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Abstract: In this paper, we propose a novel decoupled time filtered finite element method for the
coupled Stokes—Biot problem. The key innovation of our method is the combination of a decoupling
strategy with a time filtered technique that can enhance computational efficiency while maintaining
numerical accuracy. Specifically, applying the time filter to the backward Euler scheme elevates its
temporal accuracy to second order. At each time step, we first solve the Stokes problem, then use the
computed Stokes velocity to solve the Biot problem. We rigorously analyze the proposed scheme to
establish its stability and derive error estimates. Furthermore, some numerical tests are presented to
validate the theoretical findings and demonstrate the efficiency, accuracy, and robustness of our method.
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1. Introduction

The interaction between a free incompressible Newtonian fluid and a fluid within a poroelastic
medium is a complex multiphysics problem. This coupled phenomenon is widely employed to predict
and control processes such as groundwater flow in fractured aquifers and oil or gas extraction. In
this work, the free fluid flow is modeled by the Stokes equations, while the coupled deformation and
fluid flow in the poroelastic medium are described by the Biot system. At the interface, the Stokes—
Biot model features both the Stokes—Darcy coupling [1-6] and the fluid-structure interaction [7—13].
Numerical algorithms for these two types of coupling problems have been extensively studied in the
cited literature.

The Stokes—Biot problem combines all the challenges of both the Stokes—Darcy problem and fluid-
structure interaction (FSI). A wide variety of numerical methods have been studied for the Stokes—Biot
problems or the Navier—Stokes—Biot problems. These include coupled finite element methods [14,
15], discontinuous finite element methods [16—18], Lagrange multiplier methods [19, 20], decoupled
finite element method [21-24], a Nitsche-based cut finite element method [25], mixed finite element
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methods [26-28], virtual element numerical schemes [29], among others.

The backward Euler method is a fundamental approach to solving unsteady problems. By adding
one line of code to the backward Euler method, Guzel and Layton [30] proposed a time filtered
method. This method can increase the time accuracy from first to second order and can be easily
adapted to variable time steps. For constant time steps, time-filtered methods have been successfully
implemented in various coupled systems, including the Stokes—Darcy problem [31], Navier—
Stokes/Darcy problem [32], Natural Convection Problems [33], MHD problem [34], the stabilized
incompressible diffusive Peterlin viscoelastic fluid model [35], and Navier-Stokes problem [36].
The pursuit of greater computational efficiency has led to the investigation of variable step size
techniques [37-40]. These techniques are designed to dynamically adjust the time step according
to the numerical results obtained earlier.

Solving all unknown variables simultaneously requires substantial computational costs in terms
of CPU time and memory. It often leads to a failed solution process due to memory limitations
when the mesh is finely partitioned. Generally speaking, coupled algorithms exhibit better stability.
However, decoupled algorithms have lower computational costs and can achieve a comparable level of
accuracy [5]. Motivated by these trade-offs, this paper investigates a decoupled, time-filtered method
based on the backward Euler scheme for solving the Stokes—Biot problem.The proposed algorithm
proceeds in three sequential steps: (i) solve the Stokes problem using lagged interface terms to
obtain the fluid velocity and pressure; (ii) solve the Biot system using the updated Stokes velocity
as the interface condition; and (iii) apply a time filter to correct the previously computed unknowns.
This algorithm effectively combines the numerical efficiency of decoupled schemes with time-filtered
techniques, while preserving the stability and accuracy of the coupled system.

This paper is structured as follows. Section 2 introduces the time-dependent Stokes—Biot model
and presents its weak formulation. In Section 3, we propose a novel decoupled time filtered algorithm.
The stability of the scheme is analyzed in Section 4. Based on the stability analysis, Section 5
provides a detailed error estimate. Numerical experiments are presented in Section 6 to demonstrate
the performance of the proposed method. Finally, some conclusions are summarized in Section 7.

2. The Stokes—Biot model and weak formulation

2.1. The Stokes—Biot model

Consider a bounded domain Q C R%d = 2,3) partitioned into two non-overlapping subdomains:
the fluid region Q; and the poroelastic region €,. Let py > 0 be the density of the fluid, us > 0 be
the constant fluid viscosity and f; be the body force term. In the fluid region Q(, the velocity u and
pressure ps are governed by the time-dependent incompressible Stokes system:

pfa,u -V O'f(u, pf) = ff, in Qf x (0,71, (2.1a)
Vou=0, in Q; x (0,1, (2.1b)

where the deformation rate tensor D(u) = %(Vu + V'u), and the Cauchy stress tensor o(u,py) =
2usD(u) — pslL. Let p, > 0 be the density of the saturated medium, sy > 0 be the constrained specific
storage coefficient, 0 < a@ < 1 be the Biot-Willis constant, and K be the hydraulic conductivity.

Furthermore, let f, be the body force term and g, be the external source or sink terms. In the
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poroelasticity region €, the displacement 75, the velocity of the poroelastic & = 9,1, and the fluid
pore pressure p,, are governed by the Biot model [41,42]:

ppatf -V o-p(n’ pp) = fp, in Qp X (O’ T]a (223)
s00ipp +aV-E-V-(KVp,) = g,, inQ, x(0,T1], (2.2b)

where o, (1, pp) = 20,D(17) + A, (V -l —ap,l, u, > 0, and 4, > 0 are the Lamé constants for the solid
skeleton. Denote the largest (smallest) eigenvalue of K by K,,,,.(Kin > 0).
Denote the interface by I' = dQ; N 9Q,,, we assume the following interface conditions on I' x (0, T']:

u-np=E-KVp,)-ny, (2.3a)

T (o, ppng) =~y - (w—§), fori=1,...,d -1, (2.3b)
ny- (0w, pp)ng) = —p,, (2.3¢)
o(u,prng = o,(, ppny, (2.3d)

where {‘r’;,},-:] 4-1 1s a linearly independent set of vectors tangent to the interface I', and vy is the

.....

resistance parameter in the tangential direction.
LetI'y = 0Q,NoQ, ', = 0Q, N 0Q. We assume the following boundary conditions:

u=0,0onT;x(0,T], pp=0,0nT% % (0,T], (2.4)
KVp,-n,=0,onT x(0,T], n=0,onl,x(0,T], (2.5)

where T, = ') UTY, T'> and ') are the Dirichlet and Neumann conditions, respectively.

2.2. Weak formulation

Let H'(Q,) be the standard Sobolev space equipped with the norm || - ||1(q, ), Where x may be f or
p. Let || - |l be the standard L? norm, and (-, -)y denote the standard L*(X) inner product, where X may
be Q, or I'. Let H(Q,) = (H'(Q,))? be the vector-value Sobolev space. We introduce the following
spaces:

H;={ve H Qv =00nT;}, Q;=L"Qy),
H,={y cH Q) =00nT,}, Q0,={eH Q) =00nT}}.
For the given (fy, f,,g,) € L*(Q) X L*(Q,) X L*(Q,), the variational formulation of the Stokes—
Biot system is to find (u, ps,n,€,pp) € Hy X Qf X H, X H, X Q, with & = 9,n such that for any
v, q.x, ) e Hy x Oy x H, X Q, and 1 € (0, T'], there hold

prOm,v)a, +ay,v) + by, ps) + (pp,v-npr + y(w—8&) - 77,v - 70)r = (fr,v)a,, (2.62)

be(u,q) = 0. (2.6b)
pp(at‘faX)Q,, +a,(n,x) +b,(x,pp) — (Pps X B —y(U—8&) T, X TH)r = (fp’X)Q,,v (2.6¢)
50(0:Pp, Do, = Dp(&,0) + ap(pp, ) — (@ = &) - np, Or = (8p, Do, (2.6d)
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where
ar,v) =2u;D@),DW)a,, br,q) =—(V-v,qq, (2.7)
by(x,0) = —a(V - x,{a,, a,(pp,{) = KVp,,Vi)q,, (2.8)
ay(n, x) = 2u,(D@), Dx)a, + 4,V -7,V - x)q,. (2.9)

LetV =, x,0) and F = (f¢, f,, gp)- Define the norms by

IVIE = I, + I, + 121, .
IVIZ = pevia, + oI, + sollcl, -
FIE = 11, + IR, + gl -
Then it is easy to get
CsllVlls < 1IVIl < Csl[Vls. (2.10)

Moreover, let U = (u, &, p,). We introduce the following bilinear forms:

(U, V) = pr0u,v)a, + pp(0:&, X)a, + 50(0:pp, o, (2.11)

(F, V) =(fr.v)a, + (fp, X))o, + (8p. Do, (2.12)

a(U,V) =asu,v)+a,(pp, ), (2.13)

ap(U, V) = ap s, v) + ap,((§, pp); (¥, ), (2.14)

ap (U, v) =y -7tV TP, (2.15)

ap (&, pp)s X, ) = ({,E - np)r — (pp. X -0p)r +Y(E T, X - TS (2.16)

ar(W,&,p,); W, x,0) = (pp,v-npr—((,u-np)r —y(&-vrv-To)r—yW- -7, x 7or,  (2.17)
where
d-1 o
VT, = Z(v . T})T}.
i=1
Adding (2.6a), (2.6¢c), and (2.6d) yields

(0:U, V) +a(U, V) + ay(n, x) + byv, pp) + by(x, pp) = by(§,{)
+ay(U, V) + ar(, €, p,); v, x. ) = (F, V), (2.18a)
b(u,q) = 0. (2.18b)

3. The numerical scheme

Lett, =nAtforn=0,1,...,N = T/At, where At > 0 is a time step. In the later analysis, we define
the following discrete time norms:

N T N- 2
2 2
||f||l2(0,T;H[(X)) = max [At Z ||fn||Hl(X)) ’ [At Z ||fn||Hl(X)] .
n=1 n=0
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Let 7;/(77) be a quasi-uniform partition of Q/(Q,), and let Hy, ¢ Hy, Qp € Qp, Hyy € H,,
O, C Q) be the conforming finite element spaces. Assume that there exists a constant 8 such that

by (v,
inf sup — 20w o 3.1)

an€Qfn vy, eH g, ||Clh||Qf||Vh||Hl(Qf) a

This is the classical discrete Ladyzhenskaya—Babuska—Brezzi condition, which is necessary for the
stability of the discrete Stokes problem [43].

Let

vn+l _ vn 3vn+2 _ 4vn+l + vn
N n N n+1 n+2

v(xX, 0o = Voo AV = ————, D" = :
e, )by = V"Ymos dr At ' 2At

By explicitly treating a part of the coupling terms at the interface, we present three decoupled finite
element methods as follows: the first two are similar to those reported in existing literature [21-23],
while the third one is the focus of our study.

Remark 3.1. All three algorithms are decoupled finite element methods, with core differences in
their time-discretization schemes and whether time filtering is incorporated. Algorithm 1 is a basic
implicit time-discretization scheme using the first-order backward Euler formula. It features low
computational cost and straightforward implementation. Algorithm 2 is a higher-order improved
version of Algorithm 1, using the second-order backward differentiation formula (BDF2). However, the
solution of this method at each step depends on the results from the previous two time steps. Algorithm 3
is an optimized version of the previous two algorithms, adding a time-filtering (TF) step to the BDF1
decoupled method.

Remark 3.2. For Algorithm 3, Steps 1 and 2 employ the backward Euler method to compute the
approximations (ﬁZ*z, p%z,fzﬂ,f]z*z, AZ}?). Then, in Step 3, a time filter is applied to update the
values of (ﬁZ”, AZ”, f]Z”, AZZZ). The time filter acts as a corrector step. It post-processes the solution
by combining solutions at time levels "2, "*' and t". This combination is designed to cancel the
truncation error term of the backward Euler method. This paper investigates the time-dependent
Stokes—Biot problem, with a specific focus on the Biot model which couples parabolic and hyperbolic
dynamics. Employing a high-order temporal discretization scheme is key to achieving high accuracy

in the solutions of this coupled system.

A simple calculation yields

3 1
art? = Eu';” —upt + S~ = D (3.2)

According to Algorithm 3, for any V), € Hy, X H,, X O, and g, € Qyp,, we have
(DU, Viyy + a(U2, Vi) + ap (U2, V) + by(vy, Pl + a2 xn)
T byQns D) = bp(@, ) + ar(@) 2,260 — €1,2p05" — P Ons X 1)

= (F"2, V), (3.32)
by(@;*?, qn) = 0. (3.3b)
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Algorithm 1 A backward Euler Scheme (BDF1) based decoupled finite element method.

Step 1. For any vy, € Hfha qn € th, find uZ“ € Hfh, p%l € th,l’l =0,...,N — 1 such that

pr(du)™! Vo, + ay;™,vy) + bp(vy, P )+ ap @) vy
+ (P Vi mp)r — V(&) - Ty Vi Tp)r = (ff s VR)Qys (3.4a)
by, qy) = 0. (3.4b)

Step 2. Given u,*! from Step 1, for any x; € Hi, & € Qp, find ', &' € Hpyp and plit' € Qpp,n =
0,...,N —1 such that

dl’]n+1 _ n+1’ (340)

pp(d&rt xna, + soldipy' s e, + an xn) + bp(xn, Py
+a, (P ) = by ) + ap (€7 P Ocns Gn)) — @™ - mg, O
— Y@ T THE
= (f;lH’Xh)Q,, + (g;H,{h)Q,,- (3.4d)

Algorithm 2 A second order backward differentiation formula(BDF2) based decoupled finite element
method.

Step 1. For any v, € Hy, g, € Qpp, find /> € Hyy, pfh € Qmn=0,...,N —2 such that

(D}, Vo, + a; Wy, vy) + bp(vy, P'}Zz) +ap W), vy)
+Qphy' - pph, v mpr = Y(QET =€) T T = (F v, (3.5)
b}, q;) = 0. (3.5b)

Step 2. Given u/** from Step 1, for any x, € H,, & € Oy, find 17172, €)% € H ), and p;;f € Qo =
0,...,N — 2 such that

Dtnn+2 n+2’ (3 5C)
pp(DES xn)a, + so(Diply?, da, + ay@ly™ xn) + bp(xns Pl
+ap(Ply?, 0n) = b€, ) + ap p (372, Pin?)s Oens E)) — @™ - g, O

—y @y T X T
= (3% e, + (@5 la,- (3.5d)
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Algorithm 3 Decoupled time filtered finite element method (BDF1+TF).

Step 1. For any vy, € Hfha qn € th, find ﬁ2+2 € Hfh, p%z € th, n=0,...,N—2such that

ﬁZ+2 - uZ+1 An+2 An+2
or( A7 s Vna, +ap(lt, Vh)+bf(vh,1?fh )+ ap (@, ", vn)

+2pit - p,,h, i np)r —y(QEH =€) -t Tor = (F va; (3.6a)
b (@}, q1) = 0. (3.6b)

Step 2. Given &2 from Step 1, for any x;, € Hou, & € Qp, find 7172, €2 € H,, and p’“r2 € Qppyn =
0,...,N —2such that

an+2 n+1

, At”h _ AZ+2’ (3.6¢)
Fn+2 n+1 pt+2 n+1
- h A7 An
Pp(%,/\/h)g + so(—= A7 »Cna, + ay(f +2,Xh)+bp(/\/h,l7p;2
+ap (P 4n) = by ) + ap (&7 D) Ocns ) — @57 - my, Oy
— Y@ Tr X THE
= (2 xne, + (€27 Ga,. (3.6d)
Step 3. Update the (@]*?, §"+2, e, AZZZ) forn=0,1,...,.N-2
u2+2 — ﬁz+2 (An+2 2u2+1 + uz)’ (37)
']Z+2 ’A]Z+2 (An+2 n+1 + nh) (38)
Z+2 — n+2 (§n+2 2§n+1 +§Z)’ (39)
Pt =P - —(13222 Pt + Pl (3.10)

4. Stability analysis

The following standard inequalities are adopted in our analysis. The bounds (4.1)—(4.4) can be
found in [6, 15,44], while the inverse estimate (4.5) is provided by [45].

(1) Foranyv € Hy,x € H, and { € Q,, we have the following trace inequalities:

Mlie < Crallllg IVVllg ", IWle < CrallVvlla,, (4.1)
el < cmmﬁ”uwn;{j llie < CrallVxllo,, (4.2)
12l < Cralldlig IV¢llg >, 1l < Crsll Vo, - (4.3)
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(2) Foranyv € H, xy € H, and { € Q,, we have the following Poincaré inequalities:
Vlla, < CpillVvlla, llxlle, < CrallVxlla,, lidlle, < CrsllVila,. (4.4)

(3) Inverse inequality: Let V,’j(‘T +) 1s a space of polynomials of order k on Q,(x = f, p),then
IVwilla, < Cinh ™ Willa,, Ywi € Vi(T), 4.5)

where C;,, depends on the angles in the finite element mesh and the polynomials of order k.
Using the basic inequalities, we can derive the following results.

Lemma 4.1 ([22]). For the bilinear forms a(-,-) and a,(-, -) defined in (2.13) and (2.9), there exist three
positive constants [y, 1 and us such that

a(V, V) 2 ullVlig, + mllVelig . YV eHyx Hyx Q,, (4.6)
ay(x, x) = wlVxllg, VxeH, (4.7)

02 . Here, Cx r and Ck,, are the constants in the Korn inequalities.

where u; = %,ﬂz = Kyin and p3 =
Ky
For later analysis, we show an upper bound on —ar(, -).

Lemma 4.2. Let B(VZ”) = VZJr2 - 2V,’1’Jrl + V), forany V), € Hy, X Hp,, X Q) and € > 0, we have

_ ar((Vh+2 2Xn+1 _Xh’ ng—] éah) (An+2’iz+2 n+2))
< 361||VA"+2||Qf + YR - TR + AP - TR+ IIIB(VZ”)I@, (4.8)
where o o ,
3CT’1CT,3C,~,W 3CT’1CT,2CW)/
8s0€) ’ 80 €1

Proof. As defined in (2.17) for ar(:; -), it follows that

C; = max{

_ ar((i};ll+2 2Xn+l _XZ’ 2{]111+1 _ é«;ll) (An+2’/\'\/z+2 {ZHZ))

= =2 + G mpr A (T X AR T T (4.9)
Using (3.2), we have
A;ll+2 n+2 (§n+2 §n+1 + {;’:) B(§n+2), (4 10)
§n+1 +§h — 2§n+2 3 /rll+2. (411)
Then the first term on the right hand side of (4.9) can be rewritten as
an “n n An 3 n o
(é«n+2 2§n+1 gn’vh+2 nf)r — (3 +2 3( +2 +2 nf)F — E(B(g +2) +2 nf)l"- (412)
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It follows from the Cauchy-Schwarz inequality, trace inequalities (4.1) and (4.3), inverse
inequality (4.5) and Young’s inequality that

an 3~ -3 on n
@ =20 + 0L ) < 2cncmc;w V2o, 1B ),
3C7,CF3Ciny

3 an
< SHIVHR, + —L
1

1B )G, - (4.13)

Using (4.10) and (4.11), the second term on the right hand side of (4.9) can be rewritten as

@G =+ 20 T T =y - “"*2) T T
=y(2%} - cv"”))-rf,ﬁ;:”-rf)r. (4.14)
Using the trace inequality (4.1) and Young’s inequality, we have
YOG =X+ X TR Tr
An 3 -5 n an
<YW - TR + A9 rf||r+2ycmcmc;v 2B, V921,
~2 2
~ 3e L C Cin’y "
AR -T2+ 2 -2+ S92, + 2T B (4.15)
2 / 8e1h 4
Substituting (4.13) and (4.15) into (4.9), we get the lemma. O

Next, we will analyze the stability of Algorithm 3. For the integer n > 0, we define

1 112 1 2 1 1 1
™ = IUS + IR0 = Uplls + 11U = Uplls + ay (™t

+ap 2t = 2 =)+ ay (T - - ). (4.16)
Lemma 4.3. If the time step restriction
12sou1h 12, h
At < min{ Soth adinl 4.17)

9sourh + 32C% C2\Ciny” Yppitrh + 32C5 ,C2,Ciny?

is satisfied, for any 0 < m < N — 2, we have

& e Y IV, +uzAtZ IV 53321, < Cs. (4.18)

n=0
where u; and u, are defined in Lemma 4.1, Cs is defined in (4.28).

Proof. For Q, = Q,,Q,, we can easily get the following identity, see, e.g., [31,46],

3" —4a™ + a3 1
4( , _an+2 _ an+l + —an)Q
2 2 27
2112 2 1 2 1 1112 1 2
= la"llg, + 126" = a" g, + lla™** — a" g, — lla" G, — 124" = a"llg,
—lla™" = a"llg, +3lla™? = 24" + a"|lg, - (4.19)
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Set Vj, = 4At07*2 = 4An(@; ™, &2, p+?) in (3.3a), from T BT g+ and (4.19), we have

U215 + 120572 = Ui + U3 = Uil = W03l = IR0 = UGS
_ ||Un+1 UZ”S + 3||B(UZ+2)”S + an(nn+2,nz+2) + an(znn+2 _ nh+1 2nn+2 )]Z+1

+ an(nn+2 _ nz+1’ nz+2 n2+1 an(nn+1’ nz+1 _ an(2”n+1 ']hv znrH—l _ nh)
=,y =, = ) + 3a,(Bay ), Bap ™))
+ 4Al’ (a(Un+2 UZ+2) + Clb(Un+2 Un+2))
_ 4At(Fn+2 Un+2) 4Atap((ﬁ”+2 2§n+1 fh’ 2pn+1 _ pph) (An+2 n+2’ﬁ:l7-}il—2)) (420)
By recalling the definition in (4.16), we can rewrite (4.20) as
EM2 4 3], + 4Atl, = EM + ANt + 4Aty, 4.21)
where
I = B + ay (B ™), Bag,™)),
L = a0, 0;7) + ap(U;2, U,
13 - (Fn+2 0Z+2)
14 — _ar((u2+2 2 n+l _fh’zpn+l _ pph) (An+2 n+2, AZ-/;-Z))
Using Lemma 4.1 and the definition of a,(:, ), we have
L > ,ulllV”“zllgf +,uz||Vﬁ7,ZZIIQ + Yl TR+ AIES TR 4.22)
Using (4.11), a simple calculation yields
3 9
1€17215, = I5BE™) + 267" = &1, < SIBE ™, + 2126, = &1, (4.23)

An application of the Cauchy-Schwarz inequality, Poincaré inequality, and Young inequalities, along
with (4.23), we get

2 ~n+2 2 2 2 An+2
L1 < Crallf 2 lla, V@ P, + 1o, €7 lla, + Ceallgy i, IV A lla,
2

A2 PJ 2112 An+2 2
<QW"W@ T 72, + @B, + 5 I,

2
IIB(§”+2)|IQ + —||2 n = Ellg, + p—llf,',”zllfg,,- (4.24)
p

The term I, can be estimated by setting V,, = U, in Lemma 4.2, which, together with (4.22)
and (4.24), yields

E™? + 4wy — 4e) MV G, + 4G — )MV PRI + (B = CaAn IBUL™)IS
< &+ AU - UpI5 + CsAH|F™ 2|1, (4.25)
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where ) 5
9 4C Cp Cps 8
C,=-+—L and Cs = max{—=L, 22 2,
4 h &6 e pp
Lete = 31%‘, 6& = 3#42. Since the time-step restriction (4.17) is satisfied, we have 3 — C4Ar > 0. Thus
E™2 + i AV, + i ANVERE < 8+ AMRULT — Uplls + CsAlIF™)2. (4.26)

Summing (4.26) from n = 0 to n = m, we get

E"2 4 A Y NIVaRIR, + pAr Y IVEL2ARG < At E + Co, (4.27)
n=0 n=0

n=0

where Cg = &' + CsAt Y ||IF™?||>. Using the Gronwall inequality (see, e.g., [47]), we have

&2 4+ A Y IIVa21R, + pAr Y IVEL2IR < C(T)Ce = Cs. (4.28)
n=0 n=0

Then we get the lemma. O

Remark 4.1. The use of the inverse inequality to bound the interface terms introduces a theoretically
restrictive condition on the time step. However, numerical experiments demonstrate that the
scheme maintains both stability and accuracy even with slightly larger time steps (see Table 2 in
Subsection 6.1).

5. Error estimates
Let (Sy, Pn) : Hy X Qf — Hyy, X Qyy, be the Stokes projection operator satisfying

ap(Spu,vy) + by, Pypy) + ap f(Spu,vy) = ar@,vy) + br(vy, pr) + ap p(u,vy), (5.1)
bf(Shu, Vh) =0. (52)

Then if u € H**'(Q;) and p; € H*(Q;), we have
e = Sl + M@ = Sl + Py = Pupslla, < CH Wl g ) + ol ) (53)
Using (5.3), if h < 1, it is easy to obtain
IPvprlle, < Cllullmg,) + 1PAllai@p)- (5.4)
Let I, be the Lagrangian interpolation operator onto H ,;, then for any £ € H**1(Q,)), we have
1€ = Inlla, + RIVE = Ii)lla, < CH €|l q,)- (5.5)
Let R;, be the Ritz projection operator onto H,;, such that for all n € H**!(Q,), there holds
an(Ruip xXn) = ay(, Xn)s - VX0 € Hpp. (5.6)
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Then
V(g — Rumplla, < Ch"‘llnllmsﬂ(g,,)-

Let IT;, be the Ritz projection operator onto Q,;, such that for all p, € H**!(Q,), there holds
ap(Pp, gh) = ap(thpa é{h)a Vgh € Qph-

Then
1Py = Tpylla, + AIV(p, = Tpp)lla, < CH7 Ippligq,)-
Denote the errors at the time ¢ = t,, by
e,=u, —u" =W, —-Su")+Su"-u")=0,+0,,
€, = P = Py = (Pl = Paly) + (Pup = Py) = 67, + 07,
e =&, — & =&~ &)+ U - &) =6; + oy,
p =M, -0 =g, — Rup") + (Ruyy" — ") = 0 + o,
Cop = Ppn = Pp = 0y = Thapp) + ALip), = py) = 6, + 0.
Similar to (4.16), we define
el = 0™ + 20™! — 0| + 0™ — 0" + an(azﬂ,azﬂ)
+a,200" - 0,207 — 6)) + a0 - 6.6, - 6)).

Lemma 5.1. For n > 0, the following estimates hold

In+2
2 2112 3 2
||Dtvn+ _ atvn+ ||Q* < CAt f ||(9mV||Q*dt,
ty

In+2
2\112 3 2
1B )llg, < CAt f 9.5, dt,
t)l
5o C Int2 5
IDY"™lg, < ~ 1071, dt,
t t)l

In+2
An+2 n+2112 3 2
9772 — "2, < CAr f 10,1, dr.
Iy
1,
D™ — 952 < CAP [ 19uvIR dr
t t o, S t utVllg, 4l
n

where Q, may be Q¢ or Q,,.

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Proof. The first three inequalities can be proved by the integral form of Taylor’s Theorem, see (5.9)—
(5.11) in [6]. The estimate (5.14) can be found in (3.33) of [34]. Therefore, we only need to

prove (5.15), using the Taylor formula of the integral remainder yields

2 an+2112
||DtVnJr _atvn+ ”Q*

n+l

1 ("
- ' = 120, vdt + — f (" = 1)*0,,vdt
Al tt 4At - tt

th+2
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Tn+1 1 I 2
+ f (" = D)0uvdt — = | (" = 1)0yvdt (5.16)
Iny2 2 In+2 Q,
Using the Cauchy-Schwarz inequality, we have
1 42 . ) ) C In+2 ) 4 In+2 )
|| - — (G| am“)dt”g)* < _zf ( (" —1)'dt (Ouv)~dt)dx
At Th+l At Qy T+l I+l
Tn+2
< CAP f 0¥y, dt. (5.17)
In+1
Similarly
1 In In+2
”4_At (" = 0’ Oyvdill, < CAP f 0¥y, d, (5.18)
In42 In
fnt1 n+2
Il ("' = DByvdillg, < CAP f 0¥l dt, (5.19)
Iny I+
1 ’ In tnl+2
-5 (" = DOvdilly, < CAP f 10, dt. (5.20)
42 In
Substituting (5.17)—(5.20) into (5.16), using the triangle inequality, we get (5.15). O

Firstly, we present some estimates for a ,((:, -); (-, -)) and ar(:, ).

Lemma 5.2. Let a,,((-,-); (-,+)) and ar(-,-) be defined as in (2.16) and (2.17), respectively. For any
01,02,03,04 > 0, the following estimates hold

An+2 ant2\. it pnt2
- ab,p((a-;+ aO-Z; )9 (02-‘” ’HZ; ))

< SV, + LB, + sup 28 — IR,

+ Cth”||ﬁZ+2||5{kp+1(Qp) n Cth‘r||§A""+2||?{kﬁ1(gp>- (5.21)
— ap((G12, 20704 — o, 207t — o ) (8272, 0142, 02
< 26,[IVBL I3, + S2lIVES, + %f ~IBO ), + 640,126 — G115,

+ O (1 + 15 a)

+ CI (16 iy + 1E )

+ R (1 W)+ 1P ) (5:22)

Proof. Using the trace inequalities, (5.3), (5.5) and (5.9), we get

N ke+d 1A A

0%l < CCrah™ 2 ("l ) + 1P lgts ) (5.23)
A kg 14

16¢lIr < CCrah™ ™2 116" I (@, (5.24)
N kot A

167,lIr < CCrah 2Pl i, - (5.25)
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It follows from the Cauchy-Schwarz inequality, trace inequalities (4.2) and (4.3), inverse
inequality (4.5) and (5.25) that
—ap, (052,677 (072, 602)
< 852 lelloE - gl + 16571018 - melle + YIGE - TAIRNOE - T4lir

kel [ & An+2 3 LAt pne2
< CCrph™™2 (CT,SHVGZ; o, +¥Cr2Cp b2 116" ||Qp)||'fwr e+ (0,)

122%

1
3 ko A2 2
+ CCroCr3Ch B 11D Mo o, 165 e,

2%

549 p

Hn+2(12 nn+2112 2k, || An+21(12
< BAVOIR, + Z2L0L2IG, + R g
2k £n+2112
+ Ch ||§n+ ||Hk5+1(Qp)' (5.26)

Then (5.21) can be obtained from (5.26) and (4.23).
Using the Cauchy-Schwarz inequality and the trace inequalities yields

An+2 1 1 . ant2 A2 gn+2
—ar((6777,20%" — 0,200, — 07, )3 (8,77,6:77,6077))

~ 1 Hn+2 ~ ANn+2 Hn+2
< CrilRo) = V8Ll + Cralld 2IIrlve o,

1 1
~ 1 2 TR 2R 2k
+yCrall2o™ — o LlIclIVE, lla, + yCrallo e ll6: 1, 1V6:™115, - (5.27)

The last term on the right hand of (5.27) can be estimated by the inverse inequality, (5.23) and (4.23)

my

1 1 1
Ant2) 1022 (1ITAnt2)|2 7 p—d A2 A2
YCrallGy IO llg, VOl < CraCy b2 o167 liell6 i,

1
2 pkracl1ant2 Ant2 112
< CCraCp iyl Mo, + 11A7IDIGE g,

964p .
< —IBO )R, +Su0,l120; - 0117,
O (1R 1) ry) (529)
then we get (5.22) by (5.23)—(5.25), (5.28) and Young’s inequality. O

Now, we study the error estimates for Algorithm 3.

Theorem 5.1. Let the body terms 0,f; € L*0,T;L*(Q)),0.f, € L*0,T;L*(Q,)) and 8,8, €
L*(0,T; L*(Q))). If the solution (u, ps, &, 1, p,) of problems (2.18a) and (2.18b) satisfies the following
hypotheses:

ueHO,T;L* Q)N H'O,T; H*"'(Q))), (5.29)
pr € H'(0,T; HY(Qy)), (5.30)
£€ H0,T; L*(Q,) N H*0,T; H(Q,)) N H'(0, T; H*"(Q,)), (5.31)
py € H(0,T; L*(Q,)) N H*0,T; H'(Q,)) N H'(0, T; H**'(Q,)), (5.32)

where k¢, kg, k, > 1.1f the time step restriction

Sop1h Ppi1h
soprh +4C3 C2,Cin,” ppprh + 4C2 C2,Cinyy?

At < min{ } (5.33)
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is satisfied,

IE™|? < CA* + B2Y + 1 + 1?*), (5.34)
ay(e)*?,ep™?) < C(At + Y + 1™ + 12'). (5.35)

Proof. For any v, € Hy, C Hy, using (3.6a), (3.6b) and (5.1), we have

pr(DU™ v)a, + ap(S "2, vy) + by(vp, PhP?z) + ap, (S ", vy)
+ (205" = Pl nf)r —y (e —€-Tm Tf) = (ff%vi)a, + E1(n), (5.36)
by(S "™, qn) =0, (5.37)

where

E\(v;) = (f"+2 f"+2 vida, + pr(Du"™? = 8", vy)a, + by, Pypy — PhP"”)
(ﬁr;+2 2pn+1 + P’;,,Vh . nf) + ,y((§n+2 _ 2§n+1 + ‘f ) . Tf’vh X Tf)
= (7 = S vna, + oD = 0™, vi)a, + by(vh, Paps = Pupy™)
(B(pn+2) +p An+2 p77+2’vh nf) + 7((B(§”+2) + §n+2 _ §n+2) TV Tf)r'

For any x;, € Hp, £ € Qpp, using (3.6¢), (3.6d), (5.6) and (5.8), we have
Pp(thsz,Xh)Q + So(Dsz o, + a,(Ru "™, x1) + bp(Xns P,y pt2)
+ Clp(HhﬁZ+2, &n) — bp(f"+2, &) + ab,p((‘fn+2a ﬁ;+2) Oxn Cn))

— @ ng, Or — Y@ T X0 TR
= ("2 xme, + (&5 ta, + Ex(Xn &), (5.38)

where

Ex(xns &n) = (f"Jr2 L2 xna, + @27 = g, ta,
+pp(Dt§n+2 - atfnJrz,Xh)Qp + SO(Dtp;Jr2 6tpn+2 {n)a,-
Subtracting the sum of (5.36) and (5.38) from (3.3a), and subtracting (5.37) from (3.3b), we obtain
UDE"2, Vi) + ap@)72, i) + by, 0750 + ap (0537, 0) + ay(077, x1)
+ by &7) = bp(@E2, 00 + ap p (817 vi) + ay , (@2, 2047): (ns i)

Far((@2, 261 — €, 20 — & Y: s s )

= E1(vi) + Ex(xn> 1), (5.39)
b0, q)) = 0. (5.40)

Let V, = "2 = (872, 0”*2, 9;’,;2) in (5.39), using the divergence free property (5.40), we have

<<Dz®n+2 (:)n+2>> + a(®n+2 (:)n+2) +a (®n+2 (ﬁ_)n+2) + an(égﬂ’é?z)
— —<<D En+2 ®n+2>> b (0n+2 An+2) +b ( An+2 9n+2)

> pp
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= a5, (052,670 (0272, 6,77))

pp > pp
—ap((@, 261 — €l 26" — & ) (@ 0 0) + Evy) + Ea(und). (541
Since
~ f]n+2 _ nn+l .
Z+2 — th - h__ _ Dtn2+2 and §n+2 — atﬁn+2’
we have
é?+2 — Dte;’l7+2 _ rn+2 _ 0/\_2+2’ (542)

where rn+2 — ati\]n+2 _ Dt’]n+2-
Combining (5.41), (5.42) and (4.19), recalling the definition of (5.10), similar to (4.21), we have

EP 4+ 3J) + 4AtS, = E5 + 4ALJ; + 4At], + 4AtTs + AAt T, (5.43)

where

Ji = [IBO")|[5 + a,(B(@2), B(#,*)),
J = a((§)”+2, (;':)n+2) + ab(®n+2’ (:)n+2),
J3 = (DX, 0"2)) — a2, Do),

_ ant2  aAn+2 o+ An+2 An+2 pn+2
Ty = @)@, 607 = by @ o) + by (@ B

=Ju + Jap + Jus,
Js = —ar((8;72,20;" - 02,20,51 — 6,)):(8,7, 812, 6,37))

> 7pp

_ ar(((f)\.z+2, 20.;+1 _ o.g’ 20_;;1 _ O_ZP), (9ruz+2’ ég+2’ @;;2))

An+2 ant2\. it pnt2
- ab,p((a-g+ aO-Z; )9 (02-‘” 992; ))

=Js1 +Jso + Jss,
Jo = E\(8,7) + Ex(8;,077) + a, (@77, r'™)
= -]61 + J62 + J63.

Similar to (4.22), we obtain

D = VO 2IG, + mlVO2IG, + YIBE - 7R + 18" - lIE. (5.44)
Using (5.6) yields
J3 = —((D,;Z"2, @"?)). (5.45)

For any 6, 95,94 > 0, from Young’s inequality, (5.3), (5.5) and (5.9), we have

A2 2 A2 2
J3 < prCpillVO Nl 1Dy lla, + ppll6: o, 1D la,
A2 2
+50Cp3llVE, o, 1D N,

954/)17
4

Hn+2112 m+2112
< GIIVOIR, + SlIVOL2IE +

Ch?krt2 Tn+2 5 )
Y f (Ul g + 10D g

IB@L )R, + 6ip, 202" — 6112,
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Ch2kj+2 ftn+2 Cthp+2 In+2
+ 191011, 8 + —f 10:Ppl 341 A1 (5.46)
Al’ . t Hk I(Qp) At . tFp Hk I(Qp)

where in the last step we use the triangle inequality and the equality
A 3
0 = SBO;) + 26" — 6. (5.47)
For any 65 > 0, since 0”*2 3B(6:) + 20! — 97, using Young’s inequality and (5.5), we have

on+2 2 A 2 An+2
J41 S aq(0n+ ,0n+ )Zan( n+ g+ )2

05
< _an(0n+2 0n+2) + Cth ||§n+2”HkA+1(Q )

95
< Tat,,(B(a:;”), B(0;")) + 05a,(20;"" — 62,200 — 07) + CR*M||EI2 (5.48)

Hk_§+1(Q )

Using the inverse inequality (4.5), (4.4) and (5.47), for any 6,,94 > 0, we have from the Young’s
inequality that

Ji + Ji3 < CCinh™ |62 M0, 1050, + @Cr3llV - 67210, V85 1o
964/),,

D

IBOF ), + Suppl265" = 6L, + VI,

+ Chz" €117 + CH |11 (5.49)

Hkﬁl(g ) HkPH(Qp)'

Applying Lemma 4.2 with VZ” =@ fori = 0,1,2 and € = ¢, yields an estimate for the term Js;.
Combining the estimate for Js; with those for Js, and Js3 from Lemma 5.2, we obtain
Js < 561IVB; 218, + 26,190,715, + 1105 - 717 + 118 - 7117

904Pp | 1y Gy
— T IB@ ), + 200,126 — 0Ll + —IBO" )

2ks [ 114042112 2
+ I (18R, )+ 18 )
2kg 2 1
+ Ch (||§I’l+ ||Hk5+1(Q ) + h||§n+ ||Hk3+l(Q ) + h”f ||Hk;+1(Q ))

+ Cho (|| P g, + MDY i)+ HIPRIE )) (5.50)
where N -
3C%1C%3C,~nv 3C%1C%2C,~,w72
85001 ’ 8/0p51

Using the Poincaré inequalities (4.4), trace inequalities (4.1)—(4.3), the Cauchy-Schwarz inequality,
Lemma 5.1, and (5.4), we have

C7 = max{

Jor < Cpllf7** = f1lla, + prCrillDu™? = 02" |la, + ClIPps = Pupslla)IVO; 2,
+ CCr Cra(IVB(P; ), + V(L = Pl NIVE I,
+ CCr 1 Cra(IVBE™)lla, + ||V(§.""+2 = NIV lg,

AIMS Mathematics Volume 10, Issue 12, 29989-30016.
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Int2

Hn+2112 3 2 2 2 2
< 6VOE, + CAP [ IS, + 10utly, + 10ty ) + 100 et

In
In+2

+ CAt3 (”attpp”i[l(gp) + ”6”5”?{1(91)))‘11-'

tn
Similarly, an application of (4.23) yields
Joo < (I3 = £2la, + pplIDE™ = 0.8 )8 la,
+Cpa(lgh = g5 lla, + sollDops = 8,97l IV llg,

954[’ p

1B )l + 40,1126 = G115, + 6118, |,

Tn+2

+CAP | U0ufylid, + 10ug I, + 10u€lB, + 10up, N3, )t

In

Following a derivation analogous to that of (5.48) and applying (5.15), we obtain
J63 < Cl”(én+2, 9n+2)%an(rn+2, rn+2)%

95
< —ay(B6:), B(O)*)) + 05a,(26." — 62,20 - 0)

In+2
+ CAP f 18l g, At
tn
Combining all of the above estimates for J;,i = 1,..., 6, we obtain

E5 + 4uy = T8DAMIVE G, + 4Gz — 46,) AV,
+(3 = 4C;ANIBO" )5 + (3 — 1855A0)a, (B(6*), B(8:))
<&+ 4C8Azag“ + CAf*Ay + CAl(R*Y Ay + W5 As + P9 Ay),

where Cg = max{5d4, 265}, C; = 45454 and

In+2
2 2 2 2 2 2
A = f UBaf 1B, + 0SB, + 10l + 10uttlls, + 10l + 19uap,liy )t
1,

n

n+2
2 2 2 2
+ (”attu”]_p(g ) + ||attpf||Hl(Qf) + ||8ttpp||H1(Qp) + ||8tt§”Hl(Qp))dt
In
2 An+2
= [|a"™ ” H()) + ” " ”ka(gf)
2 In+2
2
# a7 ) 0wl g+ 10p sl g
Fn+212 12
A3 = ”fn+ ||HkS+I(Qp) + h(||§n+ ”Hkﬁl(Qp) + ”f ||Hk_y+l(Qp))
2 Tn+2 )
+ A_t ||at§||Hks+l(Q )dta
Ay = IIA””II + hllp, I + 1Py 117 )
4 Hkp+l(Q ) Hkarl(Qp) P Hkp+l(Qp)

2 Tn+2

2
o) 0Pl

(5.51)

(5.52)

(5.53)

(5.54)
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We set the parameters to 6; = %, 0y = ‘%, 04 = % and 85 = %. Assume the time step restriction (5.33)
is satisfied. Then, summing Eq (5.54) from n = 0 to n = m, we obtain

At 4 At
8Z1+2 + IUlT Z ||VHZ+2||?:f ,u2 Z ||V9n+2”g

< 4CAt Z E + &) + CAL A, + CWPM Ay + WH Ay + W AY), (5.55)

n=0

where

— 2 2 2
ﬂl - ”atl‘ff”LZ(OTLZ(Q )) + ”aﬂfP”LZ(OTLZ(Qp)) + ”a”gl’”Lz(O,T;B(QP))
2
+ ||atttu||L2(0T Lz(Qf)) + ||atttpp||L2(QT LZ(Q )) + “0ttt§”L2(0,T;L2(QP))
+ ”attpp”LZ(OT HI(Q )) + ”atté‘”LZ(O T: HI(QP))’

= 01 )+ 0P

+ h2(|0ull? +110,psI ),

L20,T:H Q) L2(0,T;H* Q)
2 2
ﬂ = ”f”lz(OT Hk§+|(Q )) + h |at§|lL2(0THk;+l(Q ))’

Ay = ||pp||z2(0TH’<p+'(Qp)) +h ||<9zpp||Lz(0 TH*1(Q,)"

Assume that 01 =0, 0’ =0, 0’ =0,60 =0fori=0,1,using the Gronwall inequality, we obtain

> Vpp
102> < C(AL* + 1 + s + ), (5.56)
a0, 072 < C(A* + M + B2 + p2F), (5.57)
Then (5.34) and (5.35) can be obtained by the triangle inequality. O

6. Numerical example

In this section, the numerical example is implemented by using the software package
FreeFem++ [48]. All three decoupled algorithms decompose the original problem into two sub-
problems. For the solution of these two sub-problems, we employ the built-in keyword “problem”
in FreeFem++. All configurations are set to default. A commonly used numerical example is chosen,
see, e.g., [15,19,21].

Example 6.1. Let Q; = (0,1) x (0, 1), Q, = (=1,0) x (0, 1) and the interface I = (0, 1) x {0}, assume
that the exact solution in the fluid region is

3 —3x + cos(y)
u(x,t = JTCOS(ﬂt)( v+ 1 ) ,

pr(x,t) = exp(?) sin(rrx) cos(%) + 2np g cos(nt),

and the exact solution in the poroelastic region is

£(x, 1) = ﬂcos(nt)( —3x + cos(y) )

y+1
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—-3x + cos(y) )

n(x,t = sin(m‘)( v+ 1

pp(x, 1) = exp(?) sin(mrx) cos(ﬂ—zy).

According to the exact solution, we can choose the right hand functions, initial conditions, and
boundary conditions.

6.1. Numerical verification the convergence rates for Algorithm 3

We set pf =y = p, = 4, = 4, = 5o = a =7y = 1, K = Iin the Stokes—Biot problem. We
test the temporal and spatial convergence rates for the proposed decoupled time filtered finite element
method (Algorithm 3). We discretize the Stokes problem in space by using the Taylor-Hood(P2-P1)
elements for the velocity and pressure, and discretize the Biot problem by using piecewise quadratic
elements(P2) for the displacement, velocity and pressure. Combining the numerical results in Table 1
and 2, it can be concluded that whether the time step is set to Az = 0.3h or At = 0.6h, the expected
temporal convergence rates O(Af?) are also obtained. This verifies the stability and reliability of the
temporal convergence of the proposed method under different time steps. In Table 3, let At = O(h%).
Here, we see that all unknowns in H' norm and L? norm achieve the optimal spatial error convergence
rates. Although according to our Theorem 5.1, the spatial convergence rate for these unknowns is only
predicted to be second-order in the L? norm.

Table 1. Errors, temporal convergence rates for 7 = 0.3 and At = 0.3 A.

h 1/8 1/16 1/32 1/64 1/128
leNlo, 3.0728E-02 6.7146E-03 1.6348E-03 4.0407E-04 1.0044E-04
Rate - 2.19 2.04 2.02 2.01
IVeXlla, 1.1920E-01 2.6252E-02 6.4246E-03 1.5921E-03 3.9625E-04
Rate - 2.18 2.03 2.01 2.01

e llo, 2.1446E-01 6.9202E-02 1.6338E-02 3.9902E-03 9.8615E-04
Rate - 1.63 2.08 2.03 2.02

e llo, 3.7838E-03 1.1789E-03 3.1735E-04 8.1588E-05 2.0641e-05
Rate - 1.68 1.89 1.96 1.98
IVeYllo, 2.6012E-02 7.1426E-03 1.9160E-03 5.1946E-04 1.4259E-04
Rate - 1.86 1.90 1.88 1.87

el 6.5515E-03 1.9778E-03 5.3579E-04 1.3902E-04 3.5384E-05
Rate - 1.73 1.88 1.95 1.97
IVeNlla, 1.7528E-02 5.3078E-03 1.4415E-03 3.7446E-04 9.5360E-05
Rate - 1.72 1.88 1.94 1.97

lled,lla, 7.6725E-03 1.9177E-03 4.7199E-04 1.1734E-04 2.92786e-05
Rate - 2.00 2.02 2.01 2.00

Vel lla, 5.5733E-02 1.4032E-02 3.5112E-03 8.7787E-04 2.1947E-04
Rate - 1.99 2.00 2.00 2.00

AIMS Mathematics Volume 10, Issue 12, 29989-30016.



30009

Table 2. Errors, temporal convergence rates for 7 = 0.3 and At = 0.6 h.

h 1/8 1/16 1/32 1/64 1/128
lleMla ; 1.0744E-01 1.8492E-02 4.4203E-03 1.0636E-03 2.6072E-04
Rate - 2.54 2.06 2.06 2.03
||Vef)’|lg_, 4.1973E-01 7.2485E-02 1.7378E-02 4.1866E-03 1.0270E-03
Rate - 2.53 2.06 2.05 2.03
||6‘?[p|lgf 7.3452E-01 1.7930E-01 3.6883E-02 8.6123E-03 2.0793E-03
Rate - 2.03 2.28 2.10 2.05
IIeQ' lleo, 1.6475E-02 5.3260E-03 1.4297E-03 3.6427E-04 9.1687E-05
Rate - 1.63 1.90 1.97 1.99
IIVeé\JIIQ]J 7.9036E-02 2.6132E-02 7.1557E-03 1.9193E-03 5.2011E-04
Rate - 1.60 1.87 1.90 1.88
||e77N||QF 2.8206E-02 9.0567E-03 2.5021E-03 6.5411E-04 1.6704E-04
Rate - 1.64 1.86 1.94 1.97
IIVe,,NIIQP 7.6832E-02 2.4794E-02 6.8796E-03 1.8015E-03 4.6031E-04
Rate - 1.63 1.85 1.93 1.97
IIegPIIQp 2.4664E-02 6.2230E-03 1.4608E-03 3.5571E-04 8.7913E-05
Rate - 1.99 2.09 2.04 2.02
||V€2]p||gp 1.0302E-01 2.4110E-02 5.6678E-03 1.3782E-03 3.4021E-04
Rate - 2.10 2.09 2.04 2.02
Table 3. Errors, spatial convergence rates with 7 = 0.2 and Az = 0.2 h?.
h 1/9 1/16 1/25 1/36 1/49
lleN o ; 1.5062E-03 2.6092E-04 6.7718E-05 2.2577E-05 8.9327E-06
Rate - 3.05 3.02 3.01 3.01
||Ve{}’||gf 5.9142E-03 1.0374E-03 2.7392E-04 9.3767E-05 3.8571e-05
Rate - 3.03 2.98 2.94 2.88
||e}vpllgf 1.3312E-02 2.4876E-03 7.6142E-04 3.1422E-04 1.5616E-04
Rate - 2.92 2.65 2.43 2.27
||eéV||Qp 5.1267E-04 9.1836E-05 2.4124E-05 8.0858E-06 3.20809e-06
Rate - 2.99 3.00 3.00 3.00
||VE§VIIQP 2.6545E-03 5.2838E-04 1.5760E-04 5.98685e-05 2.71751e-05
Rate - 2.81 2.71 2.65 2.56
||ef,v||gp 9.1065E-04 1.6695E-04 4.4219E-05 1.4876E-05 5.91296e-06
Rate - 2.95 2.98 2.99 2.99
||V8,7N llo, 2.5188E-03 4.6467E-04 1.2456E-04 4.2794E-05 1.7578E-05
Rate - 2.94 2.95 2.93 2.89
||e],¥,,||9p 5.9012E-04 1.0050E-04 2.5834E-05 8.5627E-06 3.3750E-06
Rate - 3.08 3.04 3.03 3.02
||Vegpllg/, 1.6306E-02 5.1636E-03 2.1170E-03 1.0215E-03 5.5161E-04
Rate - 2.00 2.00 2.00 2.00

6.2. The influence in different physical parameters

Letpr = p, =pu, =1, =50 =a =y =1and K = [ in the Stokes—Biot problem. To test our
theoretical results in Theorem 5.1, we choose different values for the fluid viscosity u;. By setting the
time step At = O(h), Tables 4 and 5 present the numerical errors and corresponding convergence rates
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for fluid viscosities u; = 0.1 and py = 0.001, respectively. We can see that the errors in both the L
and H' norms decrease monotonically with a second-order convergence temporal rate, confirming the

method’s accuracy and robustness.

Table 4. Errors, temporal convergence rates for 7' = 0.1, At = 0.05 h and py = 0.1.

h 1/8 1/16 1/32 1/64 1/128
eI, 7.3984E-04 1.8283E-04 4.5641E-05 1.1406E-05 2.8509E-06
Rate - 2.02 2.00 2.00 2.00
IVelllq, 7.4243E-03 1.3917E-03 3.0067E-04 7.0795E-05 1.7243E-05
Rate - 2.42 221 2.09 2.04

lle lle, 4.4449E-03 1.0919E-03 2.7155E-04 6.7774E-05 1.6934E-05
Rate - 2.03 2.01 2.00 2.00
llello, 1.3010E-04 3.0472E-05 7.6515E-06 1.9268E-06 4.8421E-07
Rate - 2.09 1.99 1.99 1.99
IVella, 3.3396E-03 5.7219E-04 1.5064E-04 4.1074E-05 1.1018E-05
Rate - 2.55 1.93 1.87 1.90
e, 1.0899E-04 2.8743E-05 7.3654E-06 1.8633E-06 4.6853E-07
Rate - 1.92 1.96 1.98 1.99

Vel lla, 3.2949E-04 8.5112E-05 2.1646E-05 5.4674E-06 1.3740E-06
Rate - 1.95 1.98 1.99 1.99

e llo, 3.2949E-04 8.5112E-05 2.1646E-05 5.4674E-06 1.3740E-06
Rate - 1.95 1.98 1.99 1.99

IVeN lla, 1.6756E-02 4.2218E-03 1.0586E-03 2.6496E-04 6.6277E-05
Rate - 1.99 2.00 2.00 2.00
Table 5. Errors, temporal convergence rates for T = 0.1, At = 0.05 & and uy = 0.001.
h 1/8 1/16 1/32 1/64 1/128

e llo, 4.0390E-03 5.9748E-04 6.4682E-05 1.1642E-05 2.7692E-06
Rate - 2.76 3.21 2.47 2.07
IVeXllq, 2.4089E-01 7.0660E-02 1.2010E-02 1.9732E-03 3.4411E-04
Rate - 1.77 2.56 261 2.52

e}, lla, 4.4022E-03 1.0801E-03 2.6894E-04 6.7168E-05 1.6789E-05
Rate - 2.03 2.01 2.00 2.00
llello, 3.4236E-04 9.3360E-05 2.2928E-05 5.6359E-06 1.4065E-06
Rate - 1.87 2.03 2.02 2.00

Vel lla, 6.6565E-03 1.9727E-03 6.3248E-04 1.8909E-04 5.3465E-05
Rate - 1.75 1.64 1.74 1.82
leMla, 1.0829E-04 2.8493E-05 7.2990E-06 1.8463E-06 4.6425E-07
Rate - 1.93 1.96 1.98 1.99

Vel llo, 5.2734E-04 1.3646E-04 3.3942E-05 8.4534E-06 2.1118E-06
Rate - 1.95 2.01 2.01 2.00
lled,lla, 3.1025E-04 4.8224E-05 9.4070E-06 2.1578E-06 5.2694E-07
Rate - 2.69 2.36 2.12 2.03

Vel lia, 1.6765E-02 4.2227E-03 1.0585E-03 2.6494E-04 6.6269E-05
Rate - 1.99 2.00 2.00 2.00

6.3. Comparison of Algorithm 1-3

The efficiency of Algorithm 3 is evaluated against Algorithms 1 and 2. Let py = uy = p, = p, =
A, = 5o = a =y =1, K = I in the Stokes—Biot problem. We discretize the Stokes problem in
space by using the Taylor-Hood(P2-P1) elements for the velocity and pressure, and discretize the Biot
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problem by using piecewise quadratic elements(P2) for the displacement, velocity and the piecewise
linear elements(P1) for pressure. Comparing Table 6 with Table 8, we see that by simply adding a time
filter, the time accuracy is increased from first order to second order. The first order O(Ar) for [[Ve,,|lo,
is due to the use of the piecewise linear elements(P1) for pressure. It can also be shown from Table 6—8
that Algorithm 1 takes the shortest CPU time, followed by Algorithm 3, and Algorithm 2 takes the
longest CPU time.

Table 6. Errors and convergence rates of Algorithm 1 for 7 = 1.0 and A = h.

h 1/8 1/16 1/32 1/64 1/128
lleNlla, 1.3624¢-02 6.5651e-03 3.1877¢-03 1.5573¢-03 7.6425¢-04
Rate - 1.05 1.04 1.03 1.03
Ve, 9.9144¢-02 4.6833¢-02 2.3344e-02 1.1653e-02 5.7855e-03
Rate - 1.08 1.00 1.00 1.01

e}, lla, 1.3764¢+00 7.0486e-01 3.5621e-01 1.7918e-01 8.9905¢-02
Rate - 0.97 0.98 0.99 0.99
llella, 2.7874e-01 1.7200e-01 9.8078e-02 5.2944e-02 2.7639¢-02
Rate - 0.70 0.81 0.89 0.94

Ve llo, 1.0484e+00 6.4957¢-01 3.7646¢-01 2.0775e-01 1.1107e-01
Rate - 0.69 0.79 0.86 0.90
lleNlla, 4.4854¢-01 2.2207e-01 1.1036¢-01 5.4978e-02 2.7429¢-02
Rate - 1.01 1.01 1.01 1.00

Ve lla, 1.2657e+00 6.3629¢-01 3.1989¢-01 1.6067¢-01 8.0587e-02
Rate - 0.99 0.99 0.99 1.00
llel,lla, 3.4551e-02 1.6520e-02 1.0731e-02 6.2982¢-03 3.4372e-03
Rate - 1.06 0.62 0.77 0.87

Vel lia, 7.1306e-01 3.6582¢-01 1.8624e-01 9.4170e-02 4.7394¢-02
Rate - 0.96 0.97 0.98 0.99
CPU(s) 0.479 3.773 31.016 285.248 2622.240

Table 7. Errors and convergence rates of Algorithm 2 for 7 = 1.0 and Ar = h.

h 1/4 1/8 1/16 1/32 1/64
lleN e, 7.9249¢-03 2.1790e-03 5.5934e-04 1.4107e-04 3.5378e-05
Rate - 1.86 1.96 1.99 2.00

Vel o, 9.8613e-02 2.6714e-02 6.8376e-03 1.7243e-03 4.3248e-04
Rate - 1.88 1.97 1.99 2.00
||eyp||gf 1.5111e-01 4.3143e-02 1.1960e-02 3.1614e-03 8.1223¢-04
Rate - 1.81 1.85 1.92 1.96

lleX llo, 3.2289¢-02 1.2008e-02 3.5818e-03 9.6081e-04 2.4742¢-04
Rate - 1.43 1.75 1.90 1.96
IVello, 1.6028¢-01 5.1297¢-02 1.5383¢-02 4.1757¢-03 1.0884¢-03
Rate - 1.64 1.74 1.88 1.94

lle lle, 2.8835¢-02 7.2942¢-03 1.8031e-03 4.4532e-04 1.1048e-04
Rate - 1.98 2.02 2.02 2.01
IVe)lla, 1.0515e-01 2.7671e-02 6.9063¢-03 1.7072¢-03 4.2355e-04
Rate - 1.93 2.00 2.02 2.01
lle,lla, 4.9539¢-02 1.2608¢-02 3.2099¢-03 8.1313e-04 2.0444¢-04
Rate - 1.97 1.97 1.98 1.99

Vel lla, 6.9427¢-01 3.4748e-01 1.7378e-01 8.6894¢-02 4.3447e-02
Rate - 1.00 1.00 1.00 1.00
CPU(s) 0.46 3.77 37.32 329.30 3106.90
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Table 8. Errors and convergence rates of Algorithm 3 for 7 = 1.0 and Ar = h.

h 1/8 1/16 1/32 1/64 1/128
eI, 3.0439¢-01 7.6653¢-02 1.9227e-02 4.8100e-03 1.2027e-03
Rate - 1.99 2.00 2.00 2.00

Vel llq, 1.1901e+00 3.0035e-01 7.5469¢-02 1.8908e-02 4.7311e-03
Rate - 1.99 1.99 2.00 2.00

el lla, 3.7200e+00 9.3142¢-01 2.2920e-01 5.6620e-02 1.4060e-02
Rate - 2.00 2.02 2.02 2.01

lleXlla, 3.8392¢-02 1.8466e-02 6.0599¢-03 1.6770e-03 4.3561e-04
Rate - 1.06 1.61 1.85 1.94

Ve llo, 2.3393¢-01 7.1184e-02 2.3358¢-02 6.9149¢-03 1.8817¢-03
Rate - 1.72 1.61 1.76 1.88
lleYlla, 2.2713e-02 6.3155¢-03 1.5038¢-03 3.6229¢-04 8.8900e-05
Rate - 1.85 2.07 2.05 2.03

Vel llq, 1.0514¢-01 2.8245¢-02 6.7994¢-03 1.6332¢-03 3.9870e-04
Rate - 1.90 2.05 2.06 2.03
lleN,lla, 2.5788e-02 6.9021e-03 1.7972e-03 4.4192e-04 1.0949¢-04
Rate - 1.90 1.94 2.02 2.01

Vel llo, 7.2229¢-01 3.5127¢-01 1.7426¢-01 8.6952¢-02 4.3454e-02
Rate - 1.04 1.01 1.00 1.00
CPU(s) 0.43 3.74 31.62 292.48 2702.78

7. Conclusions

In this paper, we propose a decoupled time filtered method for the Stokes—Biot model, and derive
the corresponding stability results and a priori error estimates. Through comparisons with Algorithm 1
and 2, our algorithm (Algorithm 3) retains the second-order temporal accuracy of Algorithm 2 while
exhibiting the lower computational costs of Algorithm 1.
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