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Abstract: The internet is the most effective means of communication in the modern world. Therefore,
cyber-attacks are becoming more frequent, and their consequences are becoming increasingly severe.
Distributed denial of service (DDoS) is one of the five most effective and costly cyberattacks. DDoS
attacks are the most prevalent and expensive in today's evolving cybersecurity landscape. However,
their ability to disrupt network services causes significant financial losses and has become an effective
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means of DDoS detection and prevention, both of which are essential for organisations. Network
monitoring and control systems have found it challenging to recognise the numerous classes of denial
of service (DoS) and DDoS attacks, as they all work exclusively. Therefore, an effective model is
needed for attack detection. A previous study has established that shallow and deep learning (DL)
methods are vital for identifying DDoS threats; however, there is a lack of research on time-based
features and classification across numerous DDoS threat categories. This manuscript introduces an
ensemble learning model integrated with two-tier heuristic optimisation techniques for effective cyber
defence (ELMT2HO-ECD) methodology. The primary purpose of the ELMT2HO-ECD methodology
is to provide a robust solution for detecting and mitigating DDoS attacks in real time. Initially, the
ELMT2HO-ECD approach applies mean normalisation to the data to measure the feature within a
specified range. Furthermore, the mountain gazelle optimiser (MGO) approach is utilised for feature
extraction. For DDoS attack detection, ensemble DL models, namely convolutional long short-term
memory (ConvLSTM), Wasserstein autoencoder (WAE), and temporal convolutional networks (TCN),
are employed. To further enhance the performance of the three ensemble models, hyperparameter
tuning is performed using the improved pufferfish optimisation algorithm (IPOA), which optimises
the models’ parameters to achieve higher accuracy. The ELMT2HO-ECD model is evaluated on the
CICIDS2017, CICIDS2018, and CICIDS2019 datasets. Validation of the performance of the
ELMT2HO-ECD model demonstrated superior accuracy of 98.93%, 98.43%, and 99.23% compared
with existing techniques.

Keywords: pufferfish optimisation algorithm; ensemble learning; DDoS; cyberattack; deep learning;
feature selection
Mathematics Subject Classification: 37M10

1. Introduction

Today, the Internet has become a crucial component of everyday activities. It enables interaction
to be simpler. The internet of things (IoT) is becoming increasingly adopted in daily usage and business
sectors [1]. IoT devices are compact and can interact with one another without a person present. The
IoT is implemented on different platforms, namely smart factories, smart farms, smart homes, and
expanding [oT devices. This will expose all devices to the threat of Distributed denial of service (DDoS)
exploitation. IoT devices can't handle the intricate security framework due to their limited capabilities,
such as processing power and storage, making them particularly susceptible [2]. If this susceptibility
is not resolved, it may be exploited and used by IoT devices to execute DDoS attacks. It is presently
considered a harmful threat on the Internet. DDoS attack agents attempt to prevent authorised clients
from accessing services. Such attacks pose a threat due to the likelihood of real-time attacks from
multiple points. Hence, until it stops, it is challenging to identify the original internet protocol (IP)
address that causes this damage [3]. DDoS attacks also target legitimate networks to flood them with
massive requests. When this occurs, the data units will originate from reliable sources that cannot be
blocked or disabled. A single controller can direct a massive set of bots to send an enormous number
of requests, thereby entirely occupying bandwidth in a DDoS attack [4]. The key role in a DDoS attack
is the core function hub. These types of attacks occur very rapidly. Therefore, identifying DDoS attacks
is a much stronger security approach than identifying crackers. Additionally, DDoS attacks have
evolved alongside advances in security methods. Since the former types of defense depends only on
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identifying malicious activity or anomalies, anomaly-enabled detection is considered more advanced
than signature-based detection [5]. Figure 1 illustrates the general structure of DDoS attack detection.
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Figure 1. General structure of DDoS attack detection.

There are two major groups of DDoS attacks: Volumetric and application-layer attacks. The first
attack category overloads and drains the system's bandwidth. The second attack category is more
advanced and usually employs minimal bandwidth to initiate. It emphasizes specific services or
applications and progressively depletes network resources [6]. DDoS attacks pose a significant
obstacle and require a comprehensive strategy to mitigate and manage the associated threats. Several
methods are presented for detecting, mitigating, and preventing DDoS attacks [7]. The two main
detection strategies are anomaly detection (AD) and signature-based. The AD technique can recognize
fresh and novel threats by detecting anomalous conditions triggered by an attack [8]. Signature-based
techniques can only recognize attacks whose patterns are already documented and are ineffective
against zero-day or new attacks. A notable gap exists in the analysis of DDoS attack mitigation, even
as defense mechanisms are becoming more efficient and attack strategies are growing more complex
[9]. As a result, new types of DDoS attacks may emerge, which current detection techniques can not
handle efficiently. Deep learning (DL) models can efficiently recognize DDoS attacks because the
information is classified, and the models extract features. DL frameworks, such as RNN and CNN, are
constructed using a sequence of nonlinear transformation layers to perform multiple stages of
information abstraction from a set of labelled inputs. Hence, DL acts as an effective method for DDoS
identification [10].

This manuscript introduces an ensemble learning model integrated with two-tier heuristic
optimization techniques for effective cyber defense (ELMT2HO-ECD) methodology. The primary
purpose of the ELMT2HO-ECD methodology is to provide a robust solution for detecting and
mitigating DDoS attacks in real time. Initially, the ELMT2HO-ECD approach applies mean
normalization to the data to measure the feature within a specified range. Furthermore, the mountain
gazelle optimizer (MGO) approach is utilized for feature extraction. For DDoS attack detection,
ensemble DL models, namely convolutional long short-term memory (ConvLSTM), the wasserstein
autoencoder (WAE), and temporal convolutional networks (TCNs), are employed. To further enhance
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the performance of the three ensemble models, hyperparameter tuning is performed using the improved
pufferfish optimization algorithm (IPOA), which optimizes model parameters to achieve higher
accuracy. The ELMT2HO-ECD model is evaluated on the CICIDS2017, CICIDS2018, and
CICIDS2019 datasets. The key contributions of the ELMT2HO-ECD model are listed below.

= The ELMT2HO-ECD method applies mean normalization to standardize network traffic data,
ensuring consistent feature scaling across samples. This improves training stability and improves
convergence speed. It also contributes to more accurate detection by minimizing data discrepancies.

= The ELMT2HO-ECD approach utilizes the MGO model for effectual feature extraction by
detecting the most relevant features from the dataset, significantly mitigating dimensionality. This
optimization enhances both the accuracy of DDoS detection and computational efficiency. It allows
the model to concentrate on key patterns, improving overall performance.

=  The ELMT2HO-ECD model integrates ConvLSTM, WAE, and TCN to capture spatial, temporal,
and deep abstract patterns in DDoS traffic, enabling robust detection across varying attack types. This
hybrid architecture efficiently models both short- and long-term dependencies within the data,
improving the technique’s ability to detect intrinsic attack patterns with higher accuracy.

=  The ELMT2HO-ECD methodology implements the IPOA method to fine-tune hyperparameters,
ensuring optimal performance in detecting DDoS attacks. IPOA improves the model’s ability to find
the optimal parameter combination, enhancing accuracy and efficiency. This results in a more reliable
and adaptive detection system.

The novelty of the ELMT2HO-ECD model lies in the hybrid integration of the bio-inspired MGO
and IPOA techniques with advanced DL methods, including ConvLSTM, WAE, and TCN. This
integration creates a robust, adaptive framework capable of detecting complex DDoS attack patterns.
The model's capability to utilize optimization and DL methods for accurate detection in dynamic
environments is a crucial distinguishing factor.

2. Literature review

The authors [11] designed a federated learning (FL) method for denial of service (DoS) attack
detection and classification (FLDoSADC-DTL) through deep TL for blockchain-aided industrial IToT
infrastructure. BC tools ensure safe communication in IIoT environments. This method executes the
sand cat swarm algorithm (SCSA) for feature selection. A stacked autoencoder (SAE) technique is
used for the attack detection. The black widow optimization algorithm (BWOA) method is implemented
for tuning. In [12], a new software defined networking (SDN)-powered DDoS threat recognition method
was proposed using Tanhsoftmax-restricted Boltzmann dense machines (TS-RBDM) alongside the mean
difference of public key and private key based Streebog (MDPP-Streebog) user authentication system.
During registration, users entered their device details. Furthermore, in the network layer, nodes are
initiated via the router/gate, and the detected data is communicated to the SDN controller to enhance
network energy efficiency. The adaptive synthetic (ADASYN) technique is employed for data
balancing. Lastly, the data is trained using the TS-RBDM technique. This trained DDoS detection
system categorizes the sensed data as either attacked or non-attacked. By utilizing the Entropy
binomial probability-based Shanon Sano_Slias (EB-SFE) technique, the non-attacked data is encoded
and transmitted to the receiving terminal. Mehmood et al. [13] presented a CNN based on conventional
models and a multi-layer perceptron (MLP) to detect DDoS attacks. The model utilizes SHapley
Additive exPlanations (SHAP) for key-feature detection and Bayesian optimization (BO) for
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hyperparameter tuning, thereby improving detection precision and overall performance.

The authors of [14] proposed a robust and scalable DDoS attack detection method for SDN-IoT
environments by utilizing a multilevel deep neural network (DNN) that integrates convolutional neural
networks (CNN) and long short-term memory (LSTM) to capture spatial and temporal patterns in
network traffic effectively. Kanthimathi et al. [15] improve DDoS attack detection by incorporating
SA-based CNNs with XGBoost, LSTM, and random forests (RF), using self-attention and weighted
ensemble learning to enhance feature extraction and classification accuracy. The authors [16]
developed a meta-heuristic, multi-layer ensemble deep reinforcement learning for DDoS attack detection
(MMEDRL-ADM), in a cloud SDN setting. The introduced model uses metaheuristics with a DL
approach on the SDN data plane. This technique proposes the african buffalo optimization (ABO)-
based feature selection (ABO-FS) to reduce computational complexity and increase the recognition
rate. The improved grasshopper optimization algorithm (IGOA) technique is also implemented for
tuning. Fatima et al. [17] proposed a novel ensemble FS technique, ensemble FS for lightweight
intrusion detection system (IDS), leveraging seven filter-based approaches. ensemble feature selection
for Lightweight IDS (ELIDS) reduces features and unifies the selection of essential features recognized
by separate FS models. As part of numerous learning processes, ELIDS includes strong classification
methods that are widely evaluated for resumption and performance through cross-domain and in-
domain testing. Hassan et al. [ 18] proposed a novel technique to identify DDoS attacks using a boosted
elman RNN (ERNN) trained with a chaotic bacterial colony optimizer (CBCO) named CBCO-ERNN.
The recommended technique utilizes CBCO to determine the optimal structure (number of hidden
neurons) and parameter values (biases and weights) of the ERNN model. The CBCO is used to improve
the BCO’s exploitation and exploration abilities. The CBCO method is used to train the ERNN.
Dhanvijay et al. [19] proposed an Ensemble of Deep Learning Models with Prediction Scoring-based
Optimized Feature Sets (EDLM-PSOFS) technique by integrating Missforest imputation, shapiro-wilk
and correlation-adaptive LASSO regression (CALR)-based feature selection, and global attention
LSTM networks (GA-LSTM) model with attention mechanisms. The model further improves
interpretability through the exploit prediction scoring system (EPSS). Li et al. [20] proposed the
multimodal adaptive replay-based continual learning (Multi-ARCL) framework to enhance encrypted
traffic classification by utilizing multimodal DL and adaptive replay mechanisms. It aims to maintain
model stability and plasticity through deep learning (DL) and continual learning (CL) while efficiently
managing silent application data. Pradeep and Shukla [21] developed a novel network anomaly
detection model using the predefined-mud ring algorithm (P-MRA) model for optimal feature selection
and used multi-serial stacked networks (multi-SSN), which combines convolutional autoencoder
(CAE), gated recurrent unit (GRU), and Bayesian learning (BL), to accurately detect DDoS attacks in
IoT networks by effectively capturing complex attack patterns and reducing false positive rates. Table
1 summarizes the existing studies on DDoS detection models.
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Table 1. Summary of key literature on DDoS detection methods and techniques.

Ref.  Techniques Metrics Datasets Findings and limitations
FLDoSADC-DTL outperforms in
accuracy, precision,  Edge-IloT DosS detection for BC-based I1oT but
FL, FLDoSADC-DTL, ) . .
[11] recall, F1-score, cybersecurity faces challenges with computational
SCSA, SAE, BWOA . .
detection rate dataset load, data heterogeneity, and
adversarial risks.
The model achieved 98% accuracy
TS-RBDM, MDPP- o . o o .
o Accuracy, training with  minimal training time,
Streebog authentication, | . CIC DDosS 2019 . o
[12] time, detection rate, outperforming existing methods, but
SDN, ADASYN, EB- Dataset

SFE

precision, recall

may face scalability and real-time

adaptability challenges.

[13]

MLP, CNN, SHAP, BO

True positive rate,
accuracy, precision,

false positive rate

CICDDo0S-2019 and
InSDN dataset

The model achieved 99.95% TP on
CICDDo0S-2019 and 99.98% on
InSDN, high

detection accuracy, though it may

demonstrating

require further validation across

diverse real-world conditions.

[14]

CNN, LSTM,
Multilevel DNN

Accuracy, precision,
recall, F1-score,

detection rate

Real-world datasets

The CNN-LSTM
outperformed existing methods in
DDoS detection for SDN-IoT

networks, but may face scalability

model

SA-Enabled CNN with
XGBoost, LSTM, RF,
Self-Attention
Mechanisms, Weighted

Ensemble Learning

Accuracy, precision,

recall, F1-score

CIC-DD0S2019

dataset

and real-time deployment
challenges.
The proposed ensemble model

achieved over 98% accuracy across
existing DDoS detection methods,
though it

requires  substantial

computational resources for training.

[16]

MMEDRL-ADM,

Detection rate,

accuracy, precision,

Benchmark dataset

The MMEDRL-ADM

outperforms existing models, though

model

ABO-FS, IGOA 1l it involves increased computational
reca
complexity and training time.
The ELIDS model attained 23.7%
Accuracy, . . . -
ELIDS, seven filter- Diverse [oT security higher accuracy than existing

robustness, peak

based FS, RF datasets methods, but its complexity may
accuracy ) .
increase computational overhead.
The CBCO-ERNN technique
Accuracy, BoT-IoT, CIC- .
o outperformed previous methods,
CBCO-ERNN, Chaos sensitivity, IDS2017, CIC- ) ) )
[18] . though it may require extensive
Theory specificity, DDoS2019, and

precision, F-Score

TIoTID20 datasets

computational resources for large-

scale deployments.
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Ref.  Techniques Metrics Datasets Findings and limitations
EDLM-PSOFS, o Achieved strong detection accuracy
. ) Accuracy, precision, .
Median-based Shapiro- NSL-KDD, CIC- and reduced false positives, but was
[19] ] recall, F1-score, ) )
Wilk test, CALR, GA- FPR IDS2017 restricted by model complexity and
LSTM, EPSS interpretability at scale.
Accuracy
] ) Improves accuracy by 8.64% but
Multi-ARCL, CL, improvement, . .
[20] . . . NJUPT2023 may face challenges handling rapidly
Adaptive Replay, DL stability-plasticity L L
evolving silent applications.
balance
. ) Improved detection with reduced
P-MRA, Multi-SSN, FPR, detection IDS ISCX 2012 .
[21] false positives, but complex attack
CAE, GRU, BL accuracy dataset

patterns remain challenging.

3. The proposed methodology

This paper presents the ELMT2HO-ECD methodology. The main objective of the ELMT2HO-
ECD methodology is to provide a robust solution for recognizing, detecting, and mitigating DDoS
attacks. The proposed ELMT2HO-ECD method uses mean normalization, dimensionality reduction,

ensemble methods, and a parameter-tuning model to obtain this. Figure 2 represents the overall process
of the ELMT2HO-ECD method.

¢

M Mean Normalization

Input: Training CSvV
Paset =)

Hyperparameter Tuning:
Improved Pufferfish Optimization |
Algorithm (IPOA)

Data Normalization Process:
Approach

)

Feature Selection Process:
Mountain Gazelle Optimizer

(BGO) Algorithm

-’

Splitting Data:

Testing Training
Dataset Dataset

Nown o —

————1

~
DDoS Attack Detection: |
Ensemble Deep Learning Models |

Convolutional LSTM
Wasserstein Autoencoder

Temporal Convolutional Network

J

8
Trained
Model

Performance Evaluations:

Accuracy Precision

Recall F1-Score

MCC

Figure 2. Overall process of the ELMT2HO-ECD method.
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3.1. Data normalization

Initially, the ELMT2HO-ECD approach applies mean normalization to scale the features within
a specified range [22]. The model enhances convergence and stability during training and also
mitigates the impact of disparities in the feature magnitude. It also prevents specific features from
dominating the learning process, thus improving the overall detection accuracy. This is also simple,
computationally efficient, and remarkably effective when combined with diverse DL methods,
compared with other scaling models, ensuring balanced contributions from all features.

The mean normalization method scales features by subtracting the mean and dividing by the
standard deviation. In DDoS attack detection, this method supports normalized network traffic data,
guaranteeing that attributes with large numerical ranges do not control those with small scales. This
enhances the performance and convergence speed of ML methods for detecting DDoS attacks.
Focusing the data near zero makes it easier to recognize abnormalities that deviate considerably from
The usual traffic behavior. It is beneficial after using gradient-based or distance-based classifiers, as it
improves stability and training precision.

3.2. MGO-based feature selection procedure

Next, the MGO method efficiently selects and recognizes the most related features [23]. This
method is efficient at selecting and detecting the most relevant features, thereby enhancing accuracy
and mitigating complexity. The model achieves faster convergence through its adaptive exploration-
exploitation strategy and avoids local optima compared with conventional optimization techniques.
MGO also dynamically balances global and local search more effectively than particle swarm
optimization (PSO) and genetic algorithms (GA). The method also needs fewer iterations and
effectively mitigates the risk of premature convergence. Furthermore, real-time cyber defense is
enabled by the simplicity and scalability of the MGO model. The MGO also enhances detection
performance by choosing features that maximize informative patterns while reducing redundancy.
Thus, the model exhibits superior feature selection in high-dimensional data and also highlights clear
advantages over conventional metaheuristic techniques.

The MGO is an advanced optimization model that draws on the social systems of mountain
gazelles, lone territorial males, encircling maternity herds (MHs), and bachelor male herds (BMHs).
Investigators employed these natural behaviors to advance a mathematical expression that enhances
the optimizer. The MGO model incorporates gazelle traits: swift movement, migration, social hierarchy,
and territoriality. This model proficiently inspects and is involved within the solution area by modelling
the communication between MHs and BMHs and the searching actions of territorial males. This model
enables MGO to efficiently optimize and solve complex problems by employing adaptive, dynamic
models inspired by gazelle behavior. The mode safeguards wide-ranging study and employment in the
search area, becoming a vital instrument in the optimisation.

Mountain gazelles' show sturdy territorial behavior, keep significant distances among individual
territories, and arrange themselves into three classes: Herds of young males, solitary males, and
mother-calf herds. Adult males frequently tackle territorial disputes, which are less potent than those
of females, but younger males employ their horns more energetically than older males.

(a) Territorial solitary males (TSMs):
Once they reach adulthood, male gazelles' begin to defend their own territory. The optimal global
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position is determined by a mathematical expression that integrates arbitrary features and the location
of another male in the bachelor herd.

TSM = maleggzene — |(1iy X BH —1i; X X X F| X Cof;. (1)

(b) Maternity herds (MHs):
MHs are crucial for the birth of stronger male gazelles'; a behavior modelled to create stronger
solutions by mimicking herd communication and the effects of dominant males.

MH = (BH + Cof, ) + (ris X maleggzeiie — Tia X Xrana) X Cofy . )

where, X,qonq depicts a vector location of a gazelle arbitrarily chosen from the population. riz and
ri, refer to integers at arbitrary locations.
(c) Bachelor male herds (BMHs):

As younger males mature, they endeavor to establish their lands and oppose recognized males. It
is modelled to depict the competition between solutions to enhance their locations.

BMH = (X(t) — D) + (ris X maleggeye — 1ig X BH) X Cof;. (3)

Now, maleggze11e provides the optimal solution, and D is calculated using the existing location.
(d) Migration to search for food (MSF):

Gazelles continuously migrate in search of food, covering long distances. This behavior is
modelled to improve the search, allowing the model to explore various regions of the solution space.

MSF = (ub — lb) X 15 + Ib. (4)

Now, 7, represents an arbitrary number, and (b and ub denote the lower and upper bounds. In the
MGO model, the fitness function (FF) employed is intended to find a balance among the selected
feature counts in every solution (least) and the classifier’s precision (highest) which is achived by
utilizing this chosen feature. The Eq (10) indicates the FF to calculate solutions.

Fitness = ayg(D) + B%. (5)
where yr(D) indicates the classification rate of error of the specified classifier. |R| characterizes
chosen subset's cardinality, and |C| denotes complete feature counts in the dataset; @ and S are
dual parameters equivalent to the significance of classifier quality and subset length.

3.3. DDoS attack detection using ensemble methods

An ensemble of DL techniques, such as ConvLSTM, WAE, and TCNs are deployed for DDoS
attack detection. The ensemble models utilize the merits of each model. The ConvLSTM technique
efficiently captures spatial and temporal patterns, while WAE excels at extracting latent features for
anomaly representation. Likewise, the sequential dependencies are efficiently modelled by the TCN
technique. The integrated model is effective at detecting intrinsic and growing attack behaviors
compared with conventional single-model or shallow-learning approaches. Furthermore, incorporating
diverse DL methodologies may lead to conflicts due to differing feature representations or gradient
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directions; however, these conflicts can be reduced by using weighted loss aggregation, coordinated
backpropagation, and careful learning rate scheduling, thereby ensuring harmonious and stable training.
Thus, the ensemble model achives superior detection performance and faster convergence. The
technique is resilient against diverse attack patterns, making it a better choice than conventional
techniques.

3.3.1. ConvLSTM model

This is use for forecasting the spatio-temporal sequence issue. In multiple-step prediction, the
ConvLSTM technique fully leverages higher-dimensional spatio-temporal sequences [24]. Because of
the effective process of spatio-temporal data sequences, it is extensively utilized in further
investigation domains.

Unlike LSTM, ConvLSTM uses a vectorised representation of states, inputs, gating, and hidden
cells, which are visualized as a sequence of vectors in a spatial grid. It employs a convolution kernel
for forecasting the upcoming state of the grid cell from the neighboring input and the previous space-
state:

Forgot:
fo = o(Wys % Xy + Wyp x He_y + Wep o Coy + by). (6)
Input gate:
g =Wy * Xe + Wy * Heq + W0 Ceq + by). (7)
Status update:
Ce = tanh(Wy * X + Wy * He_q + b)), (8)
Co=frolpq +ipo Ct~ 9)
Output gate:
0¢ = 0(Wyo * Xt + Who * Heq + W © G + by), (10)
H; = o; o tanh(C,). (11)

Now, input X; of the existing moment, the state C;_; and the hidden H,_; of the preceding
moment are the input of the ConvLSTM, and the output is the state C; and the hidden H, of the
present moment. The state C; has a memory canvas that is updated over time steps, and the hidden
H, specifies the visible output. The Hadamard product represents element-wise multiplication; *
denotes convolutional operations, sigmoid o output 0~1 to regulate the data flow, and the
hyperbolic tangent tanh outoutputs outputsuts —1 ~ 1 as an activation function for scaling the
candidate’s values. f;, i; and o, refer to the value of a gating unit; Wy(sic o) Wh(rico) and
We(r,ico) are the weighted matrices of the gate unit; the weight W is the convolution kernels that
acquire the local spatial pattern. bs, b;, b, and b, refer to scalar offsets that modify the gate's
primary activation threshold. Figure 3 specifies the framework of the ConvLSTM technique.
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Figure 3. Structure of ConvLSTM approach.
3.3.2.  The WAE method

During the WAE training, the Wasserstein distance between the latent space distribution and the
input data distribution decreases [25]. Thus, a system of encoders next to decoders, each one holding
trainable parameters, is employed. Like the WAE, VAE intends to decrease either the cost of
reconstruction or the term of regularization depicted as D,(P;, Q,) and denoted by some arbitrary
divergence metrics among @, and P,.

LWAE = IE:q(z|x) [lOg p(xlz)] +A1- DZ(CI(ZIX), p(Z)) (12)

where, Dz(q(zlx),p(z)) indicate some arbitrary divergence metrics, A > 0 represents a hyper-
parameter and E;,x)[log p(x|z)] acts as a term of reconstruction. The model has dual regularizes:
Adversarial training and maximum mean discrepancy (MMD), which address this problem and
improve adaptability in the latent space model. Notably, adversarial training is associated with
adversarial AE. The WAE employs the Wasserstein distance to define a deterministic, direct map from
the input data’s latent space, addressing the inherent stochasticity of latent variables in both (generative
adversarial networks) GANs and VAEs. This deterministic mapping addresses randomness and enables
latent-space interpolation.

3.3.3. The TCN technique

The TCN comprises three essential units, namely residual links, extended convolutions, and
causal convolutions, which combine the benefits of RNNs and CNNs. It effectively prevents the
explosion gradient or gradient hourglassing that often occurs in RNNs [26]. This approach highlights
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time-linking in time-series predictions. Assuming the input sequence X:*! = x,, x4, ..., x; and the
constantly directed sequences of output Y7*1 = y,,y,, ..., yr, the projected output y, for time-step
t is restricted, for instance: x,, X4, ..., tX. These ensure that each prediction is given according to the
identified data until the point, and the output prediction sequences are expressed as follows:

y(t) = FG(xOI-XlJ "'JxT)(v)t € [0' T] (13)

where, Fg() represents the forward propagation process in the neural network NN, and 6
characterises the network parameters. The structure ensures that future data does not spread to the
preceding. TCN’s convolutional layer avoids the need for a specific step size by sampling thoroughly
at random. As with the most significant receptive part, Conv and extended time-series dependencies
are achieved at the corresponding output size. Given the 1D sequence of inputs x € R™ and Conv
filter mapping O0,---,k — 1 € R, the dilated Conv for module s inside the sequence is defined as
follow:

F(s) =255 f () - Xsea - (14)

In the meantime, k symbolizes the Conv kernel’s dimensions and s — d - j seizure preceding data.
The dilation d controls the sum of 0-vectors central to neighbouring Conv kernels. Utilising each
application of the layer of convolutional to the sequences of input, the dilation feature d gives an
exponential result.

Still, as the number of layers in the network increases significantly, problems such as vanishing
gradients or gradient decrease may occur, particularly in the deepest layers, particularly in methods for
handling multifaceted time-series data. To tackle these difficulties, residual blocks are joined into the
TCN. Each residual block includes many dilated convolution layers, weight normalization, dropout,
and rectified linear unit (ReLU) for heightened regularization and strength. Furthermore, the residual
block combines positive and reverse residual components, allowing the model to take bi-directional
temporal dependencies. Skip connections are used to apply 1x1 convolutions, allowing direct
mapping of input features to the output while still requiring dimensionality adjustment. In the residual
blocks, x retains the earlier layer output, and F(x) retains the consequence of the procedure.
Previously, F(x) and x are passed through the ReLU to obtain the final output, y. This model is
specified as:

y = ReLU(x + F(x)). (15)

Here, x denotes input from the earlier layer, F(x) indicates the transformed output, and y signifies
the concluding output later utilising the ReLLU.

3.4. Hyperparameter tuning using the IPOA model

Hyperparameter tuning via the IPOA optimizes the models’ parameters, enhancing the three
ensemble models and achieving superior accuracy [27]. This model is excellent in optimizing
parameters without needing overall system knowledge. The IPOA improves convergence and
eliminates the need for predefined stabilizing strategies, unlike conventional policy or value-iteration
models, making it effective in intrinsic and dynamic settings. This technique also effectively handles
heterogeneous and ill-conditioned data by accounting for the characteristics of both fast and slow
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subsystems. The data-driven technique also mitigates computational overhead while ensuring robust
performance. The model’s efficiency and convergence have been rigorously validated, thus
highlighting its dominance over conventional tuning techniques.

The POA developed here successfully places the individual within the solution by mimicking the
pufferfish's natural behavior and interactions with predators. This imitation has contributed to a two-
tier development of individual placement. The primary phase, exploration, mimics the predator’s
attack, whereas the subsequent phase, exploitation, mimics the pufferfish’s defensive change. The
optimal control of fast-sampling singularly perturbed systems is efficiently addressed by designing a
composite controller utilizing subsystem decomposition [28]. Moreover, a novel data-driven single-
loop iterative model guarantees the cost control of uncertain systems, effectively handling fast and
slow subsystem data and ill-conditioned problems, and removing the requirement for precise initial
conditions [29].

3.4.1. Exploration

The model’s primary step mimics the hunter's assault, tactically targeting the locations of
vulnerable individuals that move slowly and are at risk of predation. By demonstrating the hunter’s
movement during the predatory procedure, the model improves exploration and significantly changes
the POA individual’s locations within the solution area. This combination of the hunter's model
supports the model’s exploration ability, leading to improved exploration solutions. In the POA model,
each individuals’ assumes the predator role, corresponding to a starving hunter seeking prey. In this
search stage, individuals consider the locations of other individuals with higher performance indices,
equivalent to aiming at pufferfish with the required qualities. The dynamics and definition of this
predator's group inside every population are explained as follows:

FQ,=[Y:G, <G ,h#ils,i=12,..,Nke[L2..,N]. (16)

Here, the variable FQ; denotes the pool of sites associated with the ith predator. y, stands for the
individual showing greater index performance than ith predator, using its individual performance
index, denoted by Gj,. The hunters arbitrarily choose the pufferfish from the accessible collection FQ,
using the chosen candidates characterised by SP. By using Eq (17) to mimic the predator’s movements,
a novel location inside the solution area was established for the individual. The preceding location is
upgraded according to Eq (18), thus helping a constant search for the best solutions,

yi,le =yjt+e; xX(SPj—Kij) Xy, (17)
Q1 ~Q1 - (.
P = le ’Gl - Gl' (18)
Y;, else.

where, SP; denotes the candidates randomly selected from the group FQ, whereas SP;; denotes the
jth size of these candidates. The upgraded location of the ith hunter, as established by the presented
model, is characterized by y?l, using its jth size specified as yi?jl. The performance index for this

novel location is denoted Gin. Summaries random variables e;; and adding the stochastic component
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to the equation. Additionally, the constant K;; can take on both 1 and 2.
3.4.2. Exploitation

During the exploitation stage, the model follows the defensive tactics of particular species, thus
improving the individual's spatial distribution. During an attack, it activates its defense tool by
expanding into a spiky sphere across the water’s surface. By imitating the hunter’s response to this
self-protective posture, the model can detect and improve minor changes in the candidate’s location,
like improving its exploitation efficacy. After computing a novel location, performance metrics are
linked; when the novel location yields improved performance, it is established. On the other hand, the
candidate maintains its first location. It is significant to recognize that the upgraded mechanism inside
the POA relies on the performance index’s development, as determined by Eqs (19) and (20).

ubj~1b;
v = v+ (1= 2e) x ——, (19)

Q2 692 < G.;
yj_z{Yl G S G (20)

Y;, else.
02

where, y;

stage of the model, whereas yi(:?j.z denotes its jth size. Gl.Q2 characterises the performance index at

denotes the recently computed location for the ith hunter, as established by the second

this upgraded location. The variable t indicates the iteration count, and e;; denotes a randomly
generated variable that alternates between (0,1), thus incorporating a stochastic component within the
equation.

The POA embodies a new meta-heuristic approach that draws on the interesting behavior of
pufferfish, particularly their defense mechanism of expanding their bodies to avoid predators. This
model is carefully designed to address complex optimization issues while overcoming the limitations
of recent methods, including issues related to accuracy, computational efficiency, and convergence
rates. The IPOA combines significant progress, such as a novel search tactic, adaptive parameter
management, and an improved balance between exploitation and exploration. A substantial advance in
the TPOA is the combination of a nonlinear, adaptive, weighted element that dynamically fine-tunes
the search region on the basis of the quality of candidate solutions. This adaptable characteristic is
essential for alleviating early convergence within the population and fostering diversity among
solutions. The improved equation for X might yield differences in both negative and positive values,
thereby enhancing the model's adaptability.

yi,le =y +w; X (SP; —Kij) Xy (21)

The weight module of the ith value is signified by w; and is calculated utilising Eq (22):

|

i =12, .., Np. (22)

wW; = —f’

“~

where, f; denotes the performance index for the ith sample, and ]_r and f denote the minimum and
maximum objective values, respectively. This adaptive tactic effectively synchronizes the model’s
capacity for exploration and exploitation. Additionally, a significant development is the exchange of
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stochastic variable r using chaotic map Yy, as shown in Eq (23):
Yia = lbg +ve X (ubg — lbg). (23)
This study uses Bernoulli shift mapping, as described by Eq (24):

1Z—fﬁ,0<yts1—ﬁ,

Yoo T V\ye—a-p)
B

(24)
I1_B<)/t<1

where [ issetto 0.4, t denotes the iteration count. Combining this with the Bernoulli shift mapping
target improves the model's convergence.

Table 2 outlines the elements involved in the optimization process, which play a crucial role in
balancing exploration and exploitation. These parameters ensure effective convergence, maintain the
solutions' diversity, and prevent premature stagnation, making the algorithm robust for complex
optimization problems.

Table 2. Hyperparameters of the [IPOA technique.

Hyperparameter Description Typical value / range
POPU_SIZE (N) Candidate solutions in the populations 20-50
ITER (t) Optimum optimization iterations 100-500
SCALING FACTOR (K)  Regulate the step size during updates lor2
STOCHASTIC VARI(e) Introduces randomness in position updates 0-1

Search intensity is adjusted arbitrarily on the basis of Calculated per
ADAP WEIGHT (w) .

- performance candidate
UPP_BOUND (ub) Each solution dimension’s maximum value Problem-specific
LOW_BOUND (lb) Each solution dimension’s minimum value Problem-specific
CHAOTIC MAO (y) Bernoulli shift is used to improve diversity and convergence 0-1

Fitness selection is a significant factor that influences the [IPOA performance. The hyperparameter
selection method includes a solution-encoding method to calculate the efficacy of candidate solutions.
As stated below, the IPOA determines precision as the foremost principle in the FF modelling.

Fitness = max (P), (25)

p=—2 (26)

"~ TP+FP’

Here, TP and FP represent the true and false positives, respectively
4. Performance validation
The performance of the ELMT2HO-ECD technique is evaluated on the CICIDS2017,

CICIDS2018, and CICIDS2019 datasets [30—32]. The CICIDS2017 dataset contains 17,500 samples
across seven class labels, as shown in Table 3. There are 78 attributes, but only 18 features were chosen.
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Table 3. Details of the CICIDS2017 dataset.

CICIDS2017 Dataset

Class No. of instances
BruteForce 2500

DoS 2500
WebAttacks 2500
Infiltration 2500

Bot 2500

DDoS 2500

PortScan 2500

Total Instances 17500

Figure 4 illustrates the convergence of fitness analysis over iterations. The outcomes indicate that
the ELMT2HO-ECD model converges better across multiple iterations of the implemented data.

Convergence of Fitness over Iterations

0.876

0.874 1

0.872

0.870

Avg. Fitness

0.868

0.866 1

0.864 1

T T T

0 5 10 15 20 25

Iteration

Figure 4. Convergence curve of the ELMT2HO-ECD model under various iterations.

Figure 5 shows the classifier performance of the ELMT2HO-ECD model on the CICIDS2017
dataset. Figures 5(a) and 5(b) exhibit the confusion matrices with the accuracy of each class. Figure
5(c) shows the PR study, demonstrating superior outcomes across all class labels. Ultimately, Figure
5(d) illustrates the receiver operating characteristic ROC analysis, showing high ROC values for
suitable outcomes across varied classes.
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Figure 5. CICIDS2017 dataset: (a) and (b) confusion matrices, (c) curve of PR, and (d)

curve of ROC.

Table 4 and Figure 6 show the attack recognition of the ELMT2HO-ECD technique under the
CICIDS2017 dataset. With 70%TRPHE, the ELMT2HO-ECD methodology provides average
accuracy, precy, reca;, Flg.ore, and MCC of 98.93%, 96.34%, 96.20%, 96.20%, and 95.62%,
respectively. Moreover, depending on 30%TSPHE, the ELMT2HO-ECD technique delivers average
accuracy, prec,, reca;, Fls.,re, and MCC of 98.68%, 95.5%, 95.49%, 95.48%, and 94.72%,

respectively.
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Table 4. Attack detection of the ELMT2HO-ECD method under the CICIDS2017 dataset.

Class Accuracy Prec, Recq, Flgcore McCC
TRPHE (70%)

BruteForce 96.60 92.38 82.76 87.31 85.53
DoS 99.84 99.71 99.14 99.43 99.33
WebAttacks 96.59 84.26 93.38 88.59 86.74
Infiltration 99.95 99.94 99.71 99.83 99.80
Bot 99.82 99.38 99.38 99.38 99.27
DDoS 99.88 99.56 99.61 99.58 99.51
PortScan 99.80 99.14 99.42 99.28 99.16
Average 98.93 96.34 96.20 96.20 95.62
TSPHE (30%)

BruteForce 95.81 87.69 83.14 85.35 82.95
DoS 99.87 99.73 99.33 99.53 99.46
WebAttacks 95.68 83.5 87.55 85.48 82.97
Infiltration 99.94 100 99.61 99.8 99.77
Bot 99.85 99.32 99.59 99.46 99.37
DDoS 99.92 99.71 99.71 99.71 99.67
PortScan 99.71 98.58 99.48 99.03 98.86
Average 98.68 95.5 95.49 95.48 94.72

CICIDS2017 Dataset o

Mcc

M Training Phase (70%)

F1-Score

Recall

M Testing Phase (30%)

Precision

Accuracy 60

140 120

Figure 6. Average values of the ELMT2HO-ECD method with the CICIDS2017 dataset.

In Figure 7, the training (TRNG) accuracy and validation (VALID) accuracy performances
of the ELMT2HO-ECD method with CICIDS2017 dataset are shown. both values are calculated over
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an interval of 0—100 epochs. The figure indicates that both accuracy values display an increasing
trend, which shows the capability of the ELMT2HO-ECD technique with an enhanced solution
through many iterations. Additionally, accuracy remains constant across epochs, indicating the least
overfitting and suggesting a higher solution for the ELMT2HO-ECD technique.

Training and Validation Accuracy

0.990 v —— Training
— Validation
B.85 4
= (.80 1
(=]
o
]
=1
(5]
£
B.75 4
B0.76 1
0 20 40 60 80 100

Figure 7. Accuracy curve of the ELMT2HO-ECD method on the CICIDS2017 dataset.

In Figure 8, the TRNG and VALID loss graphs of the ELMT2HO-ECD model on the
CICIDS2017 dataset are shown. The values are calculated using an interval of 0—100 epochs. The
values indicate a tendency to reduce, indicating the ELMT2HO-ECD method’s proficiency in
balancing trade-offs. The ongoing decrease also ensures the superior performance of the ELMT2HO-
ECD technique.
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Figure 8. Loss curve of the ELMT2HO-ECD method on the CICIDS2017 dataset.

Table 5 and Figure 9 present a comparative analysis of the ELMT2HO-ECD approach against
existing models on the CICIDS2017 dataset [11-19, 34-37]. Better to use all of these old approaches
for comparison with the proposed approach because all of them have been validated under the same
environment and evaluation measures of the proposed approach and to ensure the outperforms of the
proposed approach on all of old proposed approaches. The outputs showed that the FLDoSADC-DTL,
TS-RBDM, MMEDRL-ADM, EDLM-PSOFS, P-MRA, BNIDS, XG-Boost, and LSTM-AFSA
models yielded lower values. However, the ELMT2HO-ECD technique demonstrated enhanced output
with greater accuracy, prec,, reca;, and Flg.,.. of 98.93%, 96.34%, 96.20%, 96.20%,
respectively.

Table 5. Comparison evaluation of ELMT2HO-ECD model under the CICIDS2017
dataset [11-19, 34-37].

CICIDS2017 Dataset

Approach Accuracy Prec, Recq, Flgcore
FLDoSADC-DTL [11] 96.00 90.30 94.14 94.99
TS-RBDM [12] 97.45 95.63 92.95 90.99
MMEDRL-ADM [16] 98.30 94.39 90.28 91.48
EDLM-PSOFS [19] 95.78 91.98 90.88 94.06
P-MRA [34] 93.91 90.74 96.07 94.02
BNIDS [34] 96.67 92.74 95.37 95.67
XG-Boost [35] 98.30 90.92 94.81 90.17
LSTM-AFSA [37] 97.56 92.16 92.42 95.58
ELMT2HO-ECD [proposed] 98.93 96.34 96.20 96.20
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Figure 9. Comparison of the ELMT2HO-ECD model on the CICIDS2017 dataset.

Table 6 and Figure 10 specify the computational time (CT) analysis of the ELMT2HO-ECD
technique versus existing models under the CICIDS2017 dataset. The FLDoSADC-DTL records a CT
of 17.44, TS-RBDM takes 20.92, and MMEDRL-ADM achieves 14.52. Meanwhile, EDLM-PSOFS
requires 19.18; P-MRA outperforms with a faster CT of 13.29; and BNIDS and XG-Boost follow
closely with 15.30 and 15.37, respectively. LSTM-AFSA exhibits the highest CT of 22.96 seconds.
Notably, the proposed ELMT2HO-ECD model significantly outperforms others, achieving the lowest
CT of 5.53.

Table 6. CT analysis of the ELMT2HO-ECD model with existing models with the

CICIDS2017 dataset.
CICIDS2017 dataset
Approach CT (sec)
FLDoSADC-DTL [11] 17.44
TS-RBDM [12] 20.92
MMEDRL-ADM [16] 14.52
EDLM-PSOFS [19] 19.18
P-MRA [34] 13.29
BNIDS [34] 15.30
XG-Boost [35] 15.37
LSTM-AFSA [37] 22.96
ELMT2HO-ECD [proposed] 5.53
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Figure 10. CT analysis of the ELMT2HO-ECD model versus existing models with the
CICIDS2017 dataset.

Table 7 and Figure 11 show the ablation study analysis of the ELMT2HO-ECD approach with
the CICIDS2017 dataset. The convolutional LSTM with BGO without hyperparameter tuning achived
an accuracy of 94.96%, prec, of 92.13%, recall of 92.10%, and F-Score of 91.61%. Additionally,
the convolutional LSTM+BGO+IPOA achieved an accuracy of 95.65%, prec, of92.74%, recaq,
of 92.92%, and Flg e of 92.48%. Furthermore, by utilizing the WAE with BGO without tuning
provided an accuracy of 96.20%, prec, of 93.26%, reca; of 93.51%, and F1lg.,-. of 93.37%,
which increased to an accuracy of 96.90%, prec, of 93.88%, reca; of 94.12%, and F1l,.y.. of
94.11% in the subsequent evaluation. Moreover, TCN with BGO without tuning achieved an
accuracy of 97.76%, prec, of 94.64%, reca; of 94.80%, and F1lg.,,. of 94.78%, which
improved to an accuracy of 98.38%, prec, of 95.49%, reca; of 95.56%, and Flg.,,, of
95.67%. Finally, the ELMT2HO-ECD model outperformed all combinations with an accuracy of
98.93%, prec, of 96.34%, reca; of 96.20%, and Flg.,.. of 96.20%, thus emphasizing the
efficiency of each individual process.
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Table 7. Ablation study analysis of the ELMT2HO-ECD approach under the CICIDS2017 dataset.

CICIDS2017 Dataset

Approach Accuracy  Prec, Recaq, Flseore
Convolutional LSTM+BGO (without hyperparameter tuning) 94.96 92.13 92.10 91.61
Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 95.65 92.74 92.92 92.48
Wasserstein AE+BGO (without hyperparameter tuning) 96.20 93.26 93.51 93.37
Wasserstein AE+BGO (without hyperparameter tuning) 96.90 93.88 94.12 94.11
TCN+BGO (without hyperparameter tuning) 97.76 94.64 94.80 94.78
TCN+BGO (without hyperparameter tuning) 98.38 95.49 95.56 95.67

ELMT2HO-ECD (ensemble deep learning models with BGO feature

. . 98.93 96.34 96.20 96.20
selection process and IPOA hyperparameter tuning process)

The ELMT2HO-ECD technique is analysed with the CICIDS2018 dataset [31]. It has 17500
samples across eight class labels, as shown in Table 8 below. There are 78 attributes, but only 18
features were selected.

Table 8. Details of the CICIDS2018& dataset.

CICIDS2018 Dataset

Classes No. of samples
“Normal” 2500

“DDoS” 2500

“DoS” 2500
“BruteForce” 2500

“Bot” 2500
“Infiltration” 2500

“Web” 2500

Total samples 17500

Figure 11 shows the convergence of the fitness analysis across iterations. The outcomes indicate
that the ELMT2HO-ECD approach achieves the best convergence across diverse iterations of the data.
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Figure 11. Convergence curve of the ELMT2HO-ECD model across various iterations.

Figure 12. CICIDS2018 dataset: (a) and (b) Confusion matrices, (c) PR, and (d) ROC.
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Figure 12 shows the classification performance of the ELMT2HO-ECD technique on the
CICIDS2018 dataset. Figures 12(a) and 12(b) display the confusion matrices with the accuracy of each
class. Figure 12(c) shows the PR study, indicating better outcomes across all class labels. Lastly, Figure
12(d) show the ROC analysis, demonstrating strong performance with high ROC values across various
class labels.

Table 9 and Figure 13 show the attack recognition performance of the ELMT2HO-ECD model
on the CICIDS2018 dataset. With 70%TRPHE, the ELMT2HO-ECD model delivers an average
accuracy, prec,, reca;, Flg.yre, and MCC of 98.42%, 94.53%, 94.49%, 94.44%, and 93.57%.,
respectively. Moreover, 30%TSPHE, the ELMT2HO-ECD approach provides average accuracy,
prec,, reca;, Flg.ore, and MCC of 98.43%, 94.54%, 94.52%, 94.47%, and 93.60%, respectively.

In Figure 14, the TRNG accuracy and VALID accu, outcomes of the ELMT2HO-ECD
technique on the CICIDS2018 dataset are verified. Both values are calculated 0—-100 epochs. The
figure underscored that both accuracy values illustrated an increasing trend, indicating that the
ELMT2HO-ECD model’s proficiency improved and yielded higher outcomes across various iterations.
Besides, both accuracy values remain constant across epochs, indicating minimal overfitting and a
better solution.

Figure 15 shows the TRNG and VALID loss curves for the ELMT2HO-ECD technique on the
CICIDS2018 dataset. Both values are calculated 0-100 epochs. The values exemplify a tendency
toward lessening, indicating the ELMT2HO-ECD approach’s proficiency at balancing trade-offs. The
steady decline ensures the overall outcome of the ELMT2HO-ECD approach.

Table 9. Attack detection of the ELMT2HO-ECD model with the CICIDS2018 dataset.

Class Accuracy Prec, Recall Flgeore McCC
TRPHE (70%)

Normal 95.99 90.74 80.26 85.18 83.08
DDoS 100.00 100.00 100.00 100.00 100.00
DoS 100.00 100.00 100.00 100.00 100.00
BruteForce 99.95 99.66 100.00 99.83 99.80
Bot 98.20 92.39 94.98 93.66 92.63
Infiltration 98.33 94.10 94.21 94.15 93.18
Web 96.50 84.85 91.96 88.26 86.30
Average 98.42 94.53 94.49 94.44 93.57
TSPHE (30%)

Normal 95.70 89.21 79.11 83.86 81.58
DDoS 100.00 100.00 100.00 100.00 100.00
DoS 99.98 99.86 100.00 99.93 99.92
BruteForce 99.98 99.86 100.00 99.93 99.92
Bot 98.27 93.51 95.05 94.27 93.26
Infiltration 98.15 92.74 94.58 93.65 92.57
Web 96.95 86.62 92.90 89.65 87.94
Average 98.43 94.54 94.52 94.47 93.60
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Figure 13. Average values of the ELMT2HO-ECD model with the CICIDS2018 dataset.

Training and Validation Accuracy

o NI HJ'V i '" | '“ lv'
K/M Il |

-
(=]
[1:]
—
=]
(=]
|
0.75
0.70
—— Training
.65+ — ‘I."alidatlion
) 2 9 60 80 100

Epochs

Figure 14. Accuracy curve of the ELMT2HO-ECD approach with the CICIDS2018 dataset.
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Figure 15. Loss curve of ELMT2HO-ECD approach with the CICIDS2018 dataset.

Table 10 and Figure 16 present a comparative analysis of the ELMT2HO-ECD technique against
existing models on the CICIDS2018 dataset. The outcomes highlighted that the EB-SFE, CNN-LSTM,
SA-CNN-XGBoost, Multi-ARCL, Multi-SSN, SecFedNIDS, and Base CNN approaches illustrated
lesser values. However, the ELMT2HO-ECD method exhibited an enhanced outcome with a greater
accuracy, precy,, reca;, Fls.,re 0f 98.43%, 94.54%, 94.52%, 94.47%, respectively.

Table 10. Comparison analysis of the ELMT2HO-ECD model under the CICIDS2018
dataset [12-21, 33—38]. Better to use all of these old approaches for comparison with the
proposed approach because all of them have been validated under the same environment
and evaluation measures of the proposed approach and to ensure the outperforms of the
proposed approach on all of old proposed approaches.

CICIDS2018 dataset

Approach Accuracy Prec, Recaq, Flgcore
EB-SFE [12] 91.71 93.74 93.51 93.49
CNN-LSTM [14] 95.34 92.88 93.11 94.26
SA-CNN-XGBoost [15] 95.21 93.31 91.89 93.18
Multi-ARCL [20] 96.24 90.13 92.36 92.12
Multi-SSN [21] 91.15 92.96 92.99 90.76
SecFedNIDS [33] 97.03 90.65 93.06 90.24
Base CNN [38] 97.97 91.84 90.43 92.61
ELMT2HO-ECD [proposed] 98.43 94.54 94.52 94.47
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Figure 16. Comparison analysis of the ELMT2HO-ECD model with the CICIDS2018 dataset.

Table 11 and Figure 17 demonstrate the CT analysis of the ELMT2HO-ECD methodology with
the existing models. The EB-SFE model records a CT of 24.93, closely followed by CNN-LSTM and
Multi-SSN, both at 24.97. SA-CNN-XGBoost exhibits a slightly better CT at 23.11, while multi-ARCL
exhibits the highest CT of 27.06. SecFedNIDS maintains a balanced performance of 24.21, while the
Base CNN performs more efficiently at 18.81. The ELMT2HO-ECD method clearly surpasses existing
methods, achieving the lowest CT of 14.48 and demonstrating enhanced computational efficiency.

Table 11. CT evaluation of the ELMT2HO-ECD methodology versus the existing models
with the CICIDS2018 dataset.

CICIDS2018 dataset

Approach CT (sec)
EB-SFE [12] 24.93
CNN-LSTM [14] 24.97
SA-CNN-XGBoost [15] 23.11
Multi-ARCL [20] 27.06
Multi-SSN [21] 24.97
SecFedNIDS [33] 24.21
Base CNN [38] 18.81
ELMT2HO-ECD 14.48
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Figure 17. CT evaluation of the ELMT2HO-ECD methodology versus the existing models

with the CICIDS2018 dataset.

Table 12 demonstrates the ablation study assessment of the ELMT2HO-ECD model with the
CICIDS2018 dataset. The convolutional LSTM with BGO without hyperparameter tuning attained an
accuracy of 94.24%, prec, of 90.32%, reca; of 89.93%, and Flg.,,. of 90.55%. Likewise, the
WAE model with BGO without tuning achieved an accracy of 95.52%, prec, of 91.57%, recaq,
of 91.36%, and F14.,.. of 92.00%, increasing to accuracy of 96.25%, prec, of 92.30%, recq,
0f 92.21%, and Flg.pre Of 92.55% in subsequent evaluation. Furthermore, TCN with BGO without
tuning reached an accuracy of 97.12%, prec, of 92.99%, reca; of 92.74%, and F1lg.y of
93.08%, which improved to an accuracy of 97.84%, prec, of 93.72%, reca; of 93.63%, and
Flg.ore 0f93.96%. However, superior results were achived by the complete ELMT2HO-ECD model
with an accuracy of 98.43%, prec, of 94.54%, reca; of 94.52%, and Fl.,r. of 94.47%,

underscoring the effectiveness of each component.

Table 12. Ablation study assessment of the ELMT2HO-ECD model under the CICIDS2018 dataset.

CICIDS2018 Dataset
Model Accuracy  Prec, Reca, Flgcore
Convolutional LSTM+BGO (without hyperparameter tuning) 94.24 90.32 89.93 90.55
Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 94.90 90.95 90.57 91.41
Wasserstein AE+BGO (without hyperparameter tuning) 95.52 91.57 91.36 92.00
Wasserstein AE+BGO (without hyperparameter tuning) 96.25 92.30 92.21 92.55
TCN+BGO (without hyperparameter tuning) 97.12 92.99 92.74 93.08
TCN+BGO (without hyperparameter tuning) 97.84 93.72 93.63 93.96
ELMT2HO-ECD (ensemble deep learning models with BGO feature

98.43 94.54 94.52 94.47

selection process and IPOA hyperparameter tuning process)
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Furthermore, the ELMT2HO-ECD technique is examined under the CICIDS2019 dataset [32].
The CICIDS2019 dataset comprises 9,000 samples representing diverse types of network traffic, with
each class containing 500 samples. It includes both benign traffic and diverse types of DDoS attacks,
such as domain name system (DNS), lightweight directory access protocol (LDAP), Microsoft SQL
server (MSSQL), network time protocol (NTP), network basic input/output system (NetBIOS), simple
network management protocol (SNMP), and user datagram protocol (UDP). Furthermore, the dataset
features other attack types, including LDAP, MSSQL, NetBIOS, Portmap, Syn, TFTP, UDP, UDP-lag,
UDPLag, and WebDDoS. The dataset is constructed to support research on network intrusion detection
and traffic analysis, providing diverse, labelled samples for machine learning (ML) and DL techniques.
The dataset comprises 78 features, of which 34 were selected for analysis.

Figure 18 illustrates the convergence of fitness analysis over various iterations. The results
demonstrate that the ELMT2HO-ECD approach achieves optimal convergence across iterations using
these data.

Convergence of Fitness over Iterations

0.90

0.85

0.80 4

0.75 4

Avg. Fitness

0.70 1

0.65 1

0.60 4

0 5 10 15 20 25

ITteration

Figure 18. Convergence curve of the ELMT2HO-ECD model accros various iterations.

Figure 19 provides a thorough analysis of the ELMT2HO-ECD technique in classifying diverse
attack types within the CICIDS2019 dataset. Figure 19(a) illustrates the training confusion matrix, and
Figure 19(b) shows the testing confusion matrix, indicating how well the model distinguishes between
benign and malicious traffic. The separate cells in the matrix depict the counts of true positives, false
positives, false negatives, and true negatives for each attack class. The PR and ROC curves, shown in
Figures 19(c) and 19(d), further highlight the model's robustness across diverse attack types, with
higher AUC scores indicating improved classification performance. These matrices and curves
collectively demonstrate the model’s robustness and accuracy in detecting diverse attack scenarios.
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Figure 19. CICIDS2019 dataset: (a) and (b) Confusion matrices, (c) PR, and (d) ROC.

Table 13 and Figure 20 present the attack detection performance of the ELMT2HO-ECD model
on the CICIDS2019 dataset with 70% TRPHE and 30% TSPHE, evaluated using multiple metrics,
including accuracy, prec,, reca;, Fls.,re, and MCC. Under 70% TRPHE, the model achieves
high performance across various attack classes with an average accuracy of 99.23%, prec, of
93.80%, reca; of 93.13%, Flg.ore of 93.13%, and MCC of 92.91%. Under 30% TSPHE, the
model exhibits robust performance with an average accuracy of 99.23%, prec, 0of93.56%, reca;
of 93.02%, Flg.ore of 92.94%, and MCC of 92.74%. The results show the technique’s consistent
effectiveness in detecting both benign and malicious traffic across diverse attack types.
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Table 13. Attack detection of the ELMT2HO-ECD model wirh the CICIDS2019 dataset.

Class Accuracy Prec, Recq, Flgcore McCC
TRPHE (70%)

Benign 99.54 95.38 96.69 96.03 95.79
DrDoS _DNS 98.37 93.88 76.45 84.27 83.91
DrDoS_LDAP 99.19 93.80 91.99 92.89 92.46
DrDoS_MSSQL 99.41 95.80 93.27 94.52 94.22
DrDoS NTP 99.94 99.70 99.11 99.41 99.37
DrDoS NetBIOS 99.48 93.75 96.77 95.24 94.97
DrDoS_SNMP 99.19 91.71 94.05 92.87 92.45
DrDoS_UDP 99.98 100.00 99.71 99.86 99.85
LDAP 99.79 97.42 98.84 98.12 98.02
MSSQL 98.24 78.12 94.20 85.41 84.90
NetBIOS 99.92 100.00 98.54 99.26 99.22
Portmap 98.32 85.67 84.23 84.94 84.06
Syn 99.43 91.67 98.88 95.14 94.91
TFTP 99.44 99.69 90.45 94.85 94.68
uDP 97.98 75.64 96.75 84.90 84.57
UDP-lag 98.27 99.15 68.53 81.04 81.67
UDPLag 99.84 98.26 98.83 98.54 98.46
WebDDoS 99.89 98.84 99.13 98.99 98.93
Average 99.23 93.80 93.13 93.13 92.91
TSPHE (30%)

Benign 99.59 97.01 94.89 95.94 95.73
DrDoS_DNS 98.37 91.30 75.54 82.68 82.24
DrDoS_LDAP 99.30 96.85 89.13 92.83 92.55
DrDoS_MSSQL 99.41 93.29 96.84 95.03 94.73
DrDoS_NTP 99.74 99.36 96.30 97.81 97.68
DrDoS_NetBIOS 99.56 94.55 98.11 96.30 96.08
DrDoS_SNMP 99.30 92.11 95.24 93.65 93.29
DrDoS_UDP 99.96 100.00 99.35 99.67 99.66
LDAP 99.81 98.09 98.72 98.40 98.30
MSSQL 98.11 79.55 90.32 84.59 83.78
NetBIOS 99.96 99.37 100.00 99.68 99.67
Portmap 98.19 83.33 82.76 83.04 82.09
Syn 99.33 89.87 98.61 94.04 93.80
TFTP 99.41 100.00 88.89 94.12 93.99
UDP 97.96 70.88 98.47 82.43 82.62
UDP-lag 98.33 99.15 72.50 83.75 84.03
UDPLag 99.93 100.00 98.73 99.36 99.33
WebDDoS 99.96 99.36 100.00 99.68 99.66
Average 99.23 93.56 93.02 92.94 92.74
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Figure 20. Average values of the ELMT2HO-ECD model with the CICIDS2019 dataset.

In Figure 21, the TRNG and VALID accuracy outcomes of the ELMT2HO-ECD technique on
the CICIDS2019 dataset across 0—100 epochs are illustrated. The figure shows that both accuracy
values exhibit increasing trends, indicating the efficiency of the ELMT2HO-ECD model and
improvements in the outputs across successive iterations. Additionally, the more consistent accu
values across epochs indicate reduced overfitting and suggest a more robust solution.
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Figure 21. Accuracy curve of the ELMT2HO-ECD approach on the CICIDS2019 dataset.

In Figure 22, the TRNG and VALID loss outputs of the ELMT2HO-ECD technique with the
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CICIDS2019 dataset over 0—100 epochs are illustrated. The figure emphasises that both loss values
exhibit decreasing trends, showing that the model is effectively learning and minimising errors during
training. The training loss consistently decreases, while the validation loss also follows a similar
downward trend, suggesting that the model is generalising well. Moreover, the gap between the
TRNG/VALID losses remains small, further confirming the model's ability to avoid overfitting and
perform efficiently.
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Figure 22. Loss curve of ELMT2HO-ECD approach on the CICIDS2019 dataset.

The comparison study of the ELMT2HO-ECD methodology in Table 14 and Figure 23 with the
CICIDS2019 dataset shows that the ABO-FS, CBCO-ERNN, GA-LSTM, CAE-GRU-BL, SVM,
CNN-radial. basis function (CNN-RBF), and CNN-LSTM-ATT techniques attained lower values. In
contrast, the ELMT2HO-ECD model attained the highest accuracy, prec,, reca;,and Flg.,., of
99.23%, 93.80%, 93.13%, 93.13%.

Table 14. Comparison analysis of the ELMT2HO-ECD model under the CICIDS2019
dataset [16-21, 39-41].

CICIDS2019 dataset

Approach Accuracy Prec, Reca,; Flgeore
ABO-FS [16] 95.04 89.28 89.41 89.32
CBCO-ERNN [18] 97.97 92.93 93.01 91.32
GA-LSTM [19] 97.10 89.95 90.71 90.49
CAE-GRU-BL [21] 95.39 90.88 89.28 89.27
SVM [39] 97.00 92.37 89.13 90.16
CNN-RBF [40] 98.64 90.42 91.64 91.10
CNN-LSTM-ATT [41] 95.67 89.58 90.06 89.01
ELMT2HO-ECD [proposed] 99.23 93.80 93.13 93.13
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Figure 23. Comparison analysis of the ELMT2HO-ECD model with the CICIDS2019 dataset.

Table 15 and Figure 24 indicate the CT analysis of the ELMT2HO-ECD technique versus the
existing methods. The ABO-FS model attained a CT of 22.58, while CBCO-ERNN performs slightly
better at 22.40. GA-LSTM and CAE-GRU-BL illustrate higher CT with 28.35 and 29.86, respectively.
SVM shows a relatively longer CT of 27.62, whereas CNN-RBF and CNN-LSTM-ATT are more
efficient at 23.95 and 22.27 seconds, respectively. The ELMT2HO-ECD model significantly
outperforms all existing techniques, achieving the lowest CT of 17.44.

Table 15. CT assessment of the ELMT2HO-ECD technique with the existing methods
under the CICIDS2019 dataset.

CICIDS2019 dataset

Technique CT (sec)
ABO-FS [16] 22.58
CBCO-ERNN [18] 22.40
GA-LSTM [19] 28.35
CAE-GRU-BL [21] 29.86
SVM [39] 27.62
CNN-RBF [40] 23.95
CNN-LSTM-ATT [41] 22.27
ELMT2HO-ECD [proposed] 17.44
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Figure 24. CT assessment of the ELMT2HO-ECD technique versus the existing methods

with the CICIDS2019 dataset.

Table 16 exemplifies the ablation study evaluation of the ELMT2HO-ECD method under the
CICIDS2019 dataset. The convolutional LSTM with BGO without hyperparameter tuning had an
accuracy of 94.77%, prec, of 89.69%, reca; of 89.29%, and F1,.,.. of 89.02%. Additionally,
the Convolutional LSTM+BGO+IPOA combination reached an accuracy of 95.39%, prec, of
90.34%, reca; of 89.87%, and Flg.,.. of 89.68%. Likewise, the WAE method with BGO without
tuning achieved an accuracy of 96.22%, prec, of 91.05%, reca; of 90.43%, and Fl.,r. Of
90.20%, additionally increasing to an accuracy of 96.99%, precision of 91.59%, reca; of 91.14%,
and Flg.,. of 91.02% in subsequent evaluation. Moreover, TCN with BGO without tuning resulted
in an accuracy of 97.76%, prec, of 92.42%, reca; of 91.85%, and F1,.,.. of 91.79%, which
improved to an accuracy of 98.44%, prec, of 92.95%, reca; of 92.50%, and F1lg.,,, of
92.60%. Finally, the ELMT2HO-ECD method showed superior values with an accuracy of 99.23%,
prec, of 93.80%, reca; of 93.13%, and Flg.,.. of 93.13%.

Table 16. Ablation study evaluation of the ELMT2HO-ECD method with the CICIDS2019 dataset.

CICIDS2019 dataset
Method Accuracy  Prec, Recq Flseore
Convolutional LSTM+BGO (without hyperparameter tuning) 94.77 89.69 89.29 89.02
Convolutional LSTM+BGO+IPOA (with hyperparameter tuning) 95.39 90.34 89.87 89.68
Wasserstein AE+BGO (without hyperparameter tuning) 96.22 91.05 90.43 90.20
Wasserstein AE+BGO (without hyperparameter tuning) 96.99 91.59 91.14 91.02
TCN+BGO (without hyperparameter tuning) 97.76 92.42 91.85 91.79
TCN+BGO (without hyperparameter tuning) 98.44 92.95 92.50 92.60
ELMT2HO-ECD (ensemble deep learning models with BGO feature

99.23 93.80 93.13 93.13

selection process and IPOA hyperparameter tuning process)
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5. Conclusions

This paper presents the ELMT2HO-ECD methodology. The primary purpose of the ELMT2HO-
ECD methodology is to provide a robust solution for detecting and mitigating DDoS attacks in real
time. Initially, the ELMT2HO-ECD approach applies mean normalization to scale the features within
a specified range. Furthermore, the MGO approach efficiently selects and recognizes the most related
features. For DDoS attack detection, an ensemble of DL techniques, including ConvLSTM, WAE, and
TCN, is employed. To further enhance the performance of the three ensemble models, hyperparameter
tuning is performed using the [IPOA, which optimizes model parameters to achieve higher accuracy.
The ELMT2HO-ECD model is evaluated on the CICIDS2017, CICIDS2018, and CICIDS2019
datasets. The validation of the ELMT2HO-ECD model demonstrated superior accuracy of 98.93%,
98.43%, and 99.23% compared with existing techniques. The limitations of the ELMT2HO-ECD
model include reliance on a specific dataset that may not fully capture the diversity of real-world DDoS
attack scenarios, potentially limiting the model's adaptability to evolving threats. Additionally, the
approach requires substantial computational resources, which may limit its deployment in resource-
constrained environments. The model also focuses primarily on network traffic features, omitting other
contextual data that could improve detection accuracy. For future work, incorporating adaptive
learning mechanisms to handle growing attack patterns and exploring lightweight models for edge
devices would enhance applicability. Furthermore, expanding evaluation to include multi-vector
attacks and real-time implementation scenarios could provide deeper insights into practical efficiency.
The ELMT2HO-ECD model can be extended to detect other network attacks, such as SQL injection
or phishing, by adapting feature extraction and model layers to detect attack-specific patterns. Future
study may also include a method for handling multi-vector DDoS attacks by utilizing flexible ensemble
structures and hierarchical feature learning for robust detection of complex, combined threats

Author contributions

Hend Khalid Alkahtani: Conceptualization, methodology, validation, investigation, writing-
original draft preparation, Mohammed Baihan: Conceptualization, methodology, writing-original draft
preparation, writing-review and editing; Mohammed Burhanur Rehman: Methodology, validation,
writing-original draft preparation; Randa Allafi: Software, visualization, validation, data curation,
writing-review and editing; Sultan Almutairi: Validation, original draft preparation, writing-review and
editing; Ibrahim Zalah: Methodology, validation, conceptualization, writing-review and editing; Nouf
Atiahallah Alghanmi: Methodology, validation, original draft preparation; Mohammed Mujib
Alshahrani: Validation, original draft preparation, writing-review and editing. All authors have read
and approved the final version of the manuscript for publication.

Use of Generative-Al tools declaration

The authors declare that they have not used Artificial Intelligence (Al) tools in the creation of this
article.

AIMS Mathematics Volume 10, Issue 12, XxXxx—XXX.



30105

Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King

Khalid University for funding this work through Large Research Project under grant number RGP2/
247/46. The authors would like to thank Ongoing Research Funding program, (ORFFT-2025-090-3),
King Saud University, Riyadh, Saudi Arabia. Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2025R384), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Deanship of Scientific
Research at Northern Border University, Arar, KSA for funding this research work through the project
number NBU-FPEJ-2025-170-06. The authors are thankful to the Deanship of Graduate Studies and
Scientific Research at University of Bisha for supporting this work through the Fast-Track Research
Support Program.

Data availability statement

The data supporting this study’s findings are openly available in the Kaggle repository [25-27].

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript was written with

contributions from all authors, and all authors have approved the final version.

References

[1]

[2]
[3]
[4]

[3]

[6]

[7]

M. Mittal, K. Kumar, S. Behal, Deep learning approaches for detecting DDoS attacks: A
systematic review, Soft Comput., 27 (2023), 13039-13075. https://doi.org/10.1007/s00500-021-
06608-1

M. Shurman, R. Khrais, A, Yateem, DoS and DDoS attack detection using deep learning and IDS,
Int. Arab J. Inf. Techn., 17 (2020), 655-661. https://doi.org/10.34028/iajit/17/4A/10

S. Aktar, A. Y. Nur, Towards DDoS attack detection using deep learning approach, Comput Secur.,
129 (2023), 103251. https://doi.org/10.1016/j.cose.2023.103251

T. Khempetch, P. Wuttidittachotti, DDoS attack detection using deep learning, IAES International
Journal of Artificial Intelligence, 10 (2021), 382—388. http://doi.org/10.11591/ijai.v10.12.pp382-
388

M. S. Elsayed, N. A. Le-Khac, S. Dev, A. D. Jurcut, Ddosnet: A deep-learning model for detecting
network attacks, 2020 IEEE 21st International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM), Cork, Ireland, 2020, 391-396.
https://doi.org/10.1109/WoWMoM49955.2020.00072

C. S. Shieh, W. W. Lin, T. T. Nguyen, C. H. Chen, M. F. Horng, D. Miu, Detection of unknown
DDoS attacks with deep learning and Gaussian mixture model, Appl. Sci., 11 (2021), 5213.
https://doi.org/10.3390/app11115213

J. G. Almaraz-Rivera, J. A. Perez-Diaz, J. A. Cantoral-Ceballos, Transport and application layer
DDoS attacks detection to IoT devices by using machine learning and deep learning models,
Sensors, 22 (2022), 3367. https://doi.org/10.3390/s22093367

AIMS Mathematics Volume 10, Issue 12, XxXxx—XXX.



30106

[8] M. A. Al-Shareeda, S. Manickam, M. A. Saare, DDoS attacks detection using machine learning
and deep learning techniques: analysis and comparison, Bulletin of Electrical Engineering and
Informatics, 12 (2023), 930-939. https://doi.org/10.11591/eei.v12i2.4466

[9] A. R. Shaaban, E. Abd-Elwanis, M. Hussein, DDoS attack detection and classification via
convolutional neural network (CNN), 2019 Ninth International Conference on Intelligent
Computing and Information  Systems (ICICIS), Cairo, Egypt, 2019, 233-238.
https://doi.org/10.1109/ICICIS46948.2019.9014826

[TI0]N. A. M. Alhammadi, M. Mabrouk, M. Zrigui, Recent trends on sophisticated types of flooding
attacks and detection methods based on multi sensors fusion data for cloud computing systems,
Fusion: Practice & Applications, 11 (2023), 37-56. https://doi.org/10.54216/FPA.110103

[11] M. Abdullah, H. A. Mengash, M. Maray, F. A. F. Alrslani, H. Alkhudhayr, N. A. Alghanmi, et
al., Federated learning with blockchain on denial-of-service attacks detection and classification of
edge IloT networks using deep transfer learning model, Computers and Electrical Engineering,
124 (2025), 110319. https://doi.org/10.1016/j.compeleceng.2025.110319

[12] M. Dandotiya, R. R. S. Makwana, Secured DDoS attack detection in SDN using TS-RBDM with
MDPP-Streebog based user authentication, 7. Emerg. Telecommun. T., 36 (2025), ¢70052.
https://doi.org/10.1002/ett.700

[13]S. Mehmood, R. Amin, J. Mustafa, M. Hussain, F. S. Alsubaei, M. D. Zakaria, Distributed denial
of services (DDoS) attack detection in SDN using optimizer-equipped CNN-MLP, PloS One, 20
(2025), e0312425. https://doi.org/10.1371/journal.pone.0312425

[14]Y. A. Abid, J. S. Wu, G. Q. Xu, S. H. Fu, M. Wagas, Multilevel deep neural network for
distributed denial-of-service attack detection and classification in software-defined networking
supported Internet of things networks, [EEE Internet Things, 11 (2024), 24715-24725.
https://doi.org/10.1109/J10T.2024.3376578

[15]S. Kanthimathi, S. Venkatraman, K. S. Jayasankar, T. P. Jiljith, R. Jashwanth, A Novel self-
attention-enabled weighted ensemble-based convolutional neural network framework for
distributed denial of service attack classification, /[EEE Access, 12 (2024), 151515-151531.
https://doi.org/10.1109/ACCESS.2024.3478764

[16]K. K. Paidipati, C. Kurangi, J. Uthayakumar, S. Padmanayaki, D. Pradeepa, S. Nithinsha,
Ensemble of deep reinforcement learning with optimisation model for DDoS attack detection and
classification in cloud based software defined networks, Multimed. Tools Appl., 83 (2024),
32367-32385. https://doi.org/10.1007/s11042-023-16894-6

[17] M. Fatima, O. Rehman, S. Ali, M. F. Niazi, ELIDS: Ensemble feature selection for lightweight
IDS against DDoS attacks in resource-constrained loT environment, Future Gener. Comp. Sy.,
159 (2024), 172—-187. https://doi.org/10.1016/j.future.2024.05.013

[I8]M. L. T. Hussan, G. V. Reddy, P. T. Anitha, A. Kanagaraj, P. Naresh, DDoS attack detection in
IoT environment using optimised Elman recurrent neural networks based on chaotic bacterial
colony optimisation, Cluster Comput., 27 (2024), 4469-4490. https://doi.org/10.1007/s10586-
023-04187-4

[19] D. M. Dhanvijay, M. M. Dhanvijay, V. H. Kamble, Cyber intrusion detection using ensemble of
deep learning with prediction scoring based optimised feature sets for IOT networks, Cyber
Security and Applications, 3 (2025), 100088. https://doi.org/10.1016/j.csa.2025.100088

AIMS Mathematics Volume 10, Issue 12, XxXxx—XXX.



30107

[20]Z.Y.Li,M. Y. Liu, P. Wang, W. Y. Su, T. S. Chang, X. J. Chen, et al., Multi-ARCL: Multimodal
adaptive relay-based distributed continual learning for encrypted traffic classification, J. Parallel
Distr. Com., 201 (2025), 105083. https://doi.org/10.1016/j.jpdc.2025.105083

[21] K. J. Pradeep, P. K. Shukla, Designing a novel network anomaly detection framework using multi-
serial stacked network with optimal feature selection procedures over DDOS attacks,
International Journal of Intelligent Networks, 6 (2025), 1-13.
https://doi.org/10.1016/5.1in.2024.11.001

[22] Y. K. Beshah, S. L. Abebe, H. M. Melaku, Multi-stage adversarial defense for online DDoS attack
detection system in IoT, IEEE Access, 13 (2025), 72657-72673.
https://doi.org/10.1109/ACCESS.2025.3560186

[23] P. Odelu, C. K. Shiva, S. Sen, V. Basetti, C. S. Reddy, Forward-thinking frequency management
in islanded marine microgrid utilising a heterogeneous source of generation and nonlinear control
assisted by energy storage integration, Sci. Rep., 15  (2025), 13794.
https://doi.org/10.1038/s41598-025-97592-1

[24] T. L. Xu, Z. Q. Zhou, C. X. Wang, Y. C. Li, T. Rong, Spatio-temporal prediction of surface remote
sensing data in equatorial pacific ocean based on multi-element fusion network, J. Mar. Sci. Eng.,
13 (2025), 755. https://doi.org/10.3390/jmse13040755

[25]A. X. Wang, B. P. Nguyen, Deterministic autoencoder using Wasserstein loss for tabular data
generation, Neural Networks, 185 (2025), 107208. https://doi.org/10.1016/j.neunet.2025.107208

[26] E. Akhmetshin, D. Hudayberganov, R. Shichiyakh, S. Yellisetti, L. K. Pappala, et al., Intelligent
federated learning boosted cyberattack detection system for Denial-Of-Wallet attacks using an
advanced heuristic search with multimodal approaches, Sci. Rep., 15 (2025), 14265.
https://doi.org/10.1038/s41598-025-96986-5

[27]J. Li, C. Bastani, Optimising PEMFC parameter identification using improved pufferfish
algorithm and CNN, AIP Adv., 15 (2025), 025117. https://doi.org/10.1063/5.0251549

[28]H. Shen, C. J. Peng, H. C. Yan, S. Y. Xu, Data-driven near optimisation for fast sampling
singularly perturbed systems, [EEE T. Automat. Contr., 69 (2024), 4689-4694.
https://doi.org/10.1109/TAC.2024.3352703

[29]H. Shen, Y. Wang, H. C. Yan, S. Y. Xu, Data-driven single-loop policy iteration control of
uncertain singularly perturbed systems, I[EEE T. Automat. Contr., 70 (2025), 8314-8320.
https://doi.org/10.1109/TAC.2025.3581141

[30] Network Intrusion Dataset (CIC-IDS-2017), 2023. Available from:
https://www .kaggle.com/datasets/chethuhn/network-intrusion-dataset.

[311/IDS 2018  Intrusion CSVs (CSE-CIC-IDS2018),  2020.  Available  from:
https://www .kaggle.com/datasets/solarmainframe/ids-intrusion-csv.

[32] M. A. Talukder, M. A. Uddin, CIC-DDo0S2019 Dataset, Mendeley Data, 2023. Available from:
https://data.mendeley.com/datasets/ssnc74xmé6r/1.

[33]1D. Javeed, M. S. Saeed, . Ahmad, P. Kumar, A. Jolfaei, M. Tahir, An intelligent intrusion
detection system for smart consumer electronics network, /[EEE T. Consum. Electr., 69 (2023),
906-913. https://doi.org/10.1109/TCE.2023.3277856

[34] S. Manimurugan, S. Al-Mutairi, M. M. Aborokbah, N. Chilamkurti, S. Ganesan, R. Patan,
Effective attack detection in internet of medical things smart environment using a deep belief
neural network, IEEE Access, 8 (2020), 77396-77404.
https://doi.org/10.1109/ACCESS.2020.2986013

AIMS Mathematics Volume 10, Issue 12, XxXxx—XXX.



30108

[35] S. Songma, T. Sathuphan, T. Pamutha, Optimising intrusion detection systems in three phases on
the CSE-CIC-IDS-2018 dataset, Computers, 12 (2023), 245.
https://doi.org/10.3390/computers12120245

[36] E. Osa, P. E. Orukpe, U. Iruansi, Design and implementation of a deep neural network approach
for intrusion detection systems, e-Prime-Advances in Electrical Engineering, Electronics and
Energy, 7 (2024), 100434. https://doi.org/10.1016/j.prime.2024.100434

[37] S. S. N. Chintapalli, S. P. Singh, J. Frnda, P. B. Divakarachari, V. L. Sarraju, P. Falkowski-Gilski,
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems,
Heliyon, 10 (2024), €29410. https://doi.org/10.1016/j.heliyon.2024.e29410

[38]0. D. Okey, D. C. Melgarejo, M. Saadi, R. L. Rosa, J. H. Kleinschmidt, D. Z. Rodriguez, Transfer

learning approach to IDS on cloud IoT devices using optimised CNN, /EEE Access, 11 (2023),
1023-1038. https://doi.org/10.1109/ACCESS.2022.3233775

[39] M. Ramzan, M. Shoaib, A. Altaf, S. Arshad, F. Igbal, A. K. Castilla, et. al., Distributed denial of
service attack detection in network traffic using deep learning algorithm, Sensors, 23 (2023), 8642.
https://doi.org/10.3390/523208642

[40]F. L. Becerra-Suarez, I. Fernandez-Roman, M. G. Forero, Improvement of distributed denial of
service attack detection through machine learning and data processing, Mathematics, 12 (2024),
1294. https://doi.org/10.3390/math12091294

[41]M. Ouhssini, K. Afdel, M. Akouhar, E. Agherrabi, A. Abarda, Advancements in detecting,
preventing, and mitigating DDoS attacks in cloud environments: A comprehensive systematic
review of state-of-the-art approaches, Egypt. Inform. J., 27 (2024), 100517.
https://doi.org/10.1016/j.€1j.2024.100517

T © 2025 the Author(s), licensee AIMS Press. This is an open access
AIMS ATMS Press  article distributed under the terms of the Creative Commons
> Attribution License (https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 12, XxXxx—XXX.



