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Abstract: Mobile robots encounter issues like low global search efficiency and insufficient static path
safety in path planning within complex dynamic environments. This paper proposes a fusion strategy
integrating a mathematically optimized improved A* algorithm (ImpA*) and an enhanced Dynamic
Window Approach (ImpDWA). At the global planning layer, path quality and efficiency are improved
through optimizations such as obstacle ratio quantification and dynamic weighting of heuristic
functions. At the local planning layer, the DWA evaluation system is optimized by adding a target
point cost sub-function and dynamically adjusting weights. At the fusion layer, dual-algorithm
collaboration is achieved via global path segmentation and key sub-target transmission. MATLAB
simulations show that the ImpA* algorithm significantly optimizes path length and runtime. The
fusion algorithm (ImpA*-ImpDWA) achieves an obstacle avoidance success rate exceeding 96.5% in
dynamic environments, with comprehensive performance superior to other mainstream schemes. It
realizes the coordinated balance of core indicators including safety and smoothness, providing reliable
support for autonomous robot navigation.
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1. Introduction

With the in-depth advancement of intelligent manufacturing and industrial automation,
intelligent mobile robots have demonstrated enormous application potential in industrial logistics [1],
smart agriculture [2], and daily services [3] due to their capabilities in autonomous decision-making,
collaborative control, and environmental adaptability. Path planning, as a key technology of the
autonomous navigation system, directly determines the movement efficiency of robots in complex
environments [4—6]. The core goal of this technology is to generate paths that meet optimality and
safety requirements in complex environments through computer algorithms, and mathematical
optimization is the core tool to achieve these two goals. The core objective of this technology is to
construct objective functions and constraint conditions in complex environments through computer
algorithms, thereby generating paths that satisfy optimality and security [7]. Mathematical
optimization serves as the core tool for achieving these two goals. Mathematical optimization can
reasonably schedule resources and reduce the volume of communication data [8]. It transforms the
qualitative requirements of path optimization into quantifiable and solvable mathematical models,
providing rigorous theoretical support for algorithm improvement.

According to the difference in environmental information, path planning can be divided into
global path planning and local path planning. Improvements in both types of algorithms rely on
mathematical optimization to achieve performance breakthroughs. Global path planning is based on
the premise of fully known environmental information and aims to solve the theoretically optimal
path [9]. Typical algorithms include the A* algorithm [10] and Dijkstra’s algorithm [11]. Among
them, the A* algorithm is widely used due to its simple principle and efficient solution, but its
performance is highly dependent on heuristic function design and search strategies. The heuristic
function weight of the traditional A* algorithm is fixed, which cannot dynamically adjust the balance
between exploration and exploitation according to environmental complexity. This leads to problems
such as many redundant search nodes and poor path smoothness in obstacle-dense areas [12,13]. To
address this issue, numerous scholars have also adopted other algorithms for global path planning
research. Dai et al. [14] proposed an LPA* algorithm and applied it to path planning. Through
comparative experiments with the original LPA algorithm and A* algorithm, the results show that the
LPA* can effectively shorten the travel distance of mobile robots and reduce time consumption. Li et
al. [15] designed an improved Dijkstra's algorithm (IDA*). Compared with the traditional Dijkstra’s
algorithm, IDA* can significantly improve computational efficiency and save operation time. To
target the computational load challenge caused by large-scale grid maps, Liu et al. [16] adopted an
improved Theta* algorithm to generate optimized paths for each sub-region. Subsequently, through a
path connection mechanism, the local paths of adjacent grids are integrated to ultimately form a
complete global travel path. Local planning targets scenarios with unknown or dynamically changing
environmental information, and its core goal is to generate collision-free paths in real time [17].
DWA [18] is a mainstream algorithm in this field. The traditional DWA algorithm samples the
velocity space and selects the optimal velocity through an evaluation function. However, the weight
coefficients of the evaluation function are fixed and cannot be adjusted according to dynamic
information such as obstacle distance and target position, making it prone to falling into local
minima traps [19,20]. To address this problem, this paper improves the DWA with mathematical
optimization as the core method.

Despite the certain progress made in improving single algorithms through mathematical
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optimization in existing research, mobile robots still face problems in complex dynamic
environments, such as insufficient coordination between global paths and local obstacle avoidance,
and difficulty in simultaneously meeting path optimization efficiency, smoothness, and safety.
Therefore, this paper proposes a fused path planning strategy of ImpA*-ImpDWA based on
mathematical optimization. The specific improvements are reflected in three aspects: First, at the
global planning layer, the search efficiency of the A* algorithm is improved by introducing a
quantitative model of environmental complexity (global obstacle occupancy ratio) and dynamic
weight optimization of the heuristic function. Meanwhile, path smoothness optimization is achieved
through geometric elimination rules of redundant nodes and curve fitting. Second, at the local
planning layer, the DWA evaluation system is reconstructed by constructing a target point cost
sub-function and dynamic weight optimization of the speed sub-function, alleviating the problems of
local minima and target loss. Third, at the algorithm fusion level, the collaboration between the
ImpA* and ImpDWA is realized through the mathematical segmentation of the global path, ensuring
intelligent obstacle avoidance in dynamic environments. Finally, the effectiveness of the fused
algorithm is verified through simulation experiments.

2. Materials and methods
2.1. Assumptions of path planning model and rationality verification

To clarify the applicable scenarios and boundary conditions of the algorithm, the path planning
model proposed in this paper is constructed based on the following 3 core assumptions, whose
rationality is verified through theoretical derivation and experimental data:

(1) Environmental gridding assumption: The robot’s movement environment is discretized into
uniform square grids with a size of Imx1m. Grid states are defined using binary discrete values,
where 1 represents an obstacle grid and O represents a passable grid. Rationality verification:
Gridding is a standardized environmental modeling method in the field of path planning. The
Imx1m grid size is highly matched with the physical size of the mobile robot (0.3m in diameter)
used in experiments. This size not only ensures the modeling accuracy of environmental details but
also avoids the exponential growth of computational complexity caused by overly fine grids. In a
30%30 grid map, the environmental modeling error under this assumption is less than 0.2m, which is
much lower than the precision threshold of robot motion control (+0.1m), fully meeting the
environmental description requirements of path planning.

(2) Simplified robot kinematics assumption: The robot is assumed to be a two-wheel differential
drive model. During movement, only linear velocity and angular velocity constraints are considered,
while non-ideal interference factors such as sliding friction and uneven ground are ignored.
Rationality verification: By adding strict velocity and acceleration/deceleration constraints to the
model, it can accurately reflect the robot’s actual movement capabilities. The specific constraint
parameters are set as follows: maximum linear velocity 1m/s, maximum angular velocity 0.6rad/s,
maximum linear acceleration 0.2m/s?, and maximum angular acceleration 0.3rad/s?. In the simulation
environment, the trajectory prediction error based on this assumption is less than 5%, which not only
simplifies the algorithm's calculation process and ensures real-time performance but also meets the
core requirement of trajectory accuracy for path planning.

(3) Uniform linear motion assumption for dynamic obstacles: The motion trajectory of dynamic
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obstacles is assumed to be uniform linear motion, and their velocity magnitude and direction remain
constant within the sampling period. Rationality verification: In typical application scenarios such as
warehousing workshops and smart factories, the motion states of dynamic obstacles such as
personnel and AGVs can be approximated as uniform linear motion. In experiments, the velocity
range of dynamic obstacles is set to 0.6—1.0m/s, which matches the walking speed of personnel in
real scenarios (0.9—1.2m/s). By comparing the predicted and actual values of obstacle motion
trajectories, the position error under this assumption is less than 0.05m within a 0.1s sampling period,
which will not affect the effectiveness of obstacle avoidance decisions.

2.2. A* Algorithm and its improvement
2.2.1.  Traditional A* algorithm

As a classic heuristic global path planning algorithm, the A* algorithm is an extension of
Dijkstra’s algorithm [21]. The algorithm uses nodes as the basic search unit and constructs a path
from the start point to the target point by iteratively expanding nodes. Its operation mechanism is as
follows: The current node is set as the parent node, and child nodes in its surrounding neighborhood
are searched. The cost value of each child node is calculated according to preset rules, and the child
node with the smallest cost value is selected as the new parent node. During the algorithm execution,
node management is realized by maintaining an Open list and a Close list: the Open list stores child
nodes to be expanded, and the Close list records nodes that have completed searching, thereby
improving search efficiency.

The core advantage of the A* algorithm lies in introducing a heuristic function to guide the
search direction and accelerating algorithm convergence by estimating the cost from the current node
to the target point. The algorithm continuously iterates the node expansion and cost value calculation
process until the target point is found or all reachable nodes are traversed. The evaluation function of
the traditional A* algorithm is shown in Formula (1):

fm) = gm) + hn). (1)

Where, n is the current node; f(n) is the total cost value from the start point to the target point; g(n)
is the actual cost value from the start point to the current node n; h(n) is the estimated cost value
from the current node n to the target point.

In practical applications, the distance measurement methods commonly used in heuristic
functions include Chebyshev distance (h;), Euclidean distance (h,), and Manhattan distance (hs)
[22-24], whose geometric relationships are shown in Figure 1. The corresponding calculation
formulas are shown in (2)—(4)

hy(n) = max{|x2 — x1|, |y2 — y1[}, (2)
hy(n) = /(x2 —x1)% + (y2 — y1)?, 3)
hs(n) = [x2 —x1| + [y2 — y1]. 4)

Where (x/, yI) are the coordinates of the start point, and (x2, y2) are the coordinates of the target
node. The Euclidean distance formula is selected as the heuristic function in this paper.
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Figure 1. Schematic diagram of the 3 distances.

2.2.2. Heuristic function optimization

The coefficient of the heuristic function h(n) in the traditional A* algorithm is usually a constant,
which makes the weight unable to be dynamically adjusted according to environmental
characteristics during path planning and limits the further improvement of search efficiency. This
paper proposes a dynamic weight adjustment strategy to balance the contradiction between search
space and search efficiency by real-time optimizing the weight coefficient of the heuristic function.
The specific implementation is as follows:

(1) Distance-adaptive weight adjustment mechanism: When the current node is far from the
target point, increase the weight coefficient of h(n) to reduce the search space and improve global
search efficiency. When the current node is close to the target point, decrease the weight coefficient
of h(n) to expand the local search space, ensuring the algorithm can safely avoid obstacles.

(2) Environmental complexity-aware weight adjustment mechanism: To quantitatively describe
the complexity of the map environment, the obstacle occupancy ratio O is introduced as an
environmental characteristic parameter. Its mathematical expression is shown in Formula (5):

o= 5)

Where N is the number of obstacle grids in the map area, and m and » are the horizontal and vertical

grid numbers of the map area respectively. The weight adjustment rule is designed as follows: when

the obstacle occupancy ratio O in the environment where the robot is located is low, increase the

weight of /(n) to improve search efficiency; when O is high and obstacles are dense, decrease the
weight of /(n) to expand the search range and avoid falling into local optimality.

The improved method of dynamic weighting for the heuristic function is shown in Formulas

(6)-9):

di

o= e% -1 (l-e79), (6)

dy = J(x2 —x1)% + (y2 — y1)2, (7)
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d, = /(x2 = x0)? + (y2 — y0)2, (8)

f() = g(n) +[e® - 1 (1-e~0)] hn). 9)

Where o is the dynamic weight coefficient, (x0, y0) are the coordinates of the start point, d; is the
distance from the current node to the target point, and d, is the distance from the start point to the
target point. By introducing the dynamic weight o, the problems of low search efficiency and easy
falling into local optimality of the traditional A* algorithm are effectively solved.

2.2.3.  Optimized search neighborhood

The selection of the search neighborhood has a key impact on path planning efficiency and path
quality [25]. Common search neighborhoods in path planning include 4-neighborhood,
8-neighborhood, and 16-neighborhood, whose specific structures are shown in Figure 2(a). The
4-neighborhood search has a turning angle of 90° and a maximum step size of 1, resulting in poor
path smoothness; the 8-neighborhood search has a turning angle of 45° and a maximum step size of
V2, with significantly improved path smoothness; the 16-neighborhood search has a turning angle of
22.5° and a maximum step size of /10, achieving the optimal smoothness. However, the
computational complexity increases exponentially with the increase of neighborhood dimensions,
which is prone to a sharp increase in planning time in large-scale maps. Considering the balance
between path smoothness and computational efficiency, the 8-neighborhood is selected as the search
direction in this paper.

In the traditional 8-neighborhood A* algorithm, the movement costs of the 8 child nodes of the
parent node are set to fixed values and do not change with the search direction. This results in an
insignificant difference in the total path cost between expanding toward the target point and
expanding in other directions. This mechanism tends to store a large number of redundant nodes in
the Open list, which not only reduces search efficiency but also may cause the algorithm to fall into
local optimality. To address this, this paper introduces a turning cost term into the cost function (as
shown in Figure 2(b)). By increasing the cost of turning operations, the algorithm is guided to
preferentially expand paths in straight or near-straight directions, reducing unnecessary turns,
thereby reducing the number of redundant nodes in the Open list, improving search efficiency, and
optimizing path smoothness. The improved cost function is shown in Formula (10):

f(n) = g(n) +[e% -2(1-e 9] h(n) -KD cosé. (10)

Where K represents the weight coefficient with a value range of (0, 1), which is used to adjust the
proportion of global turning cost; € denotes the angle formed by the target node-parent node-child
node; D is the distance from the parent node to the target node—the farther the child node is from the
target point, the greater the turning cost.
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Figure 2. Optimized neighborhood search: (a) Schematic diagram of neighborhood
search; (b) Schematic diagram of distance and angle.

2.2.4. Redundant node optimization

In complex environments, the path planned by the traditional A* algorithm often contains a
large number of redundant nodes, which may also affect the motion safety of mobile robots. To
address this, this paper proposes an A* redundant node elimination strategy. By removing redundant
inflection points in the path, a smooth and safe trajectory is generated, and its principle is shown in
Figure 3(a). Let N, be the start point and Nt be the target point. The path planned by the
traditional A* algorithm is expressed as (Ny, N;, Ny, N3, Ny, N5, Ng, N5, Np), which contains
multiple redundant nodes. The specific optimization strategy is as follows:

For non-adjacent nodes N; and N; (j>i+1) in the path, if the following two conditions are
met: first, the Euclidean distance d(N;j, N;) between the two points is less than the cumulative
distance of the connections between all adjacent nodes from N; to N; in the path; second, the line
segment TNJ has no collision with obstacles in the environment, and the vertical distance d.;, to
the nearest obstacle is not less than the preset safety radius r, then all nodes between N;+1 and N;—1
can be determined as redundant nodes and removed from the path. Through this operation, the path
will only retain the start node, key inflection points, and target node. For example, in Figure 3(a), the
retained path after the first round of optimization is (Nj, N3, Ng, Ns, Np). Iterative repetition
finally generates the optimized path (N,, N3, Ny). If the line segment collides with an obstacle, the
detection of the current non-adjacent nodes is skipped, and the judgment on the next group of nodes
is continued.
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Figure 3. Schematic diagrams of redundant node optimization and path smoothing
optimization: (a) Redundant node optimization; (b) Path node optimization after circular
arc processing.

2.2.5. Path smoothing optimization

After redundant node optimization, the path (N,, N3, Np) has achieved significant
improvements in length, number of inflection points, and safety, but the problem of insufficient path
smoothness still exists. In the field of path smoothing, there are various mature optimization methods,
such as the B-spline curve method [26], cubic spline curve method [27], B-spline curve method [28],
and circular arc transition method [29]. This paper adopts the circular arc transition smoothing
method for further path optimization, and its principle is shown in Figure 3(b).

Given the start point Ny(a;, b;), inflection point Nj(a,, b,), and target point Ny(a3, bs),
where OA and OB are the safety radius R, the derivation of relevant mathematical relationships is
shown in Formulas (11)—(13):

1b2-b1a2

= kixy - (11)
3b2-b3a2

Y2 = kaxy - %a (12)

o = arctan k. (13)

Where k; is the slope of the straight line NyN3, k, is the slope of the straight line N3N, and a is
the angle between NyN; and the horizontal plane. According to geometric relationships, the
relationship between the chord length and radius of the circular arc segment is shown in Formula
(14):

lans =R tant. (14)

Where B is the angle between line segment NyN; and line segment N3Np; 1zn3; is the distance
from the inflection point N3 to the tangent point A of the circular arc. The distance layo from the
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start point N, to the tangent point A is shown in Formula (15):

Livo = /(a2 —al)? + (b2 — b1)? - Lyps. (15)

When 1,c > and B > 90°, the smoothing optimization is performed; otherwise, it is skipped. By
combining Formulas (11)—(13), the coordinates of the tangent point A(A,, A,) are obtained as shown

in Formula (16):

A, = al + cosalsng
{ b2 — bl alb2 — bla2 (16)
A, = —_—

a2—al X a2 —al
Similarly, the coordinates of the other tangent point B(B,, B),) can be obtained, and the

coordinates of the circular arc center O(Ox, Oy) are shown in Formula (17):

{Ox =A, +sinaR

0, = Ay —cosaR (17

In summary, the expression of the optimized trajectory for the mobile robot is shown in Formula

(18):
b2—b1x _ a1b2—b1a2'x < Ax
a2z —-al a2 —-al
y={JR*— (x —0,)%* + 0,4, < x < By (18)
k b3 — b2 x — a2b3 — b2a3 x > Bx
a3 —az2 a3 — a2

2.3. DWA algorithm and its improvement

The DWA is a local path planning algorithm based on the robot's kinematic model, which
exhibits excellent real-time obstacle avoidance and motion control capabilities in dynamic
environments [30]. The algorithm uses the velocity space (v, ®) as the core to characterize the robot's
motion state. By combining different linear velocities v and angular velocities ®, it simulates and
predicts the robot's possible future motion trajectories. Subsequently, each trajectory is
comprehensively and meticulously scored according to a carefully preset evaluation function, and the
optimal trajectory is accurately selected therefrom, providing strong guidance for the robot to make
precise motion decisions.

2.3.1. Kinematic model

To accurately simulate the robot's motion trajectory, the DWA algorithm constructs a
mathematical model based on kinematic principles. Assuming that the robot's linear velocity at time t
is v;, angular velocity is o, yaw angle is 0, and velocity sampling period is At, its kinematic
model is shown in Formula (19):

x(t + 1) = x(t) + v, At cos 8,
y(t + 1) = y(t) + v, At sin6, (19)
6t+1 = Ht + (I)At
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2.3.2.  Velocity sampling

In practical application scenarios, the movement speed of mobile robots is subject to the dual
constraints of their own conditions and complex surrounding environmental factors, mainly reflected
in linear velocity, angular velocity, and acceleration.

(1) Self-velocity constraints: Limited by the robot’s hardware configuration, the robot’s
movement speed has clear maximum and minimum values. These two extreme values jointly
determine the size of the dynamic window, and their expression is shown in Formula (20):

Um = {(17, w)lv € [vmin; vmax]:w € [wmin: wmax]}- (20)

Where v,;, and v, represent the minimum and maximum linear velocities of the robot,
respectively, and o, and o, represent the minimum and maximum angular velocities of the
mobile robot, respectively. This constraint condition defines a clear boundary for the robot’s speed
range at the hardware level, ensuring that the robot’s motion always remains within a reasonable
range that the hardware can withstand.

(2) Motor acceleration/deceleration constraints: During the acceleration or deceleration
process of the mobile robot, its speed change is strictly limited by the acceleration/deceleration
capacity of the motor. This constraint restricts the current speed and the speed at the next sampling
moment within the range allowed by the acceleration. The acceleration constraint formula is shown
in Formula (21):

va={(v,w)|v € [v, — asAt, v, + q;At],w € [w, — a,At, w. + ay,At]}. 21)

Where v, and o, are the current linear velocity and angular velocity of the robot, respectively,
a;and ay are the maximum linear acceleration and linear deceleration of the robot, respectively, a,,
and a, are the maximum angular acceleration and angular deceleration of the robot, respectively,
and At represents the sampling time.

(3) Braking Distance Constraint: To ensure that the robot can stop in time before a collision
hazard occurs during its movement, the braking distance constraint clearly defines the relationship
between the speed range and the minimum distance to the obstacle. The braking speed constraint
formula for the robot is shown in Formula (22) as follows:

v = {w,0)|v < J2dist(v,w) ag, w < /2 dist(v, w) a,}. (22)

Where dist(v, @) is the distance from the current trajectory to the nearest obstacle. By reasonably
limiting the speed, this constraint ensures the robot has sufficient braking distance when
encountering obstacles, effectively avoiding collision accidents. In summary, the speed range of the
mobile robot can be briefly expressed as (23):

Uy = Uy N vg N Y. (23)

This formula comprehensively considers self-velocity constraints, motor acceleration/
deceleration constraints, and braking distance constraints, determining the feasible speed range of the
mobile robot in actual motion and laying a foundation for subsequent trajectory deduction and
optimal evaluation.
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2.3.3.  Optimized evaluation function

After completing velocity sampling, the DWA algorithm comprehensively scores the motion
trajectories corresponding to multiple sets of candidate velocities based on the evaluation function,
and then selects the optimal trajectory. The evaluation function adopted by the traditional DWA
algorithm is shown in Formula (24):

G(v,w) = gla-head(v,w) + B -dist(v,w) + A-vel(v,w)]. (24)

Here, dist(v, w) is the distance from the simulated trajectory to the nearest obstacle; vel(v, ®) is the
speed corresponding to the simulated trajectory; ¢ is a smoothing function; a, B, and A are the
weighting coefficients of the respective cost sub-functions. Where the calculation formula of head(v,
®) 1s shown in Formula (25):

head (v, w) =180° - 6. (25)

Here, 0 is the angle between the end of the robot’s simulated trajectory and the direction of the target
point; The higher the speed, the higher the score of vel(v, ®); the smaller the 8, the higher the score
of head(v, w); the farther the simulated trajectory is from the nearest obstacle, the higher the score of
dist(v, ®), and the safer the trajectory.

However, the coefficient of the speed cost sub-function in the traditional evaluation function is a
constant, which makes the algorithm prone to falling into local optimality in complex environments.
To address the above problem, this paper makes two improvements to the evaluation function: first,
introduce a dynamic weight coefficient for the speed cost sub-function vel(v, w), enabling it to
dynamically adjust the weight ratio according to the distance between the robot and
obstacles—increase the weight to improve operational efficiency when far from obstacles, and
decrease the weight to ensure safe obstacle avoidance when close to obstacles; second, add a target
point cost sub-function distg(v, @) to the cost G(v, w), which effectively shortens the motion path
length by quantifying the proximity between the path and the target point. The improved G(v, ®) is
shown in Formula (26):

G(v,w)= oo head(v,w) + B dist(v,w) +A-In(e + W)vel(v, w) +vydisty(v,w)]. (26)
Here, v is the weighting coefficient of dist,(v, ®). The calculation formula of distg(v, @) is shown in
Formula (27):

disty(v,w) = .

27)

\/(xg_xm)z*'(y.g_.l\’m)z.

Here, (X, y,,) are the coordinates of the end of the trajectory, (x,, yg) are the coordinates of the target

point, The smaller the distance between the end of the trajectory and the target point, the higher the
score of distg (v, ), and vice versa.

3. Algorithm fusion

This paper proposes a mathematical optimization strategy that integrates the ImpA* algorithm
with the ImpDWA. The workflow of this fused algorithm is shown in Figure 4. By integrating global
planning and dynamic optimization mechanisms, this optimized fusion strategy enables mobile
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robots to achieve efficient path planning in complex environments.
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Figure 4. The flow of the fusion algorithm.

First, the ImpA* algorithm is adopted for global path planning. During the node search process,
obstacle influence factors and dynamic weight coefficients are introduced, allowing the algorithm to
complete preliminary obstacle avoidance while guiding towards the target point, significantly
reducing computational redundancy in subsequent local planning. To address issues such as
insufficient smoothness and dense inflection points in paths generated by the traditional A*
algorithm, curve fitting technology is further used for secondary path optimization, ultimately
obtaining a smooth global path that meets the robot's kinematic constraints.

Subsequently, key nodes are extracted from the optimized global path as input for the local
sub-targets of the ImpDWA algorithm. Based on the robot’s kinematic model, multiple sets of
candidate motion trajectories are generated in the locally perceived environment. Finally, combined
with the direction guidance of the global path and the improved evaluation function, a
multi-dimensional comprehensive evaluation of candidate trajectories is performed: the global path
constraint ensures the direction consistency of local planning, and the dynamic weight adjustment
mechanism and target point cost sub-function in the evaluation function realize multi-objective
optimization of trajectory safety, motion efficiency, and path length. The optimal motion trajectory is
then selected to complete the closed-loop control of algorithm fusion.

Under this fusion framework, the ImpA* algorithm undertakes the function of global path
topology construction, providing macro navigation guidance for the robot; the ImpDWA algorithm
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focuses on the local area between adjacent key nodes, achieving real-time obstacle avoidance for
unknown static and dynamic obstacles. The two form a collaborative closed loop through the
transmission of key sub-targets, effectively improving the comprehensive path planning performance
of mobile robots in complex environments.

4. Experimental results and discussion

To verify the effectiveness of the fused algorithm proposed in this paper, simulation
experiments were conducted using MATLAB R2022b. The experimental environment was built on
the Windows 10 operating system with hardware configuration of an 17-13620H processor and 16
GB memory, ensuring the stability and reliability of experimental data. The environmental
parameters are as follows: grid size of Imx1m; evaluation function coefficients a=0.05, =0.2, y=0.2,
n=0.1; constrained maximum linear velocity of 1m/s, maximum angular velocity of 0.6rad/s,
maximum linear acceleration of 0.2m/s?, maximum angular acceleration of 0.3rad/s?; velocity range
of dynamic obstacles of 0.6—1.0m/s.

4.1. Simulation experiment analysis of the global algorithm

Under the unified grid map environment setting, global path planning simulations were
performed using Dijkstra’s algorithm, traditional A* algorithm, LPA* algorithm, IDA* algorithm,
Theta* algorithm, and ImpA* proposed in this paper. Two specifications of grid maps were set up in
the experiments: a 3030 map (obstacle coverage rate of 22.22%) and a 20x20 map (obstacle
coverage rate of 20%). Among them, black areas represent obstacles, white areas represent passable
areas, and gray areas represent the algorithm's search space. For both maps, the start point
coordinates are set as (1, y-coordinate of the end point) and the end point coordinates as (x of the
map size, 1). Specifically, the 30x30 map has a start point of (1, 31) and an end point of (31, 1); the
20%20 map has a start point of (1, 21) and an end point of (21, 1), so as to simulate static
environments with different complexities.

As shown in Figures 5 and 6, all six algorithms can plan global paths in both 30x30 and 20%20
grid maps, but there are significant differences in path quality and search efficiency. Dijkstra's
algorithm generates paths with many inflection points and low search efficiency. Although the
traditional A* algorithm and IDA* algorithm perform better than Dijkstra’s algorithm, they still have
the problem that the path is close to the vertices of obstacles (Figures 5(a), (b), (d) and 6(a), (b), (d)),
which is prone to collision risks in narrow channel environments. The LPA* algorithm has high
search redundancy in static environments (Figures 5(c) and 6(c)), and while the Theta* algorithm can
generate smoother paths, it has a longer running time (Figures 5(e) and 6(e)). In contrast, the ImpA*
algorithm proposed in this paper, through dynamic weight coefficient adjustment, search
neighborhood optimization, and path smoothing strategies, successfully avoids obstacle vertices
(Figures 5(f) and 6(f)), reserves sufficient turning space for the mobile robot, and significantly
improves obstacle avoidance safety. At the same time, sharp-turn paths are replaced by smooth
curves, effectively enhancing the continuity of motion trajectories. This indicates that the
multi-dimensional optimization strategy of the ImpA* algorithm can provide a better trajectory
planning solution for robot movement in complex environments.
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Figure 6. Simulation results of different algorithms in 20 X20 map.

Quantitative analysis results further confirm the superiority of the improved algorithm. In the
30x30 map (Table 1), the path length planned by the ImpA* algorithm in this paper is 41.81m, which
is 0.90%, 0.88%, 0.99%, 0.81%, and 0.40% shorter than that of Dijkstra’s algorithm (42.19m),
traditional A* algorithm (42.18m), LPA* algorithm (42.23m), IDA* algorithm (42.15m), and Theta*
algorithm (41.98m), respectively. The path running time of the proposed optimization method is
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83.54s, which is 26.71%, 4.72%, 5.13%, 4.44%, and 2.59% less than that of the above algorithms,
respectively. The number of search nodes is only 129, which is much lower than the search numbers
of the other five comparative algorithms.

Table 1. Comparison of simulation results of different algorithms in 3030 map (global planning).

Map size Algorithm Length/m Moving time/s Search nodes
Dijkstra [11] 42.19 113.98 700
A*[10] 42.18 87.68 213
LPA* [14] 42.23 88.06 235
30%30
IDA* [15] 42.15 87.42 198
Theta* [16] 41.98 85.76 162
ImpA* (Ours) 41.81 83.54 129

The above data indicate that the ImpA* algorithm in this paper can significantly reduce the
search space through multi-strategy collaborative optimization in static environments with different
complexities. While ensuring path safety and smoothness, it significantly improves operational
efficiency and reduces dependence on computing resources, demonstrating excellent comprehensive
performance in global path optimization.

In the 20%20 map (Table 2), the path length of the ImpA* algorithm proposed in this paper is
27.65m, which is 0.97%, 0.90%, 1.00%, 0.82%, and 0.43% shorter than that of the other five
comparative algorithms, respectively. The path running time of the improved A* algorithm is 55.12s,
which is 26.60%, 4.64%, 4.83%, 4.44%, and 2.51% less than that of the other five comparative
algorithms, respectively. The number of search nodes is 83, which is also significantly lower than
that of the other five algorithms.

Table 2. Comparison of simulation results of different algorithms in 20%20 map (global planning).

Map size Algorithm Length/m Moving time/s Search nodes
Dijkstra 27.92 75.10 380
A* 27.90 57.80 125
LPA* 27.93 57.92 132
20%20
IDA* 27.88 57.68 118
Theta* 27.77 56.54 98
ImpA* (Ours) 27.65 55.12 83

4.2. Simulation experiments analysis of local and fused algorithm

To verify the performance of the optimized ImpDWA local planning and fused algorithm
proposed in this paper, based on the aforementioned 30%30 and 20x20 grid maps, 2 unknown static
obstacles and 1 random dynamic obstacle with a speed of 0.8—1.0m/s were introduced respectively to
construct a dynamically complex environment. Static obstacles simulate sudden fixed barriers during
robot movement, and dynamic obstacles simulate moving targets in the scene, which is close to the
complexity of real operating scenarios. The traditional DWA algorithm and the ImpDWA local
obstacle avoidance algorithm proposed in this paper were selected to fuse with Dijkstra, A*, LPA*,
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IDA*, Theta*, and ImpA* respectively to form 12 fusion schemes. Each scheme was tested through
120 simulation experiments, with average path length, running time, and obstacle avoidance success
rate as evaluation indicators to comprehensively assess the dynamic environment adaptability and
practical performance of the fused algorithm. The specific experimental analysis results are as
follows.

4.2.1. Analysis of the effectiveness of local algorithm improvement

Taking the global path as the reference trajectory, the independent local obstacle avoidance
performance of the traditional DWA and the ImpDWA was compared. The results show that
ImpDWA solves the problem of trajectory oscillation of the traditional DWA algorithm when
dynamic obstacles approach by dynamically adjusting the constraint coefficients of the speed
window and angle window, and optimizing the proportion of obstacle avoidance safety weight in the
evaluation function. In the 30x30 dynamic obstacle map, the traditional DWA responds slowly to
dynamic obstacles and usually travels along the edge of obstacles, which increases the risk of
collision with dynamic obstacles (Figures 7(a) and 7(c)). In contrast, ImpDWA predicts the
movement trend of dynamic obstacles in advance and adjusts the steering angle to achieve obstacle
avoidance without retracement (Figure 7). In the 2020 dynamic obstacle map environment (Figure
8), the traditional DWA results in obstacle avoidance paths close to the edge of obstacles (safety
distance < 0.3m) due to the fixed angle window, while ImpDWA dynamically expands the safety
margin through obstacle distance feedback (safety distance > 0.5m), significantly reducing the
collision risk.

Dijkstra+DWA
Dijkstra+ImpDWA
A*+DWA

N\ A*+ImpDWA

LPA*+DWA

“\ LPA*+ImpDWA
IDA*+DWA
IDA*+ImpDWA
Theta*+DWA
Theta*+ImpDWA
ImpA *+DWA

. ImpA*+ImpDWA

Figure 7. Obstacle avoidance trajectory comparison of fusion algorithms in 30x30 dynamic map.

At the same time, the obstacle avoidance success rate of ImpDWA in each fused algorithm is
improved compared with the traditional DWA. In the 30x30 and 20%20 maps, Dijkstra-ImpDWA
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after local optimization is 3.3% and 2.5% higher than Dijkstra-DWA respectively; A*-ImpDWA is
2.5% higher than A*-DWA in both maps; LPA*-ImpDWA is 4.1% and 4.2% higher than LPA*-DWA
respectively; IDA*-ImpDWA is 1.6% and 1.7% higher than IDA*-DWA respectively;
Theta*-ImpDWA is 2.5% higher than Theta*-DWA in both maps; the proposed ImpA*-ImpDWA is
2.5% higher than ImpA*-DWA in both maps.
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Figure 8. Obstacle avoidance trajectory comparison of fusion algorithms in 20x20 dynamic map.
4.2.2.  Comprehensive performance comparison of fused algorithms

After fusing the DWA local algorithm (before and after improvement) with the six global
algorithms respectively, the comprehensive performance in the dynamic environment shows
significant differences as follows:

(1) Obstacle avoidance success rate

The quantitative data in Tables 3 and 4 indicate that the ImpA*-ImpDWA fusion scheme
achieves the optimal obstacle avoidance success rate. Among all fusion schemes, the
ImpA*-ImpDWA fusion scheme based on the mathematically optimized improved algorithm
proposed in this paper achieves 96.7% and 97.5% obstacle avoidance success rates in the two map
sizes, respectively.

In the fusion schemes based on the traditional DWA, even when combined with
high-performance global algorithms such as ImpA*, Theta*, and IDA*, the obstacle avoidance
success rate is still not higher than 95%. For example, in the 3030 map, ImpA*-DWA is 94.2%,
Theta*-DWA is 93.3%, and IDA*-DWA is 91.7%; in the 20x20 map, ImpA*-DWA is 95%,
Theta*-DWA is 94.2%, and IDA*-DWA is 92.5%. The main reason is that the traditional DWA has
insufficient ability to predict dynamic obstacles, making it prone to collisions with sudden unknown
obstacles at the inflection points of the global path.
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Table 3. Comparison of simulation results of fusion algorithms in 30 X 30 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate
Dijkstra-DWA 45.86 124.75 86.7%
Dijkstra-ImpDWA 44.92 119.20 90.0%
A*-DWA 44.73 93.84 91.7%
A*-ImpDWA 43.95 90.96 94.2%
LPA*-DWA 44.85 94.18 89.2%

30530 LPA*-ImpDWA 44.12 91.54 93.3%
IDA*-DWA 44.67 93.66 91.7%
IDA*-ImpDWA 43.88 90.78 93.3%
Theta*-DWA 4421 92.10 93.3%
Theta*-ImpDWA 43.56 89.96 95.8%
ImpA*-DWA 43.78 89.46 94.2%
ImpA*-ImpDWA (Ours) 43.27 87.12 96.7%

Among the fusion schemes based on ImpDWA, except for the proposed ImpA*-ImpDWA, the
obstacle avoidance success rates of other fusion algorithms such as Theta*-ImpDWA,
IDA*-ImpDWA, LPA*-ImpDWA, and A*-ImpDWA are 95.8%, 93.3%, 93.3%, and 94.2%
respectively (in the 30x30 map). However, due to the low global path search efficiency of
Dijkstra-ImpDWA, the response of the local algorithm is delayed, resulting in an obstacle avoidance
success rate of only 90%. This highlights the importance of performance matching between global
and local algorithms: an inefficient global algorithm will limit the response speed of local obstacle
avoidance, and even when combined with an improved local algorithm, it is difficult to achieve the
optimal effect.

Table 4. Comparison of simulation results of fusion algorithms in 20 X 20 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate
Dijkstra-DWA 30.65 82.95 88.3%
Dijkstra-ImpDWA 29.87 79.40 90.8%
A*-DWA 29.72 62.74 92.5%
A*-ImpDWA 29.35 61.26 95.0%
LPA*-DWA 29.81 62.96 90.0%
LPA*-ImpDWA 29.28 61.02 94.2%

20%20
IDA*-DWA 29.68 62.60 92.5%
IDA*-ImpDWA 29.21 60.80 94.2%
Theta*-DWA 29.43 61.70 94.2%
Theta*-ImpDWA 29.05 60.44 96.7%
ImpA*-DWA 29.12 59.62 95.0%
ImpA*-ImpDWA (Ours) 28.93 58.88 97.5%

(2) Path length

Data in Tables 3 and 4 show that the path length of the ImpA*-ImpDWA fusion scheme is
43.27m in the 30x30 map and 28.93m in the 20%20 map, both being the shortest among all fusion
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schemes.

Compared with traditional global-local fusion schemes (e.g., Dijkstra-DWA), the path length of
ImpA*-ImpDWA is shortened by 5.29%~5.61%. One reason is that the globally optimized ImpA*
algorithm generates a smoother global path with low redundancy, reserving better adjustment space
for local obstacle avoidance. The other reason is that the trajectory sampling strategy of ImpDWA
avoids the detour problem of traditional DWA caused by obstacle avoidance; by dynamically
adjusting velocity and angle, it maximally adheres to the globally optimal trajectory while evading
obstacles.

When comparing schemes with the same global algorithm but different local algorithms, taking
ImpA*-DWA and ImpA*-ImpDWA as examples. The introduction of ImpDWA shortens the path
length by an average of 0.19-0.51m, verifying the role of the improved local algorithm in reducing
trajectory redundancy. When the same local algorithm is combined with different global algorithms,
schemes using ImpA* as the global layer generally have shorter path lengths than those using other
global algorithms, reflecting the fundamental advantage of the improved ImpA* algorithm in global
path planning.

(3) Running time

Factors affecting the planning time include global path search efficiency, the number of local
trajectory samples, and data interaction delay between the two. The running time of the
ImpA*-ImpDWA fused algorithm is 87.12s in the 30%30 map, which is 3.16%~30.16% shorter than
that of other schemes on average; in the 2020 map, it is 58.88s, 2.58%~29.02% shorter than other
schemes on average. The main reasons are as follows:

At the global layer, ImpA* significantly reduces the number of search nodes through search
neighborhood optimization and dynamic weight adjustment. Compared with the traditional A*
algorithm, the number of search nodes is reduced by 39.44% and 33.60% in the 30%30 and 20%20
grid maps, respectively, reserving more sufficient computing time for the local algorithm.

At the local layer, InpDWA reduces the number of invalid sampling points by optimizing the
trajectory sampling window, and simplifies the calculation logic of the evaluation function, thereby
reducing the time overhead of local planning.

4.2.3. Performance ranking of fused algorithms

Based on the comprehensive evaluation of the three indicators, the performance ranking of the
12 fusion schemes from best to worst in the dynamic environment is as follows: ImpA*-ImpDWA
> Theta*-ImpDWA > A*-ImpDWA > ImpA*-DWA > LPA*-ImpDWA > IDA*-ImpDWA
> Theta*-DWA > A*-DWA > LPA*-DWA > IDA*-DWA > Dijkstra-ImpDWA >
Dijkstra-DWA.

The key conclusions are summarized as follows:

(1) The performance improvement of the local algorithm is crucial to the overall effect of the
fusion scheme. Compared with the traditional DWA, ImpDWA can significantly improve the obstacle
avoidance success rate, shorten the path length and planning time, and is a key link in optimizing the
performance of the fused algorithm;

(2) The efficiency and path quality of the global algorithm directly determine the upper limit of
the fusion scheme. Even when combined with an improved local algorithm, inefficient global
algorithms (e.g., Dijkstra) are still difficult to meet the real-time requirements of dynamic
environments. In contrast, the collaboration between high-performance global algorithms (e.g.,
ImpA*, Theta*) and ImpDWA can maximize the fusion advantages;
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(3) The ImpA*-ImpDWA fused algorithm proposed in this paper achieves collaborative
optimization of the safety and smoothness of the global path and the dynamic adaptability of local
obstacle avoidance. In dynamic environments, it demonstrates comprehensive performance with an
obstacle avoidance success rate of 96.7%~97.5%, the shortest path length, and optimal planning time.
This verifies the effectiveness and practicality of the fused algorithm, providing a reliable solution
for the autonomous navigation of mobile robots in complex dynamic environments.

4.3. Performance verification of the fused algorithm in large-scale dynamically complex scenarios

The previous experiments have fully confirmed the effectiveness of the proposed
ImpA*-ImpDWA fused algorithm. In small-to-medium-scale dynamically complex scenarios (20x20
and 30x%30 grids), it achieves optimal performance across three core indicators: obstacle avoidance
success rate, path length, and running time. To further verify the stability and adaptability of the
algorithm in larger-scale scenarios with higher obstacle density, comparative experiments were
designed based on a 100x100 large-scale grid environment. The specific experimental setup and
result analysis are as follows:

4.3.1. Experimental scenario and parameter design

Continuing the basic parameter system of previous experiments, the settings were optimized for
the characteristics of large-scale scenarios: (1) Scenario scale: A 100x100 grid map was adopted,
with the grid size remaining 1mx1m; (2) Obstacle configuration: 40 unknown static obstacles were
randomly distributed in the map, and 15 dynamic obstacles were introduced with a moving speed
range of 0.8-1.0m/s. The motion trajectories of dynamic obstacles were random and irregular,
simulating a complex environment with multi-target dynamic interference in large-scale scenarios; (3)
Comparative algorithms: The ImpA*-ImpDWA proposed in this paper was selected for comparison
with 5 other fused algorithms, including Dijkstra-ImpDWA, A*-ImpDWA, LPA*-ImpDWA,
IDA*-ImpDWA, and Theta*-ImpDWA, to ensure the consistency and comparability of the
experiments; (4) Experimental scheme and evaluation indicators: Each fused algorithm was tested
through 120 independent simulation experiments. The core evaluation indicators included average
path length, average running time, and obstacle avoidance success rate. The average value of
multiple experiments was adopted to eliminate random errors.

4.3.2. Experimental results and quantitative analysis
The simulation results are shown in Figure 9. Table 5 presents the comparative data of different

fused algorithms, and the quantitative comparison fully verifies the superiority of the proposed
algorithm in large-scale scenarios:
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Figure 9. Obstacle avoidance trajectory comparison of fusion algorithms in 100x100 dynamic map.

Table 5. Comparison of simulation results in 100x100 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate
Dijkstra-ImpDWA 172.86 417.37 79.3%
A*-ImpDWA 159.74 353.59 89.6%
LPA*-ImpDWA 156.21 356.24 91.8%

100x100
IDA*-ImpDWA 153.52 350.68 89.1%
Theta*-ImpDWA 155.48 348.42 94.2%
ImpA*-ImpDWA (Ours) 149.23 336.71 96.5%

Based on the data in table 5, the result analysis are as follow:

(1) Obstacle avoidance success rate: The ImpA*-ImpDWA fused scheme achieves an obstacle
avoidance success rate of up to 96.5% in the 100x100 large-scale, multi-obstacle scenario, which is
2.3 percentage points higher than the second-best performer Theta*-ImpDWA (94.2%) and 17.2
percentage points higher than the worst-performing traditional fused scheme Dijkstra-ImpDWA
(79.3%). This indicates that even in large-scale scenarios with expanded obstacle distribution and
increased dynamic interference, the proposed fused algorithm still exhibits strong adaptability to
complex environments and anti-interference capabilities.

(2) Average path length: The average path length planned by ImpA*-ImpDWA is 149.23m, the
shortest among all comparative schemes. Compared with the traditional fused scheme
Dijkstra-ImpDWA (172.86m), it is shortened by 23.63m (a reduction ratio of 13.67%); compared
with the high-performance comparative scheme Theta*-ImpDWA (155.48m), it is shortened by
6.25m (a reduction ratio of 4.02%). This result confirms the effectiveness of the dynamic heuristic
function and neighborhood search optimization of the ImpA* algorithm: in the massive grid nodes of
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large-scale scenarios, it can quickly focus on the optimal path direction and reduce invalid searches.

(3) Average running time: The average running time of the fused algorithm is only 336.71s,
which is significantly shorter than other comparative schemes: 75.66s less than Dijkstra-ImpDWA
(412.37s, a reduction ratio of 18.3%); 11.71s less than Theta*-ImpDWA (348.42s, a reduction ratio
of 3.36%); even compared with IDA*-ImpDWA, the running time is shortened by 13.97s (a
reduction ratio of 3.98%). The core reason is that the ImpA* algorithm greatly reduces the number of
search nodes in large-scale scenarios through optimized pruning strategies, thereby lowering the
computational overhead of global path planning.

4.3.3. Cross-scenario adaptability and research extension

We conducted a comprehensive analysis of the experimental results across different scenarios:
small-to-medium-scale grids (20x20 and 30%30) and a large-scale grid (100x100). The proposed
ImpA*-ImpDWA fused algorithm delivers excellent performance in small-to-medium-scale
environments. In dynamically complex settings with larger scales and higher obstacle densities, it
still maintains key comprehensive advantages: high obstacle avoidance success rate, shortest path
length, and optimal running time. This performance consistency highlights the algorithm’s
outstanding cross-scenario adaptability. This feature provides reliable experimental support and
technical guarantees for the practical application of the algorithm in dynamic scenarios such as
large-scale warehouse robot scheduling.

It is worth noting that the cross-system applicability and multi-scenario adaptability of an
algorithm are core dimensions for measuring its research value, as well as an extended direction of
the previous experimental conclusions. To further expand the application boundaries of the algorithm,
future research will conduct simulation verification for more typical real-world scenarios, such as
humanoid motion decision-making systems in UAV trap environments [31], autonomous obstacle
avoidance tasks of unmanned surface vessel swarms in marine environments [32], and path planning
systems for high-rise building fire rescue [33]. Through multi-scenario and multi-task verification,
the robustness and practicality of the algorithm will be continuously optimized, providing a
generalized solution for autonomous navigation problems in different fields.

5. Conclusions

From the perspective of mathematical optimization, this paper constructs a hybrid path planning
framework. It deeply integrates the ImpA* algorithm and ImpDWA. In the global planning phase,
three key optimizations are adopted. First, environmental complexity is quantified through modeling.
Second, heuristic functions use dynamic weight adjustment. Third, path smoothing strategies are
applied. These measures enhance both the rationality of the global path and its search efficiency. In
the local obstacle avoidance phase, the DWA evaluation system is upgraded. A target-oriented cost
term is added, and weight coefficients are dynamically adjusted. This solves critical problems of
traditional methods. For instance, it avoids local minima and improves target guidance. The dual
algorithms are collaboratively designed. They form a closed-loop mechanism of global optimization-
local correction. Simulation experiments provide clear verification. The proposed strategy
outperforms existing mainstream schemes significantly. Advantages are observed in path quality,
planning efficiency, and dynamic obstacle avoidance reliability. It offers theoretical value and
technical support for autonomous robot navigation in complex environments.
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This research still has limitations. Algorithm performance is only verified via the MATLAB
simulation platform. Practical applications involve various uncertain factors. These include sensor
measurement noise, positioning errors, uneven ground, hardware response delays, and changes in
environmental illumination. None of these factors are fully considered in the current study. Future
research will focus on two key aspects. First, it will complete the transplantation and deployment of
the fusion algorithm on a physical robot platform. Hardware adaptation and debugging will also be
carried out. This opens up the transformation path from simulation verification to practical
application. Second, a real and complex experimental environment incorporating multi-source
interference is constructed to systematically evaluate the algorithm’s adaptability in other
environmental scenarios.
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