parent node. During the algorithm execution, 

node management is realized by maintaining an Open list and a Close list: the Open list stores child 

nodes to be expanded, and the Close list records nodes that have completed searching, thereby 

improving search efficiency. 

The core advantage of the A* algorithm lies in introducing a heuristic function to guide the 

search direction and accelerating algorithm convergence by estimating the cost from the current node 

to the target point. The algorithm continuously iterates the node expansion and cost value calculation 

process until the target point is found or all reachable nodes are traversed. The evaluation function of 

the traditional A* algorithm is shown in Formula (1): 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛).                             (1) 

Where, n is the current node; f(n) is the total cost value from the start point to the target point; g(n) 

is the actual cost value from the start point to the current node n; h(n) is the estimated cost value 

from the current node n to the target point. 

In practical applications, the distance measurement methods commonly used in heuristic 

functions include Chebyshev distance (h1), Euclidean distance (h2), and Manhattan distance (h3) 

[22–24], whose geometric relationships are shown in Figure 1. The corresponding calculation 

formulas are shown in (2)–(4) 

ℎ1(𝑛) = 𝑚𝑎𝑥{|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|},                       (2) 

ℎ2(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2,                        (3) 

ℎ3(𝑛) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|.                         (4) 

Where (x1, y1) are the coordinates of the start point, and (x2, y2) are the coordinates of the target 

node. The Euclidean distance formula is selected as the heuristic function in this paper. 
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Figure 1. Schematic diagram of the 3 distances. 

2.2.2. Heuristic function optimization 

The coefficient of the heuristic function h(n) in the traditional A* algorithm is usually a constant, 

which makes the weight unable to be dynamically adjusted according to environmental 

characteristics during path planning and limits the further improvement of search efficiency. This 

paper proposes a dynamic weight adjustment strategy to balance the contradiction between search 

space and search efficiency by real-time optimizing the weight coefficient of the heuristic function. 

The specific implementation is as follows: 

(1) Distance-adaptive weight adjustment mechanism: When the current node is far from the 

target point, increase the weight coefficient of h(n) to reduce the search space and improve global 

search efficiency. When the current node is close to the target point, decrease the weight coefficient 

of h(n) to expand the local search space, ensuring the algorithm can safely avoid obstacles. 

(2) Environmental complexity-aware weight adjustment mechanism: To quantitatively describe 

the complexity of the map environment, the obstacle occupancy ratio O is introduced as an 

environmental characteristic parameter. Its mathematical expression is shown in Formula (5): 

O = 𝑁

𝑚 ∗ 𝑛
.                                    (5) 

Where N is the number of obstacle grids in the map area, and m and n are the horizontal and vertical 

grid numbers of the map area respectively. The weight adjustment rule is designed as follows: when 

the obstacle occupancy ratio O in the environment where the robot is located is low, increase the 

weight of h(n) to improve search efficiency; when O is high and obstacles are dense, decrease the 

weight of h(n) to expand the search range and avoid falling into local optimality. 

The improved method of dynamic weighting for the heuristic function is shown in Formulas 

(6)–(9): 

ω = 𝑒
𝑑1
𝑑2 - 1

2
 (1-𝑒−𝑂),                                (6) 

𝑑1 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2,                          (7) 
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𝑑2 = √(𝑥2 − 𝑥0)2 + (𝑦2 − 𝑦0)2,                          (8) 

𝑓(𝑛) = 𝑔(𝑛) + [𝑒
𝑑1
𝑑2 - 1

2
 (1-𝑒−𝑂)] ℎ(𝑛).                      (9) 

Where ω is the dynamic weight coefficient, (x0, y0) are the coordinates of the start point, d1 is the 

distance from the current node to the target point, and d2 is the distance from the start point to the 

target point. By introducing the dynamic weight ω, the problems of low search efficiency and easy 

falling into local optimality of the traditional A* algorithm are effectively solved. 

2.2.3. Optimized search neighborhood 

The selection of the search neighborhood has a key impact on path planning efficiency and path 

quality [25]. Common search neighborhoods in path planning include 4-neighborhood, 

8-neighborhood, and 16-neighborhood, whose specific structures are shown in Figure 2(a). The 

4-neighborhood search has a turning angle of 90° and a maximum step size of 1, resulting in poor 

path smoothness; the 8-neighborhood search has a turning angle of 45° and a maximum step size of 

√2, with significantly improved path smoothness; the 16-neighborhood search has a turning angle of 

22.5° and a maximum step size of √10 , achieving the optimal smoothness. However, the 

computational complexity increases exponentially with the increase of neighborhood dimensions, 

which is prone to a sharp increase in planning time in large-scale maps. Considering the balance 

between path smoothness and computational efficiency, the 8-neighborhood is selected as the search 

direction in this paper. 

In the traditional 8-neighborhood A* algorithm, the movement costs of the 8 child nodes of the 

parent node are set to fixed values and do not change with the search direction. This results in an 

insignificant difference in the total path cost between expanding toward the target point and 

expanding in other directions. This mechanism tends to store a large number of redundant nodes in 

the Open list, which not only reduces search efficiency but also may cause the algorithm to fall into 

local optimality. To address this, this paper introduces a turning cost term into the cost function (as 

shown in Figure 2(b)). By increasing the cost of turning operations, the algorithm is guided to 

preferentially expand paths in straight or near-straight directions, reducing unnecessary turns, 

thereby reducing the number of redundant nodes in the Open list, improving search efficiency, and 

optimizing path smoothness. The improved cost function is shown in Formula (10): 

𝑓(𝑛) = 𝑔(𝑛) + [𝑒
𝑑1
𝑑2 - 1

2
 (1- 𝑒−𝑂)] ℎ(𝑛) - K D cos 𝜃.               (10) 

Where K represents the weight coefficient with a value range of (0, 1), which is used to adjust the 

proportion of global turning cost; θ denotes the angle formed by the target node-parent node-child 

node; D is the distance from the parent node to the target node—the farther the child node is from the 

target point, the greater the turning cost. 
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Figure 2. Optimized neighborhood search: (a) Schematic diagram of neighborhood 

search; (b) Schematic diagram of distance and angle. 

2.2.4. Redundant node optimization 

In complex environments, the path planned by the traditional A* algorithm often contains a 

large number of redundant nodes, which may also affect the motion safety of mobile robots. To 

address this, this paper proposes an A* redundant node elimination strategy. By removing redundant 

inflection points in the path, a smooth and safe trajectory is generated, and its principle is shown in 

Figure 3(a). Let N0  be the start point and NT  be the target point. The path planned by the 

traditional A* algorithm is expressed as (N0, N1, N2, N3, N4, N5, N6, N7, NT), which contains 

multiple redundant nodes. The specific optimization strategy is as follows: 

For non-adjacent nodes Ni and Nj（j > i+1） in the path, if the following two conditions are 

met: first, the Euclidean distance d(Ni, Nj) between the two points is less than the cumulative 

distance of the connections between all adjacent nodes from Ni to Nj in the path; second, the line 

segment  Ni Nj
̅̅ ̅̅ ̅̅ ̅ has no collision with obstacles in the environment, and the vertical distance dmin to 

the nearest obstacle is not less than the preset safety radius r, then all nodes between Ni+1 and Nj−1 

can be determined as redundant nodes and removed from the path. Through this operation, the path 

will only retain the start node, key inflection points, and target node. For example, in Figure 3(a), the 

retained path after the first round of optimization is (N0, N3, N8, N5, NT). Iterative repetition 

finally generates the optimized path (N0, N3, NT). If the line segment collides with an obstacle, the 

detection of the current non-adjacent nodes is skipped, and the judgment on the next group of nodes 

is continued. 
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Figure 3. Schematic diagrams of redundant node optimization and path smoothing 

optimization: (a) Redundant node optimization; (b) Path node optimization after circular 

arc processing. 

2.2.5. Path smoothing optimization 

After redundant node optimization, the path ( N0 , N3 , NT ) has achieved significant 

improvements in length, number of inflection points, and safety, but the problem of insufficient path 

smoothness still exists. In the field of path smoothing, there are various mature optimization methods, 

such as the B-spline curve method [26], cubic spline curve method [27], B-spline curve method [28], 

and circular arc transition method [29]. This paper adopts the circular arc transition smoothing 

method for further path optimization, and its principle is shown in Figure 3(b). 

Given the start point N0(a1, b1), inflection point N3(a2, b2), and target point NT(a3, b3), 

where OA and OB are the safety radius R, the derivation of relevant mathematical relationships is 

shown in Formulas (11)–(13): 

𝑦1 = 𝑘1𝑥1 - 
𝑎1𝑏2−𝑏1𝑎2

𝑎2−𝑎1
,                               (11) 

𝑦2 = 𝑘2𝑥2 - 
𝑎3𝑏2−𝑏3𝑎2

𝑎2−𝑎3
,                               (12) 

α = arctan 𝑘1.                                   (13) 

Where k1 is the slope of the straight line N0N3, k2 is the slope of the straight line N3NT, and α is 

the angle between N0N3  and the horizontal plane. According to geometric relationships, the 

relationship between the chord length and radius of the circular arc segment is shown in Formula 

(14): 

𝑙𝐴𝑁3 = R tan
𝛽

2
.                                  (14) 

Where β is the angle between line segment N0N3 and line segment N3NT; lAN3 is the distance 

from the inflection point N3 to the tangent point A of the circular arc. The distance lAN0 from the 
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start point N0 to the tangent point A is shown in Formula (15): 

𝑙𝐴𝑁0 = √(𝑎2 − 𝑎1)2 + (𝑏2 − 𝑏1)2 - 𝑙𝐴𝑁3.                     (15) 

When lAC ≥ r and β ≥ 90°, the smoothing optimization is performed; otherwise, it is skipped. By 

combining Formulas (11)–(13), the coordinates of the tangent point A(Ax, Ay) are obtained as shown 

in Formula (16): 

{
Ax  =  a1 +  cos α lAN0

Ay  =  
b2 − b1

a2 − a1
 Ax  −  

a1b2 − b1a2

a2 −a1

                           (16) 

Similarly, the coordinates of the other tangent point B(𝐵𝑥 ,  𝐵𝑦) can be obtained, and the 

coordinates of the circular arc center O(Ox, Oy) are shown in Formula (17): 

{
𝑂𝑥  = 𝐴𝑥  + sin 𝛼 𝑅
𝑂𝑦  =  𝐴𝑥  − cos α𝑅

                              (17) 

In summary, the expression of the optimized trajectory for the mobile robot is shown in Formula 

(18): 

y = 

{
 
 

 
 

𝑏2 − 𝑏1

𝑎2 − 𝑎1
 𝑥 −  

𝑎1𝑏2 − 𝑏1𝑎2

𝑎2 − 𝑎1
 , 𝑥 ≤  𝐴𝑥

√𝑅2 − (𝑥 − 𝑂𝑥 )
2  +  𝑂𝑦 , 𝐴𝑥  <  𝑥 <  𝐵𝑥

𝑏3 − 𝑏2

𝑎3 − 𝑎2
 𝑥 − 

𝑎2𝑏3 − 𝑏2𝑎3

𝑎3 − 𝑎2
 , 𝑥 ≥  𝐵𝑥

                 (18) 

2.3. DWA algorithm and its improvement 

The DWA is a local path planning algorithm based on the robot's kinematic model, which 

exhibits excellent real-time obstacle avoidance and motion control capabilities in dynamic 

environments [30]. The algorithm uses the velocity space (v, ω) as the core to characterize the robot's 

motion state. By combining different linear velocities v and angular velocities ω, it simulates and 

predicts the robot's possible future motion trajectories. Subsequently, each trajectory is 

comprehensively and meticulously scored according to a carefully preset evaluation function, and the 

optimal trajectory is accurately selected therefrom, providing strong guidance for the robot to make 

precise motion decisions. 

2.3.1. Kinematic model 

To accurately simulate the robot's motion trajectory, the DWA algorithm constructs a 

mathematical model based on kinematic principles. Assuming that the robot's linear velocity at time t 

is vt, angular velocity is ωt, yaw angle is θt, and velocity sampling period is Δt, its kinematic 

model is shown in Formula (19): 

{

𝑥(𝑡 +  1)  =  𝑥(𝑡)  + 𝑣𝑡 ∆𝑡 cos 𝜃𝑡
𝑦(𝑡 +  1)  =  𝑦(𝑡)  + 𝑣𝑡 ∆𝑡 sin 𝜃𝑡

𝜃𝑡+1  =  𝜃𝑡  +  𝜔𝛥𝑡
                      (19) 
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2.3.2. Velocity sampling 

In practical application scenarios, the movement speed of mobile robots is subject to the dual 

constraints of their own conditions and complex surrounding environmental factors, mainly reflected 

in linear velocity, angular velocity, and acceleration. 

(1)  Self-velocity constraints: Limited by the robot’s hardware configuration, the robot’s 

movement speed has clear maximum and minimum values. These two extreme values jointly 

determine the size of the dynamic window, and their expression is shown in Formula (20): 

𝑣𝑚 = {(𝑣, 𝜔)|𝑣 ∈  [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], 𝜔 ∈  [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]}.               (20) 

Where vmin  and vmax  represent the minimum and maximum linear velocities of the robot, 

respectively, and ωmin and ωmax represent the minimum and maximum angular velocities of the 

mobile robot, respectively. This constraint condition defines a clear boundary for the robot’s speed 

range at the hardware level, ensuring that the robot’s motion always remains within a reasonable 

range that the hardware can withstand. 

(2)  Motor acceleration/deceleration constraints: During the acceleration or deceleration 

process of the mobile robot, its speed change is strictly limited by the acceleration/deceleration 

capacity of the motor. This constraint restricts the current speed and the speed at the next sampling 

moment within the range allowed by the acceleration. The acceleration constraint formula is shown 

in Formula (21): 

𝑣𝑑={(𝑣, 𝜔)|𝑣 ∈  [𝑣𝑐 − 𝑎𝑑∆𝑡, 𝑣𝑐 + 𝑎𝑖∆𝑡], 𝜔 ∈  [𝜔𝑐 − 𝑎𝑛∆𝑡, 𝜔𝑐 + 𝑎𝑚∆𝑡]}.     (21) 

Where vc and ωc are the current linear velocity and angular velocity of the robot, respectively, 

aiand ad are the maximum linear acceleration and linear deceleration of the robot, respectively, am 

and an are the maximum angular acceleration and angular deceleration of the robot, respectively, 

and Δt represents the sampling time. 

(3)  Braking Distance Constraint: To ensure that the robot can stop in time before a collision 

hazard occurs during its movement, the braking distance constraint clearly defines the relationship 

between the speed range and the minimum distance to the obstacle. The braking speed constraint 

formula for the robot is shown in Formula (22) as follows: 

𝑣𝑎 = {(𝑣, 𝜔)|𝑣 ≤  √2 𝑑𝑖𝑠𝑡(𝑣, 𝜔) 𝑎𝑑 , 𝜔 ≤ √2 𝑑𝑖𝑠𝑡(𝑣, 𝜔) 𝑎𝑛}.           (22) 

Where dist(v, ω) is the distance from the current trajectory to the nearest obstacle. By reasonably 

limiting the speed, this constraint ensures the robot has sufficient braking distance when 

encountering obstacles, effectively avoiding collision accidents. In summary, the speed range of the 

mobile robot can be briefly expressed as (23): 

𝑣𝑟 = 𝑣𝑚 ∩ 𝑣𝑑 ∩ 𝑣𝑎.                            (23) 

This formula comprehensively considers self-velocity constraints, motor acceleration/ 

deceleration constraints, and braking distance constraints, determining the feasible speed range of the 

mobile robot in actual motion and laying a foundation for subsequent trajectory deduction and 

optimal evaluation. 
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2.3.3. Optimized evaluation function 

After completing velocity sampling, the DWA algorithm comprehensively scores the motion 

trajectories corresponding to multiple sets of candidate velocities based on the evaluation function, 

and then selects the optimal trajectory. The evaluation function adopted by the traditional DWA 

algorithm is shown in Formula (24): 

𝐺(𝑣, 𝜔)  =  𝜎[𝛼 ∙ ℎ𝑒𝑎𝑑(𝑣, 𝜔)  +  𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)  +  𝜆 · 𝑣𝑒𝑙(𝑣, 𝜔)].            (24) 

Here, dist(v, ω) is the distance from the simulated trajectory to the nearest obstacle; vel(v, ω) is the 

speed corresponding to the simulated trajectory; σ is a smoothing function; α, β, and λ are the 

weighting coefficients of the respective cost sub-functions. Where the calculation formula of head(v, 

ω) is shown in Formula (25): 

ℎ𝑒𝑎𝑑(𝑣, 𝜔) = 180° - θ.                             (25) 

Here, θ is the angle between the end of the robot’s simulated trajectory and the direction of the target 

point; The higher the speed, the higher the score of vel(v, ω); the smaller the θ, the higher the score 

of head(v, ω); the farther the simulated trajectory is from the nearest obstacle, the higher the score of 

dist(v, ω), and the safer the trajectory. 

However, the coefficient of the speed cost sub-function in the traditional evaluation function is a 

constant, which makes the algorithm prone to falling into local optimality in complex environments. 

To address the above problem, this paper makes two improvements to the evaluation function: first, 

introduce a dynamic weight coefficient for the speed cost sub-function vel(v, ω), enabling it to 

dynamically adjust the weight ratio according to the distance between the robot and 

obstacles—increase the weight to improve operational efficiency when far from obstacles, and 

decrease the weight to ensure safe obstacle avoidance when close to obstacles; second, add a target 

point cost sub-function distg(v, ω) to the cost G(v, ω), which effectively shortens the motion path 

length by quantifying the proximity between the path and the target point. The improved G(v, ω) is 

shown in Formula (26): 

𝐺(𝑣, 𝜔) = σ[α ∙ ℎ𝑒𝑎𝑑(𝑣, 𝜔) + β ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + λ · ln(e +
𝑑𝑖𝑠𝑡(v,ω)

d2
)𝑣𝑒𝑙(𝑣, 𝜔) + γ 𝑑𝑖𝑠𝑡𝑔(𝑣, 𝜔 )].      (26) 

Here, γ is the weighting coefficient of distg(v,ω). The calculation formula of distg(v, ω) is shown in 

Formula (27): 

𝑑𝑖𝑠𝑡𝑔(𝑣, 𝜔) = 
1

√(𝑥𝑔−𝑥𝑚)
2+(𝑦𝑔−𝑦𝑚)

2
.                        (27) 

Here, (xm, ym
) are the coordinates of the end of the trajectory, (xg, yg

) are the coordinates of the target 

point, The smaller the distance between the end of the trajectory and the target point, the higher the 

score of distg(v,ω ), and vice versa. 

3. Algorithm fusion 

This paper proposes a mathematical optimization strategy that integrates the ImpA* algorithm 

with the ImpDWA. The workflow of this fused algorithm is shown in Figure 4. By integrating global 

planning and dynamic optimization mechanisms, this optimized fusion strategy enables mobile 



30890 

AIMS Mathematics  Volume 10, Issue 12, 30879–30904. 

robots to achieve efficient path planning in complex environments. 

 

Figure 4. The flow of the fusion algorithm. 

First, the ImpA* algorithm is adopted for global path planning. During the node search process, 

obstacle influence factors and dynamic weight coefficients are introduced, allowing the algorithm to 

complete preliminary obstacle avoidance while guiding towards the target point, significantly 

reducing computational redundancy in subsequent local planning. To address issues such as 

insufficient smoothness and dense inflection points in paths generated by the traditional A* 

algorithm, curve fitting technology is further used for secondary path optimization, ultimately 

obtaining a smooth global path that meets the robot's kinematic constraints. 

Subsequently, key nodes are extracted from the optimized global path as input for the local 

sub-targets of the ImpDWA algorithm. Based on the robot’s kinematic model, multiple sets of 

candidate motion trajectories are generated in the locally perceived environment. Finally, combined 

with the direction guidance of the global path and the improved evaluation function, a 

multi-dimensional comprehensive evaluation of candidate trajectories is performed: the global path 

constraint ensures the direction consistency of local planning, and the dynamic weight adjustment 

mechanism and target point cost sub-function in the evaluation function realize multi-objective 

optimization of trajectory safety, motion efficiency, and path length. The optimal motion trajectory is 

then selected to complete the closed-loop control of algorithm fusion. 

Under this fusion framework, the ImpA* algorithm undertakes the function of global path 

topology construction, providing macro navigation guidance for the robot; the ImpDWA algorithm 
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focuses on the local area between adjacent key nodes, achieving real-time obstacle avoidance for 

unknown static and dynamic obstacles. The two form a collaborative closed loop through the 

transmission of key sub-targets, effectively improving the comprehensive path planning performance 

of mobile robots in complex environments. 

4. Experimental results and discussion 

To verify the effectiveness of the fused algorithm proposed in this paper, simulation 

experiments were conducted using MATLAB R2022b. The experimental environment was built on 

the Windows 10 operating system with hardware configuration of an i7-13620H processor and 16 

GB memory, ensuring the stability and reliability of experimental data. The environmental 

parameters are as follows: grid size of 1m×1m; evaluation function coefficients α=0.05, β=0.2, γ=0.2, 

η=0.1; constrained maximum linear velocity of 1m/s, maximum angular velocity of 0.6rad/s, 

maximum linear acceleration of 0.2m/s², maximum angular acceleration of 0.3rad/s²; velocity range 

of dynamic obstacles of 0.6–1.0m/s. 

4.1. Simulation experiment analysis of the global algorithm 

Under the unified grid map environment setting, global path planning simulations were 

performed using Dijkstra’s algorithm, traditional A* algorithm, LPA* algorithm, IDA* algorithm, 

Theta* algorithm, and ImpA* proposed in this paper. Two specifications of grid maps were set up in 

the experiments: a 30×30 map (obstacle coverage rate of 22.22%) and a 20×20 map (obstacle 

coverage rate of 20%). Among them, black areas represent obstacles, white areas represent passable 

areas, and gray areas represent the algorithm's search space. For both maps, the start point 

coordinates are set as (1, y-coordinate of the end point) and the end point coordinates as (x of the 

map size, 1). Specifically, the 30×30 map has a start point of (1, 31) and an end point of (31, 1); the 

20×20 map has a start point of (1, 21) and an end point of (21, 1), so as to simulate static 

environments with different complexities. 

As shown in Figures 5 and 6, all six algorithms can plan global paths in both 30×30 and 20×20 

grid maps, but there are significant differences in path quality and search efficiency. Dijkstra's 

algorithm generates paths with many inflection points and low search efficiency. Although the 

traditional A* algorithm and IDA* algorithm perform better than Dijkstra’s algorithm, they still have 

the problem that the path is close to the vertices of obstacles (Figures 5(a), (b), (d) and 6(a), (b), (d)), 

which is prone to collision risks in narrow channel environments. The LPA* algorithm has high 

search redundancy in static environments (Figures 5(c) and 6(c)), and while the Theta* algorithm can 

generate smoother paths, it has a longer running time (Figures 5(e) and 6(e)). In contrast, the ImpA* 

algorithm proposed in this paper, through dynamic weight coefficient adjustment, search 

neighborhood optimization, and path smoothing strategies, successfully avoids obstacle vertices 

(Figures 5(f) and 6(f)), reserves sufficient turning space for the mobile robot, and significantly 

improves obstacle avoidance safety. At the same time, sharp-turn paths are replaced by smooth 

curves, effectively enhancing the continuity of motion trajectories. This indicates that the 

multi-dimensional optimization strategy of the ImpA* algorithm can provide a better trajectory 

planning solution for robot movement in complex environments. 
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Figure 5. Simulation results of different algorithms in 30×30 map. 

 

Figure 6. Simulation results of different algorithms in 20×20 map. 

Quantitative analysis results further confirm the superiority of the improved algorithm. In the 

30×30 map (Table 1), the path length planned by the ImpA* algorithm in this paper is 41.81m, which 

is 0.90%, 0.88%, 0.99%, 0.81%, and 0.40% shorter than that of Dijkstra’s algorithm (42.19m), 

traditional A* algorithm (42.18m), LPA* algorithm (42.23m), IDA* algorithm (42.15m), and Theta* 

algorithm (41.98m), respectively. The path running time of the proposed optimization method is 
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83.54s, which is 26.71%, 4.72%, 5.13%, 4.44%, and 2.59% less than that of the above algorithms, 

respectively. The number of search nodes is only 129, which is much lower than the search numbers 

of the other five comparative algorithms. 

Table 1. Comparison of simulation results of different algorithms in 30×30 map (global planning). 

Map size Algorithm Length/m Moving time/s Search nodes 

30×30 

Dijkstra [11] 42.19 113.98 700 

A* [10] 42.18 87.68 213 

LPA* [14] 42.23 88.06 235 

IDA* [15] 42.15 87.42 198 

Theta* [16] 41.98 85.76 162 

ImpA* (Ours) 41.81 83.54 129 

The above data indicate that the ImpA* algorithm in this paper can significantly reduce the 

search space through multi-strategy collaborative optimization in static environments with different 

complexities. While ensuring path safety and smoothness, it significantly improves operational 

efficiency and reduces dependence on computing resources, demonstrating excellent comprehensive 

performance in global path optimization. 

In the 20×20 map (Table 2), the path length of the ImpA* algorithm proposed in this paper is 

27.65m, which is 0.97%, 0.90%, 1.00%, 0.82%, and 0.43% shorter than that of the other five 

comparative algorithms, respectively. The path running time of the improved A* algorithm is 55.12s, 

which is 26.60%, 4.64%, 4.83%, 4.44%, and 2.51% less than that of the other five comparative 

algorithms, respectively. The number of search nodes is 83, which is also significantly lower than 

that of the other five algorithms. 

Table 2. Comparison of simulation results of different algorithms in 20×20 map (global planning). 

Map size Algorithm Length/m Moving time/s Search nodes 

20×20 

Dijkstra 27.92 75.10 380 

A* 27.90 57.80 125 

LPA* 27.93 57.92 132 

IDA* 27.88 57.68 118 

Theta* 27.77 56.54 98 

ImpA* (Ours) 27.65 55.12 83 

4.2. Simulation experiments analysis of local and fused algorithm 

To verify the performance of the optimized ImpDWA local planning and fused algorithm 

proposed in this paper, based on the aforementioned 30×30 and 20×20 grid maps, 2 unknown static 

obstacles and 1 random dynamic obstacle with a speed of 0.8–1.0m/s were introduced respectively to 

construct a dynamically complex environment. Static obstacles simulate sudden fixed barriers during 

robot movement, and dynamic obstacles simulate moving targets in the scene, which is close to the 

complexity of real operating scenarios. The traditional DWA algorithm and the ImpDWA local 

obstacle avoidance algorithm proposed in this paper were selected to fuse with Dijkstra, A*, LPA*, 
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IDA*, Theta*, and ImpA* respectively to form 12 fusion schemes. Each scheme was tested through 

120 simulation experiments, with average path length, running time, and obstacle avoidance success 

rate as evaluation indicators to comprehensively assess the dynamic environment adaptability and 

practical performance of the fused algorithm. The specific experimental analysis results are as 

follows. 

4.2.1. Analysis of the effectiveness of local algorithm improvement 

Taking the global path as the reference trajectory, the independent local obstacle avoidance 

performance of the traditional DWA and the ImpDWA was compared. The results show that 

ImpDWA solves the problem of trajectory oscillation of the traditional DWA algorithm when 

dynamic obstacles approach by dynamically adjusting the constraint coefficients of the speed 

window and angle window, and optimizing the proportion of obstacle avoidance safety weight in the 

evaluation function. In the 30×30 dynamic obstacle map, the traditional DWA responds slowly to 

dynamic obstacles and usually travels along the edge of obstacles, which increases the risk of 

collision with dynamic obstacles (Figures 7(a) and 7(c)). In contrast, ImpDWA predicts the 

movement trend of dynamic obstacles in advance and adjusts the steering angle to achieve obstacle 

avoidance without retracement (Figure 7). In the 20×20 dynamic obstacle map environment (Figure 

8), the traditional DWA results in obstacle avoidance paths close to the edge of obstacles (safety 

distance < 0.3m) due to the fixed angle window, while ImpDWA dynamically expands the safety 

margin through obstacle distance feedback (safety distance ≥ 0.5m), significantly reducing the 

collision risk. 

 

Figure 7. Obstacle avoidance trajectory comparison of fusion algorithms in 30×30 dynamic map. 

At the same time, the obstacle avoidance success rate of ImpDWA in each fused algorithm is 

improved compared with the traditional DWA. In the 30×30 and 20×20 maps, Dijkstra-ImpDWA 
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after local optimization is 3.3% and 2.5% higher than Dijkstra-DWA respectively; A*-ImpDWA is 

2.5% higher than A*-DWA in both maps; LPA*-ImpDWA is 4.1% and 4.2% higher than LPA*-DWA 

respectively; IDA*-ImpDWA is 1.6% and 1.7% higher than IDA*-DWA respectively; 

Theta*-ImpDWA is 2.5% higher than Theta*-DWA in both maps; the proposed ImpA*-ImpDWA is 

2.5% higher than ImpA*-DWA in both maps. 

 

Figure 8. Obstacle avoidance trajectory comparison of fusion algorithms in 20×20 dynamic map. 

4.2.2. Comprehensive performance comparison of fused algorithms 

After fusing the DWA local algorithm (before and after improvement) with the six global 

algorithms respectively, the comprehensive performance in the dynamic environment shows 

significant differences as follows: 

(1) Obstacle avoidance success rate 

The quantitative data in Tables 3 and 4 indicate that the ImpA*-ImpDWA fusion scheme 

achieves the optimal obstacle avoidance success rate. Among all fusion schemes, the 

ImpA*-ImpDWA fusion scheme based on the mathematically optimized improved algorithm 

proposed in this paper achieves 96.7% and 97.5% obstacle avoidance success rates in the two map 

sizes, respectively. 

In the fusion schemes based on the traditional DWA, even when combined with 

high-performance global algorithms such as ImpA*, Theta*, and IDA*, the obstacle avoidance 

success rate is still not higher than 95%. For example, in the 30×30 map, ImpA*-DWA is 94.2%, 

Theta*-DWA is 93.3%, and IDA*-DWA is 91.7%; in the 20×20 map, ImpA*-DWA is 95%, 

Theta*-DWA is 94.2%, and IDA*-DWA is 92.5%. The main reason is that the traditional DWA has 

insufficient ability to predict dynamic obstacles, making it prone to collisions with sudden unknown 

obstacles at the inflection points of the global path. 
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Table 3. Comparison of simulation results of fusion algorithms in 30×30 dynamic map. 

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate 

30×30 

Dijkstra-DWA 45.86 124.75 86.7% 

Dijkstra-ImpDWA 44.92 119.20 90.0% 

A*-DWA 44.73 93.84 91.7% 

A*-ImpDWA 43.95 90.96 94.2% 

LPA*-DWA 44.85 94.18 89.2% 

LPA*-ImpDWA 44.12 91.54 93.3% 

IDA*-DWA 44.67 93.66 91.7% 

IDA*-ImpDWA 43.88 90.78 93.3% 

Theta*-DWA 44.21 92.10 93.3% 

Theta*-ImpDWA 43.56 89.96 95.8% 

ImpA*-DWA 43.78 89.46 94.2% 

ImpA*-ImpDWA (Ours) 43.27 87.12 96.7% 

Among the fusion schemes based on ImpDWA, except for the proposed ImpA*-ImpDWA, the 

obstacle avoidance success rates of other fusion algorithms such as Theta*-ImpDWA, 

IDA*-ImpDWA, LPA*-ImpDWA, and A*-ImpDWA are 95.8%, 93.3%, 93.3%, and 94.2% 

respectively (in the 30×30 map). However, due to the low global path search efficiency of 

Dijkstra-ImpDWA, the response of the local algorithm is delayed, resulting in an obstacle avoidance 

success rate of only 90%. This highlights the importance of performance matching between global 

and local algorithms: an inefficient global algorithm will limit the response speed of local obstacle 

avoidance, and even when combined with an improved local algorithm, it is difficult to achieve the 

optimal effect. 

Table 4. Comparison of simulation results of fusion algorithms in 20×20 dynamic map. 

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate 

20×20 

Dijkstra-DWA 30.65 82.95 88.3% 

Dijkstra-ImpDWA 29.87 79.40 90.8% 

A*-DWA 29.72 62.74 92.5% 

A*-ImpDWA 29.35 61.26 95.0% 

LPA*-DWA 29.81 62.96 90.0% 

LPA*-ImpDWA 29.28 61.02 94.2% 

IDA*-DWA 29.68 62.60 92.5% 

IDA*-ImpDWA 29.21 60.80 94.2% 

Theta*-DWA 29.43 61.70 94.2% 

Theta*-ImpDWA 29.05 60.44 96.7% 

ImpA*-DWA 29.12 59.62 95.0% 

ImpA*-ImpDWA (Ours) 28.93 58.88 97.5% 

(2) Path length 

Data in Tables 3 and 4 show that the path length of the ImpA*-ImpDWA fusion scheme is 

43.27m in the 30×30 map and 28.93m in the 20×20 map, both being the shortest among all fusion 
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schemes. 

Compared with traditional global-local fusion schemes (e.g., Dijkstra-DWA), the path length of 

ImpA*-ImpDWA is shortened by 5.2%~5.61%. One reason is that the globally optimized ImpA* 

algorithm generates a smoother global path with low redundancy, reserving better adjustment space 

for local obstacle avoidance. The other reason is that the trajectory sampling strategy of ImpDWA 

avoids the detour problem of traditional DWA caused by obstacle avoidance; by dynamically 

adjusting velocity and angle, it maximally adheres to the globally optimal trajectory while evading 

obstacles. 

When comparing schemes with the same global algorithm but different local algorithms, taking 

ImpA*-DWA and ImpA*-ImpDWA as examples. The introduction of ImpDWA shortens the path 

length by an average of 0.19–0.51m, verifying the role of the improved local algorithm in reducing 

trajectory redundancy. When the same local algorithm is combined with different global algorithms, 

schemes using ImpA* as the global layer generally have shorter path lengths than those using other 

global algorithms, reflecting the fundamental advantage of the improved ImpA* algorithm in global 

path planning. 

(3) Running time 

Factors affecting the planning time include global path search efficiency, the number of local 

trajectory samples, and data interaction delay between the two. The running time of the 

ImpA*-ImpDWA fused algorithm is 87.12s in the 30×30 map, which is 3.16%~30.16% shorter than 

that of other schemes on average; in the 20×20 map, it is 58.88s, 2.58%~29.02% shorter than other 

schemes on average. The main reasons are as follows: 

At the global layer, ImpA* significantly reduces the number of search nodes through search 

neighborhood optimization and dynamic weight adjustment. Compared with the traditional A* 

algorithm, the number of search nodes is reduced by 39.44% and 33.60% in the 30×30 and 20×20 

grid maps, respectively, reserving more sufficient computing time for the local algorithm. 

At the local layer, ImpDWA reduces the number of invalid sampling points by optimizing the 

trajectory sampling window, and simplifies the calculation logic of the evaluation function, thereby 

reducing the time overhead of local planning. 

4.2.3. Performance ranking of fused algorithms 

Based on the comprehensive evaluation of the three indicators, the performance ranking of the 

12 fusion schemes from best to worst in the dynamic environment is as follows: ImpA*-ImpDWA 

＞ Theta*-ImpDWA ＞ A*-ImpDWA ＞ ImpA*-DWA ＞ LPA*-ImpDWA ＞ IDA*-ImpDWA 

＞  Theta*-DWA ＞  A*-DWA ＞  LPA*-DWA ＞  IDA*-DWA ＞  Dijkstra-ImpDWA ＞ 

Dijkstra-DWA. 

The key conclusions are summarized as follows: 

(1) The performance improvement of the local algorithm is crucial to the overall effect of the 

fusion scheme. Compared with the traditional DWA, ImpDWA can significantly improve the obstacle 

avoidance success rate, shorten the path length and planning time, and is a key link in optimizing the 

performance of the fused algorithm; 

(2) The efficiency and path quality of the global algorithm directly determine the upper limit of 

the fusion scheme. Even when combined with an improved local algorithm, inefficient global 

algorithms (e.g., Dijkstra) are still difficult to meet the real-time requirements of dynamic 

environments. In contrast, the collaboration between high-performance global algorithms (e.g., 

ImpA*, Theta*) and ImpDWA can maximize the fusion advantages; 
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(3) The ImpA*-ImpDWA fused algorithm proposed in this paper achieves collaborative 

optimization of the safety and smoothness of the global path and the dynamic adaptability of local 

obstacle avoidance. In dynamic environments, it demonstrates comprehensive performance with an 

obstacle avoidance success rate of 96.7%~97.5%, the shortest path length, and optimal planning time. 

This verifies the effectiveness and practicality of the fused algorithm, providing a reliable solution 

for the autonomous navigation of mobile robots in complex dynamic environments. 

4.3. Performance verification of the fused algorithm in large-scale dynamically complex scenarios 

The previous experiments have fully confirmed the effectiveness of the proposed 

ImpA*-ImpDWA fused algorithm. In small-to-medium-scale dynamically complex scenarios (20×20 

and 30×30 grids), it achieves optimal performance across three core indicators: obstacle avoidance 

success rate, path length, and running time. To further verify the stability and adaptability of the 

algorithm in larger-scale scenarios with higher obstacle density, comparative experiments were 

designed based on a 100×100 large-scale grid environment. The specific experimental setup and 

result analysis are as follows: 

4.3.1. Experimental scenario and parameter design 

Continuing the basic parameter system of previous experiments, the settings were optimized for 

the characteristics of large-scale scenarios: (1) Scenario scale: A 100×100 grid map was adopted, 

with the grid size remaining 1m×1m; (2) Obstacle configuration: 40 unknown static obstacles were 

randomly distributed in the map, and 15 dynamic obstacles were introduced with a moving speed 

range of 0.8-1.0m/s. The motion trajectories of dynamic obstacles were random and irregular, 

simulating a complex environment with multi-target dynamic interference in large-scale scenarios; (3) 

Comparative algorithms: The ImpA*-ImpDWA proposed in this paper was selected for comparison 

with 5 other fused algorithms, including Dijkstra-ImpDWA, A*-ImpDWA, LPA*-ImpDWA, 

IDA*-ImpDWA, and Theta*-ImpDWA, to ensure the consistency and comparability of the 

experiments; (4) Experimental scheme and evaluation indicators: Each fused algorithm was tested 

through 120 independent simulation experiments. The core evaluation indicators included average 

path length, average running time, and obstacle avoidance success rate. The average value of 

multiple experiments was adopted to eliminate random errors. 

4.3.2. Experimental results and quantitative analysis 

The simulation results are shown in Figure 9. Table 5 presents the comparative data of different 

fused algorithms, and the quantitative comparison fully verifies the superiority of the proposed 

algorithm in large-scale scenarios: 
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Figure 9. Obstacle avoidance trajectory comparison of fusion algorithms in 100×100 dynamic map. 

Table 5. Comparison of simulation results in 100×100 dynamic map. 

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate 

100×100 

Dijkstra-ImpDWA 172.86 417.37 79.3% 

A*-ImpDWA 159.74 353.59 89.6% 

LPA*-ImpDWA 156.21 356.24 91.8% 

IDA*-ImpDWA 153.52 350.68 89.1% 

Theta*-ImpDWA 155.48 348.42 94.2% 

ImpA*-ImpDWA (Ours) 149.23 336.71 96.5% 

Based on the data in table 5, the result analysis are as follow: 

(1) Obstacle avoidance success rate: The ImpA*-ImpDWA fused scheme achieves an obstacle 

avoidance success rate of up to 96.5% in the 100×100 large-scale, multi-obstacle scenario, which is 

2.3 percentage points higher than the second-best performer Theta*-ImpDWA (94.2%) and 17.2 

percentage points higher than the worst-performing traditional fused scheme Dijkstra-ImpDWA 

(79.3%). This indicates that even in large-scale scenarios with expanded obstacle distribution and 

increased dynamic interference, the proposed fused algorithm still exhibits strong adaptability to 

complex environments and anti-interference capabilities. 

(2) Average path length: The average path length planned by ImpA*-ImpDWA is 149.23m, the 

shortest among all comparative schemes. Compared with the traditional fused scheme 

Dijkstra-ImpDWA (172.86m), it is shortened by 23.63m (a reduction ratio of 13.67%); compared 

with the high-performance comparative scheme Theta*-ImpDWA (155.48m), it is shortened by 

6.25m (a reduction ratio of 4.02%). This result confirms the effectiveness of the dynamic heuristic 

function and neighborhood search optimization of the ImpA* algorithm: in the massive grid nodes of 
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large-scale scenarios, it can quickly focus on the optimal path direction and reduce invalid searches. 

(3) Average running time: The average running time of the fused algorithm is only 336.71s, 

which is significantly shorter than other comparative schemes: 75.66s less than Dijkstra-ImpDWA 

(412.37s, a reduction ratio of 18.3%); 11.71s less than Theta*-ImpDWA (348.42s, a reduction ratio 

of 3.36%); even compared with IDA*-ImpDWA, the running time is shortened by 13.97s (a 

reduction ratio of 3.98%). The core reason is that the ImpA* algorithm greatly reduces the number of 

search nodes in large-scale scenarios through optimized pruning strategies, thereby lowering the 

computational overhead of global path planning. 

4.3.3. Cross-scenario adaptability and research extension 

We conducted a comprehensive analysis of the experimental results across different scenarios: 

small-to-medium-scale grids (20×20 and 30×30) and a large-scale grid (100×100). The proposed 

ImpA*-ImpDWA fused algorithm delivers excellent performance in small-to-medium-scale 

environments. In dynamically complex settings with larger scales and higher obstacle densities, it 

still maintains key comprehensive advantages: high obstacle avoidance success rate, shortest path 

length, and optimal running time. This performance consistency highlights the algorithm’s 

outstanding cross-scenario adaptability. This feature provides reliable experimental support and 

technical guarantees for the practical application of the algorithm in dynamic scenarios such as 

large-scale warehouse robot scheduling. 

It is worth noting that the cross-system applicability and multi-scenario adaptability of an 

algorithm are core dimensions for measuring its research value, as well as an extended direction of 

the previous experimental conclusions. To further expand the application boundaries of the algorithm, 

future research will conduct simulation verification for more typical real-world scenarios, such as 

humanoid motion decision-making systems in UAV trap environments [31], autonomous obstacle 

avoidance tasks of unmanned surface vessel swarms in marine environments [32], and path planning 

systems for high-rise building fire rescue [33]. Through multi-scenario and multi-task verification, 

the robustness and practicality of the algorithm will be continuously optimized, providing a 

generalized solution for autonomous navigation problems in different fields. 

5. Conclusions 

From the perspective of mathematical optimization, this paper constructs a hybrid path planning 

framework. It deeply integrates the ImpA* algorithm and ImpDWA. In the global planning phase, 

three key optimizations are adopted. First, environmental complexity is quantified through modeling. 

Second, heuristic functions use dynamic weight adjustment. Third, path smoothing strategies are 

applied. These measures enhance both the rationality of the global path and its search efficiency. In 

the local obstacle avoidance phase, the DWA evaluation system is upgraded. A target-oriented cost 

term is added, and weight coefficients are dynamically adjusted. This solves critical problems of 

traditional methods. For instance, it avoids local minima and improves target guidance. The dual 

algorithms are collaboratively designed. They form a closed-loop mechanism of global optimization- 

local correction. Simulation experiments provide clear verification. The proposed strategy 

outperforms existing mainstream schemes significantly. Advantages are observed in path quality, 

planning efficiency, and dynamic obstacle avoidance reliability. It offers theoretical value and 

technical support for autonomous robot navigation in complex environments. 
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This research still has limitations. Algorithm performance is only verified via the MATLAB 

simulation platform. Practical applications involve various uncertain factors. These include sensor 

measurement noise, positioning errors, uneven ground, hardware response delays, and changes in 

environmental illumination. None of these factors are fully considered in the current study. Future 

research will focus on two key aspects. First, it will complete the transplantation and deployment of 

the fusion algorithm on a physical robot platform. Hardware adaptation and debugging will also be 

carried out. This opens up the transformation path from simulation verification to practical 

application. Second, a real and complex experimental environment incorporating multi-source 

interference is constructed to systematically evaluate the algorithm’s adaptability in other 

environmental scenarios. 

Author contributions 

Le Gao: Conceptualization, validation, formal analysis, writing-original draft preparation, 

supervision, project administration; Yuying Zhang: Software, visualization; Pinjie Liu: Methodology, 

investigation, data curation, writing-review and editing, funding acquisition; Xiaoying Ou: Software; 

Jinglong Cheng: Software; Ying Zhu: Software, resources. All authors have read and agreed to the 

published version of the manuscript. 

Use of Generative-AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

This research was funded by “Department of Science and Technology of Guangdong Province, 

Pdjh2024a515”, “Department of Education of Guangdong Province, 2024ZDZX1030” and 

“Guangdong Education Research Project, 24GYB119”. Thanks for the support for the Guangzhou 

Huali College. 

Conflict of interest 

All authors declare no conflicts of interest in this paper. 

References 

1. M. A. Ferreira, L. C. Moreira, A. M. Lopes, Autonomous navigation system for a differential 

drive mobile robot, J. Test. Eval., 52 (2024), 841–852. https://doi.org/10.1520/JTE20230191 

2. A. Amin, X. C. Wang, Y. N. Zhang, T. H. Li, Y. Y. Chen, J. M. Zhang, A comprehensive review 

of applications of robotics and artificial intelligence in agricultural operations, Stud. Inform. 

Control, 32 (2023), 59–70. 

3. T. Chen, S. Q. Li, Z. P. Zeng, Z. H. Liang, Y. X. Chen, W. S. Guo, An empirical investigation of 

users’ switching intention to public service robots: From the perspective of PPM framework, Gov. 

Inform. Q., 41 (2024), 101933. https://doi.org/10.1016/j.giq.2024.101933 

https://doi.org/10.1520/JTE20230191
https://doi.org/10.1016/j.giq.2024.101933


30902 

AIMS Mathematics  Volume 10, Issue 12, 30879–30904. 

4. H. W. Qin, S. L. Shao, T. Wang, X. T. Yu, Y. Jiang, Z. H. Cao, Review of autonomous path 

planning algorithms for mobile robots, Drones, 7 (2023), 211. 

https://doi.org/10.3390/drones7030211 

5. O. Misir, Dynamic local path planning method based on neutrosophic set theory for a mobile 

robot, J. Braz. Soc. Mech. Sci. Eng., 45 (2023), 127. https://doi.org/10.1007/s40430-023-04048-6 

6. Q. Zhang, J. Zhao, L. Pan, X. Wu, Y. Y. Hou, X. Q. Qi, Optimal path planning for mobile robots 

in complex environments based on the gray wolf algorithm and self-powered sensors, IEEE Sens. 

J., 23 (2023), 20756–20765. https://doi.org/10.1109/JSEN.2023.3252635 

7. L. Gao, J. Z. Zhang, J. X. Yu, X. Zhang, Z. Q. Zeng, BPA: A decentralized payment system that 

balances privacy and auditability, AIMS Mathematics, 9 (2024), 6183–6206. 

https://doi.org/10.3934/math.2024302 

8. X. M. Liu, X. H. Chang, L. W. Hou, Attack-dependent adaptive event-triggered security fuzzy 

control for nonlinear networked cascade control systems under deception attacks, Mathematics, 

12 (2024), 3385. https://doi.org/10.3390/math12213385 

9. X. He, C. Guo, Research on multi-strategy fusion of the chimpanzee optimization algorithm and 

its application in path planning, Appl. Sci., 15 (2025), 608. https://doi.org/10.3390/app15020608 

10. B. Guo, Z. Kuang, J. H. Guan, M. T. Hu, L. X. Rao, X. Q. Sun, An improved A-star algorithm for 

complete coverage path planning of unmanned ships, Int. J. Pattern Recogn., 36 (2022), 2259009. 

https://doi.org/10.1142/S0218001422590091 

11. J. Jason, M. Siever, A. Valentino, K. M. Suryaningrum, R. Yunanda, Dijkstra’s algorithm to find 

the nearest vaccine location, Procedia Computer Science, 216 (2023), 5–12. 

https://doi.org/10.1016/j.procs.2022.12.105 

12. Y. Zhang, L. L. Li, H. C. Lin, Z. W. Ma, J. Zhao, Development of path planning approach using 

improved a-star algorithm in AGV system, J. Internet Technol., 20 (2019), 915–924. 

https://doi.org/10.3966/160792642019052003023 

13. C. G. Liu, Q. Z. Mao, X. M. Chu, S. Xie, An improved a-star algorithm considering water current, 

traffic separation and berthing for vessel path planning, Appl. Sci., 9 (2019), 1057. 

https://doi.org/10.3390/app9061057 

14. Y. Dai, W. J. Lv, S. K. Li, M. Y. Zong, Improving the Lifelong Planning A-star algorithm to 

satisfy path planning for space truss cellular robots with dynamic obstacles, Robotica, 43 (2025), 

1243–1257. https://doi.org/10.1017/S0263574725000256 

15. W. Z. Li, J. J. Liu, S. L. Yao, An improved Dijkstra’s algorithm for shortest path planning on 2D 

grid maps, 2019 IEEE 9th International Conference on Electronics Information and Emergency 

Communication (ICEIEC), Beijing, China, 2019, 438–441. 

https://doi.org/10.1109/iceiec.2019.8784487 

16. C. G. Liu, K. Zhang, Z. B. He, L. H. Lai, X. M. Chu, Clustering Theta* based segmented path 

planning method for vessels in inland waterways, Ocean Eng., 309 (2024), 118249. 

https://doi.org/10.1016/j.oceaneng.2024.118249 

17. M. Kobayashi, N. Motoi, Local path planning: dynamic window approach with virtual 

manipulators considering dynamic obstacles, IEEE Access, 10 (2022), 17018–17029. 

https://doi.org/10.1109/ACCESS.2022.3150036 

18. R. Zhou, K. Zhou, L. N. Wang, B. R. Wang, An improved dynamic window path planning 

algorithm using multi-algorithm fusion, Int. J. Control Autom. Syst., 22 (2024), 1005–1020. 

https://doi.org/10.1007/s12555-022-0495-8 

 

https://doi.org/10.3390/drones7030211
https://doi.org/10.1007/s40430-023-04048-6
https://doi.org/10.1109/JSEN.2023.3252635
https://doi.org/10.3934/math.2024302
https://doi.org/10.3390/math12213385
https://doi.org/10.3390/app15020608
https://doi.org/10.1142/S0218001422590091
https://doi.org/10.1016/j.procs.2022.12.105
https://doi.org/10.3966/160792642019052003023
https://doi.org/10.3390/app9061057
https://doi.org/10.1017/S0263574725000256
https://doi.org/10.1109/iceiec.2019.8784487
https://doi.org/10.1016/j.oceaneng.2024.118249
https://doi.org/10.1109/ACCESS.2022.3150036
https://doi.org/10.1007/s12555-022-0495-8


30903 

AIMS Mathematics  Volume 10, Issue 12, 30879–30904. 

19. M. Yao, H. G. Deng, X. Y. Feng, P. G. Li, Y. F. Li, H. Y. Liu, Improved dynamic window 

approach based on energy consumption management and fuzzy logic control for local path 

planning of mobile robots, Comput. Ind. Eng., 187 (2024), 109767. 

https://doi.org/10.1016/j.cie.2023.109767 

20. J. Moon, B. Y. Lee, M. J. Tahk, A hybrid dynamic window approach for collision avoidance of 

VTOL UAVs, Int. J. Aeronaut. Space Sci., 19 (2018), 889–903. 

https://doi.org/10.1007/s42405-018-0061-z 

21. M. E. Miyombo, Y. K. Liu, C. M. Mulenga, A. Siamulonga, M. C. Kabanda, P. Shaba, et al., 

Optimal path planning in a real-world radioactive environment: A comparative study of A-star 

and Dijkstra algorithms, Nucl. Eng. Des., 420 (2024), 113039. 

https://doi.org/10.1016/j.nucengdes.2024.113039 

22. L. Morin, P. Gilormini, K. Derrien, Generalized euclidean distances for elasticity tensors, J. Elast., 

138 (2020), 221–232. https://doi.org/10.1007/s10659-019-09741-z 

23. X. Liu, W. T. Chen, L. Peng, D. Luo, L. K. Jia, G. Xu, et al., Secure computation protocol of 

Chebyshev distance under the malicious model, Sci. Rep., 14 (2024), 17115. 

https://doi.org/10.1038/s41598-024-67907-9 

24. C. D. Wang, J. L. Yang, B. Q. Zhang, A fault diagnosis method using improved prototypical 

network and weighting similarity-Manhattan distance with insufficient noisy data, Measurement, 

226 (2024), 114171. https://doi.org/10.1016/j.measurement.2024.114171 

25. Z. B. Zeng, H. Dong, Y. L. Xu, W. Zhang, H. C. Yu, X. P. Li, Teaching-learning-based 

optimization algorithm with dynamic neighborhood and crossover search mechanism for 

numerical optimization, Appl. Soft Comput., 154 (2024), 111332. 

https://doi.org/10.1016/j.asoc.2024.111332 

26. J. Ahmad, M. Wahab, Enhancing the safety and smoothness of path planning through an 

integration of Dijkstra's algorithm and piecewise cubic Bezier optimization, Expert Syst. Appl., 

289 (2025), 128315. https://doi.org/10.1016/j.eswa.2025.128315 

27. Y. D. Ji, Q. Q. Liu, C. Zhou, Z. J. Han, W. Wu, Hybrid swarm intelligence and human-inspired 

optimization for urban drone path planning, Biomimetics, 10 (2025), 180. 

https://doi.org/10.3390/biomimetics10030180 

28. H. F. Bao, J. Fang, C. H. Wang, Z. B. Li, J. S. Zhang, C. S. Wang, Research on static/dynamic 

global path planning based on improved A* algorithm for mobile robots, J. Robot., 2023 (2023), 

5098156. https://doi.org/10.1155/2023/5098156 

29. B. P. Wang, D. Y. Ju, F. Z. Xu, C. Feng, G .L. Xun, CAF-BRT*: A 2D path planning algorithm 

based on circular arc fillet method, IEEE Access, 10 (2022), 127168–127181. 

https://doi.org/10.1109/ACCESS.2022.3226465 

30. M. Y. Wu, E. L. M. Su, C. F. Yeong, B. Dong, W. Holderbaum, C. G. Yang, A hybrid path 

planning algorithm combining A* and improved ant colony optimization with dynamic window 

approach for enhancing energy efficiency in warehouse environments, PeerJ Computer Science, 

10 (2024), e2629. https://doi.org/10.7717/peerj-cs.2629 

31. J. T. Chen, Q. Zhou, H. R. Ren, H. Y. Li, Partition and planning: a human-like motion decision for 

UAV in trap environment, Sci. China Technol. Sci., 67 (2024), 1226–1237. 

https://doi.org/10.1007/s11431-023-2605-7 

32. Y. H. Li, J. W. Ye, L. Gao, M. Cai, CoDAC: autonomous obstacle avoidance optimization for 

unmanned surface vehicle clusters via multi-modal dynamic perception and collaborative 

community detection, IEEE Access, 13 (2025), 134552–134569. 

https://doi.org/10.1109/ACCESS.2025.3593236 

https://doi.org/10.1016/j.cie.2023.109767
https://doi.org/10.1007/s42405-018-0061-z
https://doi.org/10.1016/j.nucengdes.2024.113039
https://doi.org/10.1007/s10659-019-09741-z
https://doi.org/10.1038/s41598-024-67907-9
https://doi.org/10.1016/j.measurement.2024.114171
https://doi.org/10.1016/j.asoc.2024.111332
https://doi.org/10.1016/j.eswa.2025.128315
https://doi.org/10.3390/biomimetics10030180
https://doi.org/10.1155/2023/5098156
https://doi.org/10.1109/ACCESS.2022.3226465
https://doi.org/10.7717/peerj-cs.2629
https://doi.org/10.1007/s11431-023-2605-7
https://doi.org/10.1109/ACCESS.2025.3593236


30904 

AIMS Mathematics  Volume 10, Issue 12, 30879–30904. 

33. J. T. Chen, H. R. Ren, Q. Zhou, H. Y. Li, Fast unfolding-based indoor space partitioning and rapid 

complementary search planning for high-rise fire rescue, IEEE T. Autom. Sci. Eng., 22 (2025), 

18750–18760. https://doi.org/10.1109/TASE.2025.3590419 

© 2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1109/TASE.2025.3590419

