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Abstract: The internet is the most effective means of communication in the modern world. Therefore, 

cyber-attacks are becoming more frequent, and their consequences are becoming increasingly severe. 

Distributed denial of service (DDoS) is one of the five most effective and costly cyberattacks. DDoS 

attacks are the most prevalent and expensive in today's evolving cybersecurity landscape. However, 

their ability to disrupt network services causes significant financial losses and has become an effective 
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means of DDoS detection and prevention, both of which are essential for organisations. Network 

monitoring and control systems have found it challenging to recognise the numerous classes of denial 

of service (DoS) and DDoS attacks, as they all work exclusively. Therefore, an effective model is 

needed for attack detection. A previous study has established that shallow and deep learning (DL) 

methods are vital for identifying DDoS threats; however, there is a lack of research on time-based 

features and classification across numerous DDoS threat categories. This manuscript introduces an 

ensemble learning model integrated with two-tier heuristic optimisation techniques for effective cyber 

defence (ELMT2HO-ECD) methodology. The primary purpose of the ELMT2HO-ECD methodology 

is to provide a robust solution for detecting and mitigating DDoS attacks in real time. Initially, the 

ELMT2HO-ECD approach applies mean normalisation to the data to measure the feature within a 

specified range. Furthermore, the mountain gazelle optimiser (MGO) approach is utilised for feature 

extraction. For DDoS attack detection, ensemble DL models, namely convolutional long short‐term 

memory (ConvLSTM), Wasserstein autoencoder (WAE), and temporal convolutional networks (TCN), 

are employed. To further enhance the performance of the three ensemble models, hyperparameter 

tuning is performed using the improved pufferfish optimisation algorithm (IPOA), which optimises 

the models’ parameters to achieve higher accuracy. The ELMT2HO-ECD model is evaluated on the 

CICIDS2017, CICIDS2018, and CICIDS2019 datasets. Validation of the performance of the 

ELMT2HO-ECD model demonstrated superior accuracy of 98.93%, 98.43%, and 99.23% compared 

with existing techniques. 

Keywords: pufferfish optimisation algorithm; ensemble learning; DDoS; cyberattack; deep learning; 

feature selection 

Mathematics Subject Classification: 37M10 

 

1. Introduction 

Today, the Internet has become a crucial component of everyday activities. It enables interaction 

to be simpler. The internet of things (IoT) is becoming increasingly adopted in daily usage and business 

sectors [1]. IoT devices are compact and can interact with one another without a person present. The 

IoT is implemented on different platforms, namely smart factories, smart farms, smart homes, and 

expanding IoT devices. This will expose all devices to the threat of Distributed denial of service (DDoS) 

exploitation. IoT devices can't handle the intricate security framework due to their limited capabilities, 

such as processing power and storage, making them particularly susceptible [2]. If this susceptibility 

is not resolved, it may be exploited and used by IoT devices to execute DDoS attacks. It is presently 

considered a harmful threat on the Internet. DDoS attack agents attempt to prevent authorised clients 

from accessing services. Such attacks pose a threat due to the likelihood of real-time attacks from 

multiple points. Hence, until it stops, it is challenging to identify the original internet protocol (IP) 

address that causes this damage [3]. DDoS attacks also target legitimate networks to flood them with 

massive requests. When this occurs, the data units will originate from reliable sources that cannot be 

blocked or disabled. A single controller can direct a massive set of bots to send an enormous number 

of requests, thereby entirely occupying bandwidth in a DDoS attack [4]. The key role in a DDoS attack 

is the core function hub. These types of attacks occur very rapidly. Therefore, identifying DDoS attacks 

is a much stronger security approach than identifying crackers. Additionally, DDoS attacks have 

evolved alongside advances in security methods. Since the former types of defense depends only on 
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identifying malicious activity or anomalies, anomaly-enabled detection is considered more advanced 

than signature-based detection [5]. Figure 1 illustrates the general structure of DDoS attack detection. 

 

Figure 1. General structure of DDoS attack detection. 

There are two major groups of DDoS attacks: Volumetric and application-layer attacks. The first 

attack category overloads and drains the system's bandwidth. The second attack category is more 

advanced and usually employs minimal bandwidth to initiate. It emphasizes specific services or 

applications and progressively depletes network resources [6]. DDoS attacks pose a significant 

obstacle and require a comprehensive strategy to mitigate and manage the associated threats. Several 

methods are presented for detecting, mitigating, and preventing DDoS attacks [7]. The two main 

detection strategies are anomaly detection (AD) and signature-based. The AD technique can recognize 

fresh and novel threats by detecting anomalous conditions triggered by an attack [8]. Signature-based 

techniques can only recognize attacks whose patterns are already documented and are ineffective 

against zero-day or new attacks. A notable gap exists in the analysis of DDoS attack mitigation, even 

as defense mechanisms are becoming more efficient and attack strategies are growing more complex 

[9]. As a result, new types of DDoS attacks may emerge, which current detection techniques can not 

handle efficiently. Deep learning (DL) models can efficiently recognize DDoS attacks because the 

information is classified, and the models extract features. DL frameworks, such as RNN and CNN, are 

constructed using a sequence of nonlinear transformation layers to perform multiple stages of 

information abstraction from a set of labelled inputs. Hence, DL acts as an effective method for DDoS 

identification [10]. 

This manuscript introduces an ensemble learning model integrated with two-tier heuristic 

optimization techniques for effective cyber defense (ELMT2HO-ECD) methodology. The primary 

purpose of the ELMT2HO-ECD methodology is to provide a robust solution for detecting and 

mitigating DDoS attacks in real time. Initially, the ELMT2HO-ECD approach applies mean 

normalization to the data to measure the feature within a specified range. Furthermore, the mountain 

gazelle optimizer (MGO) approach is utilized for feature extraction. For DDoS attack detection, 

ensemble DL models, namely convolutional long short‐term memory (ConvLSTM), the wasserstein 

autoencoder (WAE), and temporal convolutional networks (TCNs), are employed. To further enhance 
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the performance of the three ensemble models, hyperparameter tuning is performed using the improved 

pufferfish optimization algorithm (IPOA), which optimizes model parameters to achieve higher 

accuracy. The ELMT2HO-ECD model is evaluated on the CICIDS2017, CICIDS2018, and 

CICIDS2019 datasets. The key contributions of the ELMT2HO-ECD model are listed below. 

▪ The ELMT2HO-ECD method applies mean normalization to standardize network traffic data, 

ensuring consistent feature scaling across samples. This improves training stability and improves 

convergence speed. It also contributes to more accurate detection by minimizing data discrepancies. 

▪ The ELMT2HO-ECD approach utilizes the MGO model for effectual feature extraction by 

detecting the most relevant features from the dataset, significantly mitigating dimensionality. This 

optimization enhances both the accuracy of DDoS detection and computational efficiency. It allows 

the model to concentrate on key patterns, improving overall performance. 

▪ The ELMT2HO-ECD model integrates ConvLSTM, WAE, and TCN to capture spatial, temporal, 

and deep abstract patterns in DDoS traffic, enabling robust detection across varying attack types. This 

hybrid architecture efficiently models both short- and long-term dependencies within the data, 

improving the technique’s ability to detect intrinsic attack patterns with higher accuracy. 

▪ The ELMT2HO-ECD methodology implements the IPOA method to fine-tune hyperparameters, 

ensuring optimal performance in detecting DDoS attacks. IPOA improves the model’s ability to find 

the optimal parameter combination, enhancing accuracy and efficiency. This results in a more reliable 

and adaptive detection system. 

The novelty of the ELMT2HO-ECD model lies in the hybrid integration of the bio-inspired MGO 

and IPOA techniques with advanced DL methods, including ConvLSTM, WAE, and TCN. This 

integration creates a robust, adaptive framework capable of detecting complex DDoS attack patterns. 

The model's capability to utilize optimization and DL methods for accurate detection in dynamic 

environments is a crucial distinguishing factor. 

2. Literature review 

The authors [11] designed a federated learning (FL) method for denial of service (DoS) attack 

detection and classification (FLDoSADC-DTL) through deep TL for blockchain-aided industrial IIoT 

infrastructure. BC tools ensure safe communication in IIoT environments. This method executes the 

sand cat swarm algorithm (SCSA) for feature selection. A stacked autoencoder (SAE) technique is 

used for the attack detection. The black widow optimization algorithm (BWOA) method is implemented 

for tuning. In [12], a new software defined networking (SDN)-powered DDoS threat recognition method 

was proposed using Tanhsoftmax-restricted Boltzmann dense machines (TS-RBDM) alongside the mean 

difference of public key and private key based Streebog (MDPP-Streebog) user authentication system. 

During registration, users entered their device details. Furthermore, in the network layer, nodes are 

initiated via the router/gate, and the detected data is communicated to the SDN controller to enhance 

network energy efficiency. The adaptive synthetic (ADASYN) technique is employed for data 

balancing. Lastly, the data is trained using the TS-RBDM technique. This trained DDoS detection 

system categorizes the sensed data as either attacked or non-attacked. By utilizing the Entropy 

binomial probability-based Shanon_Sano_Slias (EB-SFE) technique, the non-attacked data is encoded 

and transmitted to the receiving terminal. Mehmood et al. [13] presented a CNN based on conventional 

models and a multi-layer perceptron (MLP) to detect DDoS attacks. The model utilizes SHapley 

Additive exPlanations (SHAP) for key-feature detection and Bayesian optimization (BO) for 
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hyperparameter tuning, thereby improving detection precision and overall performance. 

The authors of [14] proposed a robust and scalable DDoS attack detection method for SDN-IoT 

environments by utilizing a multilevel deep neural network (DNN) that integrates convolutional neural 

networks (CNN) and long short-term memory (LSTM) to capture spatial and temporal patterns in 

network traffic effectively. Kanthimathi et al. [15] improve DDoS attack detection by incorporating 

SA-based CNNs with XGBoost, LSTM, and random forests (RF), using self-attention and weighted 

ensemble learning to enhance feature extraction and classification accuracy. The authors [16] 

developed a meta-heuristic, multi-layer ensemble deep reinforcement learning for DDoS attack detection 

(MMEDRL-ADM), in a cloud SDN setting. The introduced model uses metaheuristics with a DL 

approach on the SDN data plane. This technique proposes the african buffalo optimization (ABO)-

based feature selection (ABO-FS) to reduce computational complexity and increase the recognition 

rate. The improved grasshopper optimization algorithm (IGOA) technique is also implemented for 

tuning. Fatima et al. [17] proposed a novel ensemble FS technique, ensemble FS for lightweight 

intrusion detection system (IDS), leveraging seven filter-based approaches. ensemble feature selection 

for Lightweight IDS (ELIDS) reduces features and unifies the selection of essential features recognized 

by separate FS models. As part of numerous learning processes, ELIDS includes strong classification 

methods that are widely evaluated for resumption and performance through cross-domain and in-

domain testing. Hassan et al. [18] proposed a novel technique to identify DDoS attacks using a boosted 

elman RNN (ERNN) trained with a chaotic bacterial colony optimizer (CBCO) named CBCO-ERNN. 

The recommended technique utilizes CBCO to determine the optimal structure (number of hidden 

neurons) and parameter values (biases and weights) of the ERNN model. The CBCO is used to improve 

the BCO’s exploitation and exploration abilities. The CBCO method is used to train the ERNN. 

Dhanvijay et al. [19] proposed an Ensemble of Deep Learning Models with Prediction Scoring-based 

Optimized Feature Sets (EDLM-PSOFS) technique by integrating Missforest imputation, shapiro-wilk 

and correlation-adaptive LASSO regression (CALR)-based feature selection, and global attention 

LSTM networks (GA-LSTM) model with attention mechanisms. The model further improves 

interpretability through the exploit prediction scoring system (EPSS). Li et al. [20] proposed the 

multimodal adaptive replay-based continual learning (Multi-ARCL) framework to enhance encrypted 

traffic classification by utilizing multimodal DL and adaptive replay mechanisms. It aims to maintain 

model stability and plasticity through deep learning (DL) and continual learning (CL) while efficiently 

managing silent application data. Pradeep and Shukla [21] developed a novel network anomaly 

detection model using the predefined-mud ring algorithm (P-MRA) model for optimal feature selection 

and used multi-serial stacked networks (multi-SSN), which combines convolutional autoencoder 

(CAE), gated recurrent unit (GRU), and Bayesian learning (BL), to accurately detect DDoS attacks in 

IoT networks by effectively capturing complex attack patterns and reducing false positive rates. Table 

1 summarizes the existing studies on DDoS detection models. 
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Table 1. Summary of key literature on DDoS detection methods and techniques. 

Ref. Techniques Metrics Datasets Findings and limitations 

[11] 
FL, FLDoSADC-DTL, 

SCSA, SAE, BWOA 

accuracy, precision, 

recall, F1-score, 

detection rate 

Edge-IIoT 

cybersecurity 

dataset 

FLDoSADC-DTL outperforms in 

DoS detection for BC-based IIoT but 

faces challenges with computational 

load, data heterogeneity, and 

adversarial risks. 

[12] 

TS-RBDM, MDPP-

Streebog authentication, 

SDN, ADASYN, EB-

SFE 

Accuracy, training 

time, detection rate, 

precision, recall 

CIC DDoS 2019 

Dataset 

The model achieved 98% accuracy 

with minimal training time, 

outperforming existing methods, but 

may face scalability and real-time 

adaptability challenges. 

[13] MLP, CNN, SHAP, BO 

True positive rate, 

accuracy, precision, 

false positive rate 

CICDDoS-2019 and 

InSDN dataset 

The model achieved 99.95% TP on 

CICDDoS-2019 and 99.98% on 

InSDN, demonstrating high 

detection accuracy, though it may 

require further validation across 

diverse real-world conditions. 

[14] 
CNN, LSTM, 

Multilevel DNN 

Accuracy, precision, 

recall, F1-score, 

detection rate 

Real-world datasets 

The CNN-LSTM model 

outperformed existing methods in 

DDoS detection for SDN-IoT 

networks, but may face scalability 

and real-time deployment 

challenges. 

[15] 

SA-Enabled CNN with 

XGBoost, LSTM, RF, 

Self-Attention 

Mechanisms, Weighted 

Ensemble Learning 

Accuracy, precision, 

recall, F1-score 

CIC-DDoS2019 

dataset 

The proposed ensemble model 

achieved over 98% accuracy across 

existing DDoS detection methods, 

though it requires substantial 

computational resources for training. 

[16] 
MMEDRL-ADM, 

ABO-FS, IGOA 

Detection rate, 

accuracy, precision, 

recall 

Benchmark dataset 

The MMEDRL-ADM model 

outperforms existing models, though 

it involves increased computational 

complexity and training time. 

[17] 
ELIDS, seven filter-

based FS, RF 

Accuracy, 

robustness, peak 

accuracy 

Diverse IoT security 

datasets 

The ELIDS model attained 23.7% 

higher accuracy than existing 

methods, but its complexity may 

increase computational overhead. 

[18] 
CBCO-ERNN, Chaos 

Theory 

Accuracy, 

sensitivity, 

specificity, 

precision, F-Score 

BoT-IoT, CIC-

IDS2017, CIC-

DDoS2019, and 

IoTID20 datasets 

The CBCO-ERNN technique 

outperformed previous methods, 

though it may require extensive 

computational resources for large-

scale deployments. 

Continued on next page 
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Ref. Techniques Metrics Datasets Findings and limitations 

[19] 

EDLM-PSOFS, 

Median-based Shapiro-

Wilk test, CALR, GA-

LSTM, EPSS 

Accuracy, precision, 

recall, F1-score, 

FPR 

NSL-KDD, CIC-

IDS2017 

Achieved strong detection accuracy 

and reduced false positives, but was 

restricted by model complexity and 

interpretability at scale. 

[20] 
Multi-ARCL, CL, 

Adaptive Replay, DL 

Accuracy 

improvement, 

stability-plasticity 

balance 

NJUPT2023 

Improves accuracy by 8.64% but 

may face challenges handling rapidly 

evolving silent applications. 

[21] 
P-MRA, Multi-SSN, 

CAE, GRU, BL 

FPR, detection 

accuracy 

IDS ISCX 2012 

dataset 

Improved detection with reduced 

false positives, but complex attack 

patterns remain challenging. 

3. The proposed methodology 

This paper presents the ELMT2HO-ECD methodology. The main objective of the ELMT2HO-

ECD methodology is to provide a robust solution for recognizing, detecting, and mitigating DDoS 

attacks. The proposed ELMT2HO-ECD method uses mean normalization, dimensionality reduction, 

ensemble methods, and a parameter-tuning model to obtain this. Figure 2 represents the overall process 

of the ELMT2HO-ECD method. 

 

Figure 2. Overall process of the ELMT2HO-ECD method. 
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3.1. Data normalization 

Initially, the ELMT2HO-ECD approach applies mean normalization to scale the features within 

a specified range [22]. The model enhances convergence and stability during training and also 

mitigates the impact of disparities in the feature magnitude. It also prevents specific features from 

dominating the learning process, thus improving the overall detection accuracy. This is also simple, 

computationally efficient, and remarkably effective when combined with diverse DL methods, 

compared with other scaling models, ensuring balanced contributions from all features. 

The mean normalization method scales features by subtracting the mean and dividing by the 

standard deviation. In DDoS attack detection, this method supports normalized network traffic data, 

guaranteeing that attributes with large numerical ranges do not control those with small scales. This 

enhances the performance and convergence speed of ML methods for detecting DDoS attacks. 

Focusing the data near zero makes it easier to recognize abnormalities that deviate considerably from 

The usual traffic behavior. It is beneficial after using gradient-based or distance-based classifiers, as it 

improves stability and training precision. 

3.2. MGO-based feature selection procedure 

Next, the MGO method efficiently selects and recognizes the most related features [23]. This 

method is efficient at selecting and detecting the most relevant features, thereby enhancing accuracy 

and mitigating complexity. The model achieves faster convergence through its adaptive exploration-

exploitation strategy and avoids local optima compared with conventional optimization techniques. 

MGO also dynamically balances global and local search more effectively than particle swarm 

optimization (PSO) and genetic algorithms (GA). The method also needs fewer iterations and 

effectively mitigates the risk of premature convergence. Furthermore, real-time cyber defense is 

enabled by the simplicity and scalability of the MGO model. The MGO also enhances detection 

performance by choosing features that maximize informative patterns while reducing redundancy. 

Thus, the model exhibits superior feature selection in high-dimensional data and also highlights clear 

advantages over conventional metaheuristic techniques. 

The MGO is an advanced optimization model that draws on the social systems of mountain 

gazelles, lone territorial males, encircling maternity herds (MHs), and bachelor male herds (BMHs). 

Investigators employed these natural behaviors to advance a mathematical expression that enhances 

the optimizer. The MGO model incorporates gazelle traits: swift movement, migration, social hierarchy, 

and territoriality. This model proficiently inspects and is involved within the solution area by modelling 

the communication between MHs and BMHs and the searching actions of territorial males. This model 

enables MGO to efficiently optimize and solve complex problems by employing adaptive, dynamic 

models inspired by gazelle behavior. The mode safeguards wide-ranging study and employment in the 

search area, becoming a vital instrument in the optimisation. 

Mountain gazelles' show sturdy territorial behavior, keep significant distances among individual 

territories, and arrange themselves into three classes: Herds of young males, solitary males, and 

mother‐calf herds. Adult males frequently tackle territorial disputes, which are less potent than those 

of females, but younger males employ their horns more energetically than older males. 

(a) Territorial solitary males (TSMs): 

Once they reach adulthood, male gazelles' begin to defend their own territory. The optimal global 
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position is determined by a mathematical expression that integrates arbitrary features and the location 

of another male in the bachelor herd. 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝛼𝑧𝑒𝑙𝑙𝑒 − |(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 × 𝑋 × 𝐹| × 𝐶𝑜𝑓𝑟.              (1) 

(b) Maternity herds (MHs): 

MHs are crucial for the birth of stronger male gazelles'; a behavior modelled to create stronger 

solutions by mimicking herd communication and the effects of dominant males. 

𝑀𝐻 = (𝐵𝐻 + 𝐶𝑜𝑓1,𝑟) + (𝑟𝑖3 × 𝑚𝑎𝑙𝑒𝑔𝛼𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖4 × 𝑋𝑟𝛼𝑛𝑑) × 𝐶𝑜𝑓1,𝑟.         (2) 

where, 𝑋𝑟𝛼𝑛𝑑 depicts a vector location of a gazelle arbitrarily chosen from the population. 𝑟𝑖3 and 

𝑟𝑖4 refer to integers at arbitrary locations. 

(c) Bachelor male herds (BMHs): 

As younger males mature, they endeavor to establish their lands and oppose recognized males. It 

is modelled to depict the competition between solutions to enhance their locations. 

𝐵𝑀𝐻 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖5 × 𝑚𝑎𝑙𝑒𝑔𝛼𝑧𝑒𝑙𝑙𝑒 − 𝑟𝑖6 × 𝐵𝐻) × 𝐶𝑜𝑓𝑟.           (3) 

Now, 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒11𝑒 provides the optimal solution, and 𝐷 is calculated using the existing location. 

(d) Migration to search for food (MSF): 

Gazelles continuously migrate in search of food, covering long distances. This behavior is 

modelled to improve the search, allowing the model to explore various regions of the solution space. 

𝑀𝑆𝐹 = (𝑢𝑏 − 𝑙𝑏) × 𝑟7 + 𝑙𝑏.                          (4) 

Now, 𝑟7 represents an arbitrary number, and 𝑙𝑏 and 𝑢𝑏 denote the lower and upper bounds. In the 

MGO model, the fitness function (FF) employed is intended to find a balance among the selected 

feature counts in every solution (least) and the classifier’s precision (highest) which is achived by 

utilizing this chosen feature. The Eq (10) indicates the FF to calculate solutions. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
.                           (5) 

where 𝛾𝑅(𝐷)  indicates the classification rate of error of the specified classifier. |R| characterizes 

chosen subset's cardinality, and |𝐶|  denotes complete feature counts in the dataset; 𝛼  and 𝛽  are 

dual parameters equivalent to the significance of classifier quality and subset length. 

3.3. DDoS attack detection using ensemble methods 

An ensemble of DL techniques, such as ConvLSTM, WAE, and TCNs are deployed for DDoS 

attack detection. The ensemble models utilize the merits of each model. The ConvLSTM technique 

efficiently captures spatial and temporal patterns, while WAE excels at extracting latent features for 

anomaly representation. Likewise, the sequential dependencies are efficiently modelled by the TCN 

technique. The integrated model is effective at detecting intrinsic and growing attack behaviors 

compared with conventional single-model or shallow-learning approaches. Furthermore, incorporating 

diverse DL methodologies may lead to conflicts due to differing feature representations or gradient 
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directions; however, these conflicts can be reduced by using weighted loss aggregation, coordinated 

backpropagation, and careful learning rate scheduling, thereby ensuring harmonious and stable training. 

Thus, the ensemble model achives superior detection performance and faster convergence. The 

technique is resilient against diverse attack patterns, making it a better choice than conventional 

techniques. 

3.3.1. ConvLSTM model 

This is use for forecasting the spatio‐temporal sequence issue. In multiple-step prediction, the 

ConvLSTM technique fully leverages higher-dimensional spatio-temporal sequences [24]. Because of 

the effective process of spatio‐temporal data sequences, it is extensively utilized in further 

investigation domains. 

Unlike LSTM, ConvLSTM uses a vectorised representation of states, inputs, gating, and hidden 

cells, which are visualized as a sequence of vectors in a spatial grid. It employs a convolution kernel 

for forecasting the upcoming state of the grid cell from the neighboring input and the previous space-

state: 

Forgot: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓 ∘ 𝐶𝑡−1 + 𝑏𝑓).                 (6) 

Input gate: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑖 ∘ 𝐶𝑡−1 + 𝑏𝑖).                  (7) 

Status update: 

𝐶̃𝑡 = tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 + 𝑏𝐶),                     (8) 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ 𝐶̃𝑡.                             (9) 

Output gate: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜 ∘ 𝐶𝑡 + 𝑏0),                (10) 

𝐻𝑡 = 𝑜𝑡 ∘ tanh(𝐶𝑡).                             (11) 

Now, input 𝑋𝑡 of the existing moment, the state 𝐶𝑡−1 and the hidden 𝐻𝑡−1 of the preceding 

moment are the input of the ConvLSTM, and the output is the state 𝐶𝑡 and the hidden 𝐻𝑡 of the 

present moment. The state 𝐶𝑡 has a memory canvas that is updated over time steps, and the hidden 

𝐻𝑡  specifies the visible output. The Hadamard product represents element-wise multiplication; * 

denotes convolutional operations, sigmoid 𝜎  output 0~1  to regulate the data flow, and the 

hyperbolic tangent tanh  outoutputs outputsuts −1 ∼ 1  as an activation function for scaling the 

candidate’s values. 𝑓𝑡,  𝑖𝑡  and 𝑜𝑡  refer to the value of a gating unit; 𝑊𝑥(𝑓,𝑖,𝑐,𝑜),  𝑊ℎ(𝑓,𝑖,𝑐,𝑜)  and 

𝑊𝑐(𝑓,𝑖,𝑐,𝑜) are the weighted matrices of the gate unit; the weight 𝑊 is the convolution kernels that 

acquire the local spatial pattern. 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , and 𝑏𝑜  refer to scalar offsets that modify the gate's 

primary activation threshold. Figure 3 specifies the framework of the ConvLSTM technique. 
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Figure 3. Structure of ConvLSTM approach. 

3.3.2. The WAE method 

During the WAE training, the Wasserstein distance between the latent space distribution and the 

input data distribution decreases [25]. Thus, a system of encoders next to decoders, each one holding 

trainable parameters, is employed. Like the WAE, VAE intends to decrease either the cost of 

reconstruction or the term of regularization depicted as 𝐷𝑍(𝑃𝑍, 𝑄𝑧) and denoted by some arbitrary 

divergence metrics among 𝑄𝑧 and 𝑃𝑧. 

ℒ𝑊𝐴𝐸 = 𝔼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] + 𝜆 ⋅ 𝐷𝑧(𝑞(𝑧|𝑥), 𝑝(𝑧))             (12) 

where, 𝐷𝑧(𝑞(𝑧|𝑥), 𝑝(𝑧))  indicate some arbitrary divergence metrics, 𝜆 > 0  represents a hyper-

parameter and 𝔼𝑞(𝑧|𝑥)[log 𝑝(𝑥|𝑧)] acts as a term of reconstruction. The model has dual regularizes: 

Adversarial training and maximum mean discrepancy (MMD), which address this problem and 

improve adaptability in the latent space model. Notably, adversarial training is associated with 

adversarial AE. The WAE employs the Wasserstein distance to define a deterministic, direct map from 

the input data’s latent space, addressing the inherent stochasticity of latent variables in both (generative 

adversarial networks) GANs and VAEs. This deterministic mapping addresses randomness and enables 

latent-space interpolation. 

3.3.3. The TCN technique 

The TCN comprises three essential units, namely residual links, extended convolutions, and 

causal convolutions, which combine the benefits of RNNs and CNNs. It effectively prevents the 

explosion gradient or gradient hourglassing that often occurs in RNNs [26]. This approach highlights 
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time-linking in time-series predictions. Assuming the input sequence 𝑋𝑡+1 = 𝑥0, 𝑥1, … , 𝑥𝑇 and the 

constantly directed sequences of output 𝑌𝑇+1 = 𝑦0, 𝑦1, … , 𝑦𝑇, the projected output 𝑦𝑡 for time-step 

𝑡 is restricted, for instance: 𝑥0, 𝑥1, …, tx. These ensure that each prediction is given according to the 

identified data until the point, and the output prediction sequences are expressed as follows: 

𝑦(𝑡) = 𝐹𝜃(𝑥0, 𝑥1, … , 𝑥𝑇)(∀)𝑡 ∈ [0, 𝑇].                     (13) 

where, 𝐹𝜃()  represents the forward propagation process in the neural network NN, and 𝜃 

characterises the network parameters. The structure ensures that future data does not spread to the 

preceding. TCN’s convolutional layer avoids the need for a specific step size by sampling thoroughly 

at random. As with the most significant receptive part, Conv and extended time‐series dependencies 

are achieved at the corresponding output size. Given the 1D sequence of inputs 𝑥 ∈ 𝑅𝑛 and 𝐶𝑜𝑛𝑣 

filter mapping 0, ⋯ , 𝑘 − 1 ∈ 𝑅, the dilated 𝐶𝑜𝑛𝑣 for module 𝑠 inside the sequence is defined as 

follow: 

𝐹(𝑠) = ∑ 𝑓𝑘−1
𝑗=0 (𝑗) ⋅ 𝑥𝑠−𝑑⋅𝑗.                        (14) 

In the meantime, 𝑘 symbolizes the 𝐶𝑜𝑛𝑣 kernel’s dimensions and 𝑠 − 𝑑 ⋅ 𝑗 seizure preceding data. 

The dilation 𝑑 controls the sum of 0-vectors central to neighbouring 𝐶𝑜𝑛𝑣 kernels. Utilising each 

application of the layer of convolutional to the sequences of input, the dilation feature 𝑑 gives an 

exponential result. 

Still, as the number of layers in the network increases significantly, problems such as vanishing 

gradients or gradient decrease may occur, particularly in the deepest layers, particularly in methods for 

handling multifaceted time‐series data. To tackle these difficulties, residual blocks are joined into the 

TCN. Each residual block includes many dilated convolution layers, weight normalization, dropout, 

and rectified linear unit (ReLU) for heightened regularization and strength. Furthermore, the residual 

block combines positive and reverse residual components, allowing the model to take bi-directional 

temporal dependencies. Skip connections are used to apply 1 x 1  convolutions, allowing direct 

mapping of input features to the output while still requiring dimensionality adjustment. In the residual 

blocks, 𝑥  retains the earlier layer output, and 𝐹(𝑥)  retains the consequence of the procedure. 

Previously, 𝐹(𝑥) and 𝑥 are passed through the ReLU to obtain the final output, 𝑦. This model is 

specified as: 

𝑦 = 𝑅𝑒𝐿𝑈(𝑥 + 𝐹(𝑥)).                            (15) 

Here, 𝑥 denotes input from the earlier layer, 𝐹(𝑥) indicates the transformed output, and 𝑦 signifies 

the concluding output later utilising the ReLU. 

3.4. Hyperparameter tuning using the IPOA model 

Hyperparameter tuning via the IPOA optimizes the models’ parameters, enhancing the three 

ensemble models and achieving superior accuracy [27]. This model is excellent in optimizing 

parameters without needing overall system knowledge. The IPOA improves convergence and 

eliminates the need for predefined stabilizing strategies, unlike conventional policy or value-iteration 

models, making it effective in intrinsic and dynamic settings. This technique also effectively handles 

heterogeneous and ill-conditioned data by accounting for the characteristics of both fast and slow 
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subsystems. The data-driven technique also mitigates computational overhead while ensuring robust 

performance. The model’s efficiency and convergence have been rigorously validated, thus 

highlighting its dominance over conventional tuning techniques. 

The POA developed here successfully places the individual within the solution by mimicking the 

pufferfish's natural behavior and interactions with predators. This imitation has contributed to a two-

tier development of individual placement. The primary phase, exploration, mimics the predator’s 

attack, whereas the subsequent phase, exploitation, mimics the pufferfish’s defensive change. The 

optimal control of fast-sampling singularly perturbed systems is efficiently addressed by designing a 

composite controller utilizing subsystem decomposition [28]. Moreover, a novel data-driven single-

loop iterative model guarantees the cost control of uncertain systems, effectively handling fast and 

slow subsystem data and ill-conditioned problems, and removing the requirement for precise initial 

conditions [29]. 

3.4.1. Exploration 

The model’s primary step mimics the hunter's assault, tactically targeting the locations of 

vulnerable individuals that move slowly and are at risk of predation. By demonstrating the hunter’s 

movement during the predatory procedure, the model improves exploration and significantly changes 

the POA individual’s locations within the solution area. This combination of the hunter's model 

supports the model’s exploration ability, leading to improved exploration solutions. In the POA model, 

each individuals’ assumes the predator role, corresponding to a starving hunter seeking prey. In this 

search stage, individuals consider the locations of other individuals with higher performance indices, 

equivalent to aiming at pufferfish with the required qualities. The dynamics and definition of this 

predator's group inside every population are explained as follows: 

𝐹𝑄𝑖 = [𝑌ℎ ∶ 𝐺ℎ < 𝐺𝑗 , ℎ ≠ 𝑖]𝑠, 𝑖 = 1,2, … , 𝑁, 𝑘 ∈ [1,2, … , 𝑁].               (16) 

Here, the variable 𝐹𝑄𝑖 denotes the pool of sites associated with the 𝑖𝑡ℎ predator. 𝑦ℎ stands for the 

individual showing greater index performance than 𝑖𝑡ℎ predator, using its individual performance 

index, denoted by 𝐺ℎ. The hunters arbitrarily choose the pufferfish from the accessible collection 𝐹𝑄, 

using the chosen candidates characterised by 𝑆𝑃. By using Eq (17) to mimic the predator’s movements, 

a novel location inside the solution area was established for the individual. The preceding location is 

upgraded according to Eq (18), thus helping a constant search for the best solutions, 

𝑦𝑖,𝑗
𝑄1 = 𝑦𝑖,𝑗 + 𝑒𝑖,𝑗 × (𝑆𝑃𝑖,𝑗 − 𝐾𝑖,𝑗) × 𝑦𝑖,𝑗,                     (17) 

𝑌𝑖 = {
𝑌𝑖

𝑄1, 𝐺𝑖
𝑄1 ≤ 𝐺𝑖;

𝑌𝑖 , 𝑒𝑙𝑠𝑒.
                              (18) 

where, 𝑆𝑃𝑖 denotes the candidates randomly selected from the group FQ, whereas 𝑆𝑃𝑖𝑗 denotes the 

𝑗𝑡ℎ size of these candidates. The upgraded location of the 𝑖𝑡ℎ hunter, as established by the presented 

model, is characterized by 𝑦𝑄1, using its 𝑗𝑡ℎ size specified as 𝑦𝑖,𝑗
𝑄1

. The performance index for this 

novel location is denoted 𝐺𝑖
𝑄1

. Summaries random variables 𝑒𝑖𝑗 and adding the stochastic component 
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to the equation. Additionally, the constant 𝐾𝑖𝑗 can take on both 1 and 2. 

3.4.2. Exploitation 

During the exploitation stage, the model follows the defensive tactics of particular species, thus 

improving the individual's spatial distribution. During an attack, it activates its defense tool by 

expanding into a spiky sphere across the water’s surface. By imitating the hunter’s response to this 

self-protective posture, the model can detect and improve minor changes in the candidate’s location, 

like improving its exploitation efficacy. After computing a novel location, performance metrics are 

linked; when the novel location yields improved performance, it is established. On the other hand, the 

candidate maintains its first location. It is significant to recognize that the upgraded mechanism inside 

the POA relies on the performance index’s development, as determined by Eqs (19) and (20). 

𝑦𝑖,𝑗
𝑄2 = 𝑦𝑖𝑗 + (1 − 2𝑒𝑖,𝑗) ×

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
,                        (19) 

𝑌𝑗 = {
𝑌𝑖

𝑄2, 𝐺𝑖
𝑄2 ≤ 𝐺𝑗;

𝑌𝑖 , 𝑒𝑙𝑠𝑒.
                            (20) 

where, 𝑦𝑖
𝑄2

 denotes the recently computed location for the 𝑖𝑡ℎ hunter, as established by the second 

stage of the model, whereas 𝑦𝑖,𝑗
𝑄2

 denotes its 𝑗𝑡ℎ size. 𝐺𝑖
𝑄2

 characterises the performance index at 

this upgraded location. The variable 𝑡  indicates the iteration count, and 𝑒𝑖𝑗  denotes a randomly 

generated variable that alternates between (0,1), thus incorporating a stochastic component within the 

equation. 

The POA embodies a new meta-heuristic approach that draws on the interesting behavior of 

pufferfish, particularly their defense mechanism of expanding their bodies to avoid predators. This 

model is carefully designed to address complex optimization issues while overcoming the limitations 

of recent methods, including issues related to accuracy, computational efficiency, and convergence 

rates. The IPOA combines significant progress, such as a novel search tactic, adaptive parameter 

management, and an improved balance between exploitation and exploration. A substantial advance in 

the IPOA is the combination of a nonlinear, adaptive, weighted element that dynamically fine-tunes 

the search region on the basis of the quality of candidate solutions. This adaptable characteristic is 

essential for alleviating early convergence within the population and fostering diversity among 

solutions. The improved equation for X might yield differences in both negative and positive values, 

thereby enhancing the model's adaptability. 

𝑦𝑖,𝑗
𝑄1 = 𝑦𝑖,𝑗 + 𝑤𝑖 × (𝑆𝑃𝑖,𝑗 − 𝐾𝑖,𝑗) × 𝑦𝑖,𝑗.                      (21) 

The weight module of the 𝑖𝑡ℎ value is signified by 𝑤𝑖 and is calculated utilising Eq (22): 

𝑤𝑖 =
𝑓−𝑓𝑖

𝑓−𝑓
,     𝑖 = 1,2, … , 𝑁𝑃.                         (22) 

where, 𝑓𝑖 denotes the performance index for the 𝑖𝑡ℎ sample, and 𝑓 and 𝑓 denote the minimum and 

maximum objective values, respectively. This adaptive tactic effectively synchronizes the model’s 

capacity for exploration and exploitation. Additionally, a significant development is the exchange of 
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stochastic variable 𝑟 using chaotic map 𝛾, as shown in Eq (23): 

𝑦𝑖,𝑑 = 𝑙𝑏𝑑 + 𝛾𝑡 × (𝑢𝑏𝑑 − 𝑙𝑏𝑑).                       (23) 

This study uses Bernoulli shift mapping, as described by Eq (24): 

𝛾𝑡
𝑛𝑒𝑤 = {

𝛾𝑡

1−𝛽
, 0 < 𝛾𝑡 ≤ 1 − 𝛽,

𝛾𝑡−(1−𝛽)

𝛽
, 1 − 𝛽 < 𝛾𝑡 < 1

                       (24) 

where 𝛽 is set to 0.4, 𝑡 denotes the iteration count. Combining this with the Bernoulli shift mapping 

target improves the model's convergence. 

Table 2 outlines the elements involved in the optimization process, which play a crucial role in 

balancing exploration and exploitation. These parameters ensure effective convergence, maintain the 

solutions' diversity, and prevent premature stagnation, making the algorithm robust for complex 

optimization problems. 

Table 2. Hyperparameters of the IPOA technique. 

Hyperparameter Description Typical value / range 

POPU_SIZE (𝑁) Candidate solutions in the populations 20-50 

ITER (𝑡) Optimum optimization iterations 100-500 

SCALING_FACTOR (𝐾) Regulate the step size during updates 1 or 2 

STOCHASTIC_VARI (𝑒) Introduces randomness in position updates 0-1 

ADAP_WEIGHT (𝑤) 
Search intensity is adjusted arbitrarily on the basis of 

performance 

Calculated per 

candidate 

UPP_BOUND (𝑢𝑏) Each solution dimension’s maximum value Problem-specific 

LOW_BOUND (𝑙𝑏) Each solution dimension’s minimum value Problem-specific 

CHAOTIC_MAO (𝛾) Bernoulli shift is used to improve diversity and convergence 0-1 

Fitness selection is a significant factor that influences the IPOA performance. The hyperparameter 

selection method includes a solution-encoding method to calculate the efficacy of candidate solutions. 

As stated below, the IPOA determines precision as the foremost principle in the FF modelling. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = max (𝑃),                           (25) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
.                                 (26) 

Here, 𝑇𝑃 and 𝐹𝑃 represent the true and false positives, respectively 

4. Performance validation 

The performance of the ELMT2HO-ECD technique is evaluated on the CICIDS2017, 

CICIDS2018, and CICIDS2019 datasets [30–32]. The CICIDS2017 dataset contains 17,500 samples 

across seven class labels, as shown in Table 3. There are 78 attributes, but only 18 features were chosen. 
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Table 3. Details of the CICIDS2017 dataset. 

CICIDS2017 Dataset 

Class No. of instances 

BruteForce 2500 

DoS 2500 

WebAttacks 2500 

Infiltration 2500 

Bot 2500 

DDoS 2500 

PortScan 2500 

Total Instances 17500 

Figure 4 illustrates the convergence of fitness analysis over iterations. The outcomes indicate that 

the ELMT2HO-ECD model converges better across multiple iterations of the implemented data. 

 

Figure 4. Convergence curve of the ELMT2HO-ECD model under various iterations. 

Figure 5 shows the classifier performance of the ELMT2HO-ECD model on the CICIDS2017 

dataset. Figures 5(a) and 5(b) exhibit the confusion matrices with the accuracy of each class. Figure 

5(c) shows the PR study, demonstrating superior outcomes across all class labels. Ultimately, Figure 

5(d) illustrates the receiver operating characteristic ROC analysis, showing high ROC values for 

suitable outcomes across varied classes. 
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Figure 5. CICIDS2017 dataset: (a) and (b) confusion matrices, (c) curve of PR, and (d) 

curve of ROC. 

Table 4 and Figure 6 show the attack recognition of the ELMT2HO-ECD technique under the 

CICIDS2017 dataset. With 70%TRPHE, the ELMT2HO-ECD methodology provides average 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑆𝑐𝑜𝑟𝑒, and 𝑀𝐶𝐶 of 98.93%, 96.34%, 96.20%, 96.20%, and 95.62%, 

respectively. Moreover, depending on 30%TSPHE, the ELMT2HO-ECD technique delivers average 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹1𝑆𝑐𝑜𝑟𝑒 , and 𝑀𝐶𝐶  of 98.68%, 95.5%, 95.49%, 95.48%, and 94.72%, 

respectively. 
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Table 4. Attack detection of the ELMT2HO-ECD method under the CICIDS2017 dataset. 

Class 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 𝑀𝐶𝐶 

TRPHE (70%) 

BruteForce 96.60 92.38 82.76 87.31 85.53 

DoS 99.84 99.71 99.14 99.43 99.33 

WebAttacks 96.59 84.26 93.38 88.59 86.74 

Infiltration 99.95 99.94 99.71 99.83 99.80 

Bot 99.82 99.38 99.38 99.38 99.27 

DDoS 99.88 99.56 99.61 99.58 99.51 

PortScan 99.80 99.14 99.42 99.28 99.16 

Average 98.93 96.34 96.20 96.20 95.62 

TSPHE (30%) 

BruteForce 95.81 87.69 83.14 85.35 82.95 

DoS 99.87 99.73 99.33 99.53 99.46 

WebAttacks 95.68 83.5 87.55 85.48 82.97 

Infiltration 99.94 100 99.61 99.8 99.77 

Bot 99.85 99.32 99.59 99.46 99.37 

DDoS 99.92 99.71 99.71 99.71 99.67 

PortScan 99.71 98.58 99.48 99.03 98.86 

Average 98.68 95.5 95.49 95.48 94.72 

 

Figure 6. Average values of the ELMT2HO-ECD method with the CICIDS2017 dataset. 

In Figure 7, the training (TRNG) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and validation (VALID) 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 performances 

of the ELMT2HO-ECD method with CICIDS2017 dataset are shown. both values are calculated over 
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an interval of 0–100 epochs. The figure indicates that both 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values display an increasing 

trend, which shows the capability of the ELMT2HO-ECD technique with an enhanced solution 

through many iterations. Additionally, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 remains constant across epochs, indicating the least 

overfitting and suggesting a higher solution for the ELMT2HO-ECD technique. 

 

Figure 7. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 curve of the ELMT2HO-ECD method on the CICIDS2017 dataset. 

In Figure 8, the TRNG and VALID loss graphs of the ELMT2HO-ECD model on the 

CICIDS2017 dataset are shown. The values are calculated using an interval of 0–100 epochs. The 

values indicate a tendency to reduce, indicating the ELMT2HO-ECD method’s proficiency in 

balancing trade-offs. The ongoing decrease also ensures the superior performance of the ELMT2HO-

ECD technique. 
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Figure 8. Loss curve of the ELMT2HO-ECD method on the CICIDS2017 dataset. 

Table 5 and Figure 9 present a comparative analysis of the ELMT2HO-ECD approach against 

existing models on the CICIDS2017 dataset [11–19, 34–37]. Better to use all of these old approaches 

for comparison with the proposed approach because all of them have been validated under the same 

environment and evaluation measures of the proposed approach and to ensure the outperforms of the 

proposed approach on all of old proposed approaches. The outputs showed that the FLDoSADC-DTL, 

TS-RBDM, MMEDRL-ADM, EDLM-PSOFS, P-MRA, BNIDS, XG-Boost, and LSTM-AFSA 

models yielded lower values. However, the ELMT2HO-ECD technique demonstrated enhanced output 

with greater 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 98.93%, 96.34%, 96.20%, 96.20%, 

respectively. 

Table 5. Comparison evaluation of ELMT2HO-ECD model under the CICIDS2017 

dataset [11–19, 34–37]. 

CICIDS2017 Dataset 

Approach 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

FLDoSADC-DTL [11] 96.00 90.30 94.14 94.99 

TS-RBDM [12] 97.45 95.63 92.95 90.99 

MMEDRL-ADM [16] 98.30 94.39 90.28 91.48 

EDLM-PSOFS [19] 95.78 91.98 90.88 94.06 

P-MRA [34] 93.91 90.74 96.07 94.02 

BNIDS [34] 96.67 92.74 95.37 95.67 

XG-Boost [35] 98.30 90.92 94.81 90.17 

LSTM-AFSA [37] 97.56 92.16 92.42 95.58 

ELMT2HO-ECD [proposed] 98.93 96.34 96.20 96.20 
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Figure 9. Comparison of the ELMT2HO-ECD model on the CICIDS2017 dataset. 

Table 6 and Figure 10 specify the computational time (CT) analysis of the ELMT2HO-ECD 

technique versus existing models under the CICIDS2017 dataset. The FLDoSADC-DTL records a CT 

of 17.44, TS-RBDM takes 20.92, and MMEDRL-ADM achieves 14.52. Meanwhile, EDLM-PSOFS 

requires 19.18; P-MRA outperforms with a faster CT of 13.29; and BNIDS and XG-Boost follow 

closely with 15.30 and 15.37, respectively. LSTM-AFSA exhibits the highest CT of 22.96 seconds. 

Notably, the proposed ELMT2HO-ECD model significantly outperforms others, achieving the lowest 

CT of 5.53. 

Table 6. CT analysis of the ELMT2HO-ECD model with existing models with the 

CICIDS2017 dataset. 

CICIDS2017 dataset 

Approach CT (sec) 

FLDoSADC-DTL [11] 17.44 

TS-RBDM [12] 20.92 

MMEDRL-ADM [16] 14.52 

EDLM-PSOFS [19] 19.18 

P-MRA [34] 13.29 

BNIDS [34] 15.30 

XG-Boost [35] 15.37 

LSTM-AFSA [37] 22.96 

ELMT2HO-ECD [proposed] 5.53 
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Figure 10. CT analysis of the ELMT2HO-ECD model versus existing models with the 

CICIDS2017 dataset. 

Table 7 and Figure 11 show the ablation study analysis of the ELMT2HO-ECD approach with 

the CICIDS2017 dataset. The convolutional LSTM with BGO without hyperparameter tuning achived 

an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 94.96%, 𝑝𝑟𝑒𝑐𝑛 of 92.13%, recall of 92.10%, and F-Score of 91.61%. Additionally, 

the convolutional LSTM+BGO+IPOA achieved an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 95.65%, 𝑝𝑟𝑒𝑐𝑛 of 92.74%, 𝑟𝑒𝑐𝑎𝑙 

of 92.92%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 92.48%. Furthermore, by utilizing the WAE with BGO without tuning 

provided an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 96.20%, 𝑝𝑟𝑒𝑐𝑛 of 93.26%, 𝑟𝑒𝑐𝑎𝑙 of 93.51%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 93.37%, 

which increased to an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 96.90%, 𝑝𝑟𝑒𝑐𝑛 of 93.88%, 𝑟𝑒𝑐𝑎𝑙 of 94.12%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 

94.11% in the subsequent evaluation. Moreover, TCN with BGO without tuning achieved an 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 97.76%, 𝑝𝑟𝑒𝑐𝑛  of 94.64%, 𝑟𝑒𝑐𝑎𝑙  of 94.80%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 94.78%, which 

improved to an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 98.38%, 𝑝𝑟𝑒𝑐𝑛  of 95.49%, 𝑟𝑒𝑐𝑎𝑙  of 95.56%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

95.67%. Finally, the ELMT2HO-ECD model outperformed all combinations with an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 

98.93%, 𝑝𝑟𝑒𝑐𝑛  of 96.34%, 𝑟𝑒𝑐𝑎𝑙  of 96.20%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 96.20%, thus emphasizing the 

efficiency of each individual process. 
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Table 7. Ablation study analysis of the ELMT2HO-ECD approach under the CICIDS2017 dataset. 

CICIDS2017 Dataset 

Approach 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

Convolutional LSTM+BGO (without hyperparameter tuning) 94.96 92.13 92.10 91.61 

Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 95.65 92.74 92.92 92.48 

Wasserstein AE+BGO (without hyperparameter tuning) 96.20 93.26 93.51 93.37 

Wasserstein AE+BGO (without hyperparameter tuning) 96.90 93.88 94.12 94.11 

TCN+BGO (without hyperparameter tuning) 97.76 94.64 94.80 94.78 

TCN+BGO (without hyperparameter tuning) 98.38 95.49 95.56 95.67 

ELMT2HO-ECD (ensemble deep learning models with BGO feature 

selection process and IPOA hyperparameter tuning process) 
98.93 96.34 96.20 96.20 

The ELMT2HO-ECD technique is analysed with the CICIDS2018 dataset [31]. It has 17500 

samples across eight class labels, as shown in Table 8 below. There are 78 attributes, but only 18 

features were selected. 

Table 8. Details of the CICIDS2018 dataset. 

CICIDS2018 Dataset 

Classes No. of samples 

“Normal” 2500 

“DDoS” 2500 

“DoS” 2500 

“BruteForce” 2500 

“Bot” 2500 

“Infiltration” 2500 

“Web” 2500 

Total samples 17500 

Figure 11 shows the convergence of the fitness analysis across iterations. The outcomes indicate 

that the ELMT2HO-ECD approach achieves the best convergence across diverse iterations of the data. 
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Figure 11. Convergence curve of the ELMT2HO-ECD model across various iterations. 

 

Figure 12. CICIDS2018 dataset: (a) and (b) Confusion matrices, (c) PR, and (d) ROC. 
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Figure 12 shows the classification performance of the ELMT2HO-ECD technique on the 

CICIDS2018 dataset. Figures 12(a) and 12(b) display the confusion matrices with the accuracy of each 

class. Figure 12(c) shows the PR study, indicating better outcomes across all class labels. Lastly, Figure 

12(d) show the ROC analysis, demonstrating strong performance with high ROC values across various 

class labels. 

Table 9 and Figure 13 show the attack recognition performance of the ELMT2HO-ECD model 

on the CICIDS2018 dataset. With 70%TRPHE, the ELMT2HO-ECD model delivers an average 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑆𝑐𝑜𝑟𝑒, and 𝑀𝐶𝐶 of 98.42%, 94.53%, 94.49%, 94.44%, and 93.57%, 

respectively. Moreover, 30%TSPHE, the ELMT2HO-ECD approach provides average 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 , 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑆𝑐𝑜𝑟𝑒, and 𝑀𝐶𝐶 of 98.43%, 94.54%, 94.52%, 94.47%, and 93.60%, respectively. 

In Figure 14, the TRNG 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  and VALID 𝑎𝑐𝑐𝑢𝑦  outcomes of the ELMT2HO-ECD 

technique on the CICIDS2018 dataset are verified. Both  values are calculated 0–100 epochs. The 

figure underscored that both accuracy values illustrated an increasing trend, indicating that the 

ELMT2HO-ECD model’s proficiency improved and yielded higher outcomes across various iterations. 

Besides, both accuracy values remain constant across epochs, indicating minimal overfitting and a 

better solution. 

Figure 15 shows the TRNG and VALID loss curves for the ELMT2HO-ECD technique on the 

CICIDS2018 dataset. Both values are calculated 0–100 epochs. The values exemplify a tendency 

toward lessening, indicating the ELMT2HO-ECD approach’s proficiency at balancing trade-offs. The 

steady decline ensures the overall outcome of the ELMT2HO-ECD approach. 

Table 9. Attack detection of the ELMT2HO-ECD model with the CICIDS2018 dataset. 

Class 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 𝑀𝐶𝐶 

TRPHE (70%) 

Normal 95.99 90.74 80.26 85.18 83.08 

DDoS 100.00 100.00 100.00 100.00 100.00 

DoS 100.00 100.00 100.00 100.00 100.00 

BruteForce 99.95 99.66 100.00 99.83 99.80 

Bot 98.20 92.39 94.98 93.66 92.63 

Infiltration 98.33 94.10 94.21 94.15 93.18 

Web 96.50 84.85 91.96 88.26 86.30 

Average 98.42 94.53 94.49 94.44 93.57 

TSPHE (30%) 

Normal 95.70 89.21 79.11 83.86 81.58 

DDoS 100.00 100.00 100.00 100.00 100.00 

DoS 99.98 99.86 100.00 99.93 99.92 

BruteForce 99.98 99.86 100.00 99.93 99.92 

Bot 98.27 93.51 95.05 94.27 93.26 

Infiltration 98.15 92.74 94.58 93.65 92.57 

Web 96.95 86.62 92.90 89.65 87.94 

Average 98.43 94.54 94.52 94.47 93.60 
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Figure 13. Average values of the ELMT2HO-ECD model with the CICIDS2018 dataset. 

 

Figure 14. Accuracy curve of the ELMT2HO-ECD approach with the CICIDS2018 dataset. 
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Figure 15. Loss curve of ELMT2HO-ECD approach with the CICIDS2018 dataset. 

Table 10 and Figure 16 present a comparative analysis of the ELMT2HO-ECD technique against 

existing models on the CICIDS2018 dataset. The outcomes highlighted that the EB-SFE, CNN-LSTM, 

SA-CNN-XGBoost, Multi-ARCL, Multi-SSN, SecFedNIDS, and Base CNN approaches illustrated 

lesser values. However, the ELMT2HO-ECD method exhibited an enhanced outcome with a greater 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑆𝑐𝑜𝑟𝑒 of 98.43%, 94.54%, 94.52%, 94.47%, respectively. 

Table 10. Comparison analysis of the ELMT2HO-ECD model under the CICIDS2018 

dataset [12–21, 33–38]. Better to use all of these old approaches for comparison with the 

proposed approach because all of them have been validated under the same environment 

and evaluation measures of the proposed approach and to ensure the outperforms of the 

proposed approach on all of old proposed approaches. 

CICIDS2018 dataset 

Approach 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

EB-SFE [12] 91.71 93.74 93.51 93.49 

CNN-LSTM [14] 95.34 92.88 93.11 94.26 

SA-CNN-XGBoost [15] 95.21 93.31 91.89 93.18 

Multi-ARCL [20] 96.24 90.13 92.36 92.12 

Multi-SSN [21] 91.15 92.96 92.99 90.76 

SecFedNIDS [33] 97.03 90.65 93.06 90.24 

Base CNN [38] 97.97 91.84 90.43 92.61 

ELMT2HO-ECD [proposed] 98.43 94.54 94.52 94.47 
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Figure 16. Comparison analysis of the ELMT2HO-ECD model with the CICIDS2018 dataset. 

Table 11 and Figure 17 demonstrate the CT analysis of the ELMT2HO-ECD methodology with 

the existing models. The EB-SFE model records a CT of 24.93, closely followed by CNN-LSTM and 

Multi-SSN, both at 24.97. SA-CNN-XGBoost exhibits a slightly better CT at 23.11, while multi-ARCL 

exhibits the highest CT of 27.06. SecFedNIDS maintains a balanced performance of 24.21, while the 

Base CNN performs more efficiently at 18.81. The ELMT2HO-ECD method clearly surpasses existing 

methods, achieving the lowest CT of 14.48 and demonstrating enhanced computational efficiency. 

Table 11. CT evaluation of the ELMT2HO-ECD methodology versus the existing models 

with the CICIDS2018 dataset. 

CICIDS2018 dataset 

Approach CT (sec) 

EB-SFE [12] 24.93 

CNN-LSTM [14] 24.97 

SA-CNN-XGBoost [15] 23.11 

Multi-ARCL [20] 27.06 

Multi-SSN [21] 24.97 

SecFedNIDS [33] 24.21 

Base CNN [38] 18.81 

ELMT2HO-ECD 14.48 
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Figure 17. CT evaluation of the ELMT2HO-ECD methodology versus the existing models 

with the CICIDS2018 dataset. 

Table 12 demonstrates the ablation study assessment of the ELMT2HO-ECD model with the 

CICIDS2018 dataset. The convolutional LSTM with BGO without hyperparameter tuning attained an 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 94.24%, 𝑝𝑟𝑒𝑐𝑛 of 90.32%, 𝑟𝑒𝑐𝑎𝑙 of 89.93%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 90.55%. Likewise, the 

WAE model with BGO without tuning achieved an 𝑎𝑐𝑐𝑟𝑎𝑐𝑦 of 95.52%, 𝑝𝑟𝑒𝑐𝑛 of 91.57%, 𝑟𝑒𝑐𝑎𝑙 

of 91.36%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 92.00%, increasing to 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 96.25%, 𝑝𝑟𝑒𝑐𝑛 of 92.30%, 𝑟𝑒𝑐𝑎𝑙 

of 92.21%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 92.55% in subsequent evaluation. Furthermore, TCN with BGO without 

tuning reached an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 97.12%, 𝑝𝑟𝑒𝑐𝑛  of 92.99%, 𝑟𝑒𝑐𝑎𝑙  of 92.74%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

93.08%, which improved to an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 97.84%, 𝑝𝑟𝑒𝑐𝑛  of 93.72%, 𝑟𝑒𝑐𝑎𝑙  of 93.63%, and 

𝐹1𝑠𝑐𝑜𝑟𝑒 of 93.96%. However, superior results were achived by the complete ELMT2HO-ECD model 

with an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 98.43%, 𝑝𝑟𝑒𝑐𝑛  of 94.54%, 𝑟𝑒𝑐𝑎𝑙  of 94.52%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 94.47%, 

underscoring the effectiveness of each component. 

Table 12. Ablation study assessment of the ELMT2HO-ECD model under the CICIDS2018 dataset. 

CICIDS2018 Dataset 

Model 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

Convolutional LSTM+BGO (without hyperparameter tuning) 94.24 90.32 89.93 90.55 

Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 94.90 90.95 90.57 91.41 

Wasserstein AE+BGO (without hyperparameter tuning) 95.52 91.57 91.36 92.00 

Wasserstein AE+BGO (without hyperparameter tuning) 96.25 92.30 92.21 92.55 

TCN+BGO (without hyperparameter tuning) 97.12 92.99 92.74 93.08 

TCN+BGO (without hyperparameter tuning) 97.84 93.72 93.63 93.96 

ELMT2HO-ECD (ensemble deep learning models with BGO feature 

selection process and IPOA hyperparameter tuning process) 
98.43 94.54 94.52 94.47 
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Furthermore, the ELMT2HO-ECD technique is examined under the CICIDS2019 dataset [32]. 

The CICIDS2019 dataset comprises 9,000 samples representing diverse types of network traffic, with 

each class containing 500 samples. It includes both benign traffic and diverse types of DDoS attacks, 

such as domain name system (DNS), lightweight directory access protocol (LDAP), Microsoft SQL 

server (MSSQL), network time protocol (NTP), network basic input/output system (NetBIOS), simple 

network management protocol (SNMP), and user datagram protocol (UDP). Furthermore, the dataset 

features other attack types, including LDAP, MSSQL, NetBIOS, Portmap, Syn, TFTP, UDP, UDP-lag, 

UDPLag, and WebDDoS. The dataset is constructed to support research on network intrusion detection 

and traffic analysis, providing diverse, labelled samples for machine learning (ML) and DL techniques. 

The dataset comprises 78 features, of which 34 were selected for analysis. 

Figure 18 illustrates the convergence of fitness analysis over various iterations. The results 

demonstrate that the ELMT2HO-ECD approach achieves optimal convergence across iterations using 

these data. 

 

Figure 18. Convergence curve of the ELMT2HO-ECD model accros various iterations. 

Figure 19 provides a thorough analysis of the ELMT2HO-ECD technique in classifying diverse 

attack types within the CICIDS2019 dataset. Figure 19(a) illustrates the training confusion matrix, and 

Figure 19(b) shows the testing confusion matrix, indicating how well the model distinguishes between 

benign and malicious traffic. The separate cells in the matrix depict the counts of true positives, false 

positives, false negatives, and true negatives for each attack class. The PR and ROC curves, shown in 

Figures 19(c) and 19(d), further highlight the model's robustness across diverse attack types, with 

higher AUC scores indicating improved classification performance. These matrices and curves 

collectively demonstrate the model’s robustness and accuracy in detecting diverse attack scenarios. 
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Figure 19. CICIDS2019 dataset: (a) and (b) Confusion matrices, (c) PR, and (d) ROC. 

Table 13 and Figure 20 present the attack detection performance of the ELMT2HO-ECD model 

on the CICIDS2019 dataset with 70% TRPHE and 30% TSPHE, evaluated using multiple metrics, 

including 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑆𝑐𝑜𝑟𝑒, and 𝑀𝐶𝐶. Under 70% TRPHE, the model achieves 

high performance across various attack classes with an average 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 99.23%, 𝑝𝑟𝑒𝑐𝑛  of 

93.80%, 𝑟𝑒𝑐𝑎𝑙  of 93.13%, 𝐹1𝑆𝑐𝑜𝑟𝑒  of 93.13%, and 𝑀𝐶𝐶  of 92.91%. Under 30% TSPHE, the 

model exhibits robust performance with an average 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 99.23%, 𝑝𝑟𝑒𝑐𝑛 of 93.56%, 𝑟𝑒𝑐𝑎𝑙 

of 93.02%, 𝐹1𝑆𝑐𝑜𝑟𝑒 of 92.94%, and 𝑀𝐶𝐶 of 92.74%. The results show the technique’s consistent 

effectiveness in detecting both benign and malicious traffic across diverse attack types. 
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Table 13. Attack detection of the ELMT2HO-ECD model wirh the CICIDS2019 dataset. 

Class 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 𝑀𝐶𝐶 

TRPHE (70%) 

Benign 99.54 95.38 96.69 96.03 95.79 

DrDoS_DNS 98.37 93.88 76.45 84.27 83.91 

DrDoS_LDAP 99.19 93.80 91.99 92.89 92.46 

DrDoS_MSSQL 99.41 95.80 93.27 94.52 94.22 

DrDoS_NTP 99.94 99.70 99.11 99.41 99.37 

DrDoS_NetBIOS 99.48 93.75 96.77 95.24 94.97 

DrDoS_SNMP 99.19 91.71 94.05 92.87 92.45 

DrDoS_UDP 99.98 100.00 99.71 99.86 99.85 

LDAP 99.79 97.42 98.84 98.12 98.02 

MSSQL 98.24 78.12 94.20 85.41 84.90 

NetBIOS 99.92 100.00 98.54 99.26 99.22 

Portmap 98.32 85.67 84.23 84.94 84.06 

Syn 99.43 91.67 98.88 95.14 94.91 

TFTP 99.44 99.69 90.45 94.85 94.68 

UDP 97.98 75.64 96.75 84.90 84.57 

UDP-lag 98.27 99.15 68.53 81.04 81.67 

UDPLag 99.84 98.26 98.83 98.54 98.46 

WebDDoS 99.89 98.84 99.13 98.99 98.93 

Average 99.23 93.80 93.13 93.13 92.91 

TSPHE (30%) 

Benign 99.59 97.01 94.89 95.94 95.73 

DrDoS_DNS 98.37 91.30 75.54 82.68 82.24 

DrDoS_LDAP 99.30 96.85 89.13 92.83 92.55 

DrDoS_MSSQL 99.41 93.29 96.84 95.03 94.73 

DrDoS_NTP 99.74 99.36 96.30 97.81 97.68 

DrDoS_NetBIOS 99.56 94.55 98.11 96.30 96.08 

DrDoS_SNMP 99.30 92.11 95.24 93.65 93.29 

DrDoS_UDP 99.96 100.00 99.35 99.67 99.66 

LDAP 99.81 98.09 98.72 98.40 98.30 

MSSQL 98.11 79.55 90.32 84.59 83.78 

NetBIOS 99.96 99.37 100.00 99.68 99.67 

Portmap 98.19 83.33 82.76 83.04 82.09 

Syn 99.33 89.87 98.61 94.04 93.80 

TFTP 99.41 100.00 88.89 94.12 93.99 

UDP 97.96 70.88 98.47 82.43 82.62 

UDP-lag 98.33 99.15 72.50 83.75 84.03 

UDPLag 99.93 100.00 98.73 99.36 99.33 

WebDDoS 99.96 99.36 100.00 99.68 99.66 

Average 99.23 93.56 93.02 92.94 92.74 
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Figure 20. Average values of the ELMT2HO-ECD model with the CICIDS2019 dataset. 

In Figure 21, the TRNG and VALID 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 outcomes of the ELMT2HO-ECD technique on 

the CICIDS2019 dataset across 0–100 epochs are illustrated. The figure shows that both 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

values exhibit increasing trends, indicating the efficiency of the ELMT2HO-ECD model and 

improvements in the outputs across successive iterations. Additionally, the more consistent 𝑎𝑐𝑐𝑢 

values across epochs indicate reduced overfitting and suggest a more robust solution. 

 

Figure 21. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 curve of the ELMT2HO-ECD approach on the CICIDS2019 dataset. 

In Figure 22, the TRNG and VALID loss outputs of the ELMT2HO-ECD technique with the 
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CICIDS2019 dataset over 0–100 epochs are illustrated. The figure emphasises that both loss values 

exhibit decreasing trends, showing that the model is effectively learning and minimising errors during 

training. The training loss consistently decreases, while the validation loss also follows a similar 

downward trend, suggesting that the model is generalising well. Moreover, the gap between the 

TRNG/VALID losses remains small, further confirming the model's ability to avoid overfitting and 

perform efficiently. 

 

Figure 22. Loss curve of ELMT2HO-ECD approach on the CICIDS2019 dataset. 

The comparison study of the ELMT2HO-ECD methodology in Table 14 and Figure 23 with the 

CICIDS2019 dataset shows that the ABO-FS, CBCO-ERNN, GA-LSTM, CAE-GRU-BL, SVM, 

CNN-radial. basis function (CNN-RBF), and CNN-LSTM-ATT techniques attained lower values. In 

contrast, the ELMT2HO-ECD model attained the highest 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 

99.23%, 93.80%, 93.13%, 93.13%. 

Table 14. Comparison analysis of the ELMT2HO-ECD model under the CICIDS2019 

dataset [16–21, 39–41]. 

CICIDS2019 dataset 

Approach 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

ABO-FS [16] 95.04 89.28 89.41 89.32 

CBCO-ERNN [18] 97.97 92.93 93.01 91.32 

GA-LSTM [19] 97.10 89.95 90.71 90.49 

CAE-GRU-BL [21] 95.39 90.88 89.28 89.27 

SVM [39] 97.00 92.37 89.13 90.16 

CNN-RBF [40] 98.64 90.42 91.64 91.10 

CNN-LSTM-ATT [41] 95.67 89.58 90.06 89.01 

ELMT2HO-ECD [proposed] 99.23 93.80 93.13 93.13 
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Figure 23. Comparison analysis of the ELMT2HO-ECD model with the CICIDS2019 dataset. 

Table 15 and Figure 24 indicate the CT analysis of the ELMT2HO-ECD technique versus the 

existing methods. The ABO-FS model attained a CT of 22.58, while CBCO-ERNN performs slightly 

better at 22.40. GA-LSTM and CAE-GRU-BL illustrate higher CT with 28.35 and 29.86, respectively. 

SVM shows a relatively longer CT of 27.62, whereas CNN-RBF and CNN-LSTM-ATT are more 

efficient at 23.95 and 22.27 seconds, respectively. The ELMT2HO-ECD model significantly 

outperforms all existing techniques, achieving the lowest CT of 17.44. 

Table 15. CT assessment of the ELMT2HO-ECD technique with the existing methods 

under the CICIDS2019 dataset. 

CICIDS2019 dataset 

Technique CT (sec) 

ABO-FS [16] 22.58 

CBCO-ERNN [18] 22.40 

GA-LSTM [19] 28.35 

CAE-GRU-BL [21] 29.86 

SVM [39] 27.62 

CNN-RBF [40] 23.95 

CNN-LSTM-ATT [41] 22.27 

ELMT2HO-ECD [proposed] 17.44 
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Figure 24. CT assessment of the ELMT2HO-ECD technique versus the existing methods 

with the CICIDS2019 dataset. 

Table 16 exemplifies the ablation study evaluation of the ELMT2HO-ECD method under the 

CICIDS2019 dataset. The convolutional LSTM with BGO without hyperparameter tuning had an 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 94.77%, 𝑝𝑟𝑒𝑐𝑛 of 89.69%, 𝑟𝑒𝑐𝑎𝑙 of 89.29%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 89.02%. Additionally, 

the Convolutional LSTM+BGO+IPOA combination reached an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 95.39%, 𝑝𝑟𝑒𝑐𝑛  of 

90.34%, 𝑟𝑒𝑐𝑎𝑙 of 89.87%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 89.68%. Likewise, the WAE method with BGO without 

tuning achieved an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 96.22%, 𝑝𝑟𝑒𝑐𝑛  of 91.05%, 𝑟𝑒𝑐𝑎𝑙  of 90.43%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

90.20%, additionally increasing to an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 96.99%, precision of 91.59%, 𝑟𝑒𝑐𝑎𝑙 of 91.14%, 

and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 91.02% in subsequent evaluation. Moreover, TCN with BGO without tuning resulted 

in an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 97.76%, 𝑝𝑟𝑒𝑐𝑛 of 92.42%, 𝑟𝑒𝑐𝑎𝑙 of 91.85%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 91.79%, which 

improved to an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦  of 98.44%, 𝑝𝑟𝑒𝑐𝑛  of 92.95%, 𝑟𝑒𝑐𝑎𝑙  of 92.50%, and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 

92.60%. Finally, the ELMT2HO-ECD method showed superior values with an 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of 99.23%, 

𝑝𝑟𝑒𝑐𝑛 of 93.80%, 𝑟𝑒𝑐𝑎𝑙 of 93.13%, and 𝐹1𝑠𝑐𝑜𝑟𝑒 of 93.13%. 

Table 16. Ablation study evaluation of the ELMT2HO-ECD method with the CICIDS2019 dataset. 

CICIDS2019 dataset 

Method 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹1𝑆𝑐𝑜𝑟𝑒 

Convolutional LSTM+BGO (without hyperparameter tuning) 94.77 89.69 89.29 89.02 

Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 95.39 90.34 89.87 89.68 

Wasserstein AE+BGO (without hyperparameter tuning) 96.22 91.05 90.43 90.20 

Wasserstein AE+BGO (without hyperparameter tuning) 96.99 91.59 91.14 91.02 

TCN+BGO (without hyperparameter tuning) 97.76 92.42 91.85 91.79 

TCN+BGO (without hyperparameter tuning) 98.44 92.95 92.50 92.60 

ELMT2HO-ECD (ensemble deep learning models with BGO feature 

selection process and IPOA hyperparameter tuning process) 
99.23 93.80 93.13 93.13 
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5. Conclusions 

This paper presents the ELMT2HO-ECD methodology. The primary purpose of the ELMT2HO-

ECD methodology is to provide a robust solution for detecting and mitigating DDoS attacks in real 

time. Initially, the ELMT2HO-ECD approach applies mean normalization to scale the features within 

a specified range. Furthermore, the MGO approach efficiently selects and recognizes the most related 

features. For DDoS attack detection, an ensemble of DL techniques, including ConvLSTM, WAE, and 

TCN, is employed. To further enhance the performance of the three ensemble models, hyperparameter 

tuning is performed using the IPOA, which optimizes model parameters to achieve higher accuracy. 

The ELMT2HO-ECD model is evaluated on the CICIDS2017, CICIDS2018, and CICIDS2019 

datasets. The validation of the ELMT2HO-ECD model demonstrated superior accuracy of 98.93%, 

98.43%, and 99.23% compared with existing techniques. The limitations of the ELMT2HO-ECD 

model include reliance on a specific dataset that may not fully capture the diversity of real-world DDoS 

attack scenarios, potentially limiting the model's adaptability to evolving threats. Additionally, the 

approach requires substantial computational resources, which may limit its deployment in resource-

constrained environments. The model also focuses primarily on network traffic features, omitting other 

contextual data that could improve detection accuracy. For future work, incorporating adaptive 

learning mechanisms to handle growing attack patterns and exploring lightweight models for edge 

devices would enhance applicability. Furthermore, expanding evaluation to include multi-vector 

attacks and real-time implementation scenarios could provide deeper insights into practical efficiency. 

The ELMT2HO-ECD model can be extended to detect other network attacks, such as SQL injection 

or phishing, by adapting feature extraction and model layers to detect attack-specific patterns. Future 

study may also include a method for handling multi-vector DDoS attacks by utilizing flexible ensemble 

structures and hierarchical feature learning for robust detection of complex, combined threats 
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