
AIMS Mathematics, 10(12): 30879–30904.

DOI: 10.3934/math.20251355

Received: 08 November 2025

Revised: 13 December 2025

Accepted: 24 December 2025

Published: 30 December 2025

https://www.aimspress.com/journal/Math

Research article

Research on mathematical optimization-driven A* search, DWA

improvement, and intelligent robot path planning

Le Gao1,2,*, Yuying Zhang1, Pinjie Liu1,*, Xiaoying Ou1, Jinglong Cheng1 and Ying Zhu3

1 School of Computer Engineering, Guangzhou Huali College, Guangzhou 510000, China
2 Center for Earth Environment and Earth Resources, Sun Yat-sen University, Zhuhai 519000, China
3 School of Intelligent Manufacturing, Guangzhou Huali College, Jiangmen 529000, China

* Correspondence: Email: le.gao@nscc-gz.cn, liupinjie0922@163.com.

Abstract: Mobile robots encounter issues like low global search efficiency and insufficient static path

safety in path planning within complex dynamic environments. This paper proposes a fusion strategy

integrating a mathematically optimized improved A* algorithm (ImpA*) and an enhanced Dynamic

Window Approach (ImpDWA). At the global planning layer, path quality and efficiency are improved

through optimizations such as obstacle ratio quantification and dynamic weighting of heuristic

functions. At the local planning layer, the DWA evaluation system is optimized by adding a target

point cost sub-function and dynamically adjusting weights. At the fusion layer, dual-algorithm

collaboration is achieved via global path segmentation and key sub-target transmission. MATLAB

simulations show that the ImpA* algorithm significantly optimizes path length and runtime. The

fusion algorithm (ImpA*-ImpDWA) achieves an obstacle avoidance success rate exceeding 96.5% in

dynamic environments, with comprehensive performance superior to other mainstream schemes. It

realizes the coordinated balance of core indicators including safety and smoothness, providing reliable

support for autonomous robot navigation.

Keywords: mathematical optimization; improved A* algorithm; dynamic window approach; mobile

robot; path planning

Mathematics Subject Classification: 90B06, 90C90

30880

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

1. Introduction

With the in-depth advancement of intelligent manufacturing and industrial automation,

intelligent mobile robots have demonstrated enormous application potential in industrial logistics [1],

smart agriculture [2], and daily services [3] due to their capabilities in autonomous decision-making,

collaborative control, and environmental adaptability. Path planning, as a key technology of the

autonomous navigation system, directly determines the movement efficiency of robots in complex

environments [4–6]. The core goal of this technology is to generate paths that meet optimality and

safety requirements in complex environments through computer algorithms, and mathematical

optimization is the core tool to achieve these two goals. The core objective of this technology is to

construct objective functions and constraint conditions in complex environments through computer

algorithms, thereby generating paths that satisfy optimality and security [7]. Mathematical

optimization serves as the core tool for achieving these two goals. Mathematical optimization can

reasonably schedule resources and reduce the volume of communication data [8]. It transforms the

qualitative requirements of path optimization into quantifiable and solvable mathematical models,

providing rigorous theoretical support for algorithm improvement.

According to the difference in environmental information, path planning can be divided into

global path planning and local path planning. Improvements in both types of algorithms rely on

mathematical optimization to achieve performance breakthroughs. Global path planning is based on

the premise of fully known environmental information and aims to solve the theoretically optimal

path [9]. Typical algorithms include the A* algorithm [10] and Dijkstra’s algorithm [11]. Among

them, the A* algorithm is widely used due to its simple principle and efficient solution, but its

performance is highly dependent on heuristic function design and search strategies. The heuristic

function weight of the traditional A* algorithm is fixed, which cannot dynamically adjust the balance

between exploration and exploitation according to environmental complexity. This leads to problems

such as many redundant search nodes and poor path smoothness in obstacle-dense areas [12,13]. To

address this issue, numerous scholars have also adopted other algorithms for global path planning

research. Dai et al. [14] proposed an LPA* algorithm and applied it to path planning. Through

comparative experiments with the original LPA algorithm and A* algorithm, the results show that the

LPA* can effectively shorten the travel distance of mobile robots and reduce time consumption. Li et

al. [15] designed an improved Dijkstra's algorithm (IDA*). Compared with the traditional Dijkstra’s

algorithm, IDA* can significantly improve computational efficiency and save operation time. To

target the computational load challenge caused by large-scale grid maps, Liu et al. [16] adopted an

improved Theta* algorithm to generate optimized paths for each sub-region. Subsequently, through a

path connection mechanism, the local paths of adjacent grids are integrated to ultimately form a

complete global travel path. Local planning targets scenarios with unknown or dynamically changing

environmental information, and its core goal is to generate collision-free paths in real time [17].

DWA [18] is a mainstream algorithm in this field. The traditional DWA algorithm samples the

velocity space and selects the optimal velocity through an evaluation function. However, the weight

coefficients of the evaluation function are fixed and cannot be adjusted according to dynamic

information such as obstacle distance and target position, making it prone to falling into local

minima traps [19,20]. To address this problem, this paper improves the DWA with mathematical

optimization as the core method.

Despite the certain progress made in improving single algorithms through mathematical

30881

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

optimization in existing research, mobile robots still face problems in complex dynamic

environments, such as insufficient coordination between global paths and local obstacle avoidance,

and difficulty in simultaneously meeting path optimization efficiency, smoothness, and safety.

Therefore, this paper proposes a fused path planning strategy of ImpA*-ImpDWA based on

mathematical optimization. The specific improvements are reflected in three aspects: First, at the

global planning layer, the search efficiency of the A* algorithm is improved by introducing a

quantitative model of environmental complexity (global obstacle occupancy ratio) and dynamic

weight optimization of the heuristic function. Meanwhile, path smoothness optimization is achieved

through geometric elimination rules of redundant nodes and curve fitting. Second, at the local

planning layer, the DWA evaluation system is reconstructed by constructing a target point cost

sub-function and dynamic weight optimization of the speed sub-function, alleviating the problems of

local minima and target loss. Third, at the algorithm fusion level, the collaboration between the

ImpA* and ImpDWA is realized through the mathematical segmentation of the global path, ensuring

intelligent obstacle avoidance in dynamic environments. Finally, the effectiveness of the fused

algorithm is verified through simulation experiments.

2. Materials and methods

2.1. Assumptions of path planning model and rationality verification

To clarify the applicable scenarios and boundary conditions of the algorithm, the path planning

model proposed in this paper is constructed based on the following 3 core assumptions, whose

rationality is verified through theoretical derivation and experimental data:

(1) Environmental gridding assumption: The robot’s movement environment is discretized into

uniform square grids with a size of 1m×1m. Grid states are defined using binary discrete values,

where 1 represents an obstacle grid and 0 represents a passable grid. Rationality verification:

Gridding is a standardized environmental modeling method in the field of path planning. The

1m×1m grid size is highly matched with the physical size of the mobile robot (0.3m in diameter)

used in experiments. This size not only ensures the modeling accuracy of environmental details but

also avoids the exponential growth of computational complexity caused by overly fine grids. In a

30×30 grid map, the environmental modeling error under this assumption is less than 0.2m, which is

much lower than the precision threshold of robot motion control (±0.1m), fully meeting the

environmental description requirements of path planning.

(2) Simplified robot kinematics assumption: The robot is assumed to be a two-wheel differential

drive model. During movement, only linear velocity and angular velocity constraints are considered,

while non-ideal interference factors such as sliding friction and uneven ground are ignored.

Rationality verification: By adding strict velocity and acceleration/deceleration constraints to the

model, it can accurately reflect the robot’s actual movement capabilities. The specific constraint

parameters are set as follows: maximum linear velocity 1m/s, maximum angular velocity 0.6rad/s,

maximum linear acceleration 0.2m/s², and maximum angular acceleration 0.3rad/s². In the simulation

environment, the trajectory prediction error based on this assumption is less than 5%, which not only

simplifies the algorithm's calculation process and ensures real-time performance but also meets the

core requirement of trajectory accuracy for path planning.

(3) Uniform linear motion assumption for dynamic obstacles: The motion trajectory of dynamic

30882

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

obstacles is assumed to be uniform linear motion, and their velocity magnitude and direction remain

constant within the sampling period. Rationality verification: In typical application scenarios such as

warehousing workshops and smart factories, the motion states of dynamic obstacles such as

personnel and AGVs can be approximated as uniform linear motion. In experiments, the velocity

range of dynamic obstacles is set to 0.6–1.0m/s, which matches the walking speed of personnel in

real scenarios (0.9–1.2m/s). By comparing the predicted and actual values of obstacle motion

trajectories, the position error under this assumption is less than 0.05m within a 0.1s sampling period,

which will not affect the effectiveness of obstacle avoidance decisions.

2.2. A* Algorithm and its improvement

2.2.1. Traditional A* algorithm

As a classic heuristic global path planning algorithm, the A* algorithm is an extension of

Dijkstra’s algorithm [21]. The algorithm uses nodes as the basic search unit and constructs a path

from the start point to the target point by iteratively expanding nodes. Its operation mechanism is as

follows: The current node is set as the parent node, and child nodes in its surrounding neighborhood

are searched. The cost value of each child node is calculated according to preset rules, and the child

node with the smallest cost value is selected as the new parent node. During the algorithm execution,

node management is realized by maintaining an Open list and a Close list: the Open list stores child

nodes to be expanded, and the Close list records nodes that have completed searching, thereby

improving search efficiency.

The core advantage of the A* algorithm lies in introducing a heuristic function to guide the

search direction and accelerating algorithm convergence by estimating the cost from the current node

to the target point. The algorithm continuously iterates the node expansion and cost value calculation

process until the target point is found or all reachable nodes are traversed. The evaluation function of

the traditional A* algorithm is shown in Formula (1):

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛). (1)

Where, n is the current node; f(n) is the total cost value from the start point to the target point; g(n)

is the actual cost value from the start point to the current node n; h(n) is the estimated cost value

from the current node n to the target point.

In practical applications, the distance measurement methods commonly used in heuristic

functions include Chebyshev distance (h1), Euclidean distance (h2), and Manhattan distance (h3)

[22–24], whose geometric relationships are shown in Figure 1. The corresponding calculation

formulas are shown in (2)–(4)

ℎ1(𝑛) = 𝑚𝑎𝑥{|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|}, (2)

ℎ2(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2, (3)

ℎ3(𝑛) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1|. (4)

Where (x1, y1) are the coordinates of the start point, and (x2, y2) are the coordinates of the target

node. The Euclidean distance formula is selected as the heuristic function in this paper.

30883

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Figure 1. Schematic diagram of the 3 distances.

2.2.2. Heuristic function optimization

The coefficient of the heuristic function h(n) in the traditional A* algorithm is usually a constant,

which makes the weight unable to be dynamically adjusted according to environmental

characteristics during path planning and limits the further improvement of search efficiency. This

paper proposes a dynamic weight adjustment strategy to balance the contradiction between search

space and search efficiency by real-time optimizing the weight coefficient of the heuristic function.

The specific implementation is as follows:

(1) Distance-adaptive weight adjustment mechanism: When the current node is far from the

target point, increase the weight coefficient of h(n) to reduce the search space and improve global

search efficiency. When the current node is close to the target point, decrease the weight coefficient

of h(n) to expand the local search space, ensuring the algorithm can safely avoid obstacles.

(2) Environmental complexity-aware weight adjustment mechanism: To quantitatively describe

the complexity of the map environment, the obstacle occupancy ratio O is introduced as an

environmental characteristic parameter. Its mathematical expression is shown in Formula (5):

O = 𝑁

𝑚 ∗ 𝑛
. (5)

Where N is the number of obstacle grids in the map area, and m and n are the horizontal and vertical

grid numbers of the map area respectively. The weight adjustment rule is designed as follows: when

the obstacle occupancy ratio O in the environment where the robot is located is low, increase the

weight of h(n) to improve search efficiency; when O is high and obstacles are dense, decrease the

weight of h(n) to expand the search range and avoid falling into local optimality.

The improved method of dynamic weighting for the heuristic function is shown in Formulas

(6)–(9):

ω = 𝑒
𝑑1
𝑑2 - 1

2
 (1-𝑒−𝑂), (6)

𝑑1 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2, (7)

30884

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

𝑑2 = √(𝑥2 − 𝑥0)2 + (𝑦2 − 𝑦0)2, (8)

𝑓(𝑛) = 𝑔(𝑛) + [𝑒
𝑑1
𝑑2 - 1

2
 (1-𝑒−𝑂)] ℎ(𝑛). (9)

Where ω is the dynamic weight coefficient, (x0, y0) are the coordinates of the start point, d1 is the

distance from the current node to the target point, and d2 is the distance from the start point to the

target point. By introducing the dynamic weight ω, the problems of low search efficiency and easy

falling into local optimality of the traditional A* algorithm are effectively solved.

2.2.3. Optimized search neighborhood

The selection of the search neighborhood has a key impact on path planning efficiency and path

quality [25]. Common search neighborhoods in path planning include 4-neighborhood,

8-neighborhood, and 16-neighborhood, whose specific structures are shown in Figure 2(a). The

4-neighborhood search has a turning angle of 90° and a maximum step size of 1, resulting in poor

path smoothness; the 8-neighborhood search has a turning angle of 45° and a maximum step size of

√2, with significantly improved path smoothness; the 16-neighborhood search has a turning angle of

22.5° and a maximum step size of √10 , achieving the optimal smoothness. However, the

computational complexity increases exponentially with the increase of neighborhood dimensions,

which is prone to a sharp increase in planning time in large-scale maps. Considering the balance

between path smoothness and computational efficiency, the 8-neighborhood is selected as the search

direction in this paper.

In the traditional 8-neighborhood A* algorithm, the movement costs of the 8 child nodes of the

parent node are set to fixed values and do not change with the search direction. This results in an

insignificant difference in the total path cost between expanding toward the target point and

expanding in other directions. This mechanism tends to store a large number of redundant nodes in

the Open list, which not only reduces search efficiency but also may cause the algorithm to fall into

local optimality. To address this, this paper introduces a turning cost term into the cost function (as

shown in Figure 2(b)). By increasing the cost of turning operations, the algorithm is guided to

preferentially expand paths in straight or near-straight directions, reducing unnecessary turns,

thereby reducing the number of redundant nodes in the Open list, improving search efficiency, and

optimizing path smoothness. The improved cost function is shown in Formula (10):

𝑓(𝑛) = 𝑔(𝑛) + [𝑒
𝑑1
𝑑2 - 1

2
 (1- 𝑒−𝑂)] ℎ(𝑛) - K D cos 𝜃. (10)

Where K represents the weight coefficient with a value range of (0, 1), which is used to adjust the

proportion of global turning cost; θ denotes the angle formed by the target node-parent node-child

node; D is the distance from the parent node to the target node—the farther the child node is from the

target point, the greater the turning cost.

30885

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Figure 2. Optimized neighborhood search: (a) Schematic diagram of neighborhood

search; (b) Schematic diagram of distance and angle.

2.2.4. Redundant node optimization

In complex environments, the path planned by the traditional A* algorithm often contains a

large number of redundant nodes, which may also affect the motion safety of mobile robots. To

address this, this paper proposes an A* redundant node elimination strategy. By removing redundant

inflection points in the path, a smooth and safe trajectory is generated, and its principle is shown in

Figure 3(a). Let N0 be the start point and NT be the target point. The path planned by the

traditional A* algorithm is expressed as (N0, N1, N2, N3, N4, N5, N6, N7, NT), which contains

multiple redundant nodes. The specific optimization strategy is as follows:

For non-adjacent nodes Ni and Nj（j > i+1） in the path, if the following two conditions are

met: first, the Euclidean distance d(Ni, Nj) between the two points is less than the cumulative

distance of the connections between all adjacent nodes from Ni to Nj in the path; second, the line

segment Ni Nj
̅̅ ̅̅ ̅̅ ̅ has no collision with obstacles in the environment, and the vertical distance dmin to

the nearest obstacle is not less than the preset safety radius r, then all nodes between Ni+1 and Nj−1

can be determined as redundant nodes and removed from the path. Through this operation, the path

will only retain the start node, key inflection points, and target node. For example, in Figure 3(a), the

retained path after the first round of optimization is (N0, N3, N8, N5, NT). Iterative repetition

finally generates the optimized path (N0, N3, NT). If the line segment collides with an obstacle, the

detection of the current non-adjacent nodes is skipped, and the judgment on the next group of nodes

is continued.

30886

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Figure 3. Schematic diagrams of redundant node optimization and path smoothing

optimization: (a) Redundant node optimization; (b) Path node optimization after circular

arc processing.

2.2.5. Path smoothing optimization

After redundant node optimization, the path (N0 , N3 , NT) has achieved significant

improvements in length, number of inflection points, and safety, but the problem of insufficient path

smoothness still exists. In the field of path smoothing, there are various mature optimization methods,

such as the B-spline curve method [26], cubic spline curve method [27], B-spline curve method [28],

and circular arc transition method [29]. This paper adopts the circular arc transition smoothing

method for further path optimization, and its principle is shown in Figure 3(b).

Given the start point N0(a1, b1), inflection point N3(a2, b2), and target point NT(a3, b3),

where OA and OB are the safety radius R, the derivation of relevant mathematical relationships is

shown in Formulas (11)–(13):

𝑦1 = 𝑘1𝑥1 -
𝑎1𝑏2−𝑏1𝑎2

𝑎2−𝑎1
, (11)

𝑦2 = 𝑘2𝑥2 -
𝑎3𝑏2−𝑏3𝑎2

𝑎2−𝑎3
, (12)

α = arctan 𝑘1. (13)

Where k1 is the slope of the straight line N0N3, k2 is the slope of the straight line N3NT, and α is

the angle between N0N3 and the horizontal plane. According to geometric relationships, the

relationship between the chord length and radius of the circular arc segment is shown in Formula

(14):

𝑙𝐴𝑁3 = R tan
𝛽

2
. (14)

Where β is the angle between line segment N0N3 and line segment N3NT; lAN3 is the distance

from the inflection point N3 to the tangent point A of the circular arc. The distance lAN0 from the

30887

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

start point N0 to the tangent point A is shown in Formula (15):

𝑙𝐴𝑁0 = √(𝑎2 − 𝑎1)2 + (𝑏2 − 𝑏1)2 - 𝑙𝐴𝑁3. (15)

When lAC ≥ r and β ≥ 90°, the smoothing optimization is performed; otherwise, it is skipped. By

combining Formulas (11)–(13), the coordinates of the tangent point A(Ax, Ay) are obtained as shown

in Formula (16):

{
Ax = a1 + cos α lAN0

Ay =
b2 − b1

a2 − a1
 Ax −

a1b2 − b1a2

a2 −a1

 (16)

Similarly, the coordinates of the other tangent point B(𝐵𝑥 , 𝐵𝑦) can be obtained, and the

coordinates of the circular arc center O(Ox, Oy) are shown in Formula (17):

{
𝑂𝑥 = 𝐴𝑥 + sin 𝛼 𝑅
𝑂𝑦 = 𝐴𝑥 − cos α𝑅

 (17)

In summary, the expression of the optimized trajectory for the mobile robot is shown in Formula

(18):

y =

{

𝑏2 − 𝑏1

𝑎2 − 𝑎1
 𝑥 −

𝑎1𝑏2 − 𝑏1𝑎2

𝑎2 − 𝑎1
 , 𝑥 ≤ 𝐴𝑥

√𝑅2 − (𝑥 − 𝑂𝑥)
2 + 𝑂𝑦 , 𝐴𝑥 < 𝑥 < 𝐵𝑥

𝑏3 − 𝑏2

𝑎3 − 𝑎2
 𝑥 −

𝑎2𝑏3 − 𝑏2𝑎3

𝑎3 − 𝑎2
 , 𝑥 ≥ 𝐵𝑥

 (18)

2.3. DWA algorithm and its improvement

The DWA is a local path planning algorithm based on the robot's kinematic model, which

exhibits excellent real-time obstacle avoidance and motion control capabilities in dynamic

environments [30]. The algorithm uses the velocity space (v, ω) as the core to characterize the robot's

motion state. By combining different linear velocities v and angular velocities ω, it simulates and

predicts the robot's possible future motion trajectories. Subsequently, each trajectory is

comprehensively and meticulously scored according to a carefully preset evaluation function, and the

optimal trajectory is accurately selected therefrom, providing strong guidance for the robot to make

precise motion decisions.

2.3.1. Kinematic model

To accurately simulate the robot's motion trajectory, the DWA algorithm constructs a

mathematical model based on kinematic principles. Assuming that the robot's linear velocity at time t

is vt, angular velocity is ωt, yaw angle is θt, and velocity sampling period is Δt, its kinematic

model is shown in Formula (19):

{

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣𝑡 ∆𝑡 cos 𝜃𝑡
𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑣𝑡 ∆𝑡 sin 𝜃𝑡

𝜃𝑡+1 = 𝜃𝑡 + 𝜔𝛥𝑡
 (19)

30888

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

2.3.2. Velocity sampling

In practical application scenarios, the movement speed of mobile robots is subject to the dual

constraints of their own conditions and complex surrounding environmental factors, mainly reflected

in linear velocity, angular velocity, and acceleration.

(1) Self-velocity constraints: Limited by the robot’s hardware configuration, the robot’s

movement speed has clear maximum and minimum values. These two extreme values jointly

determine the size of the dynamic window, and their expression is shown in Formula (20):

𝑣𝑚 = {(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]}. (20)

Where vmin and vmax represent the minimum and maximum linear velocities of the robot,

respectively, and ωmin and ωmax represent the minimum and maximum angular velocities of the

mobile robot, respectively. This constraint condition defines a clear boundary for the robot’s speed

range at the hardware level, ensuring that the robot’s motion always remains within a reasonable

range that the hardware can withstand.

(2) Motor acceleration/deceleration constraints: During the acceleration or deceleration

process of the mobile robot, its speed change is strictly limited by the acceleration/deceleration

capacity of the motor. This constraint restricts the current speed and the speed at the next sampling

moment within the range allowed by the acceleration. The acceleration constraint formula is shown

in Formula (21):

𝑣𝑑={(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑐 − 𝑎𝑑∆𝑡, 𝑣𝑐 + 𝑎𝑖∆𝑡], 𝜔 ∈ [𝜔𝑐 − 𝑎𝑛∆𝑡, 𝜔𝑐 + 𝑎𝑚∆𝑡]}. (21)

Where vc and ωc are the current linear velocity and angular velocity of the robot, respectively,

aiand ad are the maximum linear acceleration and linear deceleration of the robot, respectively, am

and an are the maximum angular acceleration and angular deceleration of the robot, respectively,

and Δt represents the sampling time.

(3) Braking Distance Constraint: To ensure that the robot can stop in time before a collision

hazard occurs during its movement, the braking distance constraint clearly defines the relationship

between the speed range and the minimum distance to the obstacle. The braking speed constraint

formula for the robot is shown in Formula (22) as follows:

𝑣𝑎 = {(𝑣, 𝜔)|𝑣 ≤ √2 𝑑𝑖𝑠𝑡(𝑣, 𝜔) 𝑎𝑑 , 𝜔 ≤ √2 𝑑𝑖𝑠𝑡(𝑣, 𝜔) 𝑎𝑛}. (22)

Where dist(v, ω) is the distance from the current trajectory to the nearest obstacle. By reasonably

limiting the speed, this constraint ensures the robot has sufficient braking distance when

encountering obstacles, effectively avoiding collision accidents. In summary, the speed range of the

mobile robot can be briefly expressed as (23):

𝑣𝑟 = 𝑣𝑚 ∩ 𝑣𝑑 ∩ 𝑣𝑎. (23)

This formula comprehensively considers self-velocity constraints, motor acceleration/

deceleration constraints, and braking distance constraints, determining the feasible speed range of the

mobile robot in actual motion and laying a foundation for subsequent trajectory deduction and

optimal evaluation.

30889

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

2.3.3. Optimized evaluation function

After completing velocity sampling, the DWA algorithm comprehensively scores the motion

trajectories corresponding to multiple sets of candidate velocities based on the evaluation function,

and then selects the optimal trajectory. The evaluation function adopted by the traditional DWA

algorithm is shown in Formula (24):

𝐺(𝑣, 𝜔) = 𝜎[𝛼 ∙ ℎ𝑒𝑎𝑑(𝑣, 𝜔) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝜆 · 𝑣𝑒𝑙(𝑣, 𝜔)]. (24)

Here, dist(v, ω) is the distance from the simulated trajectory to the nearest obstacle; vel(v, ω) is the

speed corresponding to the simulated trajectory; σ is a smoothing function; α, β, and λ are the

weighting coefficients of the respective cost sub-functions. Where the calculation formula of head(v,

ω) is shown in Formula (25):

ℎ𝑒𝑎𝑑(𝑣, 𝜔) = 180° - θ. (25)

Here, θ is the angle between the end of the robot’s simulated trajectory and the direction of the target

point; The higher the speed, the higher the score of vel(v, ω); the smaller the θ, the higher the score

of head(v, ω); the farther the simulated trajectory is from the nearest obstacle, the higher the score of

dist(v, ω), and the safer the trajectory.

However, the coefficient of the speed cost sub-function in the traditional evaluation function is a

constant, which makes the algorithm prone to falling into local optimality in complex environments.

To address the above problem, this paper makes two improvements to the evaluation function: first,

introduce a dynamic weight coefficient for the speed cost sub-function vel(v, ω), enabling it to

dynamically adjust the weight ratio according to the distance between the robot and

obstacles—increase the weight to improve operational efficiency when far from obstacles, and

decrease the weight to ensure safe obstacle avoidance when close to obstacles; second, add a target

point cost sub-function distg(v, ω) to the cost G(v, ω), which effectively shortens the motion path

length by quantifying the proximity between the path and the target point. The improved G(v, ω) is

shown in Formula (26):

𝐺(𝑣, 𝜔) = σ[α ∙ ℎ𝑒𝑎𝑑(𝑣, 𝜔) + β ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + λ · ln(e +
𝑑𝑖𝑠𝑡(v,ω)

d2
)𝑣𝑒𝑙(𝑣, 𝜔) + γ 𝑑𝑖𝑠𝑡𝑔(𝑣, 𝜔)]. (26)

Here, γ is the weighting coefficient of distg(v,ω). The calculation formula of distg(v, ω) is shown in

Formula (27):

𝑑𝑖𝑠𝑡𝑔(𝑣, 𝜔) =
1

√(𝑥𝑔−𝑥𝑚)
2+(𝑦𝑔−𝑦𝑚)

2
. (27)

Here, (xm, ym
) are the coordinates of the end of the trajectory, (xg, yg

) are the coordinates of the target

point, The smaller the distance between the end of the trajectory and the target point, the higher the

score of distg(v,ω), and vice versa.

3. Algorithm fusion

This paper proposes a mathematical optimization strategy that integrates the ImpA* algorithm

with the ImpDWA. The workflow of this fused algorithm is shown in Figure 4. By integrating global

planning and dynamic optimization mechanisms, this optimized fusion strategy enables mobile

30890

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

robots to achieve efficient path planning in complex environments.

Figure 4. The flow of the fusion algorithm.

First, the ImpA* algorithm is adopted for global path planning. During the node search process,

obstacle influence factors and dynamic weight coefficients are introduced, allowing the algorithm to

complete preliminary obstacle avoidance while guiding towards the target point, significantly

reducing computational redundancy in subsequent local planning. To address issues such as

insufficient smoothness and dense inflection points in paths generated by the traditional A*

algorithm, curve fitting technology is further used for secondary path optimization, ultimately

obtaining a smooth global path that meets the robot's kinematic constraints.

Subsequently, key nodes are extracted from the optimized global path as input for the local

sub-targets of the ImpDWA algorithm. Based on the robot’s kinematic model, multiple sets of

candidate motion trajectories are generated in the locally perceived environment. Finally, combined

with the direction guidance of the global path and the improved evaluation function, a

multi-dimensional comprehensive evaluation of candidate trajectories is performed: the global path

constraint ensures the direction consistency of local planning, and the dynamic weight adjustment

mechanism and target point cost sub-function in the evaluation function realize multi-objective

optimization of trajectory safety, motion efficiency, and path length. The optimal motion trajectory is

then selected to complete the closed-loop control of algorithm fusion.

Under this fusion framework, the ImpA* algorithm undertakes the function of global path

topology construction, providing macro navigation guidance for the robot; the ImpDWA algorithm

30891

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

focuses on the local area between adjacent key nodes, achieving real-time obstacle avoidance for

unknown static and dynamic obstacles. The two form a collaborative closed loop through the

transmission of key sub-targets, effectively improving the comprehensive path planning performance

of mobile robots in complex environments.

4. Experimental results and discussion

To verify the effectiveness of the fused algorithm proposed in this paper, simulation

experiments were conducted using MATLAB R2022b. The experimental environment was built on

the Windows 10 operating system with hardware configuration of an i7-13620H processor and 16

GB memory, ensuring the stability and reliability of experimental data. The environmental

parameters are as follows: grid size of 1m×1m; evaluation function coefficients α=0.05, β=0.2, γ=0.2,

η=0.1; constrained maximum linear velocity of 1m/s, maximum angular velocity of 0.6rad/s,

maximum linear acceleration of 0.2m/s², maximum angular acceleration of 0.3rad/s²; velocity range

of dynamic obstacles of 0.6–1.0m/s.

4.1. Simulation experiment analysis of the global algorithm

Under the unified grid map environment setting, global path planning simulations were

performed using Dijkstra’s algorithm, traditional A* algorithm, LPA* algorithm, IDA* algorithm,

Theta* algorithm, and ImpA* proposed in this paper. Two specifications of grid maps were set up in

the experiments: a 30×30 map (obstacle coverage rate of 22.22%) and a 20×20 map (obstacle

coverage rate of 20%). Among them, black areas represent obstacles, white areas represent passable

areas, and gray areas represent the algorithm's search space. For both maps, the start point

coordinates are set as (1, y-coordinate of the end point) and the end point coordinates as (x of the

map size, 1). Specifically, the 30×30 map has a start point of (1, 31) and an end point of (31, 1); the

20×20 map has a start point of (1, 21) and an end point of (21, 1), so as to simulate static

environments with different complexities.

As shown in Figures 5 and 6, all six algorithms can plan global paths in both 30×30 and 20×20

grid maps, but there are significant differences in path quality and search efficiency. Dijkstra's

algorithm generates paths with many inflection points and low search efficiency. Although the

traditional A* algorithm and IDA* algorithm perform better than Dijkstra’s algorithm, they still have

the problem that the path is close to the vertices of obstacles (Figures 5(a), (b), (d) and 6(a), (b), (d)),

which is prone to collision risks in narrow channel environments. The LPA* algorithm has high

search redundancy in static environments (Figures 5(c) and 6(c)), and while the Theta* algorithm can

generate smoother paths, it has a longer running time (Figures 5(e) and 6(e)). In contrast, the ImpA*

algorithm proposed in this paper, through dynamic weight coefficient adjustment, search

neighborhood optimization, and path smoothing strategies, successfully avoids obstacle vertices

(Figures 5(f) and 6(f)), reserves sufficient turning space for the mobile robot, and significantly

improves obstacle avoidance safety. At the same time, sharp-turn paths are replaced by smooth

curves, effectively enhancing the continuity of motion trajectories. This indicates that the

multi-dimensional optimization strategy of the ImpA* algorithm can provide a better trajectory

planning solution for robot movement in complex environments.

30892

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Figure 5. Simulation results of different algorithms in 30×30 map.

Figure 6. Simulation results of different algorithms in 20×20 map.

Quantitative analysis results further confirm the superiority of the improved algorithm. In the

30×30 map (Table 1), the path length planned by the ImpA* algorithm in this paper is 41.81m, which

is 0.90%, 0.88%, 0.99%, 0.81%, and 0.40% shorter than that of Dijkstra’s algorithm (42.19m),

traditional A* algorithm (42.18m), LPA* algorithm (42.23m), IDA* algorithm (42.15m), and Theta*

algorithm (41.98m), respectively. The path running time of the proposed optimization method is

30893

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

83.54s, which is 26.71%, 4.72%, 5.13%, 4.44%, and 2.59% less than that of the above algorithms,

respectively. The number of search nodes is only 129, which is much lower than the search numbers

of the other five comparative algorithms.

Table 1. Comparison of simulation results of different algorithms in 30×30 map (global planning).

Map size Algorithm Length/m Moving time/s Search nodes

30×30

Dijkstra [11] 42.19 113.98 700

A* [10] 42.18 87.68 213

LPA* [14] 42.23 88.06 235

IDA* [15] 42.15 87.42 198

Theta* [16] 41.98 85.76 162

ImpA* (Ours) 41.81 83.54 129

The above data indicate that the ImpA* algorithm in this paper can significantly reduce the

search space through multi-strategy collaborative optimization in static environments with different

complexities. While ensuring path safety and smoothness, it significantly improves operational

efficiency and reduces dependence on computing resources, demonstrating excellent comprehensive

performance in global path optimization.

In the 20×20 map (Table 2), the path length of the ImpA* algorithm proposed in this paper is

27.65m, which is 0.97%, 0.90%, 1.00%, 0.82%, and 0.43% shorter than that of the other five

comparative algorithms, respectively. The path running time of the improved A* algorithm is 55.12s,

which is 26.60%, 4.64%, 4.83%, 4.44%, and 2.51% less than that of the other five comparative

algorithms, respectively. The number of search nodes is 83, which is also significantly lower than

that of the other five algorithms.

Table 2. Comparison of simulation results of different algorithms in 20×20 map (global planning).

Map size Algorithm Length/m Moving time/s Search nodes

20×20

Dijkstra 27.92 75.10 380

A* 27.90 57.80 125

LPA* 27.93 57.92 132

IDA* 27.88 57.68 118

Theta* 27.77 56.54 98

ImpA* (Ours) 27.65 55.12 83

4.2. Simulation experiments analysis of local and fused algorithm

To verify the performance of the optimized ImpDWA local planning and fused algorithm

proposed in this paper, based on the aforementioned 30×30 and 20×20 grid maps, 2 unknown static

obstacles and 1 random dynamic obstacle with a speed of 0.8–1.0m/s were introduced respectively to

construct a dynamically complex environment. Static obstacles simulate sudden fixed barriers during

robot movement, and dynamic obstacles simulate moving targets in the scene, which is close to the

complexity of real operating scenarios. The traditional DWA algorithm and the ImpDWA local

obstacle avoidance algorithm proposed in this paper were selected to fuse with Dijkstra, A*, LPA*,

30894

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

IDA*, Theta*, and ImpA* respectively to form 12 fusion schemes. Each scheme was tested through

120 simulation experiments, with average path length, running time, and obstacle avoidance success

rate as evaluation indicators to comprehensively assess the dynamic environment adaptability and

practical performance of the fused algorithm. The specific experimental analysis results are as

follows.

4.2.1. Analysis of the effectiveness of local algorithm improvement

Taking the global path as the reference trajectory, the independent local obstacle avoidance

performance of the traditional DWA and the ImpDWA was compared. The results show that

ImpDWA solves the problem of trajectory oscillation of the traditional DWA algorithm when

dynamic obstacles approach by dynamically adjusting the constraint coefficients of the speed

window and angle window, and optimizing the proportion of obstacle avoidance safety weight in the

evaluation function. In the 30×30 dynamic obstacle map, the traditional DWA responds slowly to

dynamic obstacles and usually travels along the edge of obstacles, which increases the risk of

collision with dynamic obstacles (Figures 7(a) and 7(c)). In contrast, ImpDWA predicts the

movement trend of dynamic obstacles in advance and adjusts the steering angle to achieve obstacle

avoidance without retracement (Figure 7). In the 20×20 dynamic obstacle map environment (Figure

8), the traditional DWA results in obstacle avoidance paths close to the edge of obstacles (safety

distance < 0.3m) due to the fixed angle window, while ImpDWA dynamically expands the safety

margin through obstacle distance feedback (safety distance ≥ 0.5m), significantly reducing the

collision risk.

Figure 7. Obstacle avoidance trajectory comparison of fusion algorithms in 30×30 dynamic map.

At the same time, the obstacle avoidance success rate of ImpDWA in each fused algorithm is

improved compared with the traditional DWA. In the 30×30 and 20×20 maps, Dijkstra-ImpDWA

30895

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

after local optimization is 3.3% and 2.5% higher than Dijkstra-DWA respectively; A*-ImpDWA is

2.5% higher than A*-DWA in both maps; LPA*-ImpDWA is 4.1% and 4.2% higher than LPA*-DWA

respectively; IDA*-ImpDWA is 1.6% and 1.7% higher than IDA*-DWA respectively;

Theta*-ImpDWA is 2.5% higher than Theta*-DWA in both maps; the proposed ImpA*-ImpDWA is

2.5% higher than ImpA*-DWA in both maps.

Figure 8. Obstacle avoidance trajectory comparison of fusion algorithms in 20×20 dynamic map.

4.2.2. Comprehensive performance comparison of fused algorithms

After fusing the DWA local algorithm (before and after improvement) with the six global

algorithms respectively, the comprehensive performance in the dynamic environment shows

significant differences as follows:

(1) Obstacle avoidance success rate

The quantitative data in Tables 3 and 4 indicate that the ImpA*-ImpDWA fusion scheme

achieves the optimal obstacle avoidance success rate. Among all fusion schemes, the

ImpA*-ImpDWA fusion scheme based on the mathematically optimized improved algorithm

proposed in this paper achieves 96.7% and 97.5% obstacle avoidance success rates in the two map

sizes, respectively.

In the fusion schemes based on the traditional DWA, even when combined with

high-performance global algorithms such as ImpA*, Theta*, and IDA*, the obstacle avoidance

success rate is still not higher than 95%. For example, in the 30×30 map, ImpA*-DWA is 94.2%,

Theta*-DWA is 93.3%, and IDA*-DWA is 91.7%; in the 20×20 map, ImpA*-DWA is 95%,

Theta*-DWA is 94.2%, and IDA*-DWA is 92.5%. The main reason is that the traditional DWA has

insufficient ability to predict dynamic obstacles, making it prone to collisions with sudden unknown

obstacles at the inflection points of the global path.

30896

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Table 3. Comparison of simulation results of fusion algorithms in 30×30 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate

30×30

Dijkstra-DWA 45.86 124.75 86.7%

Dijkstra-ImpDWA 44.92 119.20 90.0%

A*-DWA 44.73 93.84 91.7%

A*-ImpDWA 43.95 90.96 94.2%

LPA*-DWA 44.85 94.18 89.2%

LPA*-ImpDWA 44.12 91.54 93.3%

IDA*-DWA 44.67 93.66 91.7%

IDA*-ImpDWA 43.88 90.78 93.3%

Theta*-DWA 44.21 92.10 93.3%

Theta*-ImpDWA 43.56 89.96 95.8%

ImpA*-DWA 43.78 89.46 94.2%

ImpA*-ImpDWA (Ours) 43.27 87.12 96.7%

Among the fusion schemes based on ImpDWA, except for the proposed ImpA*-ImpDWA, the

obstacle avoidance success rates of other fusion algorithms such as Theta*-ImpDWA,

IDA*-ImpDWA, LPA*-ImpDWA, and A*-ImpDWA are 95.8%, 93.3%, 93.3%, and 94.2%

respectively (in the 30×30 map). However, due to the low global path search efficiency of

Dijkstra-ImpDWA, the response of the local algorithm is delayed, resulting in an obstacle avoidance

success rate of only 90%. This highlights the importance of performance matching between global

and local algorithms: an inefficient global algorithm will limit the response speed of local obstacle

avoidance, and even when combined with an improved local algorithm, it is difficult to achieve the

optimal effect.

Table 4. Comparison of simulation results of fusion algorithms in 20×20 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate

20×20

Dijkstra-DWA 30.65 82.95 88.3%

Dijkstra-ImpDWA 29.87 79.40 90.8%

A*-DWA 29.72 62.74 92.5%

A*-ImpDWA 29.35 61.26 95.0%

LPA*-DWA 29.81 62.96 90.0%

LPA*-ImpDWA 29.28 61.02 94.2%

IDA*-DWA 29.68 62.60 92.5%

IDA*-ImpDWA 29.21 60.80 94.2%

Theta*-DWA 29.43 61.70 94.2%

Theta*-ImpDWA 29.05 60.44 96.7%

ImpA*-DWA 29.12 59.62 95.0%

ImpA*-ImpDWA (Ours) 28.93 58.88 97.5%

(2) Path length

Data in Tables 3 and 4 show that the path length of the ImpA*-ImpDWA fusion scheme is

43.27m in the 30×30 map and 28.93m in the 20×20 map, both being the shortest among all fusion

30897

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

schemes.

Compared with traditional global-local fusion schemes (e.g., Dijkstra-DWA), the path length of

ImpA*-ImpDWA is shortened by 5.2%~5.61%. One reason is that the globally optimized ImpA*

algorithm generates a smoother global path with low redundancy, reserving better adjustment space

for local obstacle avoidance. The other reason is that the trajectory sampling strategy of ImpDWA

avoids the detour problem of traditional DWA caused by obstacle avoidance; by dynamically

adjusting velocity and angle, it maximally adheres to the globally optimal trajectory while evading

obstacles.

When comparing schemes with the same global algorithm but different local algorithms, taking

ImpA*-DWA and ImpA*-ImpDWA as examples. The introduction of ImpDWA shortens the path

length by an average of 0.19–0.51m, verifying the role of the improved local algorithm in reducing

trajectory redundancy. When the same local algorithm is combined with different global algorithms,

schemes using ImpA* as the global layer generally have shorter path lengths than those using other

global algorithms, reflecting the fundamental advantage of the improved ImpA* algorithm in global

path planning.

(3) Running time

Factors affecting the planning time include global path search efficiency, the number of local

trajectory samples, and data interaction delay between the two. The running time of the

ImpA*-ImpDWA fused algorithm is 87.12s in the 30×30 map, which is 3.16%~30.16% shorter than

that of other schemes on average; in the 20×20 map, it is 58.88s, 2.58%~29.02% shorter than other

schemes on average. The main reasons are as follows:

At the global layer, ImpA* significantly reduces the number of search nodes through search

neighborhood optimization and dynamic weight adjustment. Compared with the traditional A*

algorithm, the number of search nodes is reduced by 39.44% and 33.60% in the 30×30 and 20×20

grid maps, respectively, reserving more sufficient computing time for the local algorithm.

At the local layer, ImpDWA reduces the number of invalid sampling points by optimizing the

trajectory sampling window, and simplifies the calculation logic of the evaluation function, thereby

reducing the time overhead of local planning.

4.2.3. Performance ranking of fused algorithms

Based on the comprehensive evaluation of the three indicators, the performance ranking of the

12 fusion schemes from best to worst in the dynamic environment is as follows: ImpA*-ImpDWA

＞ Theta*-ImpDWA ＞ A*-ImpDWA ＞ ImpA*-DWA ＞ LPA*-ImpDWA ＞ IDA*-ImpDWA

＞ Theta*-DWA ＞ A*-DWA ＞ LPA*-DWA ＞ IDA*-DWA ＞ Dijkstra-ImpDWA ＞

Dijkstra-DWA.

The key conclusions are summarized as follows:

(1) The performance improvement of the local algorithm is crucial to the overall effect of the

fusion scheme. Compared with the traditional DWA, ImpDWA can significantly improve the obstacle

avoidance success rate, shorten the path length and planning time, and is a key link in optimizing the

performance of the fused algorithm;

(2) The efficiency and path quality of the global algorithm directly determine the upper limit of

the fusion scheme. Even when combined with an improved local algorithm, inefficient global

algorithms (e.g., Dijkstra) are still difficult to meet the real-time requirements of dynamic

environments. In contrast, the collaboration between high-performance global algorithms (e.g.,

ImpA*, Theta*) and ImpDWA can maximize the fusion advantages;

30898

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

(3) The ImpA*-ImpDWA fused algorithm proposed in this paper achieves collaborative

optimization of the safety and smoothness of the global path and the dynamic adaptability of local

obstacle avoidance. In dynamic environments, it demonstrates comprehensive performance with an

obstacle avoidance success rate of 96.7%~97.5%, the shortest path length, and optimal planning time.

This verifies the effectiveness and practicality of the fused algorithm, providing a reliable solution

for the autonomous navigation of mobile robots in complex dynamic environments.

4.3. Performance verification of the fused algorithm in large-scale dynamically complex scenarios

The previous experiments have fully confirmed the effectiveness of the proposed

ImpA*-ImpDWA fused algorithm. In small-to-medium-scale dynamically complex scenarios (20×20

and 30×30 grids), it achieves optimal performance across three core indicators: obstacle avoidance

success rate, path length, and running time. To further verify the stability and adaptability of the

algorithm in larger-scale scenarios with higher obstacle density, comparative experiments were

designed based on a 100×100 large-scale grid environment. The specific experimental setup and

result analysis are as follows:

4.3.1. Experimental scenario and parameter design

Continuing the basic parameter system of previous experiments, the settings were optimized for

the characteristics of large-scale scenarios: (1) Scenario scale: A 100×100 grid map was adopted,

with the grid size remaining 1m×1m; (2) Obstacle configuration: 40 unknown static obstacles were

randomly distributed in the map, and 15 dynamic obstacles were introduced with a moving speed

range of 0.8-1.0m/s. The motion trajectories of dynamic obstacles were random and irregular,

simulating a complex environment with multi-target dynamic interference in large-scale scenarios; (3)

Comparative algorithms: The ImpA*-ImpDWA proposed in this paper was selected for comparison

with 5 other fused algorithms, including Dijkstra-ImpDWA, A*-ImpDWA, LPA*-ImpDWA,

IDA*-ImpDWA, and Theta*-ImpDWA, to ensure the consistency and comparability of the

experiments; (4) Experimental scheme and evaluation indicators: Each fused algorithm was tested

through 120 independent simulation experiments. The core evaluation indicators included average

path length, average running time, and obstacle avoidance success rate. The average value of

multiple experiments was adopted to eliminate random errors.

4.3.2. Experimental results and quantitative analysis

The simulation results are shown in Figure 9. Table 5 presents the comparative data of different

fused algorithms, and the quantitative comparison fully verifies the superiority of the proposed

algorithm in large-scale scenarios:

30899

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

Figure 9. Obstacle avoidance trajectory comparison of fusion algorithms in 100×100 dynamic map.

Table 5. Comparison of simulation results in 100×100 dynamic map.

Map size Algorithms Length/m Moving time/s Obstacle avoidance rate

100×100

Dijkstra-ImpDWA 172.86 417.37 79.3%

A*-ImpDWA 159.74 353.59 89.6%

LPA*-ImpDWA 156.21 356.24 91.8%

IDA*-ImpDWA 153.52 350.68 89.1%

Theta*-ImpDWA 155.48 348.42 94.2%

ImpA*-ImpDWA (Ours) 149.23 336.71 96.5%

Based on the data in table 5, the result analysis are as follow:

(1) Obstacle avoidance success rate: The ImpA*-ImpDWA fused scheme achieves an obstacle

avoidance success rate of up to 96.5% in the 100×100 large-scale, multi-obstacle scenario, which is

2.3 percentage points higher than the second-best performer Theta*-ImpDWA (94.2%) and 17.2

percentage points higher than the worst-performing traditional fused scheme Dijkstra-ImpDWA

(79.3%). This indicates that even in large-scale scenarios with expanded obstacle distribution and

increased dynamic interference, the proposed fused algorithm still exhibits strong adaptability to

complex environments and anti-interference capabilities.

(2) Average path length: The average path length planned by ImpA*-ImpDWA is 149.23m, the

shortest among all comparative schemes. Compared with the traditional fused scheme

Dijkstra-ImpDWA (172.86m), it is shortened by 23.63m (a reduction ratio of 13.67%); compared

with the high-performance comparative scheme Theta*-ImpDWA (155.48m), it is shortened by

6.25m (a reduction ratio of 4.02%). This result confirms the effectiveness of the dynamic heuristic

function and neighborhood search optimization of the ImpA* algorithm: in the massive grid nodes of

30900

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

large-scale scenarios, it can quickly focus on the optimal path direction and reduce invalid searches.

(3) Average running time: The average running time of the fused algorithm is only 336.71s,

which is significantly shorter than other comparative schemes: 75.66s less than Dijkstra-ImpDWA

(412.37s, a reduction ratio of 18.3%); 11.71s less than Theta*-ImpDWA (348.42s, a reduction ratio

of 3.36%); even compared with IDA*-ImpDWA, the running time is shortened by 13.97s (a

reduction ratio of 3.98%). The core reason is that the ImpA* algorithm greatly reduces the number of

search nodes in large-scale scenarios through optimized pruning strategies, thereby lowering the

computational overhead of global path planning.

4.3.3. Cross-scenario adaptability and research extension

We conducted a comprehensive analysis of the experimental results across different scenarios:

small-to-medium-scale grids (20×20 and 30×30) and a large-scale grid (100×100). The proposed

ImpA*-ImpDWA fused algorithm delivers excellent performance in small-to-medium-scale

environments. In dynamically complex settings with larger scales and higher obstacle densities, it

still maintains key comprehensive advantages: high obstacle avoidance success rate, shortest path

length, and optimal running time. This performance consistency highlights the algorithm’s

outstanding cross-scenario adaptability. This feature provides reliable experimental support and

technical guarantees for the practical application of the algorithm in dynamic scenarios such as

large-scale warehouse robot scheduling.

It is worth noting that the cross-system applicability and multi-scenario adaptability of an

algorithm are core dimensions for measuring its research value, as well as an extended direction of

the previous experimental conclusions. To further expand the application boundaries of the algorithm,

future research will conduct simulation verification for more typical real-world scenarios, such as

humanoid motion decision-making systems in UAV trap environments [31], autonomous obstacle

avoidance tasks of unmanned surface vessel swarms in marine environments [32], and path planning

systems for high-rise building fire rescue [33]. Through multi-scenario and multi-task verification,

the robustness and practicality of the algorithm will be continuously optimized, providing a

generalized solution for autonomous navigation problems in different fields.

5. Conclusions

From the perspective of mathematical optimization, this paper constructs a hybrid path planning

framework. It deeply integrates the ImpA* algorithm and ImpDWA. In the global planning phase,

three key optimizations are adopted. First, environmental complexity is quantified through modeling.

Second, heuristic functions use dynamic weight adjustment. Third, path smoothing strategies are

applied. These measures enhance both the rationality of the global path and its search efficiency. In

the local obstacle avoidance phase, the DWA evaluation system is upgraded. A target-oriented cost

term is added, and weight coefficients are dynamically adjusted. This solves critical problems of

traditional methods. For instance, it avoids local minima and improves target guidance. The dual

algorithms are collaboratively designed. They form a closed-loop mechanism of global optimization-

local correction. Simulation experiments provide clear verification. The proposed strategy

outperforms existing mainstream schemes significantly. Advantages are observed in path quality,

planning efficiency, and dynamic obstacle avoidance reliability. It offers theoretical value and

technical support for autonomous robot navigation in complex environments.

30901

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

This research still has limitations. Algorithm performance is only verified via the MATLAB

simulation platform. Practical applications involve various uncertain factors. These include sensor

measurement noise, positioning errors, uneven ground, hardware response delays, and changes in

environmental illumination. None of these factors are fully considered in the current study. Future

research will focus on two key aspects. First, it will complete the transplantation and deployment of

the fusion algorithm on a physical robot platform. Hardware adaptation and debugging will also be

carried out. This opens up the transformation path from simulation verification to practical

application. Second, a real and complex experimental environment incorporating multi-source

interference is constructed to systematically evaluate the algorithm’s adaptability in other

environmental scenarios.

Author contributions

Le Gao: Conceptualization, validation, formal analysis, writing-original draft preparation,

supervision, project administration; Yuying Zhang: Software, visualization; Pinjie Liu: Methodology,

investigation, data curation, writing-review and editing, funding acquisition; Xiaoying Ou: Software;

Jinglong Cheng: Software; Ying Zhu: Software, resources. All authors have read and agreed to the

published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgments

This research was funded by “Department of Science and Technology of Guangdong Province,

Pdjh2024a515”, “Department of Education of Guangdong Province, 2024ZDZX1030” and

“Guangdong Education Research Project, 24GYB119”. Thanks for the support for the Guangzhou

Huali College.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. M. A. Ferreira, L. C. Moreira, A. M. Lopes, Autonomous navigation system for a differential

drive mobile robot, J. Test. Eval., 52 (2024), 841–852. https://doi.org/10.1520/JTE20230191

2. A. Amin, X. C. Wang, Y. N. Zhang, T. H. Li, Y. Y. Chen, J. M. Zhang, A comprehensive review

of applications of robotics and artificial intelligence in agricultural operations, Stud. Inform.

Control, 32 (2023), 59–70.

3. T. Chen, S. Q. Li, Z. P. Zeng, Z. H. Liang, Y. X. Chen, W. S. Guo, An empirical investigation of

users’ switching intention to public service robots: From the perspective of PPM framework, Gov.

Inform. Q., 41 (2024), 101933. https://doi.org/10.1016/j.giq.2024.101933

https://doi.org/10.1520/JTE20230191
https://doi.org/10.1016/j.giq.2024.101933

30902

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

4. H. W. Qin, S. L. Shao, T. Wang, X. T. Yu, Y. Jiang, Z. H. Cao, Review of autonomous path

planning algorithms for mobile robots, Drones, 7 (2023), 211.

https://doi.org/10.3390/drones7030211

5. O. Misir, Dynamic local path planning method based on neutrosophic set theory for a mobile

robot, J. Braz. Soc. Mech. Sci. Eng., 45 (2023), 127. https://doi.org/10.1007/s40430-023-04048-6

6. Q. Zhang, J. Zhao, L. Pan, X. Wu, Y. Y. Hou, X. Q. Qi, Optimal path planning for mobile robots

in complex environments based on the gray wolf algorithm and self-powered sensors, IEEE Sens.

J., 23 (2023), 20756–20765. https://doi.org/10.1109/JSEN.2023.3252635

7. L. Gao, J. Z. Zhang, J. X. Yu, X. Zhang, Z. Q. Zeng, BPA: A decentralized payment system that

balances privacy and auditability, AIMS Mathematics, 9 (2024), 6183–6206.

https://doi.org/10.3934/math.2024302

8. X. M. Liu, X. H. Chang, L. W. Hou, Attack-dependent adaptive event-triggered security fuzzy

control for nonlinear networked cascade control systems under deception attacks, Mathematics,

12 (2024), 3385. https://doi.org/10.3390/math12213385

9. X. He, C. Guo, Research on multi-strategy fusion of the chimpanzee optimization algorithm and

its application in path planning, Appl. Sci., 15 (2025), 608. https://doi.org/10.3390/app15020608

10. B. Guo, Z. Kuang, J. H. Guan, M. T. Hu, L. X. Rao, X. Q. Sun, An improved A-star algorithm for

complete coverage path planning of unmanned ships, Int. J. Pattern Recogn., 36 (2022), 2259009.

https://doi.org/10.1142/S0218001422590091

11. J. Jason, M. Siever, A. Valentino, K. M. Suryaningrum, R. Yunanda, Dijkstra’s algorithm to find

the nearest vaccine location, Procedia Computer Science, 216 (2023), 5–12.

https://doi.org/10.1016/j.procs.2022.12.105

12. Y. Zhang, L. L. Li, H. C. Lin, Z. W. Ma, J. Zhao, Development of path planning approach using

improved a-star algorithm in AGV system, J. Internet Technol., 20 (2019), 915–924.

https://doi.org/10.3966/160792642019052003023

13. C. G. Liu, Q. Z. Mao, X. M. Chu, S. Xie, An improved a-star algorithm considering water current,

traffic separation and berthing for vessel path planning, Appl. Sci., 9 (2019), 1057.

https://doi.org/10.3390/app9061057

14. Y. Dai, W. J. Lv, S. K. Li, M. Y. Zong, Improving the Lifelong Planning A-star algorithm to

satisfy path planning for space truss cellular robots with dynamic obstacles, Robotica, 43 (2025),

1243–1257. https://doi.org/10.1017/S0263574725000256

15. W. Z. Li, J. J. Liu, S. L. Yao, An improved Dijkstra’s algorithm for shortest path planning on 2D

grid maps, 2019 IEEE 9th International Conference on Electronics Information and Emergency

Communication (ICEIEC), Beijing, China, 2019, 438–441.

https://doi.org/10.1109/iceiec.2019.8784487

16. C. G. Liu, K. Zhang, Z. B. He, L. H. Lai, X. M. Chu, Clustering Theta* based segmented path

planning method for vessels in inland waterways, Ocean Eng., 309 (2024), 118249.

https://doi.org/10.1016/j.oceaneng.2024.118249

17. M. Kobayashi, N. Motoi, Local path planning: dynamic window approach with virtual

manipulators considering dynamic obstacles, IEEE Access, 10 (2022), 17018–17029.

https://doi.org/10.1109/ACCESS.2022.3150036

18. R. Zhou, K. Zhou, L. N. Wang, B. R. Wang, An improved dynamic window path planning

algorithm using multi-algorithm fusion, Int. J. Control Autom. Syst., 22 (2024), 1005–1020.

https://doi.org/10.1007/s12555-022-0495-8

https://doi.org/10.3390/drones7030211
https://doi.org/10.1007/s40430-023-04048-6
https://doi.org/10.1109/JSEN.2023.3252635
https://doi.org/10.3934/math.2024302
https://doi.org/10.3390/math12213385
https://doi.org/10.3390/app15020608
https://doi.org/10.1142/S0218001422590091
https://doi.org/10.1016/j.procs.2022.12.105
https://doi.org/10.3966/160792642019052003023
https://doi.org/10.3390/app9061057
https://doi.org/10.1017/S0263574725000256
https://doi.org/10.1109/iceiec.2019.8784487
https://doi.org/10.1016/j.oceaneng.2024.118249
https://doi.org/10.1109/ACCESS.2022.3150036
https://doi.org/10.1007/s12555-022-0495-8

30903

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

19. M. Yao, H. G. Deng, X. Y. Feng, P. G. Li, Y. F. Li, H. Y. Liu, Improved dynamic window

approach based on energy consumption management and fuzzy logic control for local path

planning of mobile robots, Comput. Ind. Eng., 187 (2024), 109767.

https://doi.org/10.1016/j.cie.2023.109767

20. J. Moon, B. Y. Lee, M. J. Tahk, A hybrid dynamic window approach for collision avoidance of

VTOL UAVs, Int. J. Aeronaut. Space Sci., 19 (2018), 889–903.

https://doi.org/10.1007/s42405-018-0061-z

21. M. E. Miyombo, Y. K. Liu, C. M. Mulenga, A. Siamulonga, M. C. Kabanda, P. Shaba, et al.,

Optimal path planning in a real-world radioactive environment: A comparative study of A-star

and Dijkstra algorithms, Nucl. Eng. Des., 420 (2024), 113039.

https://doi.org/10.1016/j.nucengdes.2024.113039

22. L. Morin, P. Gilormini, K. Derrien, Generalized euclidean distances for elasticity tensors, J. Elast.,

138 (2020), 221–232. https://doi.org/10.1007/s10659-019-09741-z

23. X. Liu, W. T. Chen, L. Peng, D. Luo, L. K. Jia, G. Xu, et al., Secure computation protocol of

Chebyshev distance under the malicious model, Sci. Rep., 14 (2024), 17115.

https://doi.org/10.1038/s41598-024-67907-9

24. C. D. Wang, J. L. Yang, B. Q. Zhang, A fault diagnosis method using improved prototypical

network and weighting similarity-Manhattan distance with insufficient noisy data, Measurement,

226 (2024), 114171. https://doi.org/10.1016/j.measurement.2024.114171

25. Z. B. Zeng, H. Dong, Y. L. Xu, W. Zhang, H. C. Yu, X. P. Li, Teaching-learning-based

optimization algorithm with dynamic neighborhood and crossover search mechanism for

numerical optimization, Appl. Soft Comput., 154 (2024), 111332.

https://doi.org/10.1016/j.asoc.2024.111332

26. J. Ahmad, M. Wahab, Enhancing the safety and smoothness of path planning through an

integration of Dijkstra's algorithm and piecewise cubic Bezier optimization, Expert Syst. Appl.,

289 (2025), 128315. https://doi.org/10.1016/j.eswa.2025.128315

27. Y. D. Ji, Q. Q. Liu, C. Zhou, Z. J. Han, W. Wu, Hybrid swarm intelligence and human-inspired

optimization for urban drone path planning, Biomimetics, 10 (2025), 180.

https://doi.org/10.3390/biomimetics10030180

28. H. F. Bao, J. Fang, C. H. Wang, Z. B. Li, J. S. Zhang, C. S. Wang, Research on static/dynamic

global path planning based on improved A* algorithm for mobile robots, J. Robot., 2023 (2023),

5098156. https://doi.org/10.1155/2023/5098156

29. B. P. Wang, D. Y. Ju, F. Z. Xu, C. Feng, G .L. Xun, CAF-BRT*: A 2D path planning algorithm

based on circular arc fillet method, IEEE Access, 10 (2022), 127168–127181.

https://doi.org/10.1109/ACCESS.2022.3226465

30. M. Y. Wu, E. L. M. Su, C. F. Yeong, B. Dong, W. Holderbaum, C. G. Yang, A hybrid path

planning algorithm combining A* and improved ant colony optimization with dynamic window

approach for enhancing energy efficiency in warehouse environments, PeerJ Computer Science,

10 (2024), e2629. https://doi.org/10.7717/peerj-cs.2629

31. J. T. Chen, Q. Zhou, H. R. Ren, H. Y. Li, Partition and planning: a human-like motion decision for

UAV in trap environment, Sci. China Technol. Sci., 67 (2024), 1226–1237.

https://doi.org/10.1007/s11431-023-2605-7

32. Y. H. Li, J. W. Ye, L. Gao, M. Cai, CoDAC: autonomous obstacle avoidance optimization for

unmanned surface vehicle clusters via multi-modal dynamic perception and collaborative

community detection, IEEE Access, 13 (2025), 134552–134569.

https://doi.org/10.1109/ACCESS.2025.3593236

https://doi.org/10.1016/j.cie.2023.109767
https://doi.org/10.1007/s42405-018-0061-z
https://doi.org/10.1016/j.nucengdes.2024.113039
https://doi.org/10.1007/s10659-019-09741-z
https://doi.org/10.1038/s41598-024-67907-9
https://doi.org/10.1016/j.measurement.2024.114171
https://doi.org/10.1016/j.asoc.2024.111332
https://doi.org/10.1016/j.eswa.2025.128315
https://doi.org/10.3390/biomimetics10030180
https://doi.org/10.1155/2023/5098156
https://doi.org/10.1109/ACCESS.2022.3226465
https://doi.org/10.7717/peerj-cs.2629
https://doi.org/10.1007/s11431-023-2605-7
https://doi.org/10.1109/ACCESS.2025.3593236

30904

AIMS Mathematics Volume 10, Issue 12, 30879–30904.

33. J. T. Chen, H. R. Ren, Q. Zhou, H. Y. Li, Fast unfolding-based indoor space partitioning and rapid

complementary search planning for high-rise fire rescue, IEEE T. Autom. Sci. Eng., 22 (2025),

18750–18760. https://doi.org/10.1109/TASE.2025.3590419

© 2025 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (https://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1109/TASE.2025.3590419

