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Abstract: In this paper, we propose a novel decoupled time filtered finite element method for the
coupled Stokes–Biot problem. The key innovation of our method is the combination of a decoupling
strategy with a time filtered technique that can enhance computational efficiency while maintaining
numerical accuracy. Specifically, applying the time filter to the backward Euler scheme elevates its
temporal accuracy to second order. At each time step, we first solve the Stokes problem, then use the
computed Stokes velocity to solve the Biot problem. We rigorously analyze the proposed scheme to
establish its stability and derive error estimates. Furthermore, some numerical tests are presented to
validate the theoretical findings and demonstrate the efficiency, accuracy, and robustness of our method.
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1. Introduction

The interaction between a free incompressible Newtonian fluid and a fluid within a poroelastic
medium is a complex multiphysics problem. This coupled phenomenon is widely employed to predict
and control processes such as groundwater flow in fractured aquifers and oil or gas extraction. In
this work, the free fluid flow is modeled by the Stokes equations, while the coupled deformation and
fluid flow in the poroelastic medium are described by the Biot system. At the interface, the Stokes–
Biot model features both the Stokes–Darcy coupling [1–6] and the fluid-structure interaction [7–13].
Numerical algorithms for these two types of coupling problems have been extensively studied in the
cited literature.

The Stokes–Biot problem combines all the challenges of both the Stokes–Darcy problem and fluid-
structure interaction (FSI). A wide variety of numerical methods have been studied for the Stokes–Biot
problems or the Navier–Stokes–Biot problems. These include coupled finite element methods [14,
15], discontinuous finite element methods [16–18], Lagrange multiplier methods [19, 20], decoupled
finite element method [21–24], a Nitsche-based cut finite element method [25], mixed finite element
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methods [26–28], virtual element numerical schemes [29], among others.
The backward Euler method is a fundamental approach to solving unsteady problems. By adding

one line of code to the backward Euler method, Guzel and Layton [30] proposed a time filtered
method. This method can increase the time accuracy from first to second order and can be easily
adapted to variable time steps. For constant time steps, time-filtered methods have been successfully
implemented in various coupled systems, including the Stokes–Darcy problem [31], Navier–
Stokes/Darcy problem [32], Natural Convection Problems [33], MHD problem [34], the stabilized
incompressible diffusive Peterlin viscoelastic fluid model [35], and Navier-Stokes problem [36].
The pursuit of greater computational efficiency has led to the investigation of variable step size
techniques [37–40]. These techniques are designed to dynamically adjust the time step according
to the numerical results obtained earlier.

Solving all unknown variables simultaneously requires substantial computational costs in terms
of CPU time and memory. It often leads to a failed solution process due to memory limitations
when the mesh is finely partitioned. Generally speaking, coupled algorithms exhibit better stability.
However, decoupled algorithms have lower computational costs and can achieve a comparable level of
accuracy [5]. Motivated by these trade-offs, this paper investigates a decoupled, time-filtered method
based on the backward Euler scheme for solving the Stokes–Biot problem.The proposed algorithm
proceeds in three sequential steps: (i) solve the Stokes problem using lagged interface terms to
obtain the fluid velocity and pressure; (ii) solve the Biot system using the updated Stokes velocity
as the interface condition; and (iii) apply a time filter to correct the previously computed unknowns.
This algorithm effectively combines the numerical efficiency of decoupled schemes with time-filtered
techniques, while preserving the stability and accuracy of the coupled system.

This paper is structured as follows. Section 2 introduces the time-dependent Stokes–Biot model
and presents its weak formulation. In Section 3, we propose a novel decoupled time filtered algorithm.
The stability of the scheme is analyzed in Section 4. Based on the stability analysis, Section 5
provides a detailed error estimate. Numerical experiments are presented in Section 6 to demonstrate
the performance of the proposed method. Finally, some conclusions are summarized in Section 7.

2. The Stokes–Biot model and weak formulation

2.1. The Stokes–Biot model

Consider a bounded domain Ω ⊂ Rd(d = 2, 3) partitioned into two non-overlapping subdomains:
the fluid region Ω f and the poroelastic region Ωp. Let ρ f > 0 be the density of the fluid, µ f > 0 be
the constant fluid viscosity and f f be the body force term. In the fluid region Ω f , the velocity u and
pressure p f are governed by the time-dependent incompressible Stokes system:

ρ f∂tu − ∇ · σ f (u, p f ) = f f , in Ω f × (0,T ], (2.1a)
∇ · u = 0, in Ω f × (0,T ], (2.1b)

where the deformation rate tensor D(u) = 1
2 (∇u + ∇T u), and the Cauchy stress tensor σ f (u, p f ) =

2µ fD(u) − p f I. Let ρp > 0 be the density of the saturated medium, s0 > 0 be the constrained specific
storage coefficient, 0 < α ≤ 1 be the Biot-Willis constant, and K be the hydraulic conductivity.
Furthermore, let fp be the body force term and gp be the external source or sink terms. In the

AIMS Mathematics Volume 10, Issue 12, 29989–30016.



29991

poroelasticity region Ωp, the displacement η, the velocity of the poroelastic ξ = ∂tη, and the fluid
pore pressure pp are governed by the Biot model [41, 42]:

ρp∂tξ − ∇ · σp(η, pp) = fp, in Ωp × (0,T ], (2.2a)
s0∂t pp + α∇ · ξ − ∇ · (K∇pp) = gp, in Ωp × (0,T ], (2.2b)

where σp(η, pp) = 2µpD(η) +λp(∇ ·η)I−αppI, µp > 0, and λp > 0 are the Lamé constants for the solid
skeleton. Denote the largest (smallest) eigenvalue of K by Kmax(Kmin > 0).

Denote the interface by Γ = ∂Ω f ∩∂Ωp, we assume the following interface conditions on Γ× (0,T ]:

u · nf = (ξ − K∇pp) · nf , (2.3a)
τi

f · (σ f (u, p f )nf ) = −γτi
f · (u − ξ), for i = 1, . . . , d − 1, (2.3b)

nf · (σ f (u, p f )nf ) = −pp, (2.3c)
σ f (u, p f )nf = σp(η, pp)nf , (2.3d)

where {τi
f }i=1,...,d−1 is a linearly independent set of vectors tangent to the interface Γ, and γ is the

resistance parameter in the tangential direction.
Let Γ f = ∂Ω f ∩ ∂Ω, Γp = ∂Ωp ∩ ∂Ω. We assume the following boundary conditions:

u = 0, on Γ f × (0,T ], pp = 0, on ΓD
p × (0,T ], (2.4)

K∇pp · np = 0, on ΓN
p × (0,T ], η = 0, on Γp × (0,T ], (2.5)

where Γp = ΓD
p ∪ ΓN

p , ΓD
p and ΓN

p are the Dirichlet and Neumann conditions, respectively.

2.2. Weak formulation

Let Hl(Ω?) be the standard Sobolev space equipped with the norm ‖ · ‖Hl(Ω?), where ? may be f or
p. Let ‖ · ‖X be the standard L2 norm, and (·, ·)X denote the standard L2(X) inner product, where X may
be Ω? or Γ. Let Hl(Ω?) = (Hl(Ω?))d be the vector-value Sobolev space. We introduce the following
spaces:

H f = {v ∈ H1(Ω f )|v = 0 on Γ f }, Q f = L2(Ω f ),
Hp = {χ ∈ H1(Ωp)|χ = 0 on Γp}, Qp = {ζ ∈ H1(Ωp)|ζ = 0 on ΓD

p }.

For the given ( f f , fp, gp) ∈ L2(Ω f ) × L2(Ωp) × L2(Ωp), the variational formulation of the Stokes–
Biot system is to find (u, p f , η, ξ, pp) ∈ H f × Q f × Hp × Hp × Qp with ξ = ∂tη such that for any
(v, q,χ, ζ) ∈ H f × Q f × Hp × Qp and t ∈ (0,T ], there hold

ρ f (∂tu, v)Ω f + a f (u, v) + b f (v, p f ) + (pp, v · nf )Γ + γ((u − ξ) · τ f , v · τ f )Γ = ( f f , v)Ω f , (2.6a)
b f (u, q) = 0. (2.6b)
ρp(∂tξ,χ)Ωp + aη(η,χ) + bp(χ, pp) − (pp,χ · nf )Γ − γ((u − ξ) · τ f ,χ · τ f )Γ = ( fp,χ)Ωp , (2.6c)
s0(∂t pp, ζ)Ωp − bp(ξ, ζ) + ap(pp, ζ) − ((u − ξ) · nf , ζ)Γ = (gp, ζ)Ωp , (2.6d)
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where

a f (u, v) = 2µ f (D(u),D(v))Ω f , b f (v, q) = −(∇ · v, q)Ω f , (2.7)
bp(χ, ζ) = −α(∇ · χ, ζ)Ωp , ap(pp, ζ) = (K∇pp,∇ζ)Ωp , (2.8)
aη(η,χ) = 2µp(D(η),D(χ))Ωp + λp(∇ · η,∇ · χ)Ωp . (2.9)

Let V = (v,χ, ζ) and F = ( f f , fp, gp). Define the norms by

‖V‖2 = ‖v‖2Ω f
+ ‖χ‖2Ωp

+ ‖ζ‖2Ωp
,

‖V‖2S = ρ f ‖v‖2Ω f
+ ρp‖χ‖

2
Ωp

+ s0‖ζ‖
2
Ωp
,

‖F‖2 = ‖ f f ‖
2
Ω f

+ ‖ fp‖
2
Ωp

+ ‖gp‖
2
Ωp
.

Then it is easy to get
C̃S ‖V‖S ≤ ‖V‖ ≤ CS ‖V‖S . (2.10)

Moreover, let U = (u, ξ, pp). We introduce the following bilinear forms:

〈〈∂tU,V〉〉 = ρ f (∂tu, v)Ω f + ρp(∂tξ,χ)Ωp + s0(∂t pp, ζ)Ωp , (2.11)
(F,V) = ( f f , v)Ω f + ( fp,χ)Ωp + (gp, ζ)Ωp , (2.12)

a(U,V) = a f (u, v) + ap(pp, ζ), (2.13)
ab(U,V) = ab, f (u, v) + ab,p((ξ, pp); (χ, ζ)), (2.14)
ab, f (u, v) = γ(u · τ f , v · τ f )Γ, (2.15)

ab,p((ξ, pp); (χ, ζ)) = (ζ, ξ · nf )Γ − (pp,χ · nf )Γ + γ(ξ · τ f ,χ · τ f )Γ, (2.16)
aΓ((u, ξ, pp); (v,χ, ζ)) = (pp, v · nf )Γ − (ζ,u · nf )Γ − γ(ξ · τ f , v · τ f )Γ − γ(u · τ f ,χ · τ f )Γ, (2.17)

where

v · τ f =

d−1∑
i=1

(v · τi
f )τ

i
f .

Adding (2.6a), (2.6c), and (2.6d) yields

〈〈∂tU,V〉〉 + a(U,V) + aη(η,χ) + b f (v, p f ) + bp(χ, pp) − bp(ξ, ζ)
+ ab(U,V) + aΓ((u, ξ, pp); (v,χ, ζ)) = (F,V), (2.18a)

b f (u, q) = 0. (2.18b)

3. The numerical scheme

Let tn = n∆t for n = 0, 1, . . . ,N = T/∆t, where ∆t > 0 is a time step. In the later analysis, we define
the following discrete time norms:

‖ f ‖l2(0,T ;Hl(X)) = max


∆t

N∑
n=1

‖ f n‖2Hl(X)


1
2

,

∆t
N−1∑
n=0

‖ f n‖2Hl(X)


1
2
 .
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Let T f
h (T p

h ) be a quasi-uniform partition of Ω f (Ωp), and let H f h ⊂ H f ,Q f h ⊂ Q f , Hph ⊂ Hp,
Qph ⊂ Qp be the conforming finite element spaces. Assume that there exists a constant β such that

inf
qh∈Q f h

sup
vh∈H f h

b f (vh, qh)
‖qh‖Ω f ‖vh‖H1(Ω f )

≥ β. (3.1)

This is the classical discrete Ladyzhenskaya–Babuška–Brezzi condition, which is necessary for the
stability of the discrete Stokes problem [43].

Let

{v(x, tn)}Nn=0 = {vn}Nn=0, dtvn+1 =
vn+1 − vn

∆t
, Dtvn+2 =

3vn+2 − 4vn+1 + vn

2∆t
.

By explicitly treating a part of the coupling terms at the interface, we present three decoupled finite
element methods as follows: the first two are similar to those reported in existing literature [21–23],
while the third one is the focus of our study.

Remark 3.1. All three algorithms are decoupled finite element methods, with core differences in
their time-discretization schemes and whether time filtering is incorporated. Algorithm 1 is a basic
implicit time-discretization scheme using the first-order backward Euler formula. It features low
computational cost and straightforward implementation. Algorithm 2 is a higher-order improved
version of Algorithm 1, using the second-order backward differentiation formula (BDF2). However, the
solution of this method at each step depends on the results from the previous two time steps. Algorithm 3
is an optimized version of the previous two algorithms, adding a time-filtering (TF) step to the BDF1
decoupled method.

Remark 3.2. For Algorithm 3, Steps 1 and 2 employ the backward Euler method to compute the
approximations (ûn+2

h , pn+2
f h , ξ̂

n+2
h , η̂n+2

h , p̂n+2
ph ). Then, in Step 3, a time filter is applied to update the

values of (ûn+2
h , ξ̂n+2

h , η̂n+2
h , p̂n+2

ph ). The time filter acts as a corrector step. It post-processes the solution
by combining solutions at time levels tn+2, tn+1 and tn. This combination is designed to cancel the
truncation error term of the backward Euler method. This paper investigates the time-dependent
Stokes–Biot problem, with a specific focus on the Biot model which couples parabolic and hyperbolic
dynamics. Employing a high-order temporal discretization scheme is key to achieving high accuracy
in the solutions of this coupled system.

A simple calculation yields

ûn+2
h =

3
2

un+2
h − un+1

h +
1
2

un
h,

ûn+2
h − un+1

h

∆t
= Dtun+2

h . (3.2)

According to Algorithm 3, for any Vh ∈ H f h × Hph × Qph and qh ∈ Q f h, we have

〈〈DtUn+2
h ,Vh〉〉 + a(Ûn+2

h ,Vh) + ab(Ûn+2
h ,Vh) + b f (vh, pn+2

f h ) + aη(η̂n+2
h ,χh)

+ bp(χh, p̂n+2
ph ) − bp(ξ̂n+2

h , ζh) + aΓ((ûn+2
h , 2ξn+1

h − ξn
h, 2pn+1

ph − pn
ph); (vh,χh, ζh))

= 〈Fn+2,Vh〉, (3.3a)
b f (ûn+2

h , qh) = 0. (3.3b)
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Algorithm 1 A backward Euler Scheme (BDF1) based decoupled finite element method.

Step 1. For any vh ∈ H f h, qh ∈ Q f h, find un+1
h ∈ H f h, pn+1

f h ∈ Q f h, n = 0, . . . ,N − 1 such that

ρ f (dtun+1
h , vh)Ω f + a f (un+1

h , vh) + b f (vh, pn+1
f h ) + ab, f (un+1

h , vh)

+ (pn
ph, vh · nf )Γ − γ(ξn

h · τ f , vh · τ f )Γ = ( f n+1
f , vh)Ω f , (3.4a)

b f (un+1
h , qh) = 0. (3.4b)

Step 2. Given un+1
h from Step 1, for any χh ∈ Hph, ζh ∈ Qph, find ηn+1

h , ξn+1
h ∈ Hph and pn+1

ph ∈ Qph, n =

0, . . . ,N − 1 such that

dtη
n+1
h = ξn+1

h , (3.4c)
ρp(dtξ

n+1
h ,χh)Ωp + s0(dt pn+1

ph , ζh)Ωp + aη(ηn+1
h ,χh) + bp(χh, pn+1

ph )

+ ap(pn+1
ph , ζh) − bp(ξn+1

h , ζh) + ab,p((ξn+1
h , pn+1

ph ); (χh, ζh)) − (un+1
h · nf , ζh)Γ

− γ(un+1
h · τ f ,χh · τ f )Γ

= ( f n+1
p ,χh)Ωp + (gn+1

p , ζh)Ωp . (3.4d)

Algorithm 2 A second order backward differentiation formula(BDF2) based decoupled finite element
method.

Step 1. For any vh ∈ H f h, qh ∈ Q f h, find un+2
h ∈ H f h, pn+2

f h ∈ Q f h, n = 0, . . . ,N − 2 such that

ρ f (Dtun+2
h , vh)Ω f + a f (un+2

h , vh) + b f (vh, pn+2
f h ) + ab, f (un+2

h , vh)

+ (2pn+1
ph − pn

ph, vh · nf )Γ − γ((2ξn+1
h − ξn

h) · τ f , vh · τ f )Γ = ( f n+2
f , vh)Ω f , (3.5a)

b f (un+2
h , qh) = 0. (3.5b)

Step 2. Given un+2
h from Step 1, for any χh ∈ Hph, ζh ∈ Qph, find ηn+2

h , ξn+2
h ∈ Hph and pn+2

ph ∈ Qph, n =

0, . . . ,N − 2 such that

Dtη
n+2
h = ξn+2

h , (3.5c)
ρp(Dtξ

n+2
h ,χh)Ωp + s0(Dt pn+2

ph , ζh)Ωp + aη(ηn+2
h ,χh) + bp(χh, pn+2

ph )

+ ap(pn+2
ph , ζh) − bp(ξn+2

h , ζh) + ab,p((ξn+2
h , pn+2

ph ); (χh, ζh)) − (un+2
h · nf , ζh)Γ

− γ(un+2
h · τ f ,χh · τ f )Γ

= ( f n+2
p ,χh)Ωp + (gn+2

p , ζh)Ωp . (3.5d)
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Algorithm 3 Decoupled time filtered finite element method (BDF1+TF).

Step 1. For any vh ∈ H f h, qh ∈ Q f h, find ûn+2
h ∈ H f h, pn+2

f h ∈ Q f h, n = 0, . . . ,N − 2 such that

ρ f (
ûn+2

h − un+1
h

∆t
, vh)Ω f + a f (ûn+2

h , vh) + b f (vh, pn+2
f h ) + ab, f (ûn+2

h , vh)

+ (2pn+1
ph − pn

ph, vh · nf )Γ − γ((2ξn+1
h − ξn

h) · τ f , vh · τ f )Γ = ( f n+2
f , vh)Ω f , (3.6a)

b f (ûn+2
h , qh) = 0. (3.6b)

Step 2. Given ûn+2
h from Step 1, for any χh ∈ Hph, ζh ∈ Qph, find η̂n+2

h , ξ̂n+2
h ∈ Hph and p̂n+2

ph ∈ Qph, n =

0, . . . ,N − 2 such that

η̂n+2
h − ηn+1

h

∆t
= ξ̂n+2

h , (3.6c)

ρp(
ξ̂n+2

h − ξn+1
h

∆t
,χh)Ωp + s0(

p̂n+2
ph − pn+1

ph

∆t
, ζh)Ωp + aη(η̂n+2

h ,χh) + bp(χh, p̂n+2
ph )

+ ap( p̂n+2
ph , ζh) − bp(ξ̂n+2

h , ζh) + ab,p((ξ̂n+2
h , p̂n+2

ph ); (χh, ζh)) − (ûn+2
h · nf , ζh)Γ

− γ(ûn+2
h · τ f ,χh · τ f )Γ

= ( f n+2
p ,χh)Ωp + (gn+2

p , ζh)Ωp . (3.6d)

Step 3. Update the (ûn+2
h , ξ̂n+2

h , η̂n+2
h , p̂n+2

ph ) for n = 0, 1, . . . ,N − 2

un+2
h = ûn+2

h −
1
3

(ûn+2
h − 2un+1

h + un
h), (3.7)

ηn+2
h = η̂n+2

h −
1
3

(η̂n+2
h − 2ηn+1

h + ηn
h), (3.8)

ξn+2
h = ξ̂n+2

h −
1
3

(ξ̂n+2
h − 2ξn+1

h + ξn
h), (3.9)

pn+2
ph = p̂n+2

ph −
1
3

( p̂n+2
ph − 2pn+1

ph + pn
ph). (3.10)

4. Stability analysis

The following standard inequalities are adopted in our analysis. The bounds (4.1)–(4.4) can be
found in [6, 15, 44], while the inverse estimate (4.5) is provided by [45].

(1) For any v ∈ H f ,χ ∈ Hp and ζ ∈ Qp, we have the following trace inequalities:

‖v‖Γ ≤ CT,1‖v‖1/2Ω f
‖∇v‖1/2

Ω f
, ‖v‖Γ ≤ C̃T,1‖∇v‖Ω f , (4.1)

‖χ‖Γ ≤ CT,2‖χ‖
1/2
Ωp
‖∇χ‖1/2

Ωp
, ‖χ‖Γ ≤ C̃T,2‖∇χ‖Ωp , (4.2)

‖ζ‖Γ ≤ CT,3‖ζ‖
1/2
Ωp
‖∇ζ‖1/2

Ωp
, ‖ζ‖Γ ≤ C̃T,3‖∇ζ‖Ωp . (4.3)
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(2) For any v ∈ H f ,χ ∈ Hp and ζ ∈ Qp, we have the following Poincaré inequalities:

‖v‖Ω f ≤ CP,1‖∇v‖Ω f , ‖χ‖Ωp ≤ CP,2‖∇χ‖Ωp , ‖ζ‖Ωp ≤ CP,3‖∇ζ‖Ωp . (4.4)

(3) Inverse inequality: Let Vk
h(T?) is a space of polynomials of order k on Ω?(? = f , p),then

‖∇wh‖Ω?
≤ Cinvh−1‖wh‖Ω?

, ∀wh ∈ Vk
h(T?), (4.5)

where Cinv depends on the angles in the finite element mesh and the polynomials of order k.

Using the basic inequalities, we can derive the following results.

Lemma 4.1 ([22]). For the bilinear forms a(·, ·) and aη(·, ·) defined in (2.13) and (2.9), there exist three
positive constants µ1, µ2 and µ3 such that

a(V,V) ≥ µ1‖∇v‖2Ω f
+ µ2‖∇ζ‖

2
Ωp
, ∀ V ∈ H f × Hp × Qp, (4.6)

aη(χ,χ) ≥ µ3‖∇χ‖
2
Ωp
, ∀ χ ∈ Hp, (4.7)

where µ1 =
2µ f

C2
K, f
, µ2 = Kmin and µ3 =

2µp

C2
K,p

. Here, CK, f and CK,p are the constants in the Korn inequalities.

For later analysis, we show an upper bound on −aΓ(·, ·).

Lemma 4.2. Let B(Vn+2
h ) = Vn+2

h − 2Vn+1
h + Vn

h , for any Vh ∈ H f h × Hph × Qph and ε1 > 0, we have

− aΓ((v̂n+2
h , 2χn+1

h − χn
h, 2ζ

n+1
h − ζn

h ); (v̂n+2
h , χ̂n+2

h , ζ̂n+2
h ))

≤ 3ε1‖∇v̂n+2
h ‖

2
Ω f

+ γ‖χ̂n+2
h · τ f ‖

2
Γ + γ‖v̂n+2

h · τ f ‖
2
Γ +

C1

h
‖B(Vn+2

h )‖2S , (4.8)

where

C1 = max{
3C̃2

T,1C
2
T,3Cinv

8s0ε1
,

3C̃2
T,1C

2
T,2Cinvγ

2

8ρpε1
}.

Proof. As defined in (2.17) for aΓ(·; ·), it follows that

− aΓ((v̂n+2
h , 2χn+1

h − χn
h, 2ζ

n+1
h − ζn

h ); (v̂n+2
h , χ̂n+2

h , ζ̂n+2
h ))

= (ζ̂n+2
h − 2ζn+1

h + ζn
h , v̂

n+2
h · nf )Γ + γ((2χn+1

h − χn
h + χ̂n+2

h ) · τ f , v̂n+2
h · τ f )Γ. (4.9)

Using (3.2), we have

ζ̂n+2
h − ζn+2

h =
1
2

(ζn+2
h − 2ζn+1

h + ζn
h ) =

1
2

B(ζn+2
h ), (4.10)

−2ζn+1
h + ζn

h = 2ζ̂n+2
h − 3ζn+2

h . (4.11)

Then the first term on the right hand side of (4.9) can be rewritten as

(ζ̂n+2
h − 2ζn+1

h + ζn
h , v̂

n+2
h · nf )Γ = (3ζ̂n+2

h − 3ζn+2
h , v̂n+2

h · nf )Γ =
3
2

(B(ζn+2
h ), v̂n+2

h · nf )Γ. (4.12)
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It follows from the Cauchy-Schwarz inequality, trace inequalities (4.1) and (4.3), inverse
inequality (4.5) and Young’s inequality that

(ζ̂n+2
h − 2ζn+1

h + ζn
h , v̂

n+2
h · nf )Γ ≤

3
2

C̃T,1CT,3C
1
2
invh

− 1
2 ‖∇v̂n+2

h ‖Ω f ‖B(ζn+2
h )‖Ωp

≤
3ε1

2
‖∇v̂n+2

h ‖
2
Ω f

+
3C̃2

T,1C
2
T,3Cinv

8ε1h
‖B(ζn+2

h )‖2Ωp
. (4.13)

Using (4.10) and (4.11), the second term on the right hand side of (4.9) can be rewritten as

γ((2χn+1
h − χn

h + χ̂n+2
h ) · τ f , v̂n+2

h · τ f )Γ =γ((3χn+2
h − χ̂n+2

h ) · τ f , v̂n+2
h · τ f )Γ

=γ((2χ̂n+2
h −

3
2

B(χn+2
h )) · τ f , v̂n+2

h · τ f )Γ. (4.14)

Using the trace inequality (4.1) and Young’s inequality, we have

γ((2χn+1
h − χn

h + χ̂n+2
h ) · τ f , v̂n+2

h · τ f )Γ

≤γ‖χ̂n+2
h · τ f ‖

2
Γ + γ‖v̂n+2

h · τ f ‖
2
Γ +

3
2
γC̃T,1CT,2C

1
2
invh

− 1
2 ‖B(χn+2

h )‖Ωp‖∇v̂n+2
h ‖Ω f

≤γ‖χ̂n+2
h · τ f ‖

2
Γ + γ‖v̂n+2

h · τ f ‖
2
Γ +

3ε1

2
‖∇v̂n+2

h ‖
2
Ω f

+
3C̃2

T,1C
2
T,2Cinvγ

2

8ε1h
‖B(χn+2

h )‖2Ωp
. (4.15)

Substituting (4.13) and (4.15) into (4.9), we get the lemma. �

Next, we will analyze the stability of Algorithm 3. For the integer n ≥ 0, we define

En+1 = ‖Un+1
h ‖

2
S + ‖2Un+1

h − Un
h‖

2
S + ‖Un+1

h − Un
h‖

2
S + aη(ηn+1

h , ηn+1
h )

+ aη(2ηn+1
h − ηn

h, 2η
n+1
h − ηn

h) + aη(ηn+1
h − ηn

h, η
n+1
h − ηn

h). (4.16)

Lemma 4.3. If the time step restriction

∆t ≤ min{
12s0µ1h

9s0µ1h + 32C̃2
T,1C

2
T,3Cinv

,
12ρpµ1h

9ρpµ1h + 32C̃2
T,1C

2
T,2Cinvγ2

} (4.17)

is satisfied, for any 0 ≤ m ≤ N − 2, we have

Em+2 + µ1∆t
m∑

n=0

‖∇ûn+2
h ‖

2
Ω f

+ µ2∆t
m∑

n=0

‖∇p̂n+2
ph ‖

2
Ωp
≤ C3, (4.18)

where µ1 and µ2 are defined in Lemma 4.1, C3 is defined in (4.28).

Proof. For Ω? = Ω f ,Ωp, we can easily get the following identity, see, e.g., [31, 46],

4(
3an+2 − 4an+1 + an

2
,

3
2

an+2 − an+1 +
1
2

an)Ω?

= ‖an+2‖2Ω?
+ ‖2an+2 − an+1‖2Ω?

+ ‖an+2 − an+1‖2Ω?
− ‖an+1‖2Ω?

− ‖2an+1 − an‖2Ω?

− ‖an+1 − an‖2Ω?
+ 3‖an+2 − 2an+1 + an‖2Ω?

. (4.19)
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Set Vh = 4∆tÛn+2
h = 4∆t(ûn+2

h , ξ̂n+2
h , p̂n+2

ph ) in (3.3a), from η̂n+2
h −ηn+1

h
∆t = ξ̂n+2

h and (4.19), we have

‖Un+2
h ‖

2
S + ‖2Un+2

h − Un+1
h ‖

2
S + ‖Un+2

h − Un+1
h ‖

2
S − ‖U

n+1
h ‖

2
S − ‖2Un+1

h − Un
h‖

2
S

− ‖Un+1
h − Un

h‖
2
S + 3‖B(Un+2

h )‖2S + aη(ηn+2
h , ηn+2

h ) + aη(2ηn+2
h − ηn+1

h , 2ηn+2
h − ηn+1

h )
+ aη(ηn+2

h − ηn+1
h , ηn+2

h − ηn+1
h ) − aη(ηn+1

h , ηn+1
h ) − aη(2ηn+1

h − ηn
h, 2η

n+1
h − ηn

h)
− aη(ηn+1

h − ηn
h, η

n+1
h − ηn

h) + 3aη(B(ηn+2
h ), B(ηn+2

h ))

+ 4∆t
(
a(Ûn+2

h , Ûn+2
h ) + ab(Ûn+2

h , Ûn+2
h )

)
= 4∆t(Fn+2, Ûn+2

h ) − 4∆taΓ((ûn+2
h , 2ξn+1

h − ξn
h, 2pn+1

ph − pn
ph); (ûn+2

h , ξ̂n+2
h , p̂n+2

ph )). (4.20)

By recalling the definition in (4.16), we can rewrite (4.20) as

En+2 + 3I1 + 4∆tI2 = En+1 + 4∆tI3 + 4∆tI4, (4.21)

where

I1 = ‖B(Un+2
h )‖2S + aη(B(ηn+2

h ), B(ηn+2
h )),

I2 = a(Ûn+2
h , Ûn+2

h ) + ab(Ûn+2
h , Ûn+2

h ),

I3 = (Fn+2, Ûn+2
h ),

I4 = −aΓ((ûn+2
h , 2ξn+1

h − ξn
h, 2pn+1

ph − pn
ph); (ûn+2

h , ξ̂n+2
h , p̂n+2

ph )).

Using Lemma 4.1 and the definition of ab(·, ·), we have

I2 ≥ µ1‖∇ûn+2
h ‖

2
Ω f

+ µ2‖∇ p̂n+2
ph ‖

2
Ωp

+ γ‖ûn+2
h · τ f ‖

2
Γ + γ‖ξ̂n+2

h · τ f ‖
2
Γ. (4.22)

Using (4.11), a simple calculation yields

‖ξ̂n+2
h ‖

2
Ωp

= ‖
3
2

B(ξn+2
h ) + 2ξn+1

h − ξn
h‖

2
Ωp
≤

9
2
‖B(ξn+2

h )‖2Ωp
+ 2‖2ξn+1

h − ξn
h‖

2
Ωp
. (4.23)

An application of the Cauchy-Schwarz inequality, Poincaré inequality, and Young inequalities, along
with (4.23), we get

|I3| ≤ CP,1‖ f n+2
f ‖Ω f ‖∇ûn+2

h ‖Ω f + ‖ f n+2
p ‖Ωp‖ξ̂

n+2
h ‖Ωp + CP,3‖gn+2

p ‖Ωp‖∇ p̂n+2
ph ‖Ωp

≤ ε1‖∇ûn+2
h ‖

2
Ω f

+
C2

P,1

4ε1
‖ f n+2

f ‖
2
Ω f

+ ε2‖∇ p̂n+2
ph ‖

2
Ωp

+
C2

P,3

4ε2
‖gn+2

p ‖
2
Ωp

+
9ρp

16
‖B(ξn+2

h )‖2Ωp
+
ρp

4
‖2ξn+1

h − ξn
h‖

2
Ωp

+
2
ρp
‖ f n+2

p ‖
2
Ωp
. (4.24)

The term I4 can be estimated by setting Vh = Uh in Lemma 4.2, which, together with (4.22)
and (4.24), yields

En+2 + 4(µ1 − 4ε1)∆t‖∇ûn+2
h ‖

2
Ω f

+ 4(µ2 − ε2)∆t‖∇ p̂n+2
ph ‖

2
Ωp

+ (3 −C4∆t) ‖B(Un+2
h )‖2S

≤ En+1 + ∆t‖2Un+1
h − Un

h‖
2
S + C5∆t‖Fn+2‖2, (4.25)
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where

C4 =
9
4

+
4C1

h
and C5 = max{

C2
P,1

ε1
,
C2

P,3

ε2
,

8
ρp
}.

Let ε1 =
3µ1
16 , ε2 =

3µ2
4 . Since the time-step restriction (4.17) is satisfied, we have 3−C4∆t ≥ 0. Thus

En+2 + µ1∆t‖∇ûn+2
h ‖

2
Ω f

+ µ2∆t‖∇p̂n+2
ph ‖

2
Ωp
≤ En+1 + ∆t‖2Un+1

h − Un
h‖

2
S + C5∆t‖Fn+2‖2. (4.26)

Summing (4.26) from n = 0 to n = m, we get

Em+2 + µ1∆t
m∑

n=0

‖∇ûn+2
h ‖

2
Ω f

+ µ2∆t
m∑

n=0

‖∇ p̂n+2
ph ‖

2
Ωp
≤ ∆t

m∑
n=0

En+1 + C6, (4.27)

where C6 = E1 + C5∆t
∑m

n=0 ‖Fn+2‖2. Using the Gronwall inequality (see, e.g., [47]), we have

Em+2 + µ1∆t
m∑

n=0

‖∇ûn+2
h ‖

2
Ω f

+ µ2∆t
m∑

n=0

‖∇ p̂n+2
ph ‖

2
Ωp
≤ C(T )C6 = C3. (4.28)

Then we get the lemma. �

Remark 4.1. The use of the inverse inequality to bound the interface terms introduces a theoretically
restrictive condition on the time step. However, numerical experiments demonstrate that the
scheme maintains both stability and accuracy even with slightly larger time steps (see Table 2 in
Subsection 6.1).

5. Error estimates

Let (S h, Ph) : H f × Q f → H f h × Q f h be the Stokes projection operator satisfying

a f (S hu, vh) + b f (vh, Ph p f ) + ab, f (S hu, vh) = a f (u, vh) + b f (vh, p f ) + ab, f (u, vh), (5.1)
b f (S hu, vh) = 0. (5.2)

Then if u ∈ Hk f +1(Ω f ) and p f ∈ Hk f (Ω f ), we have

‖u − S hu‖Ω f + h‖∇(u − S hu)‖Ω f + ‖p f − Ph p f ‖Ω f ≤ Chk f +1(‖u‖Hk f +1(Ω f ) + ‖p f ‖Hk f (Ω f )). (5.3)

Using (5.3), if h < 1, it is easy to obtain

‖Ph p f ‖Ω f ≤ C(‖u‖H2(Ω f ) + ‖p f ‖H1(Ω f )). (5.4)

Let Ih be the Lagrangian interpolation operator onto Hph, then for any ξ ∈ Hks+1(Ωp), we have

‖ξ − Ihξ‖Ωp + h‖∇(ξ − Ihξ)‖Ωp ≤ Chks+1‖ξ‖Hks+1(Ωp). (5.5)

Let Rh be the Ritz projection operator onto Hph such that for all η ∈ Hks+1(Ωp), there holds

aη(Rhη,χh) = aη(η,χh), ∀χh ∈ Hph. (5.6)
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Then
‖∇(η − Rhη)‖Ωp ≤ Chks‖η‖Hks+1(Ωp). (5.7)

Let Πh be the Ritz projection operator onto Qph such that for all pp ∈ Hkp+1(Ωp), there holds

ap(pp, ζh) = ap(Πh pp, ζh), ∀ζh ∈ Qph. (5.8)

Then
‖pp − Πh pp‖Ωp + h‖∇(pp − Πh pp)‖Ωp ≤ Chkp+1‖pp‖Hkp+1(Ωp). (5.9)

Denote the errors at the time t = tn by

en
u = un

h − un = (un
h − S hun) + (S hun − un) = θn

u + σn
u,

en
f p = pn

f h − pn
f = (pn

f h − Ph pn
f ) + (Ph pn

f − pn
f ) = θn

f p + σn
f p,

en
ξ = ξn

h − ξ
n = (ξn

h − Ihξ
n) + (Ihξ

n − ξn) = θn
ξ + σn

ξ ,

en
η = ηn

h − η
n = (ηn

h − Rhη
n) + (Rhη

n − ηn) = θn
η + σn

η,

en
pp = pn

ph − pn
p = (pn

ph − Πh pn
p) + (Πh pn

p − pn
p) = θn

pp + σn
pp.

Similar to (4.16), we define

En+1
θ = ‖Θn+1‖2S + ‖2Θn+1 −Θn‖2S + ‖Θn+1 −Θn‖2S + aη(θn+1

η , θn+1
η )

+ aη(2θn+1
η − θn

η, 2θ
n+1
η − θn

η) + aη(θn+1
η − θn

η, θ
n+1
η − θn

η). (5.10)

Lemma 5.1. For n ≥ 0, the following estimates hold

‖Dtvn+2 − ∂tvn+2‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂tttv‖2Ω?

dt, (5.11)

‖B(vn+2)‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂ttv‖2Ω?

dt, (5.12)

‖Dtvn+2‖2Ω?
≤

C
∆t

∫ tn+2

tn
‖∂tv‖2Ω?

dt, (5.13)

‖v̂n+2 − vn+2‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂ttv‖2Ω?

dt, (5.14)

‖Dtvn+2 − ∂tv̂n+2‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂tttv‖2Ω?

dt, (5.15)

where Ω? may be Ω f or Ωp.

Proof. The first three inequalities can be proved by the integral form of Taylor’s Theorem, see (5.9)–
(5.11) in [6]. The estimate (5.14) can be found in (3.33) of [34]. Therefore, we only need to
prove (5.15), using the Taylor formula of the integral remainder yields

‖Dtvn+2 − ∂tv̂n+2‖2Ω?

=

∥∥∥∥∥∥− 1
∆t

∫ tn+1

tn+2

(tn+1 − t)2∂tttvdt +
1

4∆t

∫ tn

tn+2

(tn − t)2∂tttvdt
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+

∫ tn+1

tn+2

(tn+1 − t)∂tttvdt −
1
2

∫ tn

tn+2

(tn − t)∂tttvdt

∥∥∥∥∥∥2

Ω?

. (5.16)

Using the Cauchy-Schwarz inequality, we have

‖ −
1
∆t

∫ tn+2

tn+1

(tn+1 − t)2∂tttvdt‖2Ω?
≤

C
∆t2

∫
Ω?

(
∫ tn+2

tn+1

(tn+1 − t)4dt
∫ tn+2

tn+1

(∂tttv)2dt)dx

≤ C∆t3
∫ tn+2

tn+1

‖∂tttv‖2Ω?
dt. (5.17)

Similarly

‖
1

4∆t

∫ tn

tn+2

(tn+1 − t)2∂tttvdt‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂tttv‖2Ω?

dt, (5.18)

‖

∫ tn+1

tn+2

(tn+1 − t)∂tttvdt‖2Ω?
≤ C∆t3

∫ tn+2

tn+1

‖∂tttv‖2Ω?
dt, (5.19)

‖ −
1
2

∫ tn

tn+2

(tn − t)∂tttvdt‖2Ω?
≤ C∆t3

∫ tn+2

tn
‖∂tttv‖2Ω?

dt. (5.20)

Substituting (5.17)–(5.20) into (5.16), using the triangle inequality, we get (5.15). �

Firstly, we present some estimates for ab,p((·, ·); (·, ·)) and aΓ(·, ·).

Lemma 5.2. Let ab,p((·, ·); (·, ·)) and aΓ(·, ·) be defined as in (2.16) and (2.17), respectively. For any
δ1, δ2, δ3, δ4 > 0, the following estimates hold

− ab,p((σ̂n+2
ξ , σ̂n+2

pp ); (θ̂n+2
ξ , θ̂n+2

pp ))

≤ δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+ Ch2kp‖ p̂n+2
p ‖

2
Hkp+1(Ωp) + Ch2ks‖ξ̂n+2‖2Hks+1(Ωp). (5.21)

− aΓ((σ̂n+2
u , 2σn+1

ξ − σn
ξ , 2σ

n+1
pp − σ

n
pp); (θ̂n+2

u , θ̂n+2
ξ , θ̂n+2

pp ))

≤ 2δ1‖∇θ̂
n+2
u ‖

2
Ω f

+ δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+ Ch2k f

(
‖ûn+2‖2

Hk f +1(Ω f )
+ ‖ p̂n+2

f ‖Hk f (Ω f )

)
+ Ch2ks+1

(
‖ξn+1‖2Hks+1(Ωp) + ‖ξn‖2Hks+1(Ωp)

)
+ Ch2kp+1

(
‖pn+1

p ‖
2
Hkp+1(Ωp) + ‖pn

p‖
2
Hkp+1(Ωp)

)
. (5.22)

Proof. Using the trace inequalities, (5.3), (5.5) and (5.9), we get

‖σ̂n
u‖Γ ≤ CCT,1hk f +

1
2 (‖ûn‖Hk f +1(Ω f ) + ‖ p̂n

f ‖Hk f (Ω f )), (5.23)

‖σ̂n
ξ‖Γ ≤ CCT,2hks+

1
2 ‖ξ̂n‖Hks+1(Ωp), (5.24)

‖σ̂n
pp‖Γ ≤ CCT,3hkp+ 1

2 ‖ p̂n
p‖Hkp+1(Ωp). (5.25)
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It follows from the Cauchy-Schwarz inequality, trace inequalities (4.2) and (4.3), inverse
inequality (4.5) and (5.25) that

− ab,p((σ̂n+2
ξ , σ̂n+2

pp ); (θ̂n+2
ξ , θ̂n+2

pp ))

≤ ‖θ̂n+2
pp ‖Γ‖σ̂

n+2
ξ · nf ‖Γ + ‖σ̂n+2

pp ‖Γ‖θ̂
n+2
ξ · nf ‖Γ + γ‖σ̂n+2

ξ · τ f ‖Γ‖θ̂
n+2
ξ · τ f ‖Γ

≤ CCT,2hks+
1
2

(
C̃T,3‖∇θ̂

n+2
pp ‖Ωp + γCT,2C

1
2
invh

− 1
2 ‖θ̂n+2

ξ ‖Ωp

)
‖ξ̂n+2‖Hks+1(Ωp)

+ CCT,2CT,3C
1
2
invh

kp‖ p̂n+2
p ‖Hkp+1(Ωp)‖θ̂

n+2
ξ ‖Ωp

≤ δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+
δ4ρp

2
‖θ̂n+2

ξ ‖
2
Ωp

+ Ch2kp‖p̂n+2
p ‖

2
Hkp+1(Ωp)

+ Ch2ks‖ξ̂n+2‖2Hks+1(Ωp). (5.26)

Then (5.21) can be obtained from (5.26) and (4.23).
Using the Cauchy-Schwarz inequality and the trace inequalities yields

− aΓ((σ̂n+2
u , 2σn+1

ξ − σn
ξ , 2σ

n+1
pp − σ

n
pp); (θ̂n+2

u , θ̂n+2
ξ , θ̂n+2

pp ))

≤ C̃T,1‖2σn+1
pp − σ

n
pp‖Γ‖∇θ̂

n+2
u ‖Ω f + C̃T,3‖σ̂

n+2
u ‖Γ‖∇θ̂

n+2
pp ‖Ωp

+ γC̃T,1‖2σn+1
ξ − σn

ξ‖Γ‖∇θ̂
n+2
u ‖Ω f + γCT,2‖σ̂

n+2
u ‖Γ‖θ̂

n+2
ξ ‖

1
2
Ωp
‖∇θ̂n+2

ξ ‖
1
2
Ωp
. (5.27)

The last term on the right hand of (5.27) can be estimated by the inverse inequality, (5.23) and (4.23)

γCT,2‖σ̂
n+2
u ‖Γ‖θ̂

n+2
ξ ‖

1
2
Ωp
‖∇θ̂n+2

ξ ‖
1
2
Ωp
≤ CT,2C

1
2
invh

− 1
2γ‖σ̂n+2

u ‖Γ‖θ̂
n+2
ξ ‖Ωp

≤ CCT,2C
1
2
invh

k f γ(‖ûn+2‖Ω f + ‖ p̂n+2
f ‖)‖θ̂

n+2
ξ ‖Ωp

≤
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+ Ch2k f

(
‖ûn+2‖2

Hk f +1(Ω f )
+ ‖ p̂n+2

f ‖Hk f (Ω f )

)
. (5.28)

then we get (5.22) by (5.23)–(5.25), (5.28) and Young’s inequality. �

Now, we study the error estimates for Algorithm 3.

Theorem 5.1. Let the body terms ∂tt f f ∈ L2(0,T ; L2(Ω f )), ∂tt fp ∈ L2(0,T ; L2(Ωp)) and ∂ttgp ∈

L2(0,T ; L2(Ωp)). If the solution (u, p f , ξ, η, pp) of problems (2.18a) and (2.18b) satisfies the following
hypotheses:

u ∈ H3(0,T ; L2(Ω f )) ∩ H1(0,T ; Hks+1(Ω f )), (5.29)
p f ∈ H1(0,T ; Hk f (Ω f )), (5.30)
ξ ∈ H3(0,T ; L2(Ωp)) ∩ H2(0,T ; H1(Ωp)) ∩ H1(0,T ; Hks+1(Ωp)), (5.31)
pp ∈ H3(0,T ; L2(Ωp)) ∩ H2(0,T ; H1(Ωp)) ∩ H1(0,T ; Hkp+1(Ωp)), (5.32)

where k f , ks, kp ≥ 1.If the time step restriction

∆t ≤ min{
s0µ1h

s0µ1h + 4C̃2
T,1C

2
T,3Cinv

,
ρpµ1h

ρpµ1h + 4C̃2
T,1C

2
T,2Cinvγ2

} (5.33)
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is satisfied,

‖Em+2‖2 ≤ C(∆t4 + h2k f + h2ks + h2kp), (5.34)
aη(em+2

η , em+2
η ) ≤ C(∆t4 + h2k f + h2ks + h2kp). (5.35)

Proof. For any vh ∈ H f h ⊂ H f , using (3.6a), (3.6b) and (5.1), we have

ρ f (Dtun+2, vh)Ω f + a f (S hûn+2, vh) + b f (vh, Ph pn+2
f ) + ab, f (S hûn+2, vh)

+
(
2pn+1

p − pn
p, vh · nf

)
Γ
− γ

(
(2ξn+1 − ξn) · τ f , vh · τ f

)
Γ

= ( f n+2
f , vh)Ω f + E1(vh), (5.36)

b f (S hûn+2, qh) = 0, (5.37)

where

E1(vh) = ( f̂ n+2
f − f n+2

f , vh)Ω f + ρ f (Dtun+2 − ∂tûn+2, vh)Ω f + b f (vh, Ph p f − Ph p̂n+2
f )

−
(
p̂n+2

p − 2pn+1
p + pn

p, vh · nf

)
Γ

+ γ
(
(ξ̂n+2 − 2ξn+1 + ξn) · τ f , vh · τ f

)
Γ

= ( f̂ n+2
f − f n+2

f , vh)Ω f + ρ f (Dtun+2 − ∂tûn+2, vh)Ω f + b f (vh, Ph p f − Ph p̂n+2
f )

−
(
B(pn+2

p ) + p̂n+2
p − pn+2

p , vh · nf

)
Γ

+ γ
(
(B(ξn+2) + ξ̂n+2 − ξn+2) · τ f , vh · τ f

)
Γ
.

For any χh ∈ Hph, ζh ∈ Qph, using (3.6c), (3.6d), (5.6) and (5.8), we have

ρp(Dtξ
n+2,χh)Ωp + s0(Dt pn+2

p , ζh)Ωp + aη(Rhη̂
n+2,χh) + bp(χh, p̂n+2

p )

+ ap(Πh p̂n+2
p , ζh) − bp(ξ̂n+2, ζh) + ab,p((ξ̂n+2, p̂n+2

p ); (χh, ζh))

− (ûn+2 · nf , ζh)Γ − γ(ûn+2 · τ f ,χh · τ f )Γ

= ( f n+2
p ,χh)Ωp + (gn+2

p , ζh)Ωp + E2(χh, ζh), (5.38)

where

E2(χh, ζh) = ( f̂ n+2
p − f n+2

p ,χh)Ωp + (ĝn+2
p − gn+2

p , ζh)Ωp

+ ρp(Dtξ
n+2 − ∂tξ̂

n+2,χh)Ωp + s0(Dt pn+2
p − ∂t p̂n+2

p , ζh)Ωp .

Subtracting the sum of (5.36) and (5.38) from (3.3a), and subtracting (5.37) from (3.3b), we obtain

〈〈DtEn+2,Vh〉〉 + a f (θ̂n+2
u , vh) + b f (vh, θ

n+2
f p ) + ap(θ̂n+2

pp , ζh) + aη(θ̂n+2
η ,χh)

+ bp(χh, ên+2
pp ) − bp(ên+2

ξ , ζh) + ab, f (θ̂n+2
u , vh) + ab,p((ên+2

ξ , ên+2
pp ); (χh, ζh))

+ aΓ((ên+2
u , 2en+1

ξ − en
ξ , 2en+1

pp − en
pp); (vh,χh, ζh))

= E1(vh) + E2(χh, ζh), (5.39)

b f (θ̂n+2
u , qh) = 0. (5.40)

Let Vh = Θ̂n+2 = (θ̂n+2
u , θ̂n+2

ξ , θ̂n+2
pp ) in (5.39), using the divergence free property (5.40), we have

〈〈DtΘ
n+2, Θ̂n+2〉〉 + a(Θ̂n+2, Θ̂n+2) + ab(Θ̂n+2, Θ̂n+2) + aη(θ̂n+2

η , θ̂n+2
ξ )

= −〈〈DtΣ
n+2, Θ̂n+2〉〉 − bp(θ̂n+2

ξ , σ̂n+2
pp ) + bp(σ̂n+2

ξ , θ̂n+2
pp )
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− ab,p((σ̂n+2
ξ , σ̂n+2

pp ); (θ̂n+2
ξ , θ̂n+2

pp ))

− aΓ((ên+2
u , 2en+1

ξ − en
ξ , 2en+1

pp − en
pp); (θ̂n+2

u , θ̂n+2
ξ , θ̂n+2

pp )) + E1(vh) + E2(χh, ζh). (5.41)

Since

ξ̂n+2
h =

η̂n+2
h − ηn+1

h

∆t
= Dtη

n+2
h and ξ̂n+2 = ∂tη̂

n+2,

we have

θ̂n+2
ξ = Dten+2

η − rn+2 − σ̂n+2
ξ , (5.42)

where rn+2 = ∂tη̂
n+2 − Dtη

n+2.
Combining (5.41), (5.42) and (4.19), recalling the definition of (5.10), similar to (4.21), we have

En+2
θ + 3J1 + 4∆tJ2 = En+1

θ + 4∆tJ3 + 4∆tJ4 + 4∆tJ5 + 4∆tJ6, (5.43)

where

J1 = ‖B(Θn+2)‖2S + aη(B(θn+2
η ), B(θn+2

η )),

J2 = a(Θ̂n+2, Θ̂n+2) + ab(Θ̂n+2, Θ̂n+2),

J3 = −〈〈DtΣ
n+2, Θ̂n+2〉〉 − aη(θ̂n+2

η ,Dtσ
n+2
η ),

J4 = aη(θ̂n+2
η , σ̂n+2

ξ ) − bp(θ̂n+2
ξ , σ̂n+2

pp ) + bp(σ̂n+2
ξ , θ̂n+2

pp )

= J41 + J42 + J43,

J5 = −aΓ((θ̂n+2
u , 2θn+1

ξ − θn
ξ , 2θ

n+1
pp − θ

n
pp); (θ̂n+2

u , θ̂n+2
ξ , θ̂n+2

pp ))

− aΓ((σ̂n+2
u , 2σn+1

ξ − σn
ξ , 2σ

n+1
pp − σ

n
pp); (θ̂n+2

u , θ̂n+2
ξ , θ̂n+2

pp ))

− ab,p((σ̂n+2
ξ , σ̂n+2

pp ); (θ̂n+2
ξ , θ̂n+2

pp ))

= J51 + J52 + J53,

J6 = E1(θ̂n+2
u ) + E2(θ̂n+2

ξ , θ̂n+2
pp ) + aη(θ̂n+2

η , rn+2)

= J61 + J62 + J63.

Similar to (4.22), we obtain

J2 ≥ µ1‖∇θ̂
n+2
u ‖

2
Ω f

+ µ2‖∇θ̂
n+2
pp ‖

2
Ωp

+ γ‖θ̂n+2
ξ · τ f ‖

2
Γ + γ‖θ̂n+2

u · τ f ‖
2
Γ. (5.44)

Using (5.6) yields
J3 = −〈〈DtΣ

n+2, Θ̂n+2〉〉. (5.45)

For any δ1, δ2, δ4 > 0, from Young’s inequality, (5.3), (5.5) and (5.9), we have

J3 ≤ ρ f CP,1‖∇θ̂
n+2
u ‖Ω f ‖Dtσ

n+2
u ‖Ω f + ρp‖θ̂

n+2
ξ ‖Ωp‖Dtσ

n+2
ξ ‖Ωp

+ s0CP,3‖∇θ̂
n+2
pp ‖Ωp‖Dtσ

n+2
pp ‖Ωp

≤ δ1‖∇θ̂
n+2
u ‖

2
Ω f

+ δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+
Ch2k f +2

∆t

∫ tn+2

tn
(‖∂tu‖2Hk f +1(Ω f )

+ ‖∂t p f ‖
2
Hk f (Ω f )

)dt
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+
Ch2ks+2

∆t

∫ tn+2

tn
‖∂tξ‖

2
Hks+1(Ωp)dt +

Ch2kp+2

∆t

∫ tn+2

tn
‖∂t pp‖

2
Hkp+1(Ωp)dt, (5.46)

where in the last step we use the triangle inequality and the equality

θ̂n+2
ξ =

3
2

B(θn+2
ξ ) + 2θn+1

ξ − θn
ξ . (5.47)

For any δ5 > 0, since θ̂n+2
η = 3

2 B(θn+2
η ) + 2θn+1

η − θn
η, using Young’s inequality and (5.5), we have

J41 ≤ aη(θ̂n+2
η , θ̂n+2

η )
1
2 aη(σ̂n+2

ξ , σ̂n+2
ξ )

1
2

≤
δ5

2
aη(θ̂n+2

η , θ̂n+2
η ) + Ch2ks‖ξ̂n+2‖2Hks+1(Ωp)

≤
9δ5

4
aη(B(θn+2

η ), B(θn+2
η )) + δ5aη(2θn+1

η − θn
η, 2θ

n+1
η − θn

η) + Ch2ks‖ξ̂n+2‖2Hks+1(Ωp). (5.48)

Using the inverse inequality (4.5), (4.4) and (5.47), for any δ2, δ4 > 0, we have from the Young’s
inequality that

J42 + J43 ≤ CCinvh−1α‖σ̂n+2
pp ‖Ωp‖θ̂

n+2
ξ ‖Ωp + αCP,3‖∇ · σ̂

n+2
ξ ‖Ωp‖∇θ̂

n+2
pp ‖Ωp

≤
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+ δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+ Ch2ks‖ξ̂n+2‖2Hks+1(Ωp) + Ch2kp‖ p̂n+2
p ‖

2
Hkp+1(Ωp). (5.49)

Applying Lemma 4.2 with Vn+i
h = Θ̂n+i for i = 0, 1, 2 and ε1 = δ1 yields an estimate for the term J51.

Combining the estimate for J51 with those for J52 and J53 from Lemma 5.2, we obtain

J5 ≤ 5δ1‖∇θ̂
n+2
u ‖

2
Ω f

+ 2δ2‖∇θ̂
n+2
pp ‖

2
Ωp

+ γ‖θ̂n+2
u · τ f ‖

2
Γ + γ‖θ̂n+2

ξ · τ f ‖
2
Γ

+
9δ4ρp

2
‖B(θn+2

ξ )‖2Ωp
+ 2δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+
C7

h
‖B(Θn+2)‖2S

+ Ch2k f

(
‖ûn+2‖2

Hk f +1(Ω f )
+ ‖ p̂n+2

f ‖Hk f (Ω f )

)
+ Ch2ks

(
‖ξ̂n+2‖2Hks+1(Ωp) + h‖ξn+1‖2Hks+1(Ωp) + h‖ξn‖2Hks+1(Ωp)

)
+ Ch2kp

(
‖ p̂n+2

p ‖
2
Hkp+1(Ωp) + h‖pn+1

p ‖
2
Hkp+1(Ωp) + h‖pn

p‖
2
Hkp+1(Ωp)

)
, (5.50)

where

C7 = max{
3C̃2

T,1C
2
T,3Cinv

8s0δ1
,

3C̃2
T,1C

2
T,2Cinvγ

2

8ρpδ1
}.

Using the Poincaré inequalities (4.4), trace inequalities (4.1)–(4.3), the Cauchy-Schwarz inequality,
Lemma 5.1, and (5.4), we have

J61 ≤ (CP,1‖ f̂ n+2
f − f n+2

f ‖Ω f + ρ f CP,1‖Dtun+2 − ∂tûn+2‖Ω f + C‖Ph p f − Ph p̂ f ‖Ω f )‖∇θ̂
n+2
u ‖Ω f

+ CC̃T,1C̃T,3(‖∇B(pn+2
p )‖Ωp + ‖∇( p̂n+2

p − pn+2
p )‖Ωp)‖∇θ̂

n+2
u ‖Ω f

+ CC̃T,1C̃T,2(‖∇B(ξn+2)‖Ωp + ‖∇(ξ̂n+2 − ξn+2)‖Ωp)‖∇θ̂
n+2
u ‖Ω f
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≤ δ1‖∇θ̂
n+2
u ‖

2
Ω f

+ C∆t3
∫ tn+2

tn
(‖∂tt f f ‖

2
Ω f

+ ‖∂tttu‖2Ω f
+ ‖∂ttu‖2H2(Ω f ) + ‖∂tt p f ‖

2
H1(Ω f ))dt

+ C∆t3
∫ tn+2

tn
(‖∂tt pp‖

2
H1(Ωp) + ‖∂ttξ‖

2
H1(Ωp))dt. (5.51)

Similarly, an application of (4.23) yields

J62 ≤ (‖ f̂ n+2
p − f n+2

p ‖Ωp + ρp‖Dtξ
n+2 − ∂tξ̂

n+2‖Ωp)‖θ̂
n+2
ξ ‖Ωp

+ Cp,3(‖ĝn+2
p − gn+2

p ‖Ωp + s0‖Dt pn+2
p − ∂t p̂n+2

p ‖Ωp)‖∇θ̂
n+2
pp ‖Ωp

≤
9δ4ρp

4
‖B(θn+2

ξ )‖2Ωp
+ δ4ρp‖2θn+1

ξ − θn
ξ‖

2
Ωp

+ δ2‖∇θ̂
n+2
pp ‖Ωp

+ C∆t3
∫ tn+2

tn
(‖∂tt fp‖

2
Ωp

+ ‖∂ttgp‖
2
Ωp

+ ‖∂tttξ‖
2
Ωp

+ ‖∂ttt pp‖
2
Ωp

)dt. (5.52)

Following a derivation analogous to that of (5.48) and applying (5.15), we obtain

J63 ≤ aη(θ̂n+2
η , θ̂n+2

η )
1
2 aη(rn+2, rn+2)

1
2

≤
9δ5

4
aη(B(θn+2

η ), B(θn+2
η )) + δ5aη(2θn+1

η − θn
η, 2θ

n+1
η − θn

η)

+ C∆t3
∫ tn+2

tn
‖∂tttη‖

2
H1(Ωp)dt. (5.53)

Combining all of the above estimates for Ji, i = 1, . . . , 6, we obtain

En+2
θ + 4(µ1 − 7δ1)∆t‖∇θ̂n+2

u ‖
2
Ω f

+ 4(µ2 − 4δ2)∆t‖∇θ̂n+2
pp ‖

2
Ωp

+ (3 − 4C̃7∆t)‖B(Θn+2)‖2S + (3 − 18δ5∆t)aη(B(θn+2
η ), B(θn+2

η ))

≤ En+1
θ + 4C8∆tEn+1

θ + C∆t4A1 + C∆t(h2k f A2 + h2ks A3 + h2kp A4), (5.54)

where C8 = max{5δ4, 2δ5}, C̃7 = C7
h + 45δ4

4 and

A1 =

∫ tn+2

tn
(‖∂tt f f ‖

2
Ω f

+ ‖∂tt fp‖
2
Ωp

+ ‖∂ttgp‖
2
Ωp

+ ‖∂tttu‖2Ω f
+ ‖∂tttξ‖

2
Ωp

+ ‖∂ttt pp‖
2
Ωp

)dt

+

∫ tn+2

tn
(‖∂ttu‖2H2(Ω f ) + ‖∂tt p f ‖

2
H1(Ω f ) + ‖∂tt pp‖

2
H1(Ωp) + ‖∂ttξ‖

2
H1(Ωp))dt

A2 = ‖ûn+2‖2
Hk f +1(Ω f )

+ ‖ p̂n+2
f ‖Hk f (Ω f )

+
h2

∆t

∫ tn+2

tn
(‖∂tu‖2Hk f +1(Ω f )

+ ‖∂t p f ‖
2
Hk f (Ω f )

)dt,

A3 = ‖ξ̂n+2‖2Hks+1(Ωp) + h(‖ξn+1‖2Hks+1(Ωp) + ‖ξn‖2Hks+1(Ωp))

+
h2

∆t

∫ tn+2

tn
‖∂tξ‖

2
Hks+1(Ωp)dt,

A4 = ‖p̂n+2
p ‖

2
Hkp+1(Ωp) + h(‖pn+1

p ‖
2
Hkp+1(Ωp) + ‖pn

p‖
2
Hkp+1(Ωp))

+
h2

∆t

∫ tn+2

tn
‖∂t pp‖

2
Hkp+1(Ωp)dt.
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We set the parameters to δ1 =
µ1
8 , δ2 =

µ2
5 , δ4 = 1

15 and δ5 = 1
6 . Assume the time step restriction (5.33)

is satisfied. Then, summing Eq (5.54) from n = 0 to n = m, we obtain

Em+2
θ +

µ1∆t
2

m∑
n=0

‖∇θ̂n+2
u ‖

2
Ω f

+
4µ2∆t

5

m∑
n=0

‖∇θ̂n+2
pp ‖

2
Ωp

≤ 4C8∆t
m∑

n=0

En+1
θ + E1

θ + C∆t4A1 + C(h2k fA2 + h2ksA3 + h2kpA4), (5.55)

where

A1 = ‖∂tt f f ‖
2
L2(0,T ;L2(Ω f )) + ‖∂tt fp‖

2
L2(0,T ;L2(Ωp)) + ‖∂ttgp‖

2
L2(0,T ;L2(Ωp))

+ ‖∂tttu‖2L2(0,T ;L2(Ω f )) + ‖∂ttt pp‖
2
L2(0,T ;L2(Ωp)) + ‖∂tttξ‖

2
L2(0,T ;L2(Ωp))

+ ‖∂tt pp‖
2
L2(0,T ;H1(Ωp)) + ‖∂ttξ‖

2
L2(0,T ;H1(Ωp)),

A2 = ‖u‖2
l2(0,T ;Hk f +1(Ω f ))

+ ‖p f ‖
2
l2(0,T ;Hk f (Ω f ))

+ h2(‖∂tu‖2L2(0,T ;Hk f +1(Ω f ))
+ ‖∂t p f ‖

2
L2(0,T ;Hk f (Ω f ))

),

A3 = ‖ξ‖2l2(0,T ;Hks+1(Ωp)) + h2‖∂tξ‖
2
L2(0,T ;Hks+1(Ωp)),

A4 = ‖pp‖l2(0,T ;Hkp+1(Ωp)) + h2‖∂t pp‖
2
L2(0,T ;Hkp+1(Ωp)).

Assume that θi
u = 0, θi

ξ = 0, θi
η = 0, θi

pp = 0 for i = 0, 1, using the Gronwall inequality, we obtain

‖Θm+2‖2 ≤ C(∆t4 + h2k f + h2ks + h2kp), (5.56)
aη(θm+2

η , θm+2
η ) ≤ C(∆t4 + h2k f + h2ks + h2kp). (5.57)

Then (5.34) and (5.35) can be obtained by the triangle inequality. �

6. Numerical example

In this section, the numerical example is implemented by using the software package
FreeFem++ [48]. All three decoupled algorithms decompose the original problem into two sub-
problems. For the solution of these two sub-problems, we employ the built-in keyword “problem”
in FreeFem++. All configurations are set to default. A commonly used numerical example is chosen,
see, e.g., [15, 19, 21].

Example 6.1. Let Ω f = (0, 1) × (0, 1), Ωp = (−1, 0) × (0, 1) and the interface Γ = (0, 1) × {0}, assume
that the exact solution in the fluid region is

u(x, t) = π cos(πt)
(
−3x + cos(y)

y + 1

)
,

p f (x, t) = exp(t) sin(πx) cos(
πy
2

) + 2πµ f cos(πt),

and the exact solution in the poroelastic region is

ξ(x, t) = π cos(πt)
(
−3x + cos(y)

y + 1

)
,
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η(x, t) = sin(πt)
(
−3x + cos(y)

y + 1

)
,

pp(x, t) = exp(t) sin(πx) cos(
πy
2

).

According to the exact solution, we can choose the right hand functions, initial conditions, and
boundary conditions.

6.1. Numerical verification the convergence rates for Algorithm 3

We set ρ f = µ f = ρp = µp = λp = s0 = α = γ = 1, K = I in the Stokes–Biot problem. We
test the temporal and spatial convergence rates for the proposed decoupled time filtered finite element
method (Algorithm 3). We discretize the Stokes problem in space by using the Taylor-Hood(P2-P1)
elements for the velocity and pressure, and discretize the Biot problem by using piecewise quadratic
elements(P2) for the displacement, velocity and pressure. Combining the numerical results in Table 1
and 2, it can be concluded that whether the time step is set to ∆t = 0.3h or ∆t = 0.6h, the expected
temporal convergence rates O(∆t2) are also obtained. This verifies the stability and reliability of the
temporal convergence of the proposed method under different time steps. In Table 3, let ∆t = O(h

3
2 ).

Here, we see that all unknowns in H1 norm and L2 norm achieve the optimal spatial error convergence
rates. Although according to our Theorem 5.1, the spatial convergence rate for these unknowns is only
predicted to be second-order in the L2 norm.

Table 1. Errors, temporal convergence rates for T = 0.3 and ∆t = 0.3 h.
h 1/8 1/16 1/32 1/64 1/128
‖eN

u ‖Ω f 3.0728E-02 6.7146E-03 1.6348E-03 4.0407E-04 1.0044E-04
Rate – 2.19 2.04 2.02 2.01
‖∇eN

u ‖Ω f 1.1920E-01 2.6252E-02 6.4246E-03 1.5921E-03 3.9625E-04
Rate – 2.18 2.03 2.01 2.01
‖eN

f p‖Ω f 2.1446E-01 6.9202E-02 1.6338E-02 3.9902E-03 9.8615E-04
Rate – 1.63 2.08 2.03 2.02
‖eN
ξ ‖Ωp 3.7838E-03 1.1789E-03 3.1735E-04 8.1588E-05 2.0641e-05

Rate – 1.68 1.89 1.96 1.98
‖∇eN

ξ ‖Ωp 2.6012E-02 7.1426E-03 1.9160E-03 5.1946E-04 1.4259E-04
Rate – 1.86 1.90 1.88 1.87
‖eN
η ‖Ωp 6.5515E-03 1.9778E-03 5.3579E-04 1.3902E-04 3.5384E-05

Rate – 1.73 1.88 1.95 1.97
‖∇eN

η ‖Ωp 1.7528E-02 5.3078E-03 1.4415E-03 3.7446E-04 9.5360E-05
Rate – 1.72 1.88 1.94 1.97
‖eN

pp‖Ωp 7.6725E-03 1.9177E-03 4.7199E-04 1.1734E-04 2.92786e-05
Rate – 2.00 2.02 2.01 2.00
‖∇eN

pp‖Ωp 5.5733E-02 1.4032E-02 3.5112E-03 8.7787E-04 2.1947E-04
Rate – 1.99 2.00 2.00 2.00
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Table 2. Errors, temporal convergence rates for T = 0.3 and ∆t = 0.6 h.
h 1/8 1/16 1/32 1/64 1/128
‖eN

u ‖Ω f 1.0744E-01 1.8492E-02 4.4203E-03 1.0636E-03 2.6072E-04
Rate – 2.54 2.06 2.06 2.03
‖∇eN

u ‖Ω f 4.1973E-01 7.2485E-02 1.7378E-02 4.1866E-03 1.0270E-03
Rate – 2.53 2.06 2.05 2.03
‖eN

f p‖Ω f 7.3452E-01 1.7930E-01 3.6883E-02 8.6123E-03 2.0793E-03
Rate – 2.03 2.28 2.10 2.05
‖eN
ξ ‖Ωp 1.6475E-02 5.3260E-03 1.4297E-03 3.6427E-04 9.1687E-05

Rate – 1.63 1.90 1.97 1.99
‖∇eN

ξ ‖Ωp 7.9036E-02 2.6132E-02 7.1557E-03 1.9193E-03 5.2011E-04
Rate – 1.60 1.87 1.90 1.88
‖eN
η ‖Ωp 2.8206E-02 9.0567E-03 2.5021E-03 6.5411E-04 1.6704E-04

Rate – 1.64 1.86 1.94 1.97
‖∇eN

η ‖Ωp 7.6832E-02 2.4794E-02 6.8796E-03 1.8015E-03 4.6031E-04
Rate – 1.63 1.85 1.93 1.97
‖eN

pp‖Ωp 2.4664E-02 6.2230E-03 1.4608E-03 3.5571E-04 8.7913E-05
Rate – 1.99 2.09 2.04 2.02
‖∇eN

pp‖Ωp 1.0302E-01 2.4110E-02 5.6678E-03 1.3782E-03 3.4021E-04
Rate – 2.10 2.09 2.04 2.02

Table 3. Errors, spatial convergence rates with T = 0.2 and ∆t = 0.2 h
3
2 .

h 1/9 1/16 1/25 1/36 1/49
‖eN

u ‖Ω f 1.5062E-03 2.6092E-04 6.7718E-05 2.2577E-05 8.9327E-06
Rate – 3.05 3.02 3.01 3.01
‖∇eN

u ‖Ω f 5.9142E-03 1.0374E-03 2.7392E-04 9.3767E-05 3.8571e-05
Rate – 3.03 2.98 2.94 2.88
‖eN

f p‖Ω f 1.3312E-02 2.4876E-03 7.6142E-04 3.1422E-04 1.5616E-04
Rate – 2.92 2.65 2.43 2.27
‖eN
ξ ‖Ωp 5.1267E-04 9.1836E-05 2.4124E-05 8.0858E-06 3.20809e-06

Rate – 2.99 3.00 3.00 3.00
‖∇eN

ξ ‖Ωp 2.6545E-03 5.2838E-04 1.5760E-04 5.98685e-05 2.71751e-05
Rate – 2.81 2.71 2.65 2.56
‖eN
η ‖Ωp 9.1065E-04 1.6695E-04 4.4219E-05 1.4876E-05 5.91296e-06

Rate – 2.95 2.98 2.99 2.99
‖∇eN

η ‖Ωp 2.5188E-03 4.6467E-04 1.2456E-04 4.2794E-05 1.7578E-05
Rate – 2.94 2.95 2.93 2.89
‖eN

pp‖Ωp 5.9012E-04 1.0050E-04 2.5834E-05 8.5627E-06 3.3750E-06
Rate – 3.08 3.04 3.03 3.02
‖∇eN

pp‖Ωp 1.6306E-02 5.1636E-03 2.1170E-03 1.0215E-03 5.5161E-04
Rate – 2.00 2.00 2.00 2.00

6.2. The influence in different physical parameters

Let ρ f = ρp = µp = λp = s0 = α = γ = 1 and K = I in the Stokes–Biot problem. To test our
theoretical results in Theorem 5.1, we choose different values for the fluid viscosity µ f . By setting the
time step ∆t = O(h), Tables 4 and 5 present the numerical errors and corresponding convergence rates
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for fluid viscosities µ f = 0.1 and µ f = 0.001, respectively. We can see that the errors in both the L2

and H1 norms decrease monotonically with a second-order convergence temporal rate, confirming the
method’s accuracy and robustness.

Table 4. Errors, temporal convergence rates for T = 0.1, ∆t = 0.05 h and µ f = 0.1.
h 1/8 1/16 1/32 1/64 1/128
‖eN

u ‖Ω f 7.3984E-04 1.8283E-04 4.5641E-05 1.1406E-05 2.8509E-06
Rate – 2.02 2.00 2.00 2.00
‖∇eN

u ‖Ω f 7.4243E-03 1.3917E-03 3.0067E-04 7.0795E-05 1.7243E-05
Rate – 2.42 2.21 2.09 2.04
‖eN

f p‖Ω f 4.4449E-03 1.0919E-03 2.7155E-04 6.7774E-05 1.6934E-05
Rate – 2.03 2.01 2.00 2.00
‖eN
ξ ‖Ωp 1.3010E-04 3.0472E-05 7.6515E-06 1.9268E-06 4.8421E-07

Rate – 2.09 1.99 1.99 1.99
‖∇eN

ξ ‖Ωp 3.3396E-03 5.7219E-04 1.5064E-04 4.1074E-05 1.1018E-05
Rate – 2.55 1.93 1.87 1.90
‖eN
η ‖Ωp 1.0899E-04 2.8743E-05 7.3654E-06 1.8633E-06 4.6853E-07

Rate – 1.92 1.96 1.98 1.99
‖∇eN

η ‖Ωp 3.2949E-04 8.5112E-05 2.1646E-05 5.4674E-06 1.3740E-06
Rate – 1.95 1.98 1.99 1.99
‖eN

pp‖Ωp 3.2949E-04 8.5112E-05 2.1646E-05 5.4674E-06 1.3740E-06
Rate – 1.95 1.98 1.99 1.99
‖∇eN

pp‖Ωp 1.6756E-02 4.2218E-03 1.0586E-03 2.6496E-04 6.6277E-05
Rate – 1.99 2.00 2.00 2.00

Table 5. Errors, temporal convergence rates for T = 0.1, ∆t = 0.05 h and µ f = 0.001.
h 1/8 1/16 1/32 1/64 1/128
‖eN

u ‖Ω f 4.0390E-03 5.9748E-04 6.4682E-05 1.1642E-05 2.7692E-06
Rate – 2.76 3.21 2.47 2.07
‖∇eN

u ‖Ω f 2.4089E-01 7.0660E-02 1.2010E-02 1.9732E-03 3.4411E-04
Rate – 1.77 2.56 2.61 2.52
‖eN

f p‖Ω f 4.4022E-03 1.0801E-03 2.6894E-04 6.7168E-05 1.6789E-05
Rate – 2.03 2.01 2.00 2.00
‖eN
ξ ‖Ωp 3.4236E-04 9.3360E-05 2.2928E-05 5.6359E-06 1.4065E-06

Rate – 1.87 2.03 2.02 2.00
‖∇eN

ξ ‖Ωp 6.6565E-03 1.9727E-03 6.3248E-04 1.8909E-04 5.3465E-05
Rate – 1.75 1.64 1.74 1.82
‖eN
η ‖Ωp 1.0829E-04 2.8493E-05 7.2990E-06 1.8463E-06 4.6425E-07

Rate – 1.93 1.96 1.98 1.99
‖∇eN

η ‖Ωp 5.2734E-04 1.3646E-04 3.3942E-05 8.4534E-06 2.1118E-06
Rate – 1.95 2.01 2.01 2.00
‖eN

pp‖Ωp 3.1025E-04 4.8224E-05 9.4070E-06 2.1578E-06 5.2694E-07
Rate – 2.69 2.36 2.12 2.03
‖∇eN

pp‖Ωp 1.6765E-02 4.2227E-03 1.0585E-03 2.6494E-04 6.6269E-05
Rate – 1.99 2.00 2.00 2.00

6.3. Comparison of Algorithm 1–3

The efficiency of Algorithm 3 is evaluated against Algorithms 1 and 2. Let ρ f = µ f = ρp = µp =

λp = s0 = α = γ = 1, K = I in the Stokes–Biot problem. We discretize the Stokes problem in
space by using the Taylor-Hood(P2-P1) elements for the velocity and pressure, and discretize the Biot
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problem by using piecewise quadratic elements(P2) for the displacement, velocity and the piecewise
linear elements(P1) for pressure. Comparing Table 6 with Table 8, we see that by simply adding a time
filter, the time accuracy is increased from first order to second order. The first order O(∆t) for ‖∇epp‖Ωp

is due to the use of the piecewise linear elements(P1) for pressure. It can also be shown from Table 6–8
that Algorithm 1 takes the shortest CPU time, followed by Algorithm 3, and Algorithm 2 takes the
longest CPU time.

Table 6. Errors and convergence rates of Algorithm 1 for T = 1.0 and ∆t = h.
h 1/8 1/16 1/32 1/64 1/128
‖eN

u ‖Ω f 1.3624e-02 6.5651e-03 3.1877e-03 1.5573e-03 7.6425e-04
Rate – 1.05 1.04 1.03 1.03
‖∇eN

u ‖Ω f 9.9144e-02 4.6833e-02 2.3344e-02 1.1653e-02 5.7855e-03
Rate – 1.08 1.00 1.00 1.01
‖eN

f p‖Ω f 1.3764e+00 7.0486e-01 3.5621e-01 1.7918e-01 8.9905e-02
Rate – 0.97 0.98 0.99 0.99
‖eN
ξ ‖Ωp 2.7874e-01 1.7200e-01 9.8078e-02 5.2944e-02 2.7639e-02

Rate – 0.70 0.81 0.89 0.94
‖∇eN

ξ ‖Ωp 1.0484e+00 6.4957e-01 3.7646e-01 2.0775e-01 1.1107e-01
Rate – 0.69 0.79 0.86 0.90
‖eN
η ‖Ωp 4.4854e-01 2.2207e-01 1.1036e-01 5.4978e-02 2.7429e-02

Rate – 1.01 1.01 1.01 1.00
‖∇eN

η ‖Ωp 1.2657e+00 6.3629e-01 3.1989e-01 1.6067e-01 8.0587e-02
Rate – 0.99 0.99 0.99 1.00
‖eN

pp‖Ωp 3.4551e-02 1.6520e-02 1.0731e-02 6.2982e-03 3.4372e-03
Rate – 1.06 0.62 0.77 0.87
‖∇eN

pp‖Ωp 7.1306e-01 3.6582e-01 1.8624e-01 9.4170e-02 4.7394e-02
Rate – 0.96 0.97 0.98 0.99
CPU(s) 0.479 3.773 31.016 285.248 2622.240

Table 7. Errors and convergence rates of Algorithm 2 for T = 1.0 and ∆t = h.
h 1/4 1/8 1/16 1/32 1/64
‖eN

u ‖Ω f 7.9249e-03 2.1790e-03 5.5934e-04 1.4107e-04 3.5378e-05
Rate – 1.86 1.96 1.99 2.00
‖∇eN

u ‖Ω f 9.8613e-02 2.6714e-02 6.8376e-03 1.7243e-03 4.3248e-04
Rate – 1.88 1.97 1.99 2.00
‖eN

f p‖Ω f 1.5111e-01 4.3143e-02 1.1960e-02 3.1614e-03 8.1223e-04
Rate – 1.81 1.85 1.92 1.96
‖eN
ξ ‖Ωp 3.2289e-02 1.2008e-02 3.5818e-03 9.6081e-04 2.4742e-04

Rate – 1.43 1.75 1.90 1.96
‖∇eN

ξ ‖Ωp 1.6028e-01 5.1297e-02 1.5383e-02 4.1757e-03 1.0884e-03
Rate – 1.64 1.74 1.88 1.94
‖eN
η ‖Ωp 2.8835e-02 7.2942e-03 1.8031e-03 4.4532e-04 1.1048e-04

Rate – 1.98 2.02 2.02 2.01
‖∇eN

η ‖Ωp 1.0515e-01 2.7671e-02 6.9063e-03 1.7072e-03 4.2355e-04
Rate – 1.93 2.00 2.02 2.01
‖eN

pp‖Ωp 4.9539e-02 1.2608e-02 3.2099e-03 8.1313e-04 2.0444e-04
Rate – 1.97 1.97 1.98 1.99
‖∇eN

pp‖Ωp 6.9427e-01 3.4748e-01 1.7378e-01 8.6894e-02 4.3447e-02
Rate – 1.00 1.00 1.00 1.00
CPU(s) 0.46 3.77 37.32 329.30 3106.90
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Table 8. Errors and convergence rates of Algorithm 3 for T = 1.0 and ∆t = h.

h 1/8 1/16 1/32 1/64 1/128

‖eN
u ‖Ω f 3.0439e-01 7.6653e-02 1.9227e-02 4.8100e-03 1.2027e-03

Rate – 1.99 2.00 2.00 2.00

‖∇eN
u ‖Ω f 1.1901e+00 3.0035e-01 7.5469e-02 1.8908e-02 4.7311e-03

Rate – 1.99 1.99 2.00 2.00

‖eN
f p‖Ω f 3.7200e+00 9.3142e-01 2.2920e-01 5.6620e-02 1.4060e-02

Rate – 2.00 2.02 2.02 2.01

‖eN
ξ ‖Ωp 3.8392e-02 1.8466e-02 6.0599e-03 1.6770e-03 4.3561e-04

Rate – 1.06 1.61 1.85 1.94

‖∇eN
ξ ‖Ωp 2.3393e-01 7.1184e-02 2.3358e-02 6.9149e-03 1.8817e-03

Rate – 1.72 1.61 1.76 1.88

‖eN
η ‖Ωp 2.2713e-02 6.3155e-03 1.5038e-03 3.6229e-04 8.8900e-05

Rate – 1.85 2.07 2.05 2.03

‖∇eN
η ‖Ωp 1.0514e-01 2.8245e-02 6.7994e-03 1.6332e-03 3.9870e-04

Rate – 1.90 2.05 2.06 2.03

‖eN
pp‖Ωp 2.5788e-02 6.9021e-03 1.7972e-03 4.4192e-04 1.0949e-04

Rate – 1.90 1.94 2.02 2.01

‖∇eN
pp‖Ωp 7.2229e-01 3.5127e-01 1.7426e-01 8.6952e-02 4.3454e-02

Rate – 1.04 1.01 1.00 1.00

CPU(s) 0.43 3.74 31.62 292.48 2702.78

7. Conclusions

In this paper, we propose a decoupled time filtered method for the Stokes–Biot model, and derive
the corresponding stability results and a priori error estimates. Through comparisons with Algorithm 1
and 2, our algorithm (Algorithm 3) retains the second-order temporal accuracy of Algorithm 2 while
exhibiting the lower computational costs of Algorithm 1.
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9. H. J. Bungartz, M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisation,
Lecture Notes in Computational Science and Engineering, Vol. 53, Springer Science & Business
Media, 2006. https://doi.org/10.1007/3-540-34596-5

10. C. Michler, S. J. Hulshoff, E. H. Van Brummelen, R. de Borst, A monolithic
approach to fluid–structure interaction, Comput. Fluids, 33 (2004), 839–848.
https://doi.org/10.1016/j.compfluid.2003.06.006

11. G. Guidoboni, R. Glowinski, N. Cavallini, S. Canic, Stable loosely-coupled-type algorithm
for fluid–structure interaction in blood flow, J. Comput. Phys., 228 (2009), 6916–6937.
https://doi.org/10.1016/j.jcp.2009.06.007

12. J. Xu, K. Yang, Well-posedness and robust preconditioners for discretized fluid–structure
interaction systems, Comput. Methods Appl. Mech. Eng., 292 (2015), 69–91.
https://doi.org/10.1016/j.cma.2014.09.034
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